立体几何压轴题
(压轴题)高中数学必修二第一章《立体几何初步》测试卷(有答案解析)
一、选择题1.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( )A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //2.已知平面,αβ,直线l ,记l 与,αβ所成的角分别为1θ,2θ,若αβ⊥,则( ) A .12sin sin 1θθ+≤B .12sin sin 1θθ+≥C .122πθθ+≤D .122πθθ+≥3.已知正三棱柱111ABC A B C -中,1AB AA =,M 是1CC 的中点,则异面直线AM 与1A B 所成角的大小为( )A .π6B .π4C .π3D .π24.在正方体1111ABCD A B C D -,中,M ,N ,P ,Q 分别为1A B ,1B D ,1A D ,1CD 的中点,则异面直线MN 与PQ 所成角的大小是( ) A .6π B .4π C .3π D .2π 5.如图,正三棱柱111ABC A B C -的高为4,底面边长为43,D 是11B C 的中点,P 是线段1A D 上的动点,过BC 作截面AP α⊥于E ,则三棱锥P BCE -体积的最小值为( )A .3B .3C .43D .126.如图所示,A ,B 为正方体的两个顶点,M ,N 为其所在棱的中点,则异面直线AB 与MN 所成角的大小为( )A .30°B .45°C .60°D .90°7.一个几何体的三视图如图所示,则该几何体的外接球的表面积是( )A .2πB .3πC .4πD .16π8.在正方体1111ABCD A B C D -中,三棱锥11A B CD -的表面积为43,则正方体外接球的体积为( ) A .43πB .6πC .323πD .86π9.平行六面体1111ABCD A B C D -的六个面都是菱形,那么点1A 在面11AB D 上的射影一定是11AB D 的________心,点1A 在面1BC D 上的射影一定是1BC D 的________心( )A .外心、重心B .内心、垂心C .外心、垂心D .内心、重心10.αβ是两个不重合的平面,在下列条件中,可判定平面α与β平行的是( )A .m 、n 是α内的两条直线,且//m β,βn//B .α、β都垂直于平面γC .α内不共线三点到β的距离相D .m 、n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α 11.如图(1),Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,沿AD 将ACD △折起到AC D ',使得C '在平面ABD 上的射影H 落在AB 上,如图(2),则以下结论正确的是( )A .AC BD '⊥B .AD BC '⊥ C .BD C D ⊥' D .AB C D ⊥'12.已知二面角l αβ--为60,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,45ACD ∠=,则异面直线AB 与CD 所成角的余弦值为( )A .14B .24C .34D .12二、填空题13.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中A C B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.14.已知正四棱锥的体积为18,侧棱与底面所成的角为45,则该正四棱锥外接球的表面积为___________.15.已知三棱锥P ABC -的外接球O 的表面积为12π,PA ⊥平面ABC ,BA AC ⊥,2PA =,则ABC 面积的最大值为__________.16.已知一个几何体的三视图如图所示,俯视图为等腰三角形,则该几何体的外接球表面积为_________.17.如图,在矩形ABCD 中,2AB =,1AD =,点E 为CD 的中点,F 为线段CE (端点除外)上一动点.现将DAF △沿AF 折起,使得平面ABD ⊥平面ABC .设直线FD 与平面ABCF 所成角为θ,θ的取值范围为__________.18.已知长方体1234ABCD A B C D -,底面是边长为4的正方形,高为2,点O 是底面ABCD 的中心,点P 在以O 为球心,半径为1的球面上,设二面角111P A B C --的平面角为θ,则tan θ的取值范围是________.19.若三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,23AB =7SA SB SC ===,则该三棱锥的外接球的表面积为__________. 20.棱长为a 的正四面体的外接球的表面积为______.三、解答题21.如图所示,已知在三棱锥A BPC -中,,AP PC AC BC ⊥⊥,M 为AB 的中点,D 为PB 的中点,且PMB △为正三角形.(Ⅰ)求证://DM 平面APC ; (Ⅱ)求证:平面ABC ⊥平面APC ;(Ⅲ)若4,20BC AB ==,求三棱锥D BCM -的体积.22.在四棱锥P ABCD -中,四边形ABCD 为正方形,平面PAB ⊥平面,ABCD PAB 为等腰直角三角形,,2PA PB AB ⊥=.(1)求证:平面PBC ⊥平面PAC ;(2)设E 为CD 的中点,求点E 到平面PBC 的距离.23.在三棱锥A BCD -中,E 、F 分别为AD 、DC 的中点,且BA BD =,平面ABD ⊥平面ADC .(1)证明://EF 平面ABC ; (2)证明:BE CD ⊥.24.在三棱锥P ABC -中,AE BC ⊥于点,E CF AB ⊥于点F ,且AE CF O ⋂=,若点P 在平面ABC 上的射影为点O .(1)证明:AC PB ⊥;(2)若ABC 是正三角形,点,G H 分别为,PA PC 的中点.证明:四边形EFGH 是矩形.25.如图,在平面四边形A ABC '中,90CAB CA A '∠=∠=,M 在直线AC 上,A A A C ''=,AB AM MC ==,A AC '绕AC 旋转.(1)若A AC '所在平面与ABC 所在平面垂直,求证:A C '⊥平面A AB '. (2)若二面角A AC B '--大小为60,求直线A B '与平面ABM 所成角的正弦值. 26.如图,在矩形ABCD 中,2AB AD =,M 为DC 的中点,将ADM △沿AM 折起使平面ADM ⊥平面ABCM .(1)求证:BM AD ⊥;(2)求直线DC 与平面DAB 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误. 【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误; 对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误; 对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴,1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.2.C解析:C 【分析】如图,作出1θ和2θ,再由线面角推得12sin sin 2πθθ⎛⎫≤- ⎪⎝⎭,利用三角函数的单调性判断选项. 【详解】设直线l 为直线AB ,m αβ=,AD m ⊥,BC m ⊥,连结BD ,AC ,1ABD θ=∠,2BAC θ=∠,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭,12,2πθθ-都是锐角, 122πθθ∴≤-,即122πθθ+≤故选:C 【点睛】关键点点睛:本题的关键是作图,并利用线段AD AC ≤,传递不等式,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭. 3.D解析:D 【分析】取AC 中点E ,连接1,A E BE ,先通过BE ⊥平面11ACC A 可得BE AM ⊥,再由1ACM A AE ≅可得1AM A E ⊥,即可得出AM ⊥平面1A BE ,即1AM A B ⊥.【详解】取AC 中点E ,连接1,A E BE ,ABC 为正三角形,BE AC ∴⊥,正三棱柱111ABC A B C -中,1CC ⊥平面ABC ,BE ⊂平面ABC ,1CC BE ∴⊥,1ACCC C =,BE ∴⊥平面11ACC A ,AM ⊂平面11ACC A ,BE AM ∴⊥,在直角三角形ACM 和直角三角形1A AE 中,1,AC A A CM AE ==,1ACM A AE ∴≅, 1CAM AA E ∴∠=∠,12CAM A EA π∴∴∠+∠=,则1AM A E ⊥,1BE A E E ⋂=,AM ∴⊥平面1A BE ,1A B ⊂平面1A BE ,1AM A B ∴⊥,故异面直线AM 与1A B 所成角的大小为2π.【点睛】本题考查异面直线所成角的求解,解题的关键是通过证明AM ⊥平面1A BE 判断出1AM A B ⊥.4.B解析:B 【分析】由M 也是1A B 的中点,P 也是1AD 中点,得平行线,从而找到异面直线MN 与PQ 所成角,在三角形中可得其大小. 【详解】如图,连接1AD ,1AB ,显然M 也是1A B 的中点,P 也是1AD 中点, 又N 是1B D 中点,Q 是1CD 中点,所以//MN AD ,//PQ AC , 所以CAD ∠是异面直线MN 与PQ 所成角(或补角),大小为4π. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.5.C解析:C 【分析】因为P BCE P ABC E ABC V V V ---=-则当E ABC V -取最大值时,三棱锥P BCE -体积有最小值,建立坐标系求得当点E 的高为3时,问题得解. 【详解】以点O 为原点,,,OA OD OB 分别为,,x y z 轴建立空间直角坐标系,如图所示:设点(),0,E x z ,依题意得()6,0,0A ,则()6,0,AE x z =- ,(),0,OE x z = 因为过BC 作截面AP α⊥于E ,所以AE OE ⊥则0AE OE ⋅=, 故()2600x x z -++= 所以()6z x x =-3x =时max 3z =又()143P BCE P ABC E ABC ABCV V V S z ---=-=-因为max 3z =所以三棱锥P BCE -体积的最小值()1114343643332P BCE ABC V S-=-=⋅⋅=故选:C 【点睛】关键点点晴:本题的解题关键是将问题转化为求E ABC V -的最大值,通过建系求得三棱锥E ABC -的高的最大值即可.6.C解析:C 【分析】由MN 与正方体的面对角线平行,可得异面直线所成的角,此角是正三角形的内角,由此可得. 【详解】作如图所示的辅助线,由于M ,N 为其所在棱的中点,所以//MN PQ ,又因为//AC PQ ,所以//AC MN ,所以CAB ∠即为异面直线AB 与MN 所成的角(或补角),易得AB AC BC ==,所以60CAB ∠=︒. 故选:C .7.C解析:C 【分析】由三视图还原出原几何体,确定其结构,再求出外接球的半径得球的表面积. 【详解】由三视图,知原几何体是一个四棱锥P ABCD -,如图,底面ABCD 是边长为1的正方形,PB ⊥底面ABCD ,由PB ⊥底面ABCD ,AD ⊂面ABCD ,得PB AD ⊥,又AD AB ⊥,AB PB B ⋂=,,AB PB ⊂平面PAB ,所以AD ⊥平面PAB ,而PA ⊂平面PAB ,所以AD PA ⊥,同理DC PC ⊥,同样由PB ⊥底面ABCD 得PB BD ⊥,所以PD 中点O 到四棱锥各顶点距离相等,即为其外接球球心,PD 为球直径,222222PD PB BD PA AD AB =+=++=,∴外接球半径为12ADr ==, 表面积为2414S ππ=⨯=. 故选:C .【点睛】关键点点睛:本题考查由三视图还原几何体,考查棱锥的外接球表面积.解题关键是确定外接球的球心.棱锥的外接球球心在过各面外心(外接圆圆心)且与该面垂直的直线上.8.B解析:B 【分析】根据三棱锥的表面积进一步求出正方体的棱长,最后求出正方体的外接球的半径,进一步求出结果. 【详解】解:设正方体的棱长为a ,则1111112B D AC AB AD B C D C a ======, 由于三棱锥11A B CD -的表面积为43, 所以()12133442242AB CS S a==⨯⨯=所以2a =()()()2222226++=, 所以正方体的外接球的体积为34663ππ⎛⎫= ⎪ ⎪⎝⎭故选:B .与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.9.C解析:C 【分析】将三棱锥111A AB D -、三棱锥11A BC D -分离出来单独分析,根据线段长度以及线线关系证明1A 的射影点分别是11AB D 和1BC D 的哪一种心. 【详解】三棱锥111A AB D -如下图所示:记1A 在面11AB D 上的射影点为O ,连接11,,AO B O D O ,因为11111AA A D A B ==,又1A O ⊥平面11AB D , 所以2222221111111111,,AA AO AO A D AO OD A B AO OB =+=+=+, 所以11AO OB OD ==,所以O 为11AB D 的外心;三棱锥11A BC D -如下图所示:记1A 在面1BC D 上的射影点为1O ,连接1111,,BO C O DO ,因为11//BC AD ,且四边形11ADD A 是菱形,所以11AD A D ⊥,所以11BC A D ⊥, 又因为11A O ⊥平面1BC D ,所以1111111,AO BC AO A D A ⊥=,所以1BC ⊥平面11AO D ,又因为1DO ⊂平面11AO D ,所以11DO BC ⊥, 同理可知:1111,BO DC C O DB ⊥⊥,所以1O 为1BC D 的垂心,【点睛】关键点点睛:解答本题的关键是通过1A 的射影点去证明线段长度的关系、线段位置的关系,借助线面垂直的定义和判定定理去分析解答问题.10.D解析:D 【分析】取a αβ⋂=,且//m a ,//n a ,利用线面平行的判定定理可判断A 选项;根据αγ⊥,βγ⊥判断平面α与β的位置关系,可判断B 选项;设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,判断出A 、B 、C 三点到平面β的距离相等,可判断C选项;过直线n 作平面γ,使得a αγ⋂=,利用线面平行、面面平行的判定定理可判断D 选项. 【详解】对于A 选项,若a αβ⋂=,且//m a ,//n a ,m β⊄,n β⊄,则//m β,βn//,但α与β相交;对于B 选项,若αγ⊥,βγ⊥,则α与β平行或相交;对于C 选项,设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,如下图所示:D 、E 分别为AB 、AC 的中点,则//DE BC ,DE β⊂,BC β⊄,//BC β∴,所以,点B 、C 到平面β的距离相等,由于D 为AB 的中点,则点A 、B 到平面β的距离相等,所以,点A 、B 、C 三点到平面β的距离相等,但平面α与平面β相交; 对于D 选项,如下图所示:由于//n α,过直线n 作平面γ,使得a αγ⋂=,则//a n ,//n a ,a β⊄,n β⊂,//a β∴,//m β,m a A =,m α⊂,a α⊂,//αβ∴.故选:D. 【点睛】方法点睛:证明或判断两个平面平行的方法有: ①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行”⇒“面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明; ④借助“传递性”来完成.11.C解析:C 【分析】设AH a =,则3BH a =,由线面垂直的性质和勾股定理可求得DH a AH ==,由等腰三角形的性质可证得BD ⊥DH ,再根据线面垂直的判定和性质可得选项. 【详解】设AH a =,则3BH a =,因为'C H ⊥面ABD ,AB 面ABD ,DH ⊂面ABD ,所以'C H ⊥AB ,'C H ⊥DH ,'C H ⊥DB , 又Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,所以'1,6C D BD B DAB π==∠=∠=,所以在'Rt AC H 中,()2''221C H AC AH a =-=-Rt C HD ’中,()2'222'211DH C D C H a a =-=--=,所以DH a AH ==,所以6ADH DAB π∠=∠=,又23ADB π∠=,所以2HDB π∠=,所以BD ⊥DH ,又'C HDH H =,所以BD ⊥面'C DH ,又'C D ⊂面'C DH ,所以BD ⊥'C D , 故选:C. 【点睛】关键点点睛:在解决折叠问题时,关键在于得出折叠的前后中,线线、线面、面面之间的位置关系的不变和变化,以及其中的边的长度、角度中的不变量和变化的量.12.B解析:B 【分析】作出图形,设2CD =,AD l ⊥,2AB =,然后以CA 、CD 为邻边作平行四边形ACDE ,可知BAD ∠为二面角l αβ--的平面角,异面直线AB 与CD 所成角为BAE∠或其补角,计算出ABE △三边边长,利用余弦定理计算出cos BAE ∠,即可得解. 【详解】 如下图所示:设2CD =,AD l ⊥,2AB =CA 、CD 为邻边作平行四边形ACDE ,在平面β内,AD l ⊥,2CD =,45ACD ∠=,则sin 2AD CD ACD =∠=cos 452AC CD ==,AB l ⊥,AD l ⊥,AB α⊂,AD β⊂,所以,BAD ∠为二面角l αβ--的平面角,即60BAD ∠=,2AB AD ==,ABD ∴为等边三角形,则2BD =,四边形ACDE 为平行四边形,//DE AC ∴,即//DE l ,AD l ⊥,AB l ⊥,DE AB ⊥∴,DE AD ⊥,AB AD A =,DE ∴⊥平面ABD ,BD ⊂平面ABD ,DE BD ∴⊥,则222BE BD DE =+=,在平行四边形ACDE 中,//AE CD 且2AE CD ==, 所以,异面直线AB 与CD 所成角为BAE ∠或其补角, 在ABE △中,2AB =2AE BE ==,由余弦定理可得2222cos 24AB AE BE BAE AB AE +-∠==⋅. 因此,异面直线AB 与CD 所成角的余弦值为24. 故选:B. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.二、填空题13.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:82【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可. 【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABCSBC AO =⋅=⨯⨯= 故答案为:2【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.14.【分析】作出图形计算出正四棱锥的高与底面边长设底面的中心为计算得出为正四棱锥的外接球球心可求得该正四棱锥的外接球半径即可得解【详解】如下图所示设正四棱锥的底面的中心为连接设正四棱锥的底面边长为则由于 解析:36π【分析】作出图形,计算出正四棱锥P ABCD -的高与底面边长,设底面ABCD 的中心为E ,计算得出E 为正四棱锥P ABCD -的外接球球心,可求得该正四棱锥的外接球半径,即可得解. 【详解】如下图所示,设正四棱锥P ABCD -的底面ABCD 的中心为E ,连接PE 、AC 、BD ,设正四棱锥P ABCD -的底面边长为a ,则2AC BD a ==,由于E 为正四棱锥P ABCD -的底面ABCD 的中心,则PE ⊥平面ABCD , 由于正四棱锥P ABCD -的侧棱与底面所成的角为45,则45PAC PCA ∠=∠=, 所以,PAC △是以APC ∠为直角的等腰直角三角形, 同理可知,PBD △是以BPD ∠为直角的等腰直角三角形,E 为AC 的中点,1222PE AC a ==,2ABCD S a =正方形, 231122183326P ABCD ABCD V S PE a a a -=⋅=⨯⨯==正方形,解得32a =,232PE a ==,由直角三角形的性质可得1122PE AC BD ==,即PE AE BE CE DE ====,所以,E 为正四棱锥P ABCD -外接球的球心, 球E 的半径为3r PE ==,该球的表面积为2436r ππ=. 故答案为:36π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.15.2【分析】由球的表面积可求出半径取的中点可得设由基本不等式可得即可求出面积的最大值【详解】因为球的表面积为所以球的半径取的中点则为的外接圆圆心平面设由得因为所以当且仅当时取等因为的面积为所以面积的最解析:2 【分析】由球的表面积可求出半径3R =,取BC 的中点D ,可得1OD =,设AB x =,AC y =,由基本不等式可得4xy ≤,即可求出ABC 面积的最大值.【详解】因为球O 的表面积为12π,所以球O 的半径3R =. 取BC 的中点D ,则D 为ABC 的外接圆圆心,PA ⊥平面ABC ,112OD PA ∴==, 设AB x =,AC y =,由2222134+==+=+=x y R OC CD OD ,得228x y +=. 因为222x y xy +≥,所以4xy ≤,当且仅当2x y ==时取等.因为ABC 的面积为1122⋅=AB AC xy ,所以ABC 面积的最大值为2. 故答案为:2.【点睛】本题考查几何体的外接球问题,解题的关键是是建立勾股关系,利用基本不等式求出4xy ≤.16.【分析】首先把三视图转换为直观图进一步求出几何体的外接球的半径最后求出球的表面积【详解】根据几何体的三视图可知该几何体是底面为等腰三角形高为2的三棱锥体如图所示:设底面外接圆的半径为t 圆心为H 则解得 解析:414π【分析】首先把三视图转换为直观图,进一步求出几何体的外接球的半径,最后求出球的表面积. 【详解】根据几何体的三视图可知该几何体是底面为等腰三角形,高为2的三棱锥体.如图所示:设底面外接圆的半径为t ,圆心为H ,则2221(2)t t =+-,解得54t =, 设外接球的半径r ,球心为O ,则OH ⊥底面,且1OH =, 则22541()144r =+=所以41414().164S ππ=⨯⨯= 故答案为:414π 【点睛】关键点点睛:球心与底面外接圆圆心连线垂直底面,且OH 等于棱锥高的一半,利用勾股定理求出球的半径,由面积公式计算即可.17.【分析】在矩形中作交于交于在翻折后的几何体中证得平面平面从而平面得是直线与平面所成的角设C 求得的范围后可得范围【详解】在矩形中作交于交于设由图易知∴即∴则在翻折后的几何体中又平面∴平面又平面∴平面平解析:(0,]6π【分析】在矩形ABCD 中作DO AF ⊥,交AF 于O ,交AB 于M ,在翻折后的几何体中,证得平面ODM ⊥平面ABCF ,从而DM ⊥平面ABCF ,得DFM ∠是直线FD 与平面ABCF 所成的角.设(01)CF x x =<<C ,求得sin θ的范围后可得θ范围.【详解】在矩形ABCD 中作DO AF ⊥,交AF 于O ,交AB 于M , 设(01)CF x x =<<,AM t =,由图易知DAMFDA △△,∴AM AD DA DF =,即112t x =-,∴12t x=-,01x <<,则112t <<. 在翻折后的几何体中,AF OD ⊥,AF OM ⊥,又OD OM O =,,OD OM ⊂平面ODM ,∴AF ⊥平面ODM ,又AF ⊂平面ABCF ,∴平面ODM ⊥平面ABCF ,又平面ABD ⊥平面ABC AB =.平面ODM平面ABD DM =,∴DM ⊥平面ABCF ,连接MF ,则DFM ∠是直线FD 与平面ABCF 所成的角.DFM θ∠=,而21DM t =-,12DF x t=-=, ∴2422211sin 1()24DM t t t t t DF θ==-=-+=--+, ∵112t <<,∴2114t <<,∴10sin 2θ<≤,即06πθ<≤.故答案为:(0,]6π.【点睛】方法点睛:本题考查求直线与平面所成的角,求线面角常用方法:(1)定义法:作出直线与平面所成的角并证明,然后在直角三角形中计算可得; (2)向量法:建立空间直角坐标系,由直线的方向向量与平面的法向量夹角的余弦的绝对值等于直线与平面所成角的正弦值计算.18.【分析】根据题意画出相应的图形结合题意找出什么情况下取最大值什么情况下取最小值利用和差角正切公式求得最值得到结果【详解】根据题意如图所示:取的中点过点作球的切线切点分别为可以判断为的最小值为的最大值解析:474733⎡-⎢⎣⎦【分析】根据题意,画出相应的图形,结合题意,找出什么情况下取最大值,什么情况下取最小值,利用和差角正切公式求得最值,得到结果. 【详解】根据题意,如图所示:取11A B 的中点H ,过H 点作球O 的切线,切点分别为,M N , 可以判断1O HN ∠为θ的最小值,1O HM ∠为θ的最大值, 且1112tan 12OO O HO HO ∠===, 22,1OH OM ON ===,所以7HM HN ==tan tan 7NHO OHM ∠=∠=, 11171827477tan tan()7117O HN O HO NHO ----∠=∠-∠====++ 1117827477tan tan()1637117O HM O HO OHM ++∠=∠+∠====-, 所以tan θ的取值范围是4747,33⎡+⎢⎣⎦, 故答案为:4747-+⎣⎦.【点睛】方法点睛:该题考查的是有关二面角的求解问题,解题方法如下: (1)先根据题意画图;(2)结合题意,找出在什么情况下取最大值和最小值;(3)结合图形求得相应角的正切值; (4)利用和差角正切公式求得结果.19.【详解】取的中点由题意可得:所以面ABC 所以球心在直线上所以得所以 解析:494π【详解】取AB 的中点,由题意可得:2222,3,SD DC SD DC SC ==+=,所以,SD AB SD DC ⊥⊥,SD ⊥面ABC.所以球心在直线SD 上,所以()2232R R =+-,得74R =, 所以24944S R ππ==. 20.【分析】由正四面体性质可知球心在棱锥高线上利用勾股定理可求出半径R 即可求出球的面积【详解】正四面体的棱长为:底面三角形的高:棱锥的高为:设外接球半径为R 解得所以外接球的表面积为:;故答案为:【点睛】解析:232a π 【分析】由正四面体性质可知,球心在棱锥高线上,利用勾股定理可求出半径R ,即可求出球的面积. 【详解】正四面体的棱长为:a , 33a =,棱锥的高为:22236()32a a a -⨯⨯=, 设外接球半径为R ,22263()()R a R a =-+,解得6R a =, 所以外接球的表面积为:2263442a a ππ⎛⎫⨯=⎪ ⎪⎝⎭; 故答案为:232a π. 【点睛】本题考查球的表面积的求法,解题的关键是根据球心的位置,在正四面体中求出球的半径.三、解答题21.(1)见详解;(2)见详解;(3)107 【分析】(1)先证DM AP ∥,可证//DM 平面APC .(2)先证AP ⊥平面PBC ,得⊥AP BC ,结合AC BC ⊥可证得BC ⊥平面APC . (3)等积转换,由D BCM M DBC V V --=,可求得体积. 【详解】证明:因为M 为AB 的中点,D 为PB 的中点,所以MD 是ABP △的中位线,MD AP .又MD 平面APC ,AP ⊂平面APC ,所以MD 平面APC .(2)证明:因为PMB △为正三角形,D 为PB 的中点,所以MD PB ⊥.又MDAP ,所以AP PB ⊥.又因为AP PC ⊥,PB PC P =,所以AP ⊥平面PBC .因为BC ⊂平面PBC ,所以⊥AP BC . 又因为BC AC ⊥,AC AP A ⋂=, 所以BC ⊥平面APC .(3)因为AP ⊥平面PBC ,MD AP ,所以MD ⊥平面PBC ,即MD 是三棱锥M DBC -的高. 因为20AB =,M 为AB 的中点,PMB △为正三角形,所以10,2PB MB MD MB ==== 由BC ⊥平面APC ,可得BC PC ⊥,在直角三角形PCB 中,由104PB BC =,=,可得PC =于是1114222BCD BCP S S ⨯⨯⨯=△△==1133D BCM M DBC BCD V V S MD --⨯=△===【点睛】关键点睛:三棱锥的体积直接求不便时,常采用等积转换的方法,选择易求的底面积和高来求体积.22.(1)证明见解析;(2)2. 【分析】(1)利用面面垂直的性质先证明出BC ⊥面PAB ,得到PA BC ⊥,再由PA PB ⊥,结合线面垂直的判定定理可知PA ⊥面PBC ,又PA ⊂面PAC ,然后证得平面PBC ⊥平面PAC ;(2)先计算三棱锥P BCE -的体积,然后再计算PBC 的面积,利用等体积法P BCE E PBC V V --=求解.【详解】解:(1)证明:∵面PAB ⊥面ABCD ,且平面PAB ⋂平面ABCD AB =,BC AB ⊥,BC ⊂面ABCD BC ∴⊥面PAB , 又PA ⊂面PAB PA BC ∴⊥又因为由已知PA PB ⊥且PB BC B ⋂=,所以PA ⊥面PBC ,又PA ⊂面PAC ∴面PAC ⊥面PBC .(2)PAB △中,PA PB =,取AB 的中点O ,连PO ,则PO AB ⊥ ∵面PAB ⊥面ABCD 且它们交于,AB PO ⊂面PABPO ∴⊥面ABCD由1133BCEE PBC P BCE PBC BCE PBCSPOV V S h S PO h S--=⇒=⇒=,由已知可求得1PO =,1BCES=,2PBCS=,所以22h =. 所以点E 到平面PBC 的距离为22.【点睛】(1)证明面面垂直的核心为证明线面垂直,要证明线面垂直只需郑敏面外的一条弦和面内的两条相交线垂直即可;(2)点到面的距离求解一般采用等体积法求解,也可采用空间向量法求解. 23.(1)证明见解析;(2)证明见解析. 【分析】(1)利用中位线的性质可得出//EF AC ,再利用线面平行的判定定理可证得结论成立; (2)利用面面垂直的性质定理可得出BE ⊥平面ACD ,进而可证得BE CD ⊥. 【详解】(1)在ADC 中,E 、F 分别是AD 、DC 的中点,//EF AC ∴.EF ⊄平面ABC ,AC ⊂平面ABC ,//EF ∴平面ABC ;(2)在ABD △中,BA BD =,E 为AD 的中点,BE AD ∴⊥, 又平面ABD ⊥平面ADC ,平面ABD ⋂平面ADC AD =,BE ⊂平面ABD ,BE ∴⊥平面ADC .CD ⊂平面ADC ,BE CD ∴⊥. 【点睛】方法点睛:在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等. 24.(1)证明见解析;(2)证明见解析. 【分析】(1)根据三角形垂心的特征,以及点在面上的射影的定义,再结合线面垂直的判定定理和性质,证得结果;(2)利用平行四边形的邻边垂直,证得结果. 【详解】证明:(1)连接BO 并延长交AC 于点M ,因为,AE BC CF AB ⊥⊥,所以O 为ABC 的垂心所以BM AC ⊥又因为P 在平面ABC 的射影为O ,所以PO ⊥平面ABC 所以PO AC ⊥又因为PO BM O ⋂=,所以AC ⊥平面PBM 所以AC PB ⊥(2)分别连接,,,EF EH GF GH因为,,AE BC CF AB ABC ⊥⊥为正三角形 所以,E F 分别为,BC BA 的中点 所以//EF AC又由(1)AC PB ⊥,所以EF PB ⊥因为,E H 分别为,BC PC 的中点,所以EH 平行等于1PB 2, 又因为,F G 分别为,AB PA 的中点,所以GF 平行等于1PB 2, 所以EH 平行等于GF ,所以四边形EFGH 为平行四边形 又//,EH PB EF PB ⊥,所以EH EF ⊥, 所以四边形EFGH 为矩形. 【点睛】思路点睛:该题考查的是有关立体几何的问题,解题思路如下:(1)利用三角形的垂心的特征,结合点在面上射影的定义,得到相应的垂直关系,结合线面垂直的判定定理和性质证得结果;(2)根据正三角形的有关特征,结合题中所得到的平行关系,到的四边形EFGH 为平行四边形;(3)根据题中所给的垂直关系,得到EH EF ⊥,从而证得结果. 25.(1)证明见解析 ;(2)64. 【分析】(1)由面面垂直以及AB AC ⊥可得AB ⊥平面A AC ',进而可得AB AC '⊥,再由AC AA ''⊥利用线面垂直的判定定理即可证明;(2)取BC 的中点N ,连结,,A M A N MN '',可得A MN '∠为二面角A AC B '--的平面角即60A MN '∠=,设1AB =,则2AC A A ''==,利用余弦定理求出32A N '=,由勾股定理可证A N MN '⊥,结合A N AC '⊥可证明A N '⊥平面ABC ,A BN '∠为直线A B '与平面ABM 所成角,在A BN '中求sin A BN ∠'即可. 【详解】(1)∵90CAB CA A '∠=∠=,∴AB AC ⊥,∵平面A AC '⊥平面ABC ,平面A AC '⋂平面ABC AC =,AB 平面ABC ,∴AB ⊥平面A AC ',A C '⊂平面A AC ',∴AB AC '⊥,AC AA ''⊥,又∵AB平面A AB ',AA '⊂平面A AB ',A A A B A '''⋂=,∴A C '⊥平面A AB '.(2)取BC 的中点N ,连结,,A M A N MN '',设1AB =,则2AC A A ''==,∵点M 为中点,∴A M AC '⊥, ∵//MN AB ,∴MN AC ⊥,∴A MN '∠为二面角A AC B '--的平面角, ∴60A MN '∠=,∵1122MN AB ==,∴1A M '=, 在A MN '△中,由余弦定理可得:22222cos6011131214224A N A M MN A M MN +-='''=⨯+-⨯⨯⨯=,∴222A M A N MN ''=+,∴A N MN '⊥,A N AC '⊥,MN AC M ⋂=, ∴A N '⊥平面ABC ,∴A BN '∠为直线A B '与平面ABM 所成角,在A BN '中,A B '===,所以sin4A N A BN A B '''∠===【点睛】方法点睛:证明面面垂直的方法(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可; (2)利用性质://,αββγαγ⊥⇒⊥(客观题常用); (3)面面垂直的定义(不常用);(4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.26.(1)证明过程见解析;(2. 【分析】(1)根据矩形的性质,结合线面垂直的判定定理进行证明即可;(2)根据线面平行的判定定理、平行线的性质,结合棱锥的等积性、线面角的定义进行求解即可. 【详解】(1)在矩形ABCD 中,连接BM ,所以90D C ︒∠=∠=,因为2AB AD =,M 为DC 的中点,所以三角形ADM 和三角形BCM 是等腰直角三角形,因此有45DMA CMB ︒∠=∠=,所以90AMB ︒∠=,即MB AM ⊥,在棱锥D ABCM -,取AM 中点N ,连接,DN CN ,因为三角形ADM 是等腰直角三角形,所以DN AM ⊥,因为平面ADM ⊥平面ABCM ,平面ADM平面ABCM AM =,所以DN ⊥平面ABCM ,而BM ⊂平面ABCM ,所以DN BM ⊥,又因为,,DNAM N DN AM =⊂平面ADM ,所以BM ⊥平面ADM ,而AD ⊂平面ADM ,所以BM AD ⊥;。
高考的立体几何压轴题精选
ABCDE F1.甲烷分子由一个碳原子和四个氢原子组成,其空间构型为一正四面体,碳原子位于该正四 面体的中心,四个氢原子分别位于该正四面体的四个顶点上.若将碳原子和氢原子均视为一 个点(体积忽略不计),且已知碳原子与每个氢原子间的距离都为a ,则以四个氢原子为顶点 的这个正四面体的体积为( ) A,3827a3C,313a D,389a 2.夹在两个平行平面之间的球,圆柱,圆锥在这两个平面上的射影都是圆,则它们的体积之 比为( )A,3:2:1 B,2:3:1 C,3:6:2 D,6:8:33.设二面角a αβ--的大小是060,P 是二面角内的一点,P 点到,αβ的距离分别为1cm, 2cm,则点P 到棱a 的距离是( )A,3B,3cm C,23cmD,34.如图,E,F 分别是正三棱锥A -BCD 的棱AB,BC的中点,且DE ⊥EF.若BC=a ,则此正三棱锥的体积是( )A,324aB,324C,312a35.棱长为的正八面体的外接球的体积是( ) A,6πB,27C,3D,36.若线段AB 的两端点到平面α的距离都等于2,则线段AB 所在的直线和平面α 的位置关系是 .7.若异面直线,a b 所原角为060,AB 是公垂线,E,F 分别是异面直线,a b 上到A,B 距离为 2和平共处的两点,当3EF =时,线段AB 的长为 .8.如图(1),在直四棱柱1111A BC D ABCD -中,当底面四边形ABCD 满足条件时,有1A C⊥1B 1D (注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)CDF ABOCD EOAA B C D P Q9.如图(2),是一个正方体的展开图,在原正方体中,有下列命题: ①AB 与EF 所连直线平行; ②AB 与CD 所在直线异面; ③MN 与BF 所在直线成060; ④MN 与CD 所在直线互相垂直.其中正确命题的序号为 .(将所有正确的都写出)10.如图,在ABC ∆中,AB=AC=13,BC=10,DE//BC 分别交AB,AC 于D,E.将ADE ∆沿 DE 折起来使得A 到1A ,且1A DE B --为060的二面角,求1A 到直线BC 的最小距离.11.如图,已知矩形ABCD 中,AB=1,BC=a (0)a >,PA ⊥平面ABCD,且PA=1.(1)问BC 边上是否存在点Q 使得PQ ⊥QD?并说明理由;(2)若边上有且只有一个点Q,使得PQ ⊥QD,求这时二面角Q PD A --的正切.12. 已知三角形ABC 的顶点分别是A (1, 2, 3)、B (3, 4, 5)、C (2, 4, 7), 求三角形ABC 的面积.A BCDA BC D图(1)A BENM 图(2)13.在正四棱柱1111ABCD A BC D -中,122AB BB==, P 为B 1C 1的中点.(1)求直线AC 与平面ABP 所成的角;(2)求异面直线AC 与B P 所成的角; (3)求点B 到平面APC 的距离.14.如图,正四棱锥P-ABCD 中,侧棱PA 与底面ABCD 所成的角的正切值为26。
高考数学高考数学压轴题立体几何多选题分类精编及答案
高考数学高考数学压轴题立体几何多选题分类精编及答案一、立体几何多选题1. 如图,在直三棱柱ABC-A}B}C}中,AC = BC = AA i=2, ZACB = 90°, D, E, F分别为AC, AB的中点.则下列结论正确的是()B. B、CJ /平而DEFD.点d到平面DFF的距离为比C. EF与4G所成的角为90。
2【答案】BCD【分析】利用异而直线的位這关系,线而平行的判泄方法,利用空间直角坐标系异而直线所成角和点到面的距离,对各个选项逐一判断.【详解】对选项A,由图知4C|U平而ACC.A. , EFD平面ACQA^E,且E AC r由异面直线的建义可知AC】与EF异面,故A错误: 对于选项B,在直三棱柱ABC — AQG中,BG HBC.•.•D,F分别是AC, AB的中点,• •FDIIBC, :・B\C\ IIFD.又••• BQ] (Z 平面DEF, DF u 平而DEF, ・・BG //平而DEF.故B正确:对于选项C,由题意,建立如图所示的空间直角坐标系,则C(0,0, 0), A(2,0t 0), 5(0,2, 0),人(2,0, 2),坊(0,2, 2), C 】(0,0, 2),D(l,o, 0), E(2,0, 1), F(1,1, 0)..\EF = (-1,1, T), AC ;=(—2,0, 2).•.•EFAC ; = 2+0—2 = 0, :.EF 丄 AC ;, 丄 A©.•.•EF 与AC ;所成的角为90。
,故c 正确:对于选项D,设向量匝= (x,y, Z)是平而DEF 的一个法向疑.・••万E = (ho ・ 1) , DF = (0,l, 0),取 X = 1 ♦则 z=—1 ‘ ・••帀=(h 0, —1),设点耳到平而DEF 的距离为d ・二点d 到平而DEF 的距离为空,故D 正确.2故选:BCD【点睛】本题主要考查异而直线的位置关系,线而平行的判定,异而直线所成角以及点到而的距 离,还考查思维能力及综合分析能力,属难题.2. 已知球O 为正方体ABCD-AgD 、的内切球,平而A {C }B 截球O 的而积为24兀, 下列命题中正确的有()A. 异而直线AC 与所成的角为60。
第5讲 立体几何选择压轴题(解析版)
第5讲 立体几何选择压轴题一、单选题1.(浙江超级全能生3月联考)如图,已知在中,为线段上一点,沿将翻转至,若点在平面内的射影恰好落在线段上,则二面角的正切的最大值为( )AB .1C D【答案】C【分析】过作交BC 于E ,连接EH ,结合已知条件有二面角的平面角为,而,设且,则,即可求,,应用函数与方程思想,构造且在上有解求参数m 的范围,即可得二面角正切的最大值.【解析】过作交BC 于E ,连接EH ,∵在平面内的射影恰好落在线段上,即面,∴且,,即面,面,则,ABC 90,1,2,BAC AB BC D ∠=︒==BC AD ABD △AB D 'B 'ADC H AC B DC A '--B 'B E BC '⊥B DC A '--B EH '∠tan B H B EH m EH ''∠==AH x =01x <<HC x =B H '2HC EH =()g x 01x <<B DC A '--B 'B E BC '⊥B 'ADC H AC B H '⊥ABC B H BC '⊥B E BC '⊥B E B H B '''=BC ⊥B HE 'EH ⊂B HE 'BC EH ⊥∴二面角的平面角为,在中,,若令,则,又, ∴,且, 故,则,即方程在上有解时,m 的最大值即为所求,而开口向上且,即,对称轴. ∴当时,,显然成立; 当时,当对称轴在上,恒成立;当对称轴在上,,即; ∴综上,有,即,故二面角. 故选C . 【点睛】关键点点睛:利用三垂线定理找到二面角的平面角,进而根据线段关系、勾股定理求,,由,结合函数与方程的思想求参数m 范围,进而确定最大值. 2.(浙江宁波模拟)设三棱锥的底面是正三角形,侧棱长均相等,是棱上的点(不含端点),记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则A .B .C .D .【答案】B【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各B DC A '--B EH '∠Rt B HE 'tan B H B EH EH ''∠=AH x =HC x =1AB AB '==B H '=22HC x EH ==01x <<tan B EH m '∠==2222()(4)340g x m x x m =+-+-=01x <<()g x 21680m ∆=-≥202m <≤21x m=+22m =(0,1)3x =202m <<1(0,)22(1)(40f m =->1[,232(0)340f m =->243m >2423m <≤[(33m ∈-⋃B DC A '--B H 'EH tan B H B EH m EH''∠==V ABC -P VA PB AC αPB ABC βP AC B --γ,βγαγ<<,βαβγ<<,βαγα<<,αβγβ<<种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【解析】方法1:如图为中点,在底面的投影为,则在底面投影在线段上,过作垂直,易得,过作交于,过作,交于,则,则,即,,即,综上所述,答案为B .方法2:由最小角定理,记的平面角为(显然)由最大角定理,故选B .方法3:(特殊位置)取为正四面体,为中点,易得,故选B . 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法.3.(湖南长沙市·长沙一中高三月考)在三棱锥中,,二面角的余弦值为,当三棱锥的体积的最大值为时,其外接球的表面积为 A .B .C .D .【答案】B G AC V ABC O P D AO D DE AE //PE VG P //PF AC VG F D //DH AC BG H ,,BPF PBD PED α=∠β=∠γ=∠cos cos PF EG DH BD PB PB PB PBα===<=βαβ>tan tan PD PD ED BDγ=>=βy >ββα<V AB C --γ'γ'=γβ<γ'=γV ABC -PVA cos sin sin α=⇒α=β=γ=A BCD -60BAC BDC ∠=∠=︒A BC D --13-A BCD-45π6π7π8π【分析】根据两个射影,结合球的图形,可知二面角的平面角为;根据题意可知当,时,三棱锥的体积最大.根据体积的最大值可求得BC 的长,结合图形即可求得球的半径,进而求得表面积.【解析】如图,设球心在平面内的射影为,在平面内的射影为,则二面角的平面角为,点在截面圆上运动,点在截面圆上运动,由图知,当,时,三棱锥的体积最大,此时与是等边三角形, 设,则,,, ,解得, ,,设,则,解得∴,球的半径,所求外接球的表面积为,故选B .【点睛】本题考查了三棱锥外接球的综合应用,根据空间几何关系求得球的半径,进而求得表面积,对空间想象能力要求较高,属于难题.4.(天一大联考(理))在棱长为的正四面体中,点为所在平面内一动点,且满足,则的最大值为( ) A .B .C .D .【答案】B A BC D --AMD ∠AB AC =BD CD =A BCD -O ABC 1O BCD 2O A BC D--AMD ∠A 1O D 2OAB AC =BD CD =A BCD -ABC ∆BDC ∆BC a =AM DM ==2BCD S ∆=sin()h AM AMD π=-∠=313124A BCD DBC V S h a -∆=⋅==a =32DM =21DO =212O M =2AMD θ∠=21cos 22cos 13θθ=-=-tan θ=22tan 2OO O M θ==O R ==246S R ππ==2ABCD P ABC 433PA PB +=PD 3332【分析】由题意可知,点在所在平面内的轨迹为椭圆,且该椭圆的焦点为、,长轴长为,然后以线段的中点为坐标原点,直线所在直线为轴,以所在直线为轴建立空间直角坐标系,求出椭圆的方程,利用二次函数的基本性质可求得的最大值.【解析】如图所示,在平面内,,所以点在平面内的轨迹为椭圆,取的中点为点,连接,以直线为轴,直线为建立如下图所示的空间直角坐标系,则椭圆的半焦距,长半轴, 所以,椭圆方程为. 点在底面的投影设为点,则点为的中心,, 故点正好为椭圆短轴的一个端点,,则, 因为,故只需计算的最大值.设,则,则,当时,取最大值,即,因此可得,P ABC A B 3AB O AB x CO yPDABC 432PA PB +=>P ABC AB O CO AB x OC y O xyz -1c=a =3b ==()2233104x y z +==D E EABC11333OE OC ===E 23CE OC ==DE ==222PD DE EP =+EP(),,0P xy 0,3E ⎛⎫ ⎪ ⎪⎝⎭22222241543333EP x y y y y y y ⎛=+-=-++=--+ ⎝⎭,933y ⎡=-∈-⎢⎣⎦2EP 22max 516393939EP ⎛⎛=-⨯--⨯-+= ⎝⎭⎝⎭2241640999PD ≤+=故的最大值为.故选B . 【点睛】关键点点睛:本题考查线段长度最值的求解,根据椭圆的定义得知点的轨迹是椭圆,并结合二次函数的基本性质求解的最大值是解题的关键,在求解时也要注意椭圆有界性的应用.5.(四川成都市·高三二模(理))已知四面体,,分别为棱,的中点,为棱上异于,的动点.有下列结论:①线段的长度为1;②若点为线段上的动点,则无论点与如何运动,直线与直线都是异面直线;③的余弦值的取值范围为; ④.其中正确结论的个数为( )A .1B .2C .3 D.4 【答案】B【分析】将正四面体放在正方体中观察,对于①,可根据分别为正方体前后两个面的中心可得出结论; 对于②,取为的中点,取为的中点,此时与相交;对于③,计算可得由逼近思想可作出判断;对于④,空间问题平面化的技巧,将三角形与放在同一平面上,可计算出. 【解析】PD 3P EP ABCD M N AD BC F AB A B MN G MN F G FG CD MFN ∠⎡⎢⎣⎭FMN 1,M N F AB G MN FG CD cos MBN ∠=>ABC ABD 2NFFM在棱长为四面体,显然,分别为正方体前后两个面的中心,故线段的长度为正方体棱长,故 ①对; 对于②:如图,取为的中点,取为的中点,取为的中点,则由正方体的性质易知,该三点在一条直线上,故此时与相交于,故②错;对于③,,,又有,1ABCD ,MN MN 1F ABG MN I CD FG CD I 22BC BN ==BM ===1MN =故,故点无限接近点时,会无限接近,故的余弦值的取值范围不为,③错误; 对于④,如图将等边三角形与铺平,放在同一平面上,故有,当且仅当为中点时取最小值,故在正方体中,故,故④对,故选B .【点睛】把空间中的最短路线问题利用展开图转化为平面上两点间距离最短的问题,从而使问题得到解决,这是求空间中最短路线的一种常用方法6.(内蒙古呼和浩特市·高三一模(理))四面体的四个顶点都在球O 上且,O 的表面积为( )A .B .C .D .【答案】B【分析】作出图形,根据题中的数据证明平面平面,并找出球心的位置,列出等式求出外接球的半径,结合球的表面积公式可得出结果.【解析】131cos MBN +-∠==>F B cos MFN ∠3MFN ∠⎡⎢⎣⎭ABC ABD ''''2N FFM M N F AB 2NFFM FMN 1ABCD 4AB AC BC BD CD =====AD =70π380π330π40πABC ⊥BCD取的中点,连接,设和的外心分别为,分别过点作平面和平面的垂线交于点,则点为外接球球心.由题意可知,和都是边长为4的等边三角形.为的中点,,且,平面,平面,平面平面, 易得,, 平面,平面∥AM ,同理可得∥DM ,则四边形为菱形, ,菱形为正方形,平面,平面,所以外接圆半径为, 因此,四面体的外接球的表面积为,故选B 【点睛】这个题目考查了外接球表面积的计算,找出球心位置,并计算外接球的半径是解答的关键,考查推理能力与计算能力.7.(山东日照市·高三一模)已知直三棱柱的侧棱长为,,.过、的中点、作平面与平面垂直,则所得截面周长为( )A .BC .D .【答案】C【分析】确定平面与各棱的交点位置,计算出截面各边边长,由此可得出所得截面周长.【解析】BC M AM DM 、ABC BCD△F E 、FE 、ABC BCD O O ABC BCD △M BC AM BC ∴⊥AM DM ==222,M A AD A DM D =+=∴AM DM ∴⊥,D C M B M ⋂=AM ∴⊥BCD AM ⊂ABC ∴ABC ⊥BCD 13ME MF AM ===23BE DM ==AM ⊥BCDO E ⊥BCD OE ∴OF OEMF AM DM ⊥OEMF OE ⊥BCD BE ⊂BCD OE BE ∴⊥OB ==ABCD 2804OB 3ππ⨯=111ABC A B C -2AB BC ⊥2AB BC ==AB 1BB E F α11AAC C +α如下图所示,取的中点,连接,取的,连接,取的中点,连接、,,为的中点,则,平面,平面,,,平面,、分别为、的中点,则且,平面, 平面,所以,平面平面,所以,平面即为平面,设平面交于点,在直棱柱中,且,所以,四边形为平行四边形,且, 、分别为、的中点,且, 所以,四边形为平行四边形,且, 且,且,所以,四边形为平行四边形, ,平面,平面,平面, 设平面平面,平面,所以,,,,所以,四边形为平行四边形,可得, 所以,为的中点, AC J BJ AJ D DE 11A C K KJ 1BK AB BC =J AC BJ AC ⊥1AA ⊥ABC BJ ⊂ABC 1BJ AA ∴⊥1AC AA A ⋂=BJ ∴⊥11AAC C D E AJ AB //DE BJ 12DE BJ =DE ∴⊥11AAC C DE ⊂DEF DEF ⊥11AAC C αDEF α11B C I 111ABC A B C -11//AA CC 11AA CC =11AAC C 11//AC AC ∴11AC A C =J K AC 11A C 1//AJ A K ∴1AJ A K =1AA KJ 1//KJ AA ∴1KJ AA =11//BB AA 11BB AA =1//KJ BB ∴1KJ BB =1BB KJ //DE BJ DE ⊄1BB KJ BJ ⊂1BB KJ //DE ∴1BB KJ α1BB KJ FG =DE ⊂α//DE FG //FG BJ ∴//BF GJ BFGJ 11122GJ BF BB KJ ===G KJ延长交于点,,所以,,,又,所以,,,为的中点, 因为平面平面,平面平面,平面平面,,,,,,为的中点, ,,则, 为的中点,,同理, 因为直棱柱的棱长为,为的中点,, 由勾股定理可得,且,平面,平面,平面,,、分别为、的中点,则,, 由勾股定理可得,同理因此,截面的周长为. 故选C .【点睛】思路点睛:本题考查直棱柱截面多边形周长的计算,在画几何体的截面,关键是画截面与几何体各面的交线,此交线只需两个公共点即可确定,作图时充分利用几何体本身提供的面面平行等条件,可以更快地确定交线的位置.8.(山东滨州市·高三一模)如图,斜线段与平面所成的角为,为斜足.平面上的动点满足,则点的轨迹为( ) DG 11A C H //DJ KH DJG HKG ∠=∠JDG KHG ∠=∠JG KG =DJG HKG ≅△△11122HK DJ AJ KC ∴===H ∴1KC //ABC 111A B C αABC DE =α111A B C IH =//DE IH ∴//DE BJ 1//BJ B K //DE IH 1//IH B K ∴I ∴11B C AB BC ⊥2AB BC ==AC ==J AC 12BJ AC ∴==12DE BJ ==IH =111ABC A B C -2F 1BB 1112BF BB ∴==EF ==IF =1//KJ BB 12KJ BB ==1BB ⊥ABC KJ ∴⊥ABC AC ⊂ABC KJ AC ∴⊥G D KJ AJ 112GJ KJ ==122DJ AJ ==DG ==GH =222DE IH EF IF DH ++++=++=AB απ4B αP π6PAB ∠=PA .圆B .椭圆C .双曲线的一部分D .抛物线的一部分【答案】B 【分析】首先建立空间直角坐标系,设,则点的轨迹是椭圆. 【解析】建立如图所示的空间直角坐标系,设所以点的轨迹是椭圆. 故选B .【点晴】方法点睛:本题考查空间向量、轨迹及其方程,涉及方程思想、数形结合思想和转化化归思想,考查空间想象能力逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.9.(山东淄博市·高三一模)四棱锥中,侧面为等边三角形,底面为矩形,,(0,1,0),(0,0,1),(,,0)(0,1,1),(,,1)B A P x y AB AP x y ⇒=-=-22cos ,62(2)112AB AP x y ⇒<>=⇒+-=P (0,1,0),(0,0,1),(,,0)(0,1,1),(,,1)B A P x y AB AP x y ⇒=-=-22cos ,62(2)11AB AP x y ⇒<>=⇒+-=P S ABCD -SBC ABCD 2BC =,点是棱的中点,顶点在底面的射影为,则下列结论正确的是( )A .棱上存在点使得面B .当落在上时,的取值范围是C .当落在上时,四棱锥的体积最大值是2D .存在的值使得点到面【答案】A 【分析】对于A:取BC 的中点E ,连结DE ,取SC 中点P ,连结PE 、PD .利用面PDE ∥面BFS ,可以证明面; 对于B :利用S 与H 重合,图形不能构成四棱锥,判断B 错误;对于C :求出体积的最大值为1.故C 错误;对于D :先判断当的最大时,点B 到面的距离d 最大;然后求出,判断D 错误. 【解析】对于A :取BC 的中点E ,连结DE ,取SC 中点P ,连结PE 、PD . ∵PE 为△BCS 的中位线,∴ PE ∥BS又面BFS ,面BFS ,∴PE ∥面BFS ;在矩形ABCD 中,E 、F 分别为BC 、AD 的中点,∴DE ∥BF , 又面BFS ,面BFS ,∴DE 面BFS ; 又,∴面PDE ∥面BFS ,∴面.故A 正确;对于B :∵为等边三角形,,∴AB a F AD S ABCD H SC P //PD BSF H AD a (H AD S ABCD -a B SFC //PD BSF a =S ABCD V -S ABCD V -SFC 3d <BS ⊆PE ⊄BF ⊆DE ⊄DEPE E =//PD BSF SBC 2BC =SE =当S 与H 重合,图形不能构成四棱锥,与已知条件相悖,故B 错误;对于C :在Rt △SHE 中,当且仅当时,的最大值为1.故C 错误; 对于D :由选项C 的推导可知:当的最大时,点B 到面的距离d 最大.此时 ∴ ∴.故D 错误. 故选A 【点睛】(1)证明线面平行,用线面平行的判定定理,在面内找一条直线与已知直线平行; (2)等体积法是求三棱锥高的常用方法.10.(湖北武汉市·高三月考)已知三棱锥的各个顶点都在球的表面上,底面,,,,是线段上一点,且.过点作球的截面,若所得截面圆面积的最大值与最小值之差为,则球的表面积为( ) A . B .C .D .【答案】B 【分析】将三棱锥补成长方体,设,计算出球的半径为,计算出截面圆半径的最大值和最小值,根据已知条件可求得的值,可求得球的半径,进而可求得球的表面积. 【解析】平面,,将三棱锥补成长方体,如下图所示:a =SH =1213S ABCD V a-=⨯=≤232a =S ABCD V -S ABCD V -SFC 1122S BFC S ABCD V V --==SFCF ===1122224SFC S SF CF =⨯=⨯=△1325V d S ===<P ABC -O PA ⊥ABC AB AC ⊥6AB =8AC =D AB 2AD DB =D O 25πO 128π132π144π156πP ABC -PQMN ABEC -2PA x =O R =x O O PA ⊥ABC AB AC ⊥P ABC -PQMN ABEC -设,连接、、,可知点为的中点,因为四边形为矩形,,则为的中点,所以,且,设,且,,所以,球的半径为, 在中,,,,, 在中,,, 由余弦定理可得平面,平面,平面,则,,, 设过点的球的截面圆的半径为,设球心到截面圆的距离为,设与截面圆所在平面所成的角为,则.当时,即截面圆过球心时,取最小值,此时取最大值,即;当时,即与截面圆所在平面垂直时,取最大值,即,此时,取最小值,即.由题意可得,,解得所以,,AE BC F=OF DF OD O PE ABEC AE BC F =F AE //OF PA 12OF PA =2PA x =10AE ==PE ∴==O 12R PE ==Rt ABE △2ABE π∠=6AB =10AE =3cos 5AB BAE AE ∠==ADF 243AD AB ==5AF =DF ==PA ⊥ABCD OF ∴⊥ABCD DF ⊂ABCD OF DF ⊥12OF PA x ==OD ∴==D O r O d OD θsin d OD θ==0θ=O d r max r R ==2πθ=OD d max d OD ==r min r ==()()()222max min 1725r r x πππ⎡⎤-=+=⎣⎦0xx =R =因此,球的表面积为. 故选B . 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.11.(安徽蚌埠市·高三二模(理))已知直四棱柱,其底面是平行四边形,外接球体积为,若,则其外接球被平面截得图形面积的最小值为( ) A . B .C .D .【答案】A 【分析】由条件可得为矩形,进而可得平面,所以,则四边形为正方形,所以直四棱柱为正四棱柱,设,由余弦定理可得的值,求出的值,由正弦定理可得的外接圆的半径为,由均值不等式可得的最小值,从而得出答案. 【解析】由直四棱柱内接于球,则四点在球面上, 所以四边形为球的一截面圆的内接四边形,所以对角互补. 又四边形是平行四边形,所以为矩形.在直四棱柱中,平面,所以 又,,所以平面,所以所以四边形为正方形,所以直四棱柱为正四棱柱.O 24132S R ππ==1111ABCD A B C D -ABCD 36π1AC BD ⊥11AB D 8π24310π8110π6πABCD BD ⊥1ACC BD AC ⊥ABCD 1111ABCD A B C D -1,AB AD a CC b ===11cos AD B ∠11sin AD B ∠11ABD 2r =r1111ABCD A B C D -,,,A B C D ABCD ABCD ABCD 1111ABCD A B C D -1CC ⊥ABCD 1CC BD ⊥1AC BD ⊥111AC CC C =BD ⊥1ACC BD AC ⊥ABCD 1111ABCD A B C D -由外接球体积为,则球的半径为,由为该外接球的直径,则设,则,则在中,由余弦定理可得所以设的外接圆的半径为,由正弦定理可得所以,即时取得等号,即的最小值为其外接球被平面截得图形面积的最小值为:故选A【点睛】关键点睛:本题考查几何体的外接球的截面面积问题,解答本题的关键是先由线面垂直关系得出直四棱柱为正四棱柱,然后由余弦定理和正弦定理得出的外接圆的半径,由均值不等式求出最小值,属于难题.34363Rππ=3R=1AC16AC=1,ABAD a CC b===2221236AC a b=+=22362b a=-11AB D11AB AD====11B D=2222111111111cos2AD B D ABAD BAD B D+-∠===⋅11sin AD B∠===11AB D r2111362sinaABrAD B-===∠22r⎫===≥==a=r11AB D28S rππ==1111ABCD A B C D-11AB D2r=12.(浙江省宁海中学高三月考)如图,在中,,,点E 为线段AB 上一点,将绕DE 翻折.若在翻折过程中存在某个位置,使得,记为的最小值,则( )A .B .C .D .【答案】C 【分析】易知,A 在以AD 为母线的圆锥上的一部分(弧AF ),与所成的最大角为,只需. 【解析】如图,与所成的最大角为,只需即可. 即, 即,即.故选C . 【点睛】本题考查几何中的翻折问题,考查学生的空间想象能力、转化与化归能力,是一道难题.ABC ∆36A ∠=AD DB BC ==ADE ∆AE CD ⊥θADE∠(15,20]θ∈(20,25]θ∈(25,30]θ∈(30,35]θ∈AE CD FGA ∠90FGA ∠≥AE CD FGA ∠90FGA ∠≥90(54)(90)AFG FAG ADE ADE ≥∠+∠=-∠+-∠27ADE ∠≥27(25,30]θ=∈13.(天津河西区·高三一模)将长、宽分别为和的长方形沿对角线折成直二面角,得到四面体,则四面体的外接球的表面积为( ) A . B .C .D .【答案】A 【分析】取的中点,说明为四面体的外接球的球心,求出球的半径,利用球体的表面积公式可求得结果. 【解析】取的中点,连接、,如下图所示:由题意,因为,为的中点,所以,, 所以,为四面体的外接球的球心,且球的半径为,因此,四面体的外接球的表面积为. 故选A . 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.43ABCD AC A BCD -A BCD -25π50π5π10πAC O O A BCD -O AC OBOD 5AC ==90ABC ADC ∠=∠=O AC 1522OB OD AC OA OC =====O A BCD -O 52R =A BCD -2425R ππ=14.(江西八校4月联考(理))已知三棱锥的外接球的表面积为,,,,,则三棱锥的体积为( )A .8 BC .D .16【答案】A 【分析】求出球的半径得是球直径,中点是球心,取中点,则平面,求得后可得到底面的距离,从而可求得棱锥的高.【解析】设球半径为,则,,而,所以是球的直径,球心是中点,,所以中点是直角外心,所以平面,又平面,所以,,,, 是中点,所以. 故选A .【点睛】关键点点睛:本题考查求棱锥体积,关键是求得棱锥的高,由于已知外接球的表面积,求得 半径后确定就是球的直径,从而利用球的截面圆性质,易得平面的垂线,再由体积公式计算.15.(山西临汾市·高三一模(理))在棱长为2的正方体中,平面,则以平面P ABC-64π2AB=AC =AB AC ⊥8PA =P ABC -3PA PA O BC E OE ⊥ABC OE P R 2464R ππ=4R =8PA =PA O PA AB AC ⊥BC E ABCOE ⊥ABC AE ⊂ABC OE AE ⊥4BC ==122AE BC ==OE ===O AP 11122228332P ABC O ABC ABC V V S OE --==⨯⋅=⨯⨯⨯⨯=△PA ABC 1111ABCD A B C D -1B D α⊥截正方体所得的截面面积最大时的截面为底面,以为顶点的锥体的外接球的表面积为( )A .B .C .D .【答案】B【分析】由正方体的对称性,可知当截面为正六边形时,截面面积最大,再分当球心在棱锥内部时和当球心在棱锥外部时,建立方程求得外接球的半径可得选项. 【解析】如图,由正方体的对称性,可知当截面为正六边形, 设交截面于,则为的中点,所以设正六棱锥外接球的球心为,外接球半径为,当球心在棱锥内部时,有,解得,外接球面积为; 若球心在棱锥外部时,有,解得.∴以为顶点的锥体的外接球的表面积为.故选B . 【点睛】方法点睛:求解几何体外接球半径的思路是依据球的截面的性质:利用球的半径、截面圆的半径及球心到截面的距离三者的关系求解,其中确定球心的位置是关键.16.(浙江省宁海中学高三月考)如图,矩形中,,点在,上,满足,,将沿向上翻折至,使得在平面上的射影落在的重心处,设二面角的大小为,直线,与平面所成角分别为,,则( )α1B 12π253π203π6πEFGHKI EFGHKI 1B D EFGHKI M M 1B D 1112B M B D ==O R )222R R =+R =22543ππ⨯=(222R R =+-R =<1B 253πR r d 222R r d =+ABCD 236AB AD ==(),1,2i i E F i =CD AD 112E F =1221//E F E F 11DE F ∆11E F 11D E F ∆'D 'ABCD 22DE F ∆G D AB C '--αD A 'D C 'ABCD βγA .B .C .D .【答案】A 【分析】作的中垂线,根据几何关系得知点落在左边,故可得,则问题可解. 【解析】作的中垂线,中点为,取中点,故在上, 作交于,连接,如图所示:因为,,,可知点在左边, 则,由图可知,故 易知 ,由于 所以,则故选A 【点睛】关键点点睛:本题的关键在于根据几何图形关系判断.17.(河南高三一模(理))如图,在棱长为1正方体中,为棱的中点,动点αβγ>>γαβ>>αγβ>>βαγ>>AC ML G ML GN GA GC <<AC ML AC O 22E F H G DH GN AB ⊥AB N ,GAGC 112E F =1221//E F E F 3,2AB AD ==G ML GA GC <GA GN >GN GA GC <<tan ,tan ,tan D G D G D GGN GA GCαβγ'''===GN GA GC <<tan tan tan αβγ>>αβγ>>GN GA GC <<1111ABCD A B C D -M AB P在侧面及其边界上运动,总有,则动点的轨迹的长度为( )A .BC .D【答案】A 【分析】分别取、的中点、,连,利用线面垂直的判定定理和性质可证动点的轨迹是线段,求出的长度即可得解. 【解析】如图:分别取、的中点、,连,,,因为为的中点,为的中点,为正方形,所以, 又平面,所以,而,所以平面,所以,同理可得,又,所以平面, 因为平面,所以,因为动点在侧面及其边界上运动,所以动点的轨迹是线段,而,所以动点的11BCC B 1AP D M ⊥P 2π16BC 1BB E F EF P EF EF BC 1BB E F ,,AE AF EF 1,A M DM 1A F M AB E BC ABCD DM AE ⊥1D D ⊥ABCD 1D D AE ⊥1DMD D D =AE ⊥1D DM 1D M AE ⊥1D M AF ⊥AE AF A ⋂=1D M ⊥AEF AP ⊂AEF 1AP D M ⊥P 11BCC B P EF 2EF =P轨迹的长度为.故选A . 【点睛】关键点点睛:作出并证明动点的轨迹是本题解题关键,分别取、的中点、,连,则线段即为动点的轨迹,利用线面垂直的判定定理和性质即可得证.18.(江苏徐州市·高三二模)“帷幄”是古代打仗必备的帐篷,又称“幄帐”.如图是一种幄帐示意图,帐顶采用“五脊四坡式”,四条斜脊的长度相等,一条正脊平行于底面.若各斜坡面与底面所成二面角的正切值均为,底面矩形的长与宽之比为,则正脊与斜脊长度的比值为( )A .B .C .D .1【答案】B 【分析】取幄帐顶部,如图几何体,作平面,垂足为,则到边的距离相等,作于,于,得是二面角的平面角,是二面角的平面角,因此有,设,用表示出,即可得比值.【解析】取幄帐顶部,如图几何体,作平面,垂足为,则到边的距离相等,由平面,平面,得,同理. 作于,于, 因为,平面,所以平面,而平面,所以,所以是二面角的平面角,同理是二面角的平面角,,由已知,2P BC 1BB E F EF EF P 125:33589910ABCD EF -FO ⊥ABCD O O ,AB CD FM AB ⊥M FN BC ⊥N FNO ∠F BC O --FMO ∠F AB O --1tan tan 2FNO FMO ∠=∠=5,3AB a BC a ==a ,EF FB ABCD EF -FO ⊥ABCD O O ,AB CD FO ⊥ABCD BC ⊂ABCD FO BC ⊥FO OB ⊥FM AB ⊥M FN BC ⊥N FOFN F =,FO FN ⊂FON BC ⊥FON ON ⊂FON BC ON ⊥FNO ∠F BC O --FMO ∠F AB O --OM AB ⊥1tan tan 2FNO FMO ∠=∠=由,设,则,所以, 由得,,则, 由上知是正方形,,, 所以.故选B .【点睛】关键点点睛:本题考查由二面角计算线段长,考查学生的空间想象能力.解题是作出各斜坡面与底面所成二面角的平面角,利用它们的正切值均为,并设出底面矩形边长后,用底面矩形边长表示出正脊与斜脊的长度,从而得比值.19.(浙江名校协作体联考)在矩形中,,,E 、F 分别为边、上的点,且,现将沿直线折成,使得点在平面上的射影在四边形内(不含边界),设二面角的大小为,直线与平面所成的角为,直线与直线所成角为,则( )A .B .C .D .【答案】D:5:3AB BC =5,3AB a BC a ==32MO a =313tan 224FO MO FMO a a =⋅∠=⨯=1tan 2FO FNO ON ∠==32ON a =35222EF a a a =-⨯=OMBN 2OB a ==94FB a ===28994EF a FB a ==12ABCD AB =3AD =AD BC 2AE BF ==ABE △BE 1A BE 1A BCDE CDEF 1A BE C --θ1A B BCDE α1A E BCββαθ<<βθα<<αβθ<<αθβ<<【分析】根据题意作出相应的二面角,线面角,线线角,结合点在平面上的射影求解. 【解析】过A 作的垂线,分别交,,于M ,G ,N ,如图,显然.因为,所以直线与所成角即为.当在平面上的射影为G 时,平面,此时.于是当在平面上的射影在线段上时,,所以. 由于,,进而得,.因为是在平面上的射影,所以由线面角最小性知,即.再由二面角的最大性知.故选D .【点睛】关键点点睛:根据二面角平面角、线面角、异面直线所成的的角的定义,分别在图形中作出或找到是解题的关键,再根据位置分析角的变化范围即可比较大小.20.(河南高考适应性考试(理))棱长为的正方体密闭容器内有一个半径为的小球,小球可在正方体容器内任意运动,则其不能到达的空间的体积为( ) A . B . C . D . 【答案】A【分析】由题可得小球在八个角不能到达的空间相当于边长为2的正方体中间挖掉一个半径为1的球的剩余部分,小球在12条边活动不到的空间相当于高为2,底面积为4的正四棱柱中间挖掉底面积为,高为2的圆柱剩下的部分,且有3个,由此可计算出体积.【解析】由题可得小球在八个角不能到达的空间相当于边长为2的正方体中间挖掉一个半径为1的球的剩余部分,其体积为,小球在12条边活动不到的空间相当于高为2,底面积为4的正四棱柱中间挖掉底面积为,高为2的圆柱剩下的部分,且有3个,则其体积为,1A BCDE BE EB EFDC A MN θ'∠=//BC AD A E 'AD βA 'BCDE AE ⊥A EF '2πβ=A 'BCDE GN 2A ED π'∠<A ED β'=∠EA EA '=MA MA '=2EAA β'∠=2MAA θ'∠=AM AA 'ABCD 22EAA MAA βθ''∠=>∠=βθ>θα>,,βθα4122323π-4812π-4283π-13203π-π334421833ππ-⨯=-π()4223246ππ⨯-⨯=-则小球不能到达的空间的体积为.故选A . 【点睛】本题考查几何体体积的计算,解题的关键是得出小球在运动中不能到达的空间的结构特点. 21.(辽宁高三一模(理))球面上两点之间的最短连线的长度,就是经过这两个点的大圆在这两点间的一段劣弧的长度(大圆就是经过球心的平面截球面所得的圆),我们把这个弧长叫做两点的球面距离.已知正的项点都在半径为的球面上,球心到,则、两点间的球面距离为( ) A . B .C .D .【答案】C【分析】设球心为点,计算出,利用扇形弧长公式可求得结果.【解析】设球心为点,平面截球所得截面圆的半径为, 由正弦定理可得,,又,所以,为等边三角形,则,因此,、两点间的球面距离为.故选C . 【点睛】思路点睛:求球面距离,关键就是要求出球面上两点与球心所形成的角,结合扇形的弧长公式求解,同时在计算球的截面圆半径时,利用公式(其中为截面圆的半径,为球的半径,为球心到截面的距离)来计算.22.(湖北武汉市·高三月考)某圆锥母线长为2面面积的最大值为( )A .2B CD .1【答案】A【分析】如图截面为,P 为MN 的中点,设,,进而可得面积最大值. 【解析】()4228+2463233πππ⎛⎫--=- ⎪⎝⎭ABC 2ABC A B π2π23π34πO AOB ∠O ABC O r ==3sin AB ACB =∠233AB π∴==2OA OB ==AOB 3AOB π∠=A B 2233ππ⨯=22d R r -=r R d SMN (0=<≤OP x x =SMNS。
立体几何压轴小题-6013a92b4cb14dfd94d630596176cefe
如图,设球心 在平面 内的射影为 ,在平面 内的射影为
则二面角 的平面角为
点 在截面圆 上运动,点 在截面圆 上运动,
由图知,当 , 时,三棱锥 的体积最大,此时 与 是等边三角形
设 ,则 ,
解得 ,所以
, ,设
则
解得
∴
球 的半径
所求外接球的表面积为
故选B.
【点睛】
本题考查了三棱锥外接球的综合应用,根据空间几何关系求得球的半径,进而求得表面积,对空间想象能力要求较高,属于难题。
39.如图,在透明塑料制成的长方体 容器内灌进一些水,将容器底面一边 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:
①水的部分始终呈棱柱状;
②水面四边形 的面积不改变;
③棱 始终与水面 平行;
④当 时, 是定值.
其中正确说法是.
参考答案
1.B
【解析】
【分析】
本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.
30.在三棱锥 中, 是边长为3的等边三角形, ,二面角 的大小为120°,则此三棱锥的外接球的表面积为__________.
31.点 为正方体 的内切球 球面上的动点,点 为 上一点, ,若球 的体积为 ,则动点 的轨迹的长度为__________.
32.已知球 是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心) 的外接球, ,点 在线段 上,且 ,过点 作圆 的截面,则所得截面圆面积的取值范围是__________.
33.如图,在长方体 中, ,点 为线段 上的动点(包含线段端点),则下列结论正确的__________.
专题12 立体几何小题压轴练(原卷版)
【一专三练】 专题12 立体几何小题压轴练-新高考数学复习分层训练(新高考通用)一、单选题1.(2023·山东济宁·统考一模)已知直三棱柱111ABC A B C -,D 为线段11A B 的中点,E为线段1CC 的中点,1A E 过1AC E △的内切圆圆心,且1AD DC ⊥,CA =,2AB =,则三棱锥D ABC -的外接球表面积为( )A .27π8B .274πC .27π2D .27π 2.(2023春·湖北武汉·高三华中师大一附中校考期中)在正四棱台1111ABCD A B C D -中,112AB A B =,1AA =M 为棱11B C 的中点,当正四棱台的体积最大时,平面MBD 截该正四棱台的截面面积是( ).AB C .D .3.(2023·湖北武汉·华中师大一附中校联考模拟预测)在三棱锥D ABC -中,ABC V 是以AC 为底边的等腰直角三角形,DAC △是等边三角形,AC =,又BD 与平面ADCD ABC -外接球的表面积是( )A .8πB .12πC .14πD .16π4.(2023秋·湖南湘潭·高三校联考期末)点,M N 分别是棱长为2的正方体1111ABCD A B C D -中棱1,BC CC 的中点,动点P 在正方形11BCC B (包括边界)内运动.若1//PA 面AMN ,则1PA 的长度范围是( )A .⎡⎣B .C .⎤⎥⎦D .[]2,35.(2023春·湖南·高三统考阶段练习)正方体1111ABCD A B C D -的棱长为1,点P 在三棱锥1C BCD -的表面上运动,且1A P =P 轨迹的长度是( )A BC D 6.(2023·广东梅州·统考一模)《九章算术》是我国古代著名的数学著作,书中记载有几何体“刍甍”.现有一个刍甍如图所示,底面ABCD 为正方形,EF P 平面ABCD ,四边形ABFE ,CDEF 为两个全等的等腰梯形,122EF AB ==,且AE =则此刍甍的外接球的表面积为( )A .60πB .64πC .68πD .72π7.(2023·广东·校联考模拟预测)已知四棱锥P ABCD -的五个顶点都在球面O 上,底面ABCD 是边长为4的正方形,平面PAD ⊥平面ABCD ,且PA PD ==,则球面O 的表面积为( )A .39πB .40πC .41πD .42π8.(2023·广东深圳·深圳中学校联考模拟预测)在矩形ABCD 中,已知24AB AD ==,E 是AB 的中点,将ADE V 沿直线DE 翻折成1A DE △,连接1A C ,当二面角1A DE C --的平面角的大小为60︒时,则三棱锥1A CDE -外接球的表面积为( )A .56π3B .18πC .19πD .53π3二、多选题9.(2023·浙江温州·统考二模)蜜蜂是自然界的建筑大师,在18世纪初,法国数学家马拉尔迪指出,蜂巢是由许许多多类似正六棱柱形状的蜂房(如图)构成,其中每个蜂房的底部都是由三个全等的菱形构成,每个菱形钝角的余弦值是13-,则( )A .AB P 平面11EDD E B .AB EF⊥C .蜂房底部的三个菱形所在的平面两两垂直D .该几何体的体积与以六边形111111A B C DEF 为底面,以1BB 为高的正六棱柱的体积相等10.(2023春·江苏扬州·高三统考开学考试)在四面体ABCD 的四个面中,有公共棱AC的两个面全等,1AD =,CD =,90CDA ∠=︒,二面角B AC D --大小为θ,下列说法中正确的有( )A .四面体ABCD 外接球的表面积为3πB .四面体ABCDC .若AD AB =,AD AB ⊥,则120θ=°D .若AD BC =,120θ=°,则BD =11.(2023春·江苏南京·高三南京市第五高级中学校考阶段练习)已知正四棱台1111ABCD A B C D -的上下底面边长分别为4,6E 是11A B 的中点,则( )A .正四棱台1111ABCD ABCD -B .平面1BC D ⊥平面11AA C CC .AE ∥平面1BCD D .正四棱台1111ABCD A B C D -的外接球的表面积为104π12.(2023秋·辽宁葫芦岛·高三统考期末)在正方体1AC 中,M 为AB 中点,N 为BC 中点,P 为线段1CC 上一动点(不含C )过M ,N ,P 的正方体的截面记为α,则下列判断正确的是( )A .当P 为1CC 中点时,截面α为六边形B .当112CP CC <时,截面α为五边形C .当截面α为四边形时,它一定是等腰梯形D .设1DD 中点为Q ,三棱锥Q PMN -的体积为定值13.(2023春·江苏苏州·高三统考开学考试)六面体1111ABCD A B C D -中,底面ABCD 、1111D C B A 分别是边长为4和2的正方形,侧面11CDD C 、侧面11BCC B 均是直角梯形,且13CC =,1CC CD ⊥.若该六面体为台体,下列说法正确的是( )A .六面体1111ABCD ABCD -的体积为28B .异面直线1DD 与1BB 的夹角的余弦值为913C .二面角1B AB D --D .设P 为上底面上一点,且AP CP ⊥,则P 的轨迹为一个圆14.(2023·山东·沂水县第一中学校联考模拟预测)已知圆锥顶点为S ,高为1,底面圆O 的直径AB长为C 为底面圆周上不同于,A B 的任意一点,则下列说法中正确的是( )A .圆锥SO的侧面积为B .SAC V 面积的最大值为32C .圆锥SO 的外接球的表面积为9πD .若AC BC =,E 为线段AC 上的动点,则SE BE +15.(2023·湖北·校联考模拟预测)如图,在正四面体ABCD 中,棱AB 的中点为M,棱CD 的中点为N ,过MN 的平面交棱BC 于P ,交棱AD 于Q ,记多面体CAMPNQ 的体积为1V ,多面体BDMPNQ 的体积为2V ,则( )A .直线MQ 与PN 平行B .AQ BP AD BC =C .点C 与点D 到平面MPNQ 的距离相等D .12V V =16.(2023春·湖北武汉·高三华中师大一附中校考期中)已知异面直线a 与b 所成角为60 ,平面α与平面β的夹角为80 ,直线a 与平面α所成的角为20 ,点P 为平面α、β外一定点,则下列结论正确的是( )A .过点P 且与直线a 、b 所成角都是60 的直线有4条B .过点P 且与平面α、β所成角都是30 的直线有4条C .过点P 且与平面α、β所成角都是40 的直线有3条D .过点P 与平面α成60 角,且与直线a 成60 的直线有3条17.(2023春·湖南·某同学参加综合实践活动,设计了一个封闭的包装盒.包装盒如图所示,是由等高的半个圆柱和14个圆柱拼接而成,其中四边形ABCD 是边长为4的正方形,点G 是弧CD 上的动点,且,,,C E D G 四点共面.下列说法正确的有( )A .若点G 为弧CD 的中点,则平面BFD ⊥平面BCGB .存在点G ,使得BG DF∥C .存在点G ,使得直线CF 与平面BCG 所成的角为60D .当点G 到平面BDF 的距离最大时,三棱锥G BDF -外接球的半径R =18.(2023春·江苏南通·高三海安高级中学校考阶段练习)如图的六面体中,CA =CB =CD =1,AB =BD =AD =AE =BE =DE )A .CD ⊥平面ABCB .AC 与BE 所成角的大小为π3C .CE D .该六面体外接球的表面积为3π19.(2023·湖南岳阳·统考二模)在中国共产党第二十次全国代表大会召开期间,某学校组织了“喜庆二十大,永远跟党走,奋进新征程,书画作品比赛.如图①,本次比赛的冠军奖杯由一个铜球和一个托盘组成,若球的体积为4π3;如图②,托盘由边长为4的正三角形铜片沿各边中点的连线垂直向上折叠而成,则下列结论正确的是( )A .直线AD 与平面BEF 所成的角为π6B .经过三个顶点,,A BC 的球的截面圆的面积为π4C .异面直线AD 与CF 所成的角的余弦值为58D .球离球托底面DEF 120.(2023·广东·高三校联考阶段练习)如图,矩形ABCD 中,4AB =,2BC =,E 为边AB 的中点,沿DE 将ADE V 折起,点A 折至1A 处(1A ∉平面ABCD ),若M 为线段1A C 的中点,平面1A DE 与平面DEBC 所成锐二面角α,直线1A E 与平面DEBC 所成角为β,则在ADE V 折起过程中,下列说法正确的是( )A .存在某个位置,使得1BM A D⊥B .1A EC △面积的最大值为C .sin αβ=D .三棱锥1A EDC -体积最大时,三棱锥1A EDC -的外接球的表面积16π21.(2023·广东深圳·统考一模)如图,已知正三棱台111ABC A B C -的上、下底面边长分别为2和3,侧棱长为1,点P 在侧面11BCC B 内运动(包含边界),且AP 与平面11BCC B,则( )A .CP 1B .存在点P ,使得⊥AP BCC .存在点P ,存在点11Q B C ∈,使得1AP A Q∥D .所有满足条件的动线段AP 22.(2023·江苏南通·二模)如图,正三棱锥A -PBC 和正三棱锥D -PBC 的侧棱长均为BC = 2.若将正三棱锥A -PBC 绕BC 旋转,使得点A ,P 分别旋转至点A P '',处,且A ',B ,C ,D 四点共面,点A ',D 分别位于BC 两侧,则( )A .A D CP '⊥B .//PP '平面A 'BDCC .多面体PP A BDC ''的外接球的表面积为6πD .点A ,P 旋转运动的轨迹长相等23.(2023·广东江门·统考一模)勒洛Franz Reuleaux (1829~1905),德国机械工程专家,机构运动学的创始人.他所著的《理论运动学》对机械元件的运动过程进行了系统的分析,成为机械工程方面的名著.勒洛四面体是一个非常神奇的“四面体”,它能在两个平行平面间自由转动,并且始终保持与两平面都接触,因此它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是( )A .勒洛四面体能够容纳的最大球的半径为2B .勒洛四面体被平面ABC 截得的截面面积是(2πC .勒洛四面体表面上交线AC 的长度为2π3D 224.(2023秋·浙江·高三浙江省永康市第一中学校联考期末)正方体1111ABCD A B C D -的棱长为1,中心为O ,以O 为球心的球与四面体11AB CD 的四个面相交所围成的曲线的总O 的半径为( )A B C D 三、填空题25.(2023·浙江金华·浙江金华第一中学校考模拟预测)已知矩形ABCD 在平面α的同一侧,顶点A 在平面上,4AB =,BC =且AB ,BC 与平面α所成的角的大小分别为30°,45°,则矩形ABCD 与平面α所成角的正切值为______.26.(2023春·江苏南通·高三校考开学考试)在直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为1的正方形,侧棱12AA =,M 为侧棱1BB 的中点,N 在侧面矩形11ADD A 内(异于点1D ),则三棱锥1N MCD -体积的最大值为____________.27.(2023秋·江苏南京·高三南京市第一中学校考期末)在三棱锥-P ABC 中,AC BC PC ==,且30APC BPC ACB ∠=∠=∠=︒,则直线PC 与平面ABC 所成角的余弦值为__________.28.(2023·山东聊城·统考一模)已知正四棱柱1111ABCD A B C D -的体积为16,E 是棱BC 的中点,P 是侧棱1AA 上的动点,直线1C P 交平面11EB D 于点P ',则动点P '的轨迹长度的最小值为______.29.(2023春·湖北武汉·高三华中师大一附中校考阶段练习)蹴鞠(如图所示),又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球因而蹴鞠就是指古人以脚蹴、蹋、踢皮球的活动,类似于今日的足球.2006年5月20日,蹴鞠作为非物质文化遗产经国务院批准已列入第一批国家非物质文化遗产名录.已知某鞠(球)的表面上有四个点A ,B ,C ,P ,且球心О在PC 上,4AC BC ==,AC BC ⊥,tan tan PAB PBA ∠=∠=__________.30.(2023春·湖南·高三校联考阶段练习)在正四棱锥S ABCD -中,M 为SC 的中点,过AM 作截面将该四棱锥分成上、下两部分,记上、下两部分的体积分别为12,V V ,则21V V 的最大值是___________.。
压轴题05 立体几何压轴题(原卷版)--2023年高考数学压轴题专项训练(全国通用-文)
压轴题05立体几何压轴题题型/考向一:点、线、面间的位置关系和空间几何体的体积、表面积题型/考向二:外接球、内切球等相关问题题型/考向三:平面关系、垂直关系、体积、表面积等综合问题一、空间几何体的体积、表面积热点一空间几何体的侧面积、表面积柱体、锥体、台体和球的表面积公式:(1)若圆柱的底面半径为r,母线长为l,则S侧=2πrl,S表=2πr(r+l).(2)若圆锥的底面半径为r,母线长为l,则S侧=πrl,S表=πr(r+l).(3)若圆台的上、下底面半径分别为r′,r,则S侧=π(r+r′)l,S表=π(r2+r′2+r′l +rl).(4)若球的半径为R,则它的表面积S=4πR2.热点二空间几何体的体积柱体、锥体、台体和球的体积公式:(1)V柱体=Sh(S为底面面积,h为高);Sh(S为底面面积,h为高);(2)V锥体=13(S上+S下+S上S下)h(S上、S下分别为上、下底面面积,h为高);(3)V台体=13(4)V球=4πR3.3二、外接球、内切球问题类型一外接球问题考向1墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长.长方体同一顶点的三条棱长分别为a,b,c,外接球半径为R.则(2R)2=a2+b2+c2,即2R=a2+b2+c2.常见的有以下三种类型:考向2对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长,如图所示,(2R )2=a 2+b 2+c 2(长方体的长、宽高分别为a ,b ,c ),即R 2=18(x 2+y 2+z 2),如图.考向3汉堡模型汉堡模型是直三棱柱、圆柱的外接球模型,模型如下,由对称性可知,球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2的连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=h 2,所以R 2=r 2+h 24.考向4垂面模型垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球;如图所示,由对称性可知球心O 的位置是△CBD 的外心O 1与△AB 2D 2的外心O 2连线的中点,算出小圆O1的半径CO1=r,OO1=h2,则R=r2+h24.类型二内切球问题内切球问题的解法(以三棱锥为例)第一步:先求出四个表面的面积和整个锥体的体积;第二步:设内切球的半径为r,建立等式V P-ABC=V O-ABC+V O-P AB+V O-P AC+V O-PBC⇒V P-ABC=13S△ABC·r+13S△P AB·r+13S△P AC·r+13S PBC·r=13(S△ABC+S△P AB+S△P AC+S△PBC)r;第三步:解出r=3V P-ABCS△ABC+S△P AB+S△P AC+S△PBC.类型三球的截面问题解决球的截面问题抓住以下几个方面:(1)球心到截面圆的距离;(2)截面圆的半径;(3)直角三角形(球心到截面圆的距离、截面圆的半径、球的半径构成的直角三角形).三、平行关系和垂直关系的证明、二面角等热点一空间线、面位置关系的判定判断空间线、面位置关系的常用方法(1)根据空间线面平行、垂直的判定定理和性质定理逐项判断,解决问题.(2)利用直线的方向向量、平面的法向量判断.(3)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线、面的位置关系,并结合有关定理进行判断.热点二几何法证明平行、垂直1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面○热○点○题○型一点、线、面间的位置关系和空间几何体的体积、表面积一、单选题1.设l ,m 是两条不同的直线,α,β,γ是三个不同的平面,下列说法正确的是()A .若//l α,//m α,则//l mB .若//l α,//l β,则//αβC .若l α⊥,m α⊥,则//l mD .若αγ⊥,βγ⊥,则//αβ2.将半径为6的半圆卷成一个无底圆锥(钢接处不重合),则该无底圆锥的体积为()A .273πB .27πC .3πD .9π3.在正方体1111ABCD A B C D -中,直线m 、n 分别在平面ABCD 和11ABB A ,且m n ⊥,则下列命题中正确的是()A .若m 垂直于AB ,则n 垂直于AB B .若m 垂直于AB ,则n 不垂直于ABC .若m 不垂直于AB ,则n 垂直于ABD .若m 不垂直于AB ,则n 不垂直于AB4.如图是一款多功能粉碎机的实物图,它的进物仓可看作正四棱台,已知该四棱台的上底面边长为40cm ,下底面边长为10cm ,侧棱长为30cm ,则该款粉碎机进物仓的容积为()A .32cmB .386003cmC .3105002cmD .33cm5.已知在春分或秋分时节,太阳直射赤道附近.若赤道附近某地在此季节的日出时间为早上6点,日落时间为晚上18点,该地有一个底面半径为4m 的圆锥形的建筑物,且该建筑物在一天中恰好有四个小时在地面上没有影子,则该建筑物的体积为()A .643πB .π3C .16π3D .π36.攒尖是古代中国建筑中屋顶的一种结构形式,依其平面有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,多见于亭阁式建筑.如故宫中和殿的屋顶为四角攒尖顶,它的主要部分的轮廓可近似看作一个正四棱锥,设正四棱锥的侧面等腰三角形的顶角为60°,则该正四棱锥的侧面积与底面积的比为()A .4B 3C D 7.在三棱锥A BCD -中,4AB AC BD CD BC =====,平面α经过AC 的中点E ,并且与BC 垂直,则α截此三棱锥所得的截面面积的最大值为()A B .34C 2D .328.已知圆台的母线长为4,上底面圆和下底面圆半径的比为1:3,其侧面展开图所在扇形的圆心角为π2,则圆台的高为()A .BC .4D .二、多选题9.已知平面α,β,直线l ,m ,则下列命题正确的是()A .若αβ⊥,,,m l m l αβα⋂=⊥⊂,则l β⊥B .若l αβα⊂∥,,m β⊂,则//l mC .若m α⊂,则“l α⊥”是“l m ⊥”的充分不必要条件D .若m α⊂,l α⊄,则“l α∥”是“l m ”的必要不充分条件10.下列说法正确的是()A .若直线a 不平行于平面α,a α⊄,则α内不存在与a 平行的直线B .若一个平面α内两条不平行的直线都平行于另一个平面β,则αβ∥C .设l ,m ,n 为直线,m ,n 在平面α内,则“l α⊥”是“l m ⊥且l n ⊥”的充要条件D .若平面α⊥平面1α,平面β⊥平面1β,则平面α与平面β所成的二面角和平面1α与平面1β所成的二面角相等或互补三、解答题11.已知直棱柱1111ABCD A B C D -的底面ABCD 为菱形,且2AB AD BD ===,1AA =,点E 为11B D 的中点.(1)证明://AE 平面1BDC ;(2)求三棱锥1E BDC -的体积.12.如图,在三棱柱111ABC A B C -中,ABC 为边长为2的正三角形,D 为BC 的中点,12AA =,且160CCB ∠= ,平面11BB C C ⊥平面ABC .(1)证明:1C D AB ⊥;(2)求三棱锥111B AA C -的体积.○热○点○题○型二外接球、内切球等相关问题一、单选题1.已知ABC 是边长为3的等边三角形,其顶点都在球O 的球面上,若球O 的体积为323π,则球心O 到平面ABC 的距离为()AB .32C .1D .22.已知三棱锥-P ABC 的底面ABC 是边长为1的正三角形,侧棱,,PA PB PC 两两垂直,若此三棱锥的四个顶点都在同一个球面上,则该球的表面积是()A .3πB .πC .3π4D .3π23.一个圆锥的底面圆和顶点都恰好在一个球面上,且这个球的半径为5,则这个圆锥的体积的最大值时,圆锥的底面半径为()A .103B .2C .3D 4.已知圆锥的侧面积为2π,母线与底面所成角的余弦值为12,则该圆锥的内切球的体积为()A .4π3B C D 5.如图,几何体Ω为一个圆柱和圆锥的组合体,圆锥的底面和圆柱的一个底面重合,圆锥的顶点为A ,圆柱的上、下底面的圆心分别为B 、C ,若该几何体Ω存在外接球(即圆锥的顶点与底面圆周在球面上,且圆柱的底面圆周也在球面上).已知24BC AB ==,则该组合体的体积等于()A .56πB .70π3C .48πD .64π6.已知矩形ABCD 的顶点都在球心为O 的球面上,3AB =,BC =,且四棱锥O ABCD-的体积为,则球O 的表面积为()A .76πB .112πCD 7.水平桌面上放置了4个半径为2的小球,4个小球的球心构成正方形,且相邻的两个小球相切.若用一个半球形的容器罩住四个小球,则半球形容器内壁的半径的最小值为()A .4B .2C .2D .68.已知三棱锥-P ABC 的四个顶点均在球O 的球面上,2PA BC ==,PB AC ==PC AB =Q 为球O 的球面上一动点,则点Q 到平面PAB 的最大距离为()A 2211B C 2211D 二、填空题9.在三棱锥-P ABC 中,PA ⊥平面ABC ,14AB AC PA AB AC ⊥=+=,,,当三棱锥的体积最大时,三棱锥-P ABC 外接球的体积为______.10.如图,在直三棱柱111ABC A B C -中,1AA AB BC ==.设D 为1AC 的中点,三棱锥D ABC -的体积为94,平面1A BC ⊥平面11ABB A ,则三棱柱111ABC A B C -外接球的表面积为______.11.如图,直三棱柱111ABC A B C -的六个顶点都在半径为1的半球面上,AB AC =,侧面11BCC B 是半球底面圆的内接正方形,则直三棱柱111ABC A B C -的体积为___________.12.如图所示的由4个直角三角形组成的各边长均相等的六边形是某棱锥的侧面展开图,若该六边形的面积为12,则该棱锥的内切球半径为___.○热○点○题○型三平面关系、垂直关系、体积、表面积等综合问题1.已知直棱柱1111ABCD A B C D -的底面ABCD 为菱形,且2AB AD BD ===,1AA =,点E 为11B D 的中点.(1)证明://AE 平面1BDC ;(2)求三棱锥1E BDC -的体积.2.如图,在四棱锥P ABCD -中,PAD 是等边三角形,底面ABCD 是棱长为2的菱形,平面PAD ⊥平面ABCD ,O 是AD 的中点,π3DAB ∠=.(1)证明:OB ⊥平面PAD ;(2)求点O 到平面PAB 的距离.3.如图,在三棱柱111ABC A B C -中,ABC 为边长为2的正三角形,D 为BC 的中点,12AA =,且160CCB ∠= ,平面11BB C C ⊥平面ABC .(1)证明:1C D AB ⊥;(2)求三棱锥111B AAC -的体积.4.如图1,在直角梯形ABCD 中,90ADC ∠=︒,AB CD ,122AD CD AB ===,E 为AC 的中点,将ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直,如图2.在图2所示的几何体D ABC -中:(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD EF ,求几何体F BCE -的体积.5.在如图所示的几何体中,四边形ABCD 为菱形,60BCD ∠=︒,4AB =,EF CD ∥,2EF =,4CF =,点F 在平面ABCD 内的射影恰为BC 的中点G .(1)求证:平面ACE 平面BED;(2)求该几何体的体积.。
选填压轴题立体几何第一部分学生版
立体几何压轴题(三视图和外接圆内切圆部分)1.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 42.【安徽省合肥一中、马鞍山二中等六校教育研究会2019届高三第二次联考】一个几何体的三视图如图所示,其中俯视图是半径为r的圆,若该几何体的体积是则它的表面积是( )A.B.C.D.3.已知一个几何体的正视图和侧视图是两个全等的等腰三角形,腰长为3,底边长为2,俯视图是一个半径为1的圆如图,则这个几何体的内切球的体积为A.B.C.D.4.的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a+b的最大值为(A)(B)(C)4 (D)5.【辽宁省大连市2019届高三3月测试】我国古代数学名著《九章算术》中有如下问题:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺.问积几何”,羡除是一个五面体,其中三个面是梯形,另两个面是三角形,已知一个羡除的三视图如图粗线所示,其中小正方形网格的边长为1,则该羡除的表面中,三个梯形的面积之和为()A.40B.43C.46D.476.【安徽省合肥市2018届高三三模】我国古代《九章算术》将上、下两面为平行矩形的六面体称为刍童.右图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该刍童的表面积为A.B.40 C.D.7.如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的表面积为()A .B .C .D .8.一个几何体的三视图如图,则该几何体的体积为 .9.已知是球上的点, , , ,则球的表面积等于________________.10.【辽宁省鞍山一中2019届高三三模】刘徽《九章算术•商功》中将底面为长方形,两个三角面与底面垂直的四棱锥体叫做阳马.如图,是一个阳马的三视图,则其外接球的体积为( )A .B .C .D .11.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为 ( )A .B .C .D . 12.直三棱柱的各顶点都在同一球面上,若,,则此球的表面积等于 .13.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥SABC 的体积的最大值为( )A .33B . 3C .2 3D .4 14.【安徽省蚌埠市2019届高三下学期第二次检查】正三棱锥中,,点在棱上,且.正三棱锥的外接球为球,过点作球的截面,截球所得截面面积的最小值为__________.,,,S A B C O SA ABC ⊥平面AB BC ⊥1SA AB ==BC =O 814π16π9π274π111ABC A B C -12AB AC AA ===120BAC ∠=︒15.正四棱柱的各顶点都在半径为的球面上,则正四棱柱的侧面积有最值,为.16.《九章算木》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”,现有一阳马,其正视图和侧视图是如图所示的直角三角形,该“阳马”的体积为,若该阳马的顶点都在同一个球面上,则该球的表面积为()A.B .C.D.17.【河南省郑州市第一中学2019届高三上期中】在三棱锥中,平面,M是线段上一动点,线段长度最小值为,则三棱锥的外接球的表面积是()A.B.C.D.18.【广东省深圳市2019届高三第一次(2月)调研】已知A,B,C为球O的球面上的三个定点,,,P为球O的球面上的动点,记三棱锥p一ABC的体积为,三棱銋O一ABC的体积为,若的最大值为3,则球O的表面积为A.B.C.D.19.【江西省南昌市南昌外国语学校2019届高三高考适应】在三棱锥S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,二面角S﹣AC﹣B的余弦值是,若S、A、B、C都在同一球面上,则该球的表面积是()A.B.C.D.20.【四川省泸州市泸县第一中学2019届高三三诊】点,,,在同一个球面上,,,1111ABCD A B C DR若球的表面积为,则四面体体积的最大值为A.B.C.D.21.三棱锥P—ABC中,底面ABC满足BA=BC,,点P在底面ABC的射影为AC的中点,且该三棱锥的体积为,当其外接球的表面积最小时,P到底面ABC的距离为()A.3B.C.D.22.【四川省成都外国语学校2019届高三上学期第一次月考】已知正方形ABCD的边长为4,E,F分别是BC,CD的中点,沿AE,EF,AF折成一个三棱锥P-AEF(使B,C,D重合于P),三棱锥P-AEF的外接球表面积为()A.B.C.D.23.【2019届高三第二次全国大联考】中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑.如图为一个阳马与一个鳖臑的组合体,已知平面,四边形为正方形,,,若鳖臑的外接球的体积为,则阳马的外接球的表面积等于A.B.C.D.24.【江西省吉安一中、九江一中、新余一中等八所重点中学2019届高三4月联考】已知在三棱锥中,BC,则三棱锥外接球的表面积为__________.25.【四川省泸州市2019届高三上学期一诊】已知三棱锥的所有顶点都在同一球面上,底面是正三角形且和球心O在同一平面内,若此三棱锥的最大体积为,则球O的表面积等于_____.26.【湖南省2019届高三六校(长沙一中、常德一中等)联考】已知四棱锥的三视图如图所示,若该四棱锥的各个顶点都在球的球面上,则球的表面积等于_________.27.【陕西省榆林市2019届三模】如图,是边长为2的正方形,其对角线与交于点,将正方形沿对角线折叠,使点所对应点为,.设三棱锥的外接球的体积为,三棱锥的体积为,则__________.28.【云南省2019届高三第一次检测】已知,,,,是球的球面上的五个点,四边形为梯形,,,,,,平面平面,则球的表面积为_____.29.【陕西省汉中市2019届高三第二次检测】三棱锥中,侧棱与底面垂直,,,且,则三棱锥的外接球的表面积等于__________.30.【山西省吕梁市2019年4月模拟】在四棱锥中,是等边三角形,底面是矩形,平面平面,若,则四棱锥的外接球的表面积是_____.31.【广西桂林市2019届高三4月综合能力检测(一模)】已知是球表面上四点,点为的中点,且,,,,则球的表面积是__________.32.【宁夏六盘山高级中学2019届高三下学期一模】在三棱锥中,是等边三角形,底面,,,则该三棱锥的外接球的表面积为______.。
专题03 立体几何大题压轴练(原卷版)
【一专三练】 专题03 立体几何大题压轴练-新高考数学复习分层训练(新高考通用)1.(2023·湖北·校联考模拟预测)如图,在棱长为2的正方体ABCD EFGH -中,点M 是正方体的中心,将四棱锥M BCGF -绕直线CG 逆时针旋转(0π)αα<<后,得到四棱锥M B CGF -'''.(1)若π2α=,求证:平面MCG //平面M B F ''';(2)是否存在α,使得直线M F ''⊥平面MBC ?若存在,求出α的值;若不存在,请说明理由.2.(2023春·湖南株洲·高三株洲二中校考阶段练习)如下图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,2ABC BAD π∠=∠=,2PA AD ==,1AB BC ==.(1)求平面PAB 与平面PCD 夹角的余弦值;(2)定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值,利用此定义求异面直线PB 与CD 之间的距离.3.(2023·湖南张家界·统考二模)如图,已知三棱柱111ABC A B C -,90ACB ∠=︒,11AC A C ⊥,D 为线段1A C 上的动点,1AC BD ⊥.(1)求证:平面11ACC A ⊥平面ABC ;(2)若1AA AC ⊥,D 为线段1A C 的中点,22AC BC ==,求1B D 与平面1A BC 所成角的余弦值.4.(2023春·湖南·高三长郡中学校联考阶段练习)如图①,已知AB C 'V 是边长为2的等边三角形,D 是AB '的中点,DH B C ⊥',如图②,将B DH 'V 沿边DH 翻折至BDH △.(1)在线段BC 上是否存在点F ,使得//AF 平面BDH ?若存在,求BF FC的值;若不存在,请说明理由;(2)若平面BHC 与平面BDA 所成的二面角的余弦值为13,求三棱锥B DCH -的体积.5.(2023·湖南长沙·湖南师大附中校考一模)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,△PAD 为等边三角形,平面PAD ⊥平面ABCD ,PB BC ⊥.(1)求点A 到平面PBC 的距离;(2)E 为线段PC 上一点,若直线AE 与平面ABCD 求平面ADE与平面ABCD 夹角的余弦值.6.(2023春·广东揭阳·高三校考阶段练习)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是边长为2的菱形,3DAB π∠=,平面11BDD B ⊥平面ABCD ,点1,O O 分别为11,B D BD 的中点,1111,,O B A AB O BO ∠∠=均为锐角.(1)求证:1AC BB ⊥;(2)若异面直线CD 与1AA 1A ABCD -的体积为1,求二面角1B AA C --的平面角的余弦值.7.(2023·山西太原·统考一模)如图,四棱锥P ABCD -中,,AB CD AB AD ⊥∥,且24260,,AB AD CD PA PAB =====∠ ,直线PA 与平面ABCD 的所成角为30,,E F 分别是BC 和PD 的中点.(1)证明:EF P 平面PAB ;(2)求平面PAB 与平面PAD 夹角的余弦值.8.(2023·江苏·统考一模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,ABC V 和ACD V 均为正三角形,4AC =,BE =.(1)在线段AC 上是否存在点F ,使得BF ∥平面ADE ?说明理由;(2)求平面CDE 与平面ABC 所成的锐二面角的正切值.9.(2023·云南昆明·昆明一中校考模拟预测)在三棱锥-P ABC 中,PA PB =,90BAC ∠=︒,M 为棱BC 的中点.(1)证明:AB PM ⊥;(2)若平面PAB ⊥平面ABC,PA PB ==2AB AC ==,E 为线段PC 上一点,2PE EC =,求点E 到平面PAM 的距离.10.(2023·云南·统考一模)如图,四边形ABCD 是圆柱底面的内接四边形,AC 是圆柱的底面直径,PC 是圆柱的母线,E 是AC 与BD 的交点,AB AD =,60BAD ∠=︒.(1)记圆柱的体积为1V ,四棱锥P ABCD -的体积为2V ,求12V V ;(2)设点F 在线段AP 上,4,4PA PF PC CE ==,求二面角F CD P --的余弦值.11.(2023·云南·高三云南师大附中校考阶段练习)如图,直四棱柱1111ABCD A B C D -的底面ABCD 是菱形,E 是11A D 的中点,F 为线段BC 上一点,2AB =,11AA =,60BAD ∠=︒.(1)证明:当BF FC =时,⊥AE 平面DEF ;(2)是否存在点F ,使二面角A DE F --的余弦值为15若存在,请指出点F 的位置;若不存在,请说明理由.12.(2023春·重庆·高三重庆市长寿中学校校考期末)如图,在四棱台1111ABCD A B C D-中,底面为矩形,平面11AA D D ⊥平面11CC D D ,且1111112CC CD DD C D ====.(1)证明:AD ⊥平面11CC D D ;(2)若1A C 与平面11CC D D 所成角为3π,求二面角1C AA D --的余弦值.13.(2023秋·重庆璧山·高三校联考阶段练习)如图,已知圆柱的上,下底面圆心分别为11,,P Q AA C C 是圆柱的轴截面,正方形ABCD 内接于下底面圆Q ,12,AB AA k ==.(1)当k 为何值时,点Q 在平面PBC 内的射影恰好是△PBC 的重心;(2)若[]2,4k ∈,当平面PAD 与平面PBC 所成的锐二面角最大时,求该锐二面角的余弦值.14.(2023春·重庆万州·高三重庆市万州第二高级中学校考阶段练习)如图1,,A D 分别是矩形11A BCD 上的点,1222AB AA AD ===,12DC DD =,把四边形11A ADD 沿AD 折叠,使其与平面ABCD 垂直,如图2所示,连接1A B ,1D C 得到几何体11ABA DCD -.(1)当点E 在棱AB 上移动时,证明:11D E A D ⊥;(2)在棱AB 上是否存在点E ,使二面角1D EC D --的平面角为π6?若存在,求出AE 的长;若不存在,请说明理由.15.(2023·重庆沙坪坝·重庆南开中学校考模拟预测)如图四棱锥,2,,S ABCD AC B D -=在以AC 为直径的圆上,SA ⊥平面π,,6ABCD DAC E ∠=为SC 的中点,(1)若π6BAC ∠=,证明:DE ⊥AB ;(2)当二面角D SC A --时,求点B 到平面SCD 距离的最大值.16.(2023·辽宁铁岭·校联考模拟预测)如图,在三棱台111ABC A B C -中,三棱锥111C A B C -,1AB C △的面积为4,112AB A B =,且1A A ⊥平面ABC .(1)求点B 到平面1AB C 的距离;(2)若1BB BA =,且平面1AB C ⊥平面11ABB A , 求二面角11A B C A --的余弦值.17.(2023秋·辽宁沈阳·高三沈阳二中校考期末)如图,在四棱锥P ABCD -中,平面ABCD ⊥平面PAD ,//AD BC ,1AB BC PA ===,2AD =,30ADP ∠=︒,90BAD ∠=︒,E 是PD 的中点.(1)求证:PD PB ⊥;(2)若点M 在线段PC 上,异面直线BM 和CE 求面MAB 与面PCD 夹角的余弦值.18.(2023·辽宁朝阳·校联考一模)如图,已知四棱锥E ABCD -,底面ABCD 是平行四边形,且π3DAB ∠=,22,,AD AB BE PE P ===是线段AD 的中点,BE PC ⊥.(1)求证:PC ⊥平面BPE ;(2)下列条件任选其一,求二面角P EC B --的余弦值.①AE 与平面ABCD 所成的角为π4;②D 到平面EPC 注:如果选择多个条件分别解答,按一个解答计分.19.(2023秋·江苏南京·高三南京市第一中学校考期末)如图,三棱锥E ABD -和F BCD -均为棱长为2的正四面体,且A ,B ,C ,D 四点共面,记直线AE 与CF 的交点为Q .(1)求三棱锥Q BDE -的体积;(2)求二面角A QD C --的正弦值.20.(2023春·河北承德·高三河北省隆化存瑞中学校考阶段练习)如图,在四棱锥P ABCD -中,1,90,1,2AD BC ADC PAB BC CD AD E ∠∠=====∥ 为边AD 的中点,异面直线PA 与CD 所成的角为90 .(1)在直线PA 上找一点M ,使得直线//MC 平面PBE ,并求AM AP 的值;(2)若直线CD 到平面PBE ,求平面PBE 与平面PBC 夹角的正弦值.21.(2023秋·河北石家庄·高三石家庄精英中学校考阶段练习)如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD V 是正三角形,且平面SAD ⊥平面ABCD ,1AB =,P为棱AD 的中点,四棱锥S ABCD -(1)若E 为棱SB 的中点,求证://平面SCD ;(2)在棱SA 上是否存在点M ,使得平面PMB 与平面SAD 若存在,指出点M 的位置并给以证明;若不存在,请说明理由.22.(2023春·河北衡水·高三河北衡水中学校考阶段练习)如图所示,圆锥的高2PO =,底面圆O 的半径为R ,延长直径AB 到点C ,使得BC R =,分别过点A ,C 作底面圆O 的切线,两切线相交于点E ,点D 是切线CE 与圆O 的切点.(1)证明:平面PDE ⊥平面POD ;(2)若直线PE 与平面PBD ,求点A 到平面PED 的距离.23.(2023·河北衡水·河北衡水中学校考模拟预测)异面直线1l 、2l 上分别有两点A 、B .则将线段AB 的最小值称为直线1l 与直线2l 之间的距离.如图,已知三棱锥-P ABC 中,PA ⊥平面PBC ,PB PC ⊥,点D 为线段AC 中点,1AP BP CP ===.点E 、F 分别位于线段AB 、PC 上(不含端点),连接线段EF .(1)设点M 为线段EF 中点,线段EF 所在直线与线段AC 所在直线之间距离为d ,证明:DM d > .(2)若AB PC k AE FC==()1k >,用含k 的式子表示线段EF 所在直线与线段BD 所在直线之间的距离.24.(2023·河北·高三河北衡水中学校考阶段练习)如图,在长方体ABCD FGHE -,平面ABCD 与平面BCEF 所成角为02πθθ⎛⎫<< ⎪⎝⎭.(1)若AB BC =,求直线AH 与平面BCEF 所成角的余弦值(用cos θ表示);(2)将矩形BCEF 沿BF 旋转θ度角得到矩形BFPQ ,设平面ABCD 与平面BFPQ 所成角为π02αα⎛⎫<< ⎪⎝⎭,请证明:2cos cos αθ=.25.(2023秋·福建宁德·高三校考阶段练习)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,点P 在底面ABCD 内的投影恰为AC 中点,且BM MC =.(1)若2PC =,求证:PM ⊥面PAD ;(2)若平面PAB 与平面PCD 所成的锐二面角为3π,求直线PM 与平面PCD 所成角的正弦值.26.(2023秋·山东烟台·高三山东省烟台第一中学校考期末)如图,在三棱台111ABC A B C -中,底面ABC V 是边长为2的正三角形,侧面11ACC A 为等腰梯形,且1111A C AA ==,D 为11A C 的中点.(1)证明:AC BD ⊥;(2)记二面角1A AC B --的大小为θ,2,33ππθ⎡⎤∈⎢⎥⎣⎦时,求直线1AA 与平面11BB C C 所成角的正弦值的取值范围.27.(2023秋·山东枣庄·高三统考期末)已知直三棱柱111ABC A B C -,D 为线段11A B 的中点,E 为线段1CC 的中点,1AC CE ==,平面ABE ⊥平面11AA C C .(1)证明:AB AE ⊥;(2)三棱锥E ABD -的外接球的表面积为132π,求平面ADE 与平面BDE 夹角的余弦值.28.(2023·湖北·校联考模拟预测)如图所示,在梯形ABCD 中,AB CD ∥,120BCD ∠= ,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD CD BC CF ===.(1)求证:EF ⊥平面BCF ;(2)点M 在线段EF MAB 与平面FCB 所成锐二面角为θ,试求cos θ的取值范围.29.(2023春·湖北·高三统考阶段练习)如图所示,六面体1111ABCD A B C D -的底面ABCD 是菱形,1111,π3BAD AA BB CC DD ∠=∥∥∥,且1BB ⊥平面111111,,,(01),2ABCD AA CC AE AA CF CC DD BB λλλ===<≤= ,平面BEF 与平面ABCD的交线为l .(1)证明:直线l ⊥平面11B BDD ;(2)已知2EF =,三棱锥1B BDF -的体积1B BDF V -=1D F 与平面1BDD 所成角为θ,求sin θ的取值范围.30.(2023·江苏南通·二模)如图,在圆台1OO 中,11,A B AB 分别为上、下底面直径,且11//A B AB ,112AB A B =, 1CC 为异于11,AA BB 的一条母线.(1)若M 为AC 的中点,证明:1//C M 平面11ABB A ;(2)若13,4,30OO AB ABC ==∠=︒,求二面角1A C C O --的正弦值.。
高考数学压轴题突破训练——立体几何(含详解)
高考数学压轴题突破训练——立体几何1. 1. 如图,平面如图,平面VAD VAD⊥平面⊥平面ABCD ABCD,△,△,△VAD VAD 是等边三角形,是等边三角形,ABCD ABCD 是矩形,是矩形,AB AB AB∶∶AD AD==2∶1,F 是AB 的中点.的中点.(1)求VC 与平面ABCD 所成的角;所成的角; (2)求二面角V-FC-B 的度数;的度数;(3)当V 到平面ABCD 的距离是3时,求B 到平面VFC 的距离.的距离.2.2.如图正方体如图正方体ABCD-1111D C B A 中,中,E E 、F 、G 分别是B B 1、AB AB、、BC 的中点.的中点.(1)证明:F D 1⊥EG EG;; (2)证明:F D 1⊥平面AEG AEG;; (3)求AE <cos ,>B D 1.3. 3. 在直角梯形在直角梯形P 1DCB 中,中,P P 1D//CB D//CB,,CD//P 1D 且P 1D D = = 6,BC = = 33,DC =6,A 是P 1D 的中点,沿AB 把平面P 1AB 折起到平面PAB 的位置,使二面角P -CD CD--B 成45°角,设E 、F 分别是线段AB AB、、PD 的中点.的中点. ((1)求证:)求证:AF//AF//AF//平面平面PEC PEC;; ((2)求平面PEC 和平面PAD 所1. 1. 如图,平面如图,平面VAD VAD⊥平面⊥平面ABCD ABCD,△,△,△VAD VAD 是等边三角形,ABCD 是矩形,是矩形,AB AB AB∶∶AD AD==2∶1,F 是AB 的中点.的中点.D B C F E A P (1)求VC 与平面ABCD 所成的角;所成的角; (2)求二面角V-FC-B 的度数;的度数;(3)当V 到平面ABCD 的距离是3时,求B 到平面VFC 的距离.的距离.2.2.如图正方体如图正方体ABCD-1111D C B A 中,中,E E 、F 、G 分别是B B 1、AB AB、、BC 的中点.的中点.(1)证明:F D 1⊥EG EG;; (2)证明:F D 1⊥平面AEG AEG;; (3)求AE <cos ,>B D 1.3. 3. 在直角梯形在直角梯形P 1DCB 中,中,P P 1D//CB D//CB,,CD//P 1D 且P 1D D = = 6,BC = = 33,DC =6,A 是P 1D 的中点,沿AB 把平面P 1AB 折起到平面PAB 的位置,使二面角P -CD CD--B 成45°角,设E 、F 分别是线段AB AB、、PD 的中点.的中点. ((1)求证:)求证:AF//AF//AF//平面平面PEC PEC;; ((2)求平面PEC 和平面PAD 所成的二面角的大小;所成的二面角的大小; ((3)求点D 到平面PEC 的距离.的距离. 成的二面角的大小;成的二面角的大小; ((3)求点D 到平面PEC 的距离.的距离.BC DA P 1 DBCF E A P4. 4. 如图四棱锥如图四棱锥ABCD P -中,中,^PA 底面ABCD ,4=PA 正方形的边长为2 (1)求点A 到平面PCD 的距离;的距离;(2)求直线PA 与平面PCD 所成角的大小;所成角的大小; (3)求以PCD 与PAC 为半平面的二面角的正切值。
【高考压轴题】空间立体几何经典大题汇编100题(含答案)
【高考压轴题】空间立体几何经典大题汇编100题(含答案)未命名一、解答题1.直三棱柱'''ABC A B C -中,底面ABC 是边长为2的正三角形,'D 是棱''A C 的中点,且'AA =.(1)若点M 为棱'CC 的中点,求异面直线'AB 与BM 所成角的余弦值; (2)若点M 在棱'CC 上,且'A M ⊥平面''AB D ,求线段CM 的长.2.如图,在三棱台DEF ABC -中,2AB DE =,CF ⊥平面ABC ,AB BC ⊥,45BAC ∠=︒,CF DE =,,G H 分别为,AC BC 的中点.(1)求证://BD 平面FGH ;(2)求平面FGH 与平面ACFD 所成角(锐角)的大小.3.在直三棱柱111ABC A B C -中,AC BC ==12AB AA ==,E 是棱1CC 的中点.(1)求证:平面1A AB ⊥平面1A BE ; (2)求二面角1A BE A --的余弦值.4.如图,四棱锥P ABCD -中,PA ⊥平面,,ABCD AB AD CD BC ==. (1)求证:平面PBD ⊥平面PAC ; (2)若120,60B A D B CD ∠=∠=,且P B P D ⊥,求二面角B PC D --的平面角的大小.5.如图,在三棱柱111ABC A B C -中,四边形11BB C C 是矩形,11AB B C ⊥,平面1A BC ⊥平面11AB C .(1)求证:11AB A B ⊥;(2)若113B C =,4AB =,160ABB ︒∠=,求二面角1A A C B --的余弦值.6.如图,在正方体1111ABCD A B C D -中,,E F 分别是111,CC B C 的中点.(1)求证:1A F //平面1AD E ; (2)求二面角1D E A DC --余弦值.7.在多面体ABCDEF 中,四边形ABCD 是正方形,//EF AB ,1DE EF ==,2DC BF ==,30EAD ︒∠=.(Ⅰ) 求证:AE ⊥平面CDEF ;(Ⅱ)在线段BD 上确定一点G ,使得平面EAD 与平面FAG 所成的角为30︒. 8.已知四棱锥P ABCD -中,平面PCD ⊥平面ABCD ,且22PD PC BC ===, 2,3BCD ABD π∠=∆是等边三角形,AC B D E =. (1)证明:PC ⊥平面PAD ; (2)求二面角P AB C --的余弦值.9.已知直角梯形ABCD 中,//AB CD ,AB AD ⊥,22AB AD CD ===,E 、F 分别是边AD 、BC 上的点,且//EF AB ,沿EF 将EFCD 折起并连接成如图的多面体CD ABFE -,折后BE ED ⊥.(Ⅰ)求证:AE FC ⊥;(Ⅱ)若折后直线AC 与平面ABFE 所成角θABCD ⊥平面FCB .10.如图,在四棱锥S ABCD -中,SA ⊥平面ABCD ,且90ABC BCD ∠=∠=︒,22SA AB BC CD ====,E 是边SB 的中点.(1)求证:AE ⊥平面SBC ;(2)若F 是线段SB 上的动点(不含端点):问当BF FS为何值时,二面角D CF B--余弦值为10-. 11.如图,已知三棱柱111ABC A B C -,侧面11BCC B ABC ⊥底面. (Ⅰ)若,M N 分别是1,AB AC 的中点,求证:11//MN BCC B 平面; (Ⅱ)若三棱柱111ABC A B C -的各棱长均为2,侧棱1BB 与底面ABC 所成的角为60︒,问在线段11A C 上是否存在一点P ,使得平面111B CP ACC A ⊥平面?若存在,求1C P 与1PA 的比值,若不存在,说明理由.12.已知某几何体直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BN 11C B N ⊥平面;(2)11sin C N CNB θθ设为直线与平面所成的角,求的值;(3)设M 为AB 中点,在BC 边上找一点P ,使MP //平面1CNB 并求BPPC的值. 13.如图,在直三棱柱111ABC A B C -中,,D E 分别是棱,BC AB 的中点,点F 在1CC 棱上,且AB AC =,13AA =,2BC CF ==.(1)求证:1//C E 平面ADF ;(2)当2AB =时,求二面角111A C E B --的余弦值.14.如图,在直三棱柱111ABC A B C -中,已知1CA CB ==,12AA =,90BCA ︒∠=.(1)求异面直线1BA 与1CB 夹角的余弦值; (2)求二面角1B AB C --平面角的余弦值.15.已知正三棱柱 中, 、 分别为 的中点,设.(1)求证:平面 平面 ;(2)若二面角 的平面角为,求实数 的值,并判断此时二面角是否为直二面角,请说明理由.16.在直三棱柱中,13,2,AA AB BC AC D ====是AC 中点. (Ⅰ)求证:1B C //平面1A BD ; (Ⅱ)求点1B 到平面1A BD 的距离; (Ⅲ)求二面角11A DB B --的余弦值.17.如图,在三棱柱ABC -111A B C 中,侧棱与底面垂直,090BAC ∠=,AB AC =1AA =2=,点,M N 分别为1A B 和11B C 的中点.(1)证明:1A M ⊥MC ;(2)求二面角N MC A --的正弦值.18.如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,//EA PD ,22AD PD EA ===,F ,G ,H 分别为PB ,EB ,PC 的中点.(1)求证://FG 平面PED ;(2)求平面FGH 与平面PBC 所成锐二面角的大小;(3)在线段PC 上是否存在一点M ,使直线FM 与直线PA 所成的角为3π?若存在,求出线段PM 的长;若不存在,请说明理由.19.已知五边形ABCDE 是由直角梯形ABCD 和等腰直角三角形ADE 构成,如图所示, AB AD ⊥, AE DE ⊥, AB CD ,且224AB CD DE ===,将五边形ABCDE 沿着AD 折起,且使平面ABCD ⊥平面ADE .(Ⅰ)若M 为DE 中点,边BC 上是否存在一点N ,使得MN 平面ABE ?若存在,求BNBC的值;若不存在,说明理由; (Ⅱ)求二面角A BE C --的平面角的余弦值.20.如图,在以,,,,,A B C D E F 为顶点的多面体中,四边形ACDF 是菱形,60,,//FAC AC BC AB DE ∠=︒⊥, //,2,1,BC EF AC BC BF ===(1)求证:BC ⊥平面ACDF ; (2)求二面角C AE F --的余弦值.21.在PABC 中,4PA =,PC =45P ∠=︒,D 是PA 中点(如图1).将PCD ∆沿CD 折起到图2中1PCD ∆的位置,得到四棱锥1P ABCD -.(1)将PCD ∆沿CD 折起的过程中,CD ⊥平面1P DA 是否成立?并证明你的结论; (2)若1P D 与平面ABCD 所成的角为60°,且1PDA ∆为锐角三角形,求平面1P AD 和平面1P BC 所成角的余弦值.22.四棱锥P ABCD -中,侧面PDC 是边长为2的正三角形,且与底面垂直,底面ABCD 是60ADC ∠=︒的菱形,M 为PB 的中点,Q 为CD 的中点.(1)求证:PA CD ⊥;(2)求AQ 与平面CDM 所成的角.23.如图,在正方体ABCD – A 1B 1C 1D 1中,点E ,F ,G 分别是棱BC ,A 1B 1,B 1C 1的中点.(1)求异面直线EF 与DG 所成角的余弦值;(2)设二面角A —BD —G 的大小为θ,求 |cos θ| 的值.24.如图,四边形ABCD 与BDEF 均为菱形, 60DAB DBF ∠=∠=︒,且F A F C =.(1)求证:AC ⊥平面BDEF ;(2)求直线AF 与平面BCF 所成角的正弦值.25.如图,在正方体1111ABCD A B C D -中,,F G 分别是棱1,CC AD 的中点,E 为棱AB 上一点,且异面直线1B E 与BG 所成角的余弦值为25.(1)证明:E 为AB 的中点;(2)求平面1B EF 与平面11ABC D 所成锐二面角的余弦值.26.如图,ABC ∆中,02,4,90AC BC ACB ==∠=,,D E 分别是,AC AB 的中点,将ADE ∆沿DE 折起成PDE ∆,使面PDE ⊥面BCDE ,,H F 分别是PD 和BE 的中点,平面BCH 与PE ,PF 分别交于点,I G .(1)求证://IH BC ;(2)求二面角P GI C --的正弦值.27.如图,矩形ABCD 中,6AB =,AD =点F 是AC 上的动点.现将矩形ABCD沿着对角线AC 折成二面角D AC B '--,使得D B '=.(Ⅰ)求证:当AF =D F BC '⊥;(Ⅱ)试求CF 的长,使得二面角A D F B -'-的大小为4π.28.如图,在三棱锥P ABC -中,,,CP CA CB 两两垂直且相等,过PA 的中点D 作平面α∥BC ,且α分别交PB ,PC 于M 、N ,交,AB AC 的延长线于,E F .(Ⅰ)求证:EF ⊥平面PAC ;(Ⅱ)若2AB BE =,求二面角P DM N --的余弦值.29.如图1,在M B C △中,24BM BC ==,BM BC ⊥,A ,D 分别为BM ,MC 的中点.将MAD △沿AD 折起到PAD △的位置,使90PAB ∠=,如图2,连结PB ,PC .(Ⅰ)求证:平面PAD ⊥平面ABCD ;(Ⅱ)若E 为PC 中点,求直线DE 与平面PBD 所成角的正弦值;(Ⅲ)线段PC 上是否存在一点G ,使二面角G AD P --求出PGPC的值;若不存在,请说明理由.30.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形.(1)求证:BD ⊥平面PAC ;(2)若PA AB BD ==,求PC 与平面PBD 所成角的正弦值.31.如图,四棱锥P ABCD -中,底面ABCD 为梯形,PD ⊥底面ABCD ,//,,1,AB CD AD CD AD AB BC ⊥===过A 作一个平面α使得//α平面PBC .(1)求平面α将四棱锥P ABCD -分成两部分几何体的体积之比;(2)若平面α与平面PBC PA 与平面PBC 所成角的正弦值.32.如图几何体ADM-BCN 中,ABCD 是正方形,CD //NM ,,AD MD CD CN ⊥⊥,MDC ∠=120o ,30CDN ∠=,24MN MD ==.(Ⅰ)求证://AB CDMN 平面; (Ⅱ)求证:DN AMD ⊥平面; (Ⅲ)求二面角N AM D --的余弦值.33.如图所示,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,且1PA AB ==,点E 在线段PC 上,且2PE EC =. (Ⅰ)证明:平面BDE ⊥平面PCD ; (Ⅱ)求二面角P BD E --的余弦值.34.在如图所示的多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,AC AD CD DE 2AB 1G =====,,为AD 中点,F 是CE 的中点. (1)证明:BF 平面ACD (2)求点G 到平面BCE 的距离.35.如图所示,四棱锥P ABCD -的侧面PAD ⊥底面ABCD ,底面ABCD 是直角梯形,且//,AB CD AB AD ⊥,12CD PD AD AB ===,E 是PB 中点.(1)求证:CE ⊥平面PAB ;(2)若4CE AB ==,求直线CE 与平面PDC 所成角的大小.36.如图,在四棱锥E ABCD -中,ABD ∆是正三角形,BCD ∆是等腰三角形,120BCD ∠=,EC BD ⊥.(1)求证:BE DE =;(2)若AB =AE =EBD ⊥平面ABCD ,直线AE 与平面ABD 所成的角为45°,求二面角B AE D --的余弦值.37.如图1,在平行四边形11ABB A 中,160ABB ∠=︒,4AB =,12AA =,C 、1C 分别为AB 、11A B 的中点,现把平行四边形11ABB A 1沿C 1C 折起如图2所示,连接1B C 、1B A 、11B A .(1)求证:11AB CC ⊥;(2)若1AB =11C AB A --的正弦值.38.如图,已知四棱锥S ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠=︒,SA SD SB ===点E 是棱AD 的中点,点F 在棱SC 上,且SF SC λ=,SA //平面BEF .(1)求实数λ的值;(2)求二面角S BE F --的余弦值.39.如图所示,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 是正方形,且PA PD =,90APD ︒∠=.(Ⅰ)证明:平面PAB ⊥平面PCD ; (Ⅱ)求二面角A PB C --的余弦值.40.如图,空间四边形OABC 中,,OA BC OB AC ⊥⊥.求证:OC AB ⊥.41.如图,直角梯形BDFE 中,||EF BD ,BE BD ⊥,EF =等腰梯形ABCD 中,||AB CD ,AC BD ⊥,24AB CD ==,且平面BDFE ⊥平面ABCD . (1)求证:AC ⊥平面BDFE ; (2)若BF 与平面ABCD 所成角为4π,求二面角B DF C --的余弦值.42.在如图所示的几何体中,正方形ABEF 所在的平面与正三角形ABC 所在的平面互相垂直,//CD BE ,且2BE CD =,M 是ED 的中点. (1)求证://AD 平面BFM ;(2)求面EDF 与面ADB 所成锐二面角的大小.43.如图,四面体中,分别是的中点,(1)求证:平面;(2)求直线与平面所成角的正弦值.44.如图,已知正方体ABCD A B C D ''''-的棱长为1,E ,F ,G ,H 分别是棱AB ,CC ',AA ',C D ''的中点.(1)求证:EF 平面GHD ; (2)求直线EF 与BD '所成的角.45.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠ABC =60°,PAB ∆为正三角形,且侧面P AB ⊥底面ABCD ,E 为线段AB 的中点,M 在线段PD 上.(I )当M 是线段PD 的中点时,求证:PB // 平面ACM ; (II )求证:PE AC ⊥;(III )是否存在点M ,使二面角M EC D --的大小为60°,若存在,求出PMPD的值;若不存在,请说明理由.46.长方形ABCD 中,2AB AD =,M 是DC 中点(图1).将△ADM 沿AM 折起,使得AD BM ⊥(图2)在图2中:(1)求证:平面ADM ⊥平面ABCM ;(2)在线段BD 上是否存点E ,使得二面角E AM D --为大小为π4,说明理由. 47.如下图,在空间直角坐标系O xyz -中,正四面体(各条棱均相等的三棱锥)ABCD 的顶点,,A B C 分别在x 轴,y 轴,z 轴上.(Ⅰ)求证://CD 平面OAB ; (Ⅱ)求二面角C AB D --的余弦值.48.如图,在四棱柱1111ABCD A B C D -中,1AA ⊥平面ABCD ,底面ABCD 为梯形, //AD BC ,AB DC ==1122AD AA BC ===,点P ,Q 分别为11A D ,AD 的中点.(Ⅰ)求证://CQ 平面1PAC ; (Ⅱ)求二面角1C AP D --的余弦值;(Ⅲ)在线段BC 上是否存在点E ,使PE 与平面1PAC 所成角的正弦值是21若存在,求BE 的长;若不存在,请说明理由.49.如图在棱锥P ABCD -中,ABCD 为矩形,PD ⊥面ABCD ,2PB =,PB 与面PCD 成045角,PB 与面ABD 成030角.(1)在PB 上是否存在一点E ,使PC ⊥面ADE ,若存在确定E 点位置,若不存在,请说明理由;(2)当E 为PB 中点时,求二面角P AE D --的余弦值.50.如图所示,在底面为正方形的四棱柱1111ABCD A B C D -中,1111,2,3AA A B A D AB AA B π===∠=.(1)证明:平面1A BD ⊥平面11A BC ; (2)求直线1AC 与平面1DBC 所成角的正弦值.51.如图,在等腰梯形ABCD 中,060ABC ∠=,上底2CD =,下底4AB =,点E 为下底AB 的中点,现将该梯形中的三角形BEC 沿线段EC 折起,形成四棱锥B AECD -.(1)在四棱锥B AECD -中,求证:AD BD ⊥;(2)若平面BEC 与平面AECD 所成二面角的平面角为0120,求直线AE 与平面ABD所成角的正弦值.52.如图,已知四棱锥P ABCD - 中,//,,3,4,4,AB CD AB AD AB CD AD AP ⊥====060PAB PAD ∠=∠=.(1)证明:顶点P 在底面ABCD 的射影在BAD ∠的平分线上; (2)求二面角B PD C --的余弦值.53.如图,三棱柱111ABC A B C -中,AB ⊥平面11AAC C ,12AA AB AC ===,160A AC ∠=.过1AA 的平面交11B C 于点E ,交BC 于点F .(l)求证:1A C ⊥平面1ABC ;(Ⅱ)求证:四边形1AA EF 为平行四边形; (Ⅲ)若是23BF BC =,求二面角1B AC F --的大小. 54.如图,在四棱锥P ABCD -中,底面ABCD 为梯形,平面PAD ⊥平面,//,ABCD BC AD ,PA PD ⊥,60,AB AD PDA E ⊥∠=为侧棱PD 的中点,且2,4AB BC AD ===.(1)证明://CE 平面PAB ; (2)求二面角A PB C --的余弦值.55.如图1,梯形ABCD 中,AD BC ∥,CD BC ⊥,1BC CD ==,2AD =,E为AD 中点.将ABE ∆沿BE 翻折到1A BE ∆的位置,使11A E A D =,如图2.(Ⅰ)求证:平面1A DE ⊥与平面BCDE ; (Ⅱ)求直线1A B 与平面1A CD 所成角的正弦值;(Ⅲ)设M N 、分别为1A E 和BC 的中点,试比较三棱锥1M A CD -和三棱锥1N A CD -(图中未画出)的体积大小,并说明理由.56.如图1,梯形ABCD 中,//,,1,2,AD BC CD BC BC CD AD E ⊥===为AD中点.将ABE ∆沿BE 翻折到1A BE ∆的位置,如图2.(Ⅰ)求证:平面1A DE ∆⊥平面BCDE ; (Ⅱ)求直线1A B 与平面1A CD 所成角的正弦值;(Ⅲ)设,M N 分别为1A E 和BC 的中点,试比较三棱锥1M A CD -和三棱锥1N A CD -(图中未画出)的体积大小,并说明理由.57.如图,在几何体ABCDEF 中,四边形ADEF 为矩形,四边形ABCD 为梯形,//AB CD ,平面CBE 与平面BDE 垂直,且CB BE ⊥.。
立体几何压轴小题
立体几何压轴小题一、单选题1.已知一圆锥底面圆的直径为3,圆锥的高为2,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a 的最大值为( )A .3BC .92D .22.如图,在棱长为3的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足12DP PB +=,则直线1B P 与直线1AD 所成角的余弦值的取值范围为( )A .10,2⎡⎤⎢⎥⎣⎦B .10,3⎡⎤⎢⎥⎣⎦C .12⎡⎢⎣⎦D .12⎡⎢⎣⎦3.已知正六棱锥V ABCDEF -,P 是侧棱VC 上一点(不含端点),记直线PB 与直线DE 所成角为α,直线PB 与平面ABC 所成角为β,二面角P CD F --的平面角为γ,则( ) A .βγ<,αγ< B .βα<,βγ< C .βα<,γα<D .αβ<,γβ<4.斜三棱柱111ABC A B C -中,底面ABC 是正三角形,侧面11ABB A 是矩形,M 是线段AB 上的动点,记直线1A M 与直线AC 所成的角为α,直线1A M 与平面ABC 所成的角为β,二面角1A AC B --的平面角为γ,则( )A .αβ≤,≤βγB .≤βα,≤βγC .αβ≤,βγ≥D .≤βα,βγ≥5.如图,在正四棱台1111ABCD A B C D -中,上底面边长为4,下底面边长为8,高为5,点,M N 分别在1111,A B D C 上,且111A M D N ==.过点,M N 的平面α与此四棱台的下底面会相交,则平面α与四棱台的面的交线所围成图形的面积的最大值为A .B .C .D .6.如图,直三棱柱111ABC A B C -的底面是边长为6的等边三角形,侧棱长为2,E 是棱BC 上的动点,F 是棱11B C 上靠近1C 点的三分点,M 是棱1CC 上的动点,则二面角A FM E --的正切值不可能...是( )A .5B .5C D 7.在棱长为3的正方体1111ABCD A B C D -中,O 为棱DC 的中点,E 为线段AO 上的点,且2AE EO =,若点,F P 分别是线段1DC ,1BC 上的动点,则PEF 周长的最小值为( )A .B .2C D8.三棱锥P ABC -中,AB BC ⊥,△PAC 为等边三角形,二面角P AC B --的余弦值为棱锥的体积最大时,其外接球的表面积为8π.则三棱锥体积的最大值为( ) A .1B .2C .12D .139.已知矩形,4,2,ABCD A AD E B ==为AB 中点,沿直线DE 将ADE 翻折成PDE △,直线PB 与平面BCDE 所成角最大时,线段PB 长是( )A .743B .543C .742D .54210.已知四面体ABCD 的三组对棱的长分别相等,依次为3,4,x ,则x 的取值范围是( )A .B .)C .)D .()4,711.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( ) A .,βγαγ<< B .,βαβγ<< C .,βαγα<<D .,αβγβ<<12.已知,,,A B C D 四点均在半径为R (R 为常数)的球O 的球面上运动,且AB AC =,AB AC ⊥,AD BC ⊥,若四面体ABCD 的体积的最大值为16,则球O 的表面积为( )A .32π B .2πC .94π D .83π 13.蜂巢是由工蜂分泌蜂蜡建成的从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成,菱形的一个角度是10928'︒,这样的设计含有深刻的数学原理、我国著名数学家华罗庚曾专门研究蜂巢的结构著有《谈谈与蜂房结构有关的数学问题》.用数学的眼光去看蜂巢的结构,如图,在六棱柱ABCDEF A B C D E '''''﹣的三个顶点A ,C ,E 处分别用平面BFM ,平面BDO ,平面DFN 截掉三个相等的三棱锥M ABF -,O BCD -,N DEF -,平面BFM ,平面BDO ,平面DFN 交于点P ,就形成了蜂巢的结构.如图,设平面PBOD 与正六边形底面所成的二面角的大小为θ,则有:( )A.tan 5444θ'=︒ B.sin 5444θ'=︒ C.cos tan 54443θ'=︒ D .以上都不对14.如图,正方体1111ABCD A B C D -的棱长为,,a E F 分别是棱1AA ,1CC 的中点,过点,E F 的平面分别与棱1BB ,1DD 交于点,G H ,设,[0,]BG x x a =∈.给出以下四个命题: ①平面EGFH 与平面ABCD 所成角的最大值为45°; ②四边形EGFH 的面积的最小值为2a ;③四棱锥1C EGFH -的体积为36a ;④点1B 到平面EGFH的距离的最大值为3. 其中命题正确的序号为( )A .②③④B .②③C .①②④D .③④15.在三棱锥A BCD -中,60BAC BDC ∠=∠=︒,二面角A BC D --的余弦值为13-,当三棱锥A BCD -) A .5πB .6πC .7πD .8π16.在正方体1111ABCD A B C D -中,点E ∈平面11AA B B ,点F 是线段1AA 的中点,若1D E CF ⊥,则当EBC ∆的面积取得最小值时,=EBC ABCDS S ∆四边形( )A B .12C D 17.有一正三棱柱(底面为正三角形的直棱柱)木料111ABC A B C -,其各棱长都为2.已知12,O O 分别为上,下底面的中心,O 为线段12O O 的中点,过A B O ,,三点的截面把该木料截成两部分,则截面面积为( )AB C D .218.已知α,β为两个不重合的平面,m ,n 为两条不重合的直线,且m αβ=,n β⊂.记直线m 与直线n 的夹角和二面角m αβ--均为1θ,直线n 与平面α的夹角为2θ,则下列说法正确的是( ) A .若106πθ<<,则122θθ> B .若164ππθ<<,则12tan 2tan θθ> C .若143ππθ<<,则12sin sin θθ<D .若132ππθ<<,则123cos cos 4θθ>19.如图,在矩形ABCD 中,2AB =,1BC =,E 、N 分别为边AB 、BC 的中点,沿DE 将ADE ∆折起,点A 折至1A 处(1A 与A 不重合),若M 、K 分别为线段1A D 、1A C 的中点,则在ADE ∆折起过程中( )A .DE 可以与1A C 垂直B .不能同时做到//MN 平面1A BE 且//BK 平面1A DEC .当1MN AD ⊥时,MN ⊥平面1A DED .直线1AE 、BK 与平面BCDE 所成角分别为1θ、2θ,1θ、2θ能够同时取得最大值20.在四面体ABCD 中,若1AD DB AC CB ====,则当四面体ABCD 的体积最大时其外接球表面积为( ) A .53π B .43π C .πD .2π二.多选题21.(2020·蒙阴县实验中学高三期末)已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,BC =CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为622.(2020·山东高一期末)如图,矩形ABCD 中, 22AB AD ==,E 为边AB 的中点.将ADE 沿直线DE 翻折成1A DE △(点1A 不落在底面BCDE 内),若M 在线段1A C 上(点M 与1A ,C 不重合),则在ADE 翻转过程中,以下命题正确的是( )A .存在某个位置,使1DE A C ⊥B .存在点M ,使得BM ⊥平面1A DC 成立 C .存在点M ,使得//MB 平面1A DE 成立D .四棱锥1A BCDE -体积最大值为423.(2020·山东高三)如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得CN AB ⊥ B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π 24.(2020·全国高三(理))如图所示,在长方体1111ABCD A B C D -中,11,2,AB BC AA P ===是1A B 上的一动点,则下列选项正确的是( )A .DPB .DPC .1AP PC +D .1AP PC +的最小值为525.(2020·山东高一期末)已知正方体1111ABCD A B C D -的棱长为2,点O 为11A D 的中点,若以O 为球为半径的球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H ,则下列结论正确的是( ) A .11//A D 平面EFGH B .1A C ⊥平面EFGHC .11A B 与平面EFGH 所成的角的大小为45°D .平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7 二、填空题26.已知长方体1111ABCD A B C D -的棱12AA =,4,3AB AD ==,点E ,F 分别为棱BC ,1CC 上的动点.若四面体11A B EF 的四个面都是直角三角形,则下列命题正确的是__________.(写出所有正确命题的编号)①存在点E ,使得1EF A F ⊥; ②不存在点E ,使得11B E A F ⊥;③当点E 为BC 中点时,满足条件的点F 有3个; ④当点F 为1CC 中点时,满足条件的点E 有3个; ⑤四面体11A B EF 四个面所在平面,有4对相互垂直.27.在四棱锥P ABCD -中,PAB 是边长为ABCD 为矩形,2AD =,PC PD ==若四棱锥P ABCD -的顶点均在球O 的球面上,则球O 的表面积为_____.28.《九章算术》中记载:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱剖开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,12,4,BB BC AB AC ====且有鳖臑C 1-ABB 1和鳖臑1C ABC -,现将鳖臑1C ABC -沿线BC 1翻折,使点C 与点B 1重合,则鳖臑1C ABC -经翻折后,与鳖臑11C ABB -拼接成的几何体的外接球的表面积是______.29.点M 为正方体1111ABCD A B C D -的内切球O 球面上的动点,点N 为11B C 上一点,112,NB NC DM BN =⊥,若球O 的体积为,则动点M 的轨迹的长度为__________.30.如图所示,某几何体由底面半径和高均为1的圆柱与半径为1的半球对接而成,在该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为__________.31.如图,AB 是平面α的斜线段,A 为斜足,点C 满足()0BC AC λλ=>,且在平面α内运动,则有以下几个命题:①当1λ=时,点C 的轨迹是抛物线; ②当1λ=时,点C 的轨迹是一条直线; ③当2λ=时,点C 的轨迹是圆; ④当2λ=时,点C 的轨迹是椭圆; ⑤当2λ=时,点C 的轨迹是双曲线.其中正确的命题是__________.(将所有正确的命题序号填到横线上) .32.已知三棱锥D ABC -的所有顶点都在球O 的表面上,AD ⊥平面ABC ,AC =1BC =,cos ACB ACB ∠=∠,2AD =,则球O 的表面积为__________.33.如图所示,在边长为2的菱形ABCD 中,60BCD ∠=︒,现将ABD △沿对角线BD 折起,得到三棱锥P BCD -.则当二面角P BD C --的大小为23π时,三棱锥P BCD -的外接球的表面积为______.34.如图,在四面体ABCD 中,2AB CD ==,AC BD ==AD BC ==,E F 分别是,AD BC 的中点若用一个与直线EF 垂直,且与四面体的每个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积的最大值为______.35.现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为221254y x += ,将此椭圆绕y 轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______.36.已知四面体ABCD 的四个顶点均在球O 的表面上,AB 为球O 的直径,4,2AB AD BC ===,四面体ABCD 的体积最大值为____37.已知单位向量i j k ,,两两的夹角均为θ(0θπ<<,且2πθ≠),若空间向量a 满足a xi y j zk =++,(,,)x y z R ∈,则有序实数组(,,)x y z 称为向量a 在“仿射”坐标系O xyz -(O 为坐标原点)下的“仿射”坐标,记作(, , )a x y z θ=,有下列命题:①已知()111,,a x y z θ=,(4,0,2)b θ=,则a b =0; ②已知3(,,0)a x y π=,3(0,0,)b z π=,其中,,0x y z >,则当且仅当x y =时,向量,a b 的夹角取得最小值;③已知()111,,a x y z θ=,()222,,b x y z θ=,则()123232,,a b x x y y z z θ+=+++;④已知()31,0,0OA π=,3(0,1,0)OB π=,3(0,0,1)OC π=,则三棱锥O ABC -的表面积S =其中真命题为________(写出所有真命题的序号).38.如图,在边长为4的正三角形ABC 中,D ,E ,F 分别为各边的中点,G ,H 分别为DE ,AF 的中点,将ABC 沿DE ,EF ,DF 折成正四面体P DEF -,则在此正四面体中,下列说法正确的是______.①异面直线PG 与DH 所成的角的余弦值为23; DF PE ⊥②;GH ③与PD 所成的角为45;PG ④与EF 所成角为6039.已知P ,E ,G F ,都在球面C 上,且P 在EFG ∆所在平面外,PE EF ⊥,PE EG ⊥,224PE GF EG===,120EGF∠=,在球C内任取一点,则该点落在三棱锥P EFG-内的概率为__________.40.如图,在透明塑料制成的长方体容器内灌进一些水,将容器底面一边固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形的面积不改变;③棱始终与水面平行;④当时,是定值.其中正确说法是.41.(2017届高三第二次湖北八校文数试卷第16题)祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆22221(0)y xa ba b+=>>所围成的平面图形绕y轴旋转一周后,得一橄榄状的几何体(如图)(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于______.42.斜线OA与平面α成15°角,斜足为O,A'为A在α内的射影,B为OA的中点,l是α内过点O的动直线,若l 上存在点1P ,2P 使1230APB AP B ︒∠=∠=,则12||P P AB 则的最大值是_______,此时二面角12A PP A '--平面角的正弦值是_______43.三棱锥P ABC -中,顶点P 在底面ABC 的投影恰好是ABC 的内心,三个侧面的面积分别为12,16,20,且底面的面积为24,则该三棱锥P ABC -的体积是________;它的外接球的表面积是________.立体几何压轴小题解析一、单选题1.已知一圆锥底面圆的直径为3,圆锥的高为2,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a 的最大值为( )A .3 BC .92 D 【答案】B【解析】【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a 的最大值.【详解】依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球设球心为P ,球的半径为r ,下底面半径为R ,轴截面上球与圆锥母线的切点为Q ,圆锥的轴截面如图:则32OA OB ==,因为SO ,故可得:3SA SB ===;所以SAB 为等边三角形,故P 是SAB 的中心,连接BP ,则BP 平分SBA ∠,所以30PBO ∠=︒;所以tan 30r R︒=,即32r ==,即四面体的外接球的半径为r =另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a 时,截得它的正方体的棱长为2a , 而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以12r ===,所以a =即a .故选:B .【点睛】本题考查了正四面体的外接球,将正四面体的外接球转化为正方体的外接球,是一种比较好的方法,本题属于难题.2.如图,在棱长为3的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足12DP PB +=,则直线1B P 与直线1AD 所成角的余弦值的取值范围为( )A .10,2⎡⎤⎢⎥⎣⎦B .10,3⎡⎤⎢⎥⎣⎦C .122⎡⎢⎣⎦D .1,22⎡⎢⎣⎦【答案】A【解析】【分析】求得点P 的轨迹是平面11A BC 内以点O 为圆心,半径为1的圆,可得111////AD BC B M ,进而可得出题中所求角等于直线1B M 与直线1B P 的夹角,然后过点O 作OH ⊥平面ABCD 于点H ,过点H 作HN BC ⊥于点N ,连接ON ,找出使得1PB M ∠最大和最小时的位置,进而可求得所求角的余弦值的取值范围.【详解】连接1B D 交平面11A BC 于点O ,延长线段CB 至点M ,使得CB BM =,连接1B M 、OM 、PM ,如下图所示:已知在正方体1111ABCD A B C D -中,1DD ⊥底面1111D C B A ,11A C ⊂平面1111D C B A ,111DD A C ∴⊥, 又四边形1111D C B A 为正方形,所以,1111AC B D ⊥, 1111DD B D D ⋂=,11A C ∴⊥平面11B DD ,1B D ⊂平面11B DD ,111B D AC ∴⊥,同理11B D A B ⊥,1111AC A B A =,1B D ∴⊥平面11A BC ,三棱锥111B A B C -的体积为11131193322B A BC V -=⨯⨯=,(111242A B C S ==△,1111119322B A BC V B O O -=⨯==,可得1113B O B D ==, 所以,线段1B D 的长被平面11A BC 与平面1AD C 三等分,且与两平面分别垂直,而正方体1111ABCD A B C D -的棱长为3,所以1OB =OD =其中1PO B D ⊥,不妨设OP x =,由题意可12PB PD +=2=1x =,所以,点P 在平面11A BC 内以点O 为圆心,半径为1的圆上.因为111////AD BC B M ,所以,直线1B M 与直线1B P 的夹角即为直线1B P 与直线1AD 所成角.接下来要求出线段1B M 与PM 的长,然后在1B PM △中利用余弦定理求解.如图,过点O 作OH ⊥平面ABCD 于点H ,过点H 作HN BC ⊥于点N ,连接ON ,根据题意可知2OH =,1HN BN ==,且ON MN ⊥,所以,ON =OM ==如图所示,121OP OP ==,当点P 在1P 处时,1PB M ∠最大,当点P 在2P 处时,1PB M ∠最小.这两种情况下直线1B P 与直线1B M 夹角的余弦值最大,为111cos sin 2PB M PB O ∠=∠=; 当点P 在点O 处时,1PB M ∠为直角,此时余弦值最小为0.综上所述,直线1B P 与直线1AD 所成角的余弦值的取值范围是10,2⎡⎤⎢⎥⎣⎦. 故选:A.【点睛】本题考查异面直线所成角的取值范围的求解,解题的关键就是确定点P 的轨迹,考查推理能力与计算能力,属于难题.3.已知正六棱锥V ABCDEF -,P 是侧棱VC 上一点(不含端点),记直线PB 与直线DE 所成角为α,直线PB 与平面ABC 所成角为β,二面角P CD F --的平面角为γ,则( )A .βγ<,αγ<B .βα<,βγ<C .βα<,γα<D .αβ<,γβ<【答案】B【解析】【分析】通过明确异面直线所成的角、直线与平面所成的角、二面角,应用三角函数知识求解,而后比较大小.【详解】解:如图,设点V 在底面上的射影为O 点,连接OC ,PB ,作PG VO //,则PG ⊥平面ABC ,所以PB 与平面ABC 所成的角为PBG ∠,即PBG β=∠,根据线面角最小定理知βα<,作GM CD ⊥,则二面角P CD F --的平面角为PMG ∠,即PMG γ=∠,根据tan tan PG PG GM GBγβ=>=,所以γβ>. 故选B.【点睛】本题考查立体几何中异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算,考查空间想象能力,数形结合思想,分析问题能力,属于难题.4.斜三棱柱111ABC A B C -中,底面ABC 是正三角形,侧面11ABB A 是矩形,M 是线段AB 上的动点,记直线1A M 与直线AC 所成的角为α,直线1A M 与平面ABC 所成的角为β,二面角1A AC B --的平面角为γ,则( )A .αβ≤,≤βγB .≤βα,≤βγC .αβ≤,βγ≥D .≤βα,βγ≥【答案】B【解析】【分析】根据直线和平面的最小角定理,结合线面角和二面角的定义,即可得解.【详解】根据最小角定理,可得≤βα,当M 在线段AB 上的移动时,M 和A 重合时,1A M 与平面ABC 所成角最大,(因为ABB 1A 1为矩形)作1A P ⊥平面ABC 于P ,作PQ CA ⊥的延长线于Q ,连接1A Q 和PQ ,则1A MP β=∠,1=A QP γ∠,由于1A QA ∠ 为直角,所以11A M AQ ≥,可得βγ≤, 故选:B.【点睛】本题考查了线线角、线面角以及面面角的比较,考查了最小角定理,考查了线面角以及面面角的定义以及立体空间感,属于难题.5.如图,在正四棱台1111ABCD A B C D -中,上底面边长为4,下底面边长为8,高为5,点,M N 分别在1111,A B D C 上,且111A M D N ==.过点,M N 的平面α与此四棱台的下底面会相交,则平面α与四棱台的面的交线所围成图形的面积的最大值为A .B .C .D .【答案】B 【解析】 【分析】由题意可知,当平面α经过BCNM 时取得的截面面积最大,此时截面是等腰梯形;根据正四棱台的高及MN 中点在底面的投影求得等腰梯形的高,进而求得等腰梯形的面积. 【详解】当斜面α经过点BCNM 时与四棱台的面的交线围成的图形的面积最大,此时α为等腰梯形,上底为MN=4,下底为BC=8此时作正四棱台1111ABCD A B C D -俯视图如下:则MN 中点在底面的投影到BC 的距离为8-2-1=5因为正四棱台1111ABCD A B C D -的高为5=所以截面面积的最大值为()1482S =⨯+⨯= 所以选B 【点睛】本题考查了立体几何中过定点的截面面积问题,关键是分析出截面的位置,再根据条件求得各数据,需要很好的空间想象能力,属于难题.6.如图,直三棱柱111ABC A B C -的底面是边长为6的等边三角形,侧棱长为2,E 是棱BC 上的动点,F 是棱11B C 上靠近1C 点的三分点,M 是棱1CC 上的动点,则二面角A FM E --的正切值不可能...是( )A B C D 【答案】B 【解析】 【分析】建立空间直角坐标系,求得二面角A FM E --的余弦值,进而求得二面角A FM E --的正切值,求得正切值的最小值,由此判断出正确选项. 【详解】取BC 的中点O ,连接OA ,根据等边三角形的性质可知OA BC ⊥,根据直三棱柱的性质,以O 为原点建立如图所示的空间直角坐标系.则()(),1,0,2A F ,设()()3,0,02M t t ≤≤. 则()()1,33,2,2,0,2AF FM t =-=-. 设平面AMF 的一个法向量为(),,m x y z =,则()20220m AF x z m FM x t z ⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,令1y =,得63m ⎛= ⎝⎭. 平面FME 的一个法向量是()0,1,0n =,所以cos ,6m n m n m n⋅===⋅⎛,所以2sin ,1cos ,m n m n =-120252t =+所以二面角A FME --的正切值为()sin ,27cos ,m n f t m n===因为02t ≤≤,所以111466t -≤≤--,216125405-=-⨯ 结合二次函数的性质可知 当1165t =--时,()f t= 当1166t =--时,()f t=, 所以()f t ∈⎣, 所以二面角A FM E --的正切值不可能是5. 故选:B. 【点睛】本小题主要考查二面角的求法,考查数形结合的数学思想方法,属于难题.7.在棱长为3的正方体1111ABCD A B C D -中,O 为棱DC 的中点,E 为线段AO 上的点,且2AE EO =,若点,F P 分别是线段1DC ,1BC 上的动点,则PEF 周长的最小值为( )A .BC D【答案】D 【解析】 【分析】连接BD ,易知E 为线段AO 与BD 的交点,即E 为线段DB 上靠近D 的三等分点,将PEF 周长的最小值问题转化到平面上几何知识连接两点间的线中线段最短与平面几何中对称问题处理,最后由余弦定理求得12E E 的长度即可. 【详解】连接BD ,易知E 为线段AO 与BD 的交点,即E 为线段DB 上的点,由勾股定理可知BD =2BE DE ==分别作点E 关于线段1DC ,1BC 的对称点1E ,2E ,且由对称关系有垂直关系且显然1BDC 为等边三角形,即12120E EE ∠=︒,由等边三角形对称问题可求得1EE =2EE =据余弦定理得12E E ==,由平面几何知识连接两点间的线中线段最短,得PEF .故选:D 【点睛】本题考查空间中三角形周长的最值,涉及空间中直线与对称点的算法,属于难题.8.三棱锥P ABC -中,AB BC ⊥,△PAC 为等边三角形,二面角P AC B --的余弦值为3-,当三棱锥的体积最大时,其外接球的表面积为8π.则三棱锥体积的最大值为( ) A .1 B .2C .12D .13【答案】D 【解析】 【分析】由已知作出图象,找出二面角P AC B --的平面角,设出AB BC AC ,,的长,即可求出三棱锥P ABC -的高,然后利用基本不等式即可确定三棱锥体积的最大值(用含有AC 长度的字母表示),再设出球心O ,由球的表面积求得半径,根据球的几何性质,利用球心距,半径,底面半径之间的关系求得AC 的长度,则三棱锥体积的最大值可求. 【详解】如图所示,过点P 作PE ⊥面ABC ,垂足为E ,过点E 作ED AC ⊥交AC 于点D ,连接PD , 则PDE ∠为二面角PAC B -的平面角的补角,即有63cos PDE, 易知AC ⊥面PDE ,则AC PD ⊥,而△PAC 为等边三角形,∴D 为AC 中点, 设22ABa BCb ACa b c ,,,则PE PDsin PDE =∠=c 32c ⨯=, 故三棱锥P ABC -的体积为:1132V ab =⨯2231121212224c a b c abc c +⨯=≤⨯=,当且仅当2a b ==时,体积最大,此时B D E 、、共线. 设三棱锥P ABC -的外接球的球心为O ,半径为R ,由已知,248R ππ=,得R =.过点O 作OF PE ⊥于F ,则四边形ODEF 为矩形,则OD EF ==232ED OF PDcos PDE c ==∠=⨯=,2c PE =,在Rt △PFO 中222)(22c c =+-,解得2c = ∴三棱锥P ABC -的体积的最大值为:332124243c ==.故选:D. 【点睛】本题考查三棱锥体积最值的求法与三棱锥外接球的表面积的求法,涉及二面角的运用,基本不等式的应用,以及球的几何性质的应用,属于难题.9.已知矩形,4,2,ABCD A AD E B ==为AB 中点,沿直线DE 将ADE 翻折成PDE △,直线PB 与平面BCDE 所成角最大时,线段PB 长是( )A .743B .543C .742D .542【答案】C 【解析】 【分析】取CD 的中点F ,连接AF 交于DE 的中点O ,AF DE ⊥,进而有DE ⊥平面POF ,过点P 作PQ AF ⊥于点Q ,可证PQ ⊥平面BCDE ,连接BQ ,设直线PB 与平面BCDE 所成的角为α,平面PDE 与平面BCDE 所成的角为β,根据条件可知,AO DE PO DE ⊥⊥,PQ ⊥平面BCDE ,,PBQ POQ αβ∠=∠=,通过边长关系求出OQ β=,PQ β=,AQ AO OQ β=+=,以及利用余弦定理求出)228BQ β=+,从而得出)()22222tan 8PQBQ βαβ==+,根据同角三角函数关系和换元法令[]2cos 64,8t β+=∈,得出24tan 1328t tα=-++-,再根据基本不等式时得出当cos 3t β=⇒=时,2tan α取得最大值,从而可求出线段PB 长【详解】解:取CD 的中点F ,连接AF 交于DE 的中点O , 在矩形ABCD 中,4,2,AB AD E ==为AB 中点, 所以四边形AEFD 为正方形,AF DE ⊥, 所以,,PO DE OF DE POOF O ⊥⊥=,故DE ⊥平面POF ,在平面POF 内过点P 作PQ AF ⊥于点Q , 则,DE PQ DEAF O ⊥=,所以PQ ⊥平面BCDE ,连接BQ ,设直线PB 与平面BCDE 所成的角为α,即PBQ α∠= 设平面PDE 与平面BCDE 所成的角为β,,OF DE PO DE ⊥⊥,所以POQ β∠=,所以DE PO AO ===所以在Rt POQ △中,,PQ OQ ββ==,则AQ AO OQ β=+=,在ABQ △中,4,4AB BAQ π=∠=,则由余弦定理得出:)228BQ β=+,则有)()22222tan 8PQBQ βαβ==+222sin 822cos 4cos βββ=+++22sin cos 2cos 5βββ=++ 221cos cos 2cos 5βββ-=++22cos 61cos 2cos 5βββ+=-+++,令[]2cos 64,8t β+=∈,则6cos 2t β-=, 即:24tan 1328t tα=-++-, 当直线PB 与平面BCDE 所成角α最大时,2tan α最大, 即24tan 1328t tα=-++-取得最大值时,当且仅当32t t=,此时cos 3t β=⇒=,所以,))2228PB ββ=++72124cos 2β=+==,即742PB =.故选:C.【点睛】本题考查线面角和二面角的定义,还运用余弦定理和利用基本不等式求最值,还涉及同角三角函数关系和换元法,考查转化思想和化简运算能力.10.已知四面体ABCD 的三组对棱的长分别相等,依次为3,4,x ,则x 的取值范围是( )A .B .)C .)D .()4,7【答案】B 【解析】 【分析】作出图形,设3AB =,4AC =,四面体A ABC '-可以由ABC ∆和在同一平面的△A BC '沿着BC 为轴旋转构成,利用数形结合能求出x 的取值范围. 【详解】 解:如图所示,第一排 三个图讨论最短;第二排 三个图讨论最长,设3AB =,4AC =,四面体A ABC '-可以由ABC ∆和在同一平面的△A BC '沿着BC 为轴旋转构成, 第一排,三个图讨论最短:当90ABC ∠<︒向90︒趋近时,BC 逐渐减少,AA BC '<,可以构成x AA BC '==的四面体; 当90ABC ∠︒时构成的四面体AA BC '>,不满足题意;, 第二排,三个图讨论最长:当90BAC ∠<︒向90︒趋近时,BC 逐渐增大,AA BC '>,可以构成x AA BC '==的四面体; 当90ABC ∠︒时构成的四面体AA BC '<,不满足题意;5;综上,x ∈5). 故选B . 【点睛】本题考查了四面体中边长的取值范围问题,也考查了推理论证能力,属于难题.11.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( ) A .,βγαγ<< B .,βαβγ<< C .,βαγα<< D .,αβγβ<<【答案】B 【解析】 【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半. 【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BDPB PB PB PBα===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ) 由最大角定理β<γ'=γ,故选B.方法3:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得cos sin sin α=⇒α=β=γ=,故选B. 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法. 12.已知,,,A B C D 四点均在半径为R (R 为常数)的球O 的球面上运动,且AB AC =,AB AC ⊥,AD BC ⊥,若四面体ABCD 的体积的最大值为16,则球O 的表面积为( )A .32π B .2πC .94π D .83π 【答案】C 【解析】 【分析】由题意要使四面体的体积最大,则D 在底面ABC 的投影恰好为底面三角形外接圆的圆心N ,则外接球的球心在DN 上,求出三棱锥的体积,由均值不等式可得R 的值,进而求出外接球的表面积. 【详解】因为,,AB AC AB AC AD BC =⊥⊥,作AN BC ⊥于N , 则N 为BC 的中点,且12AN BC =, 若四面体ABCD 的体积的最大值时,则DN ⊥面ABC ,则外接球的球心在DN 上,设为O , 设外接球的半径为R ,连接OA ,则OA OD R ==,()()2111123263D ABC V BC AN DN AN AN R ON AN R ON -=⋅⋅⋅⋅=⋅⋅⋅+=⋅+()2213()OA ON R ON =-+ ()()()13R ON R ON R ON =+-+ ()()()1226R ON R ON R ON =+-+ 331()(22)()146363R ON R ON R ON R ++-++⎛⎫⎛⎫≤=⋅ ⎪ ⎪⎝⎭⎝⎭当且仅当22R ON R ON -=+,即3R ON =时取等号, 因为三棱锥的最大体积为16, 所以3141636R ⎛⎫⋅= ⎪⎝⎭,可得34R =, 所以外接球的表面积为29944164S R πππ==⋅=, 故选:C . 【点睛】本题考查的是几何体的体积和表面积公式及利用基本不等式求最值,属于较难题.13.蜂巢是由工蜂分泌蜂蜡建成的从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成,菱形的一个角度是10928'︒,这样的设计含有深刻的数学原理、我国著名数学家华罗庚曾专门研究蜂巢的结构著有《谈谈与蜂房结构有关的数学问题》.用数学的眼光去看蜂巢的结构,如图,在六棱柱ABCDEF A B C D E '''''﹣的三个顶点A ,C ,E 处分别用平面BFM ,平面BDO ,。
(压轴题)高中数学必修二第一章《立体几何初步》检测题(包含答案解析)
一、选择题1.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A .3B .6C .23D .26 2.已知正方体1111ABCD A B C D -的棱长为2,E 为棱1AA 的中点,截面1CD E 交棱AB 于点F ,则四面体1CDFD 的外接球表面积为( )A .394πB .414πC .12πD .434π 3.某几何体的三视图如图所示,其中网格纸的小正方形的边长是1,则该几何体外接球的体积为( )A .323πB .48πC 323D .643π 4.如图,在矩形ABCD 中,1AB =,3BC =,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -中AC 长为( )A .32B .3C .102D .25.已知球O 的半径为5,球面上有,,A B C 三点,满足214,27AB AC BC ===,则三棱锥O ABC -的体积为( )A .77B .142C .714D .147 6.在下面四个正方体ABCD A B C D ''''-中,点M 、N 、P 均为所在棱的中点,过M 、N 、P 作正方体截面,则下列图形中,平面MNP 不与直线A C '垂直的是( ) A . B . C . D . 7.在正方体1111ABCD A B C D -中,M 是棱1CC 的中点.则下列说法正确的是( ) A .异面直线AM 与BC 所成角的余弦值为53B .BDM 为等腰直角三角形C .直线BM 与平面11BDD B 所成角的正弦值等于105D .直线1AC 与平面BDM 相交 8.如图是某个四面体的三视图,则下列结论正确的是( )A .该四面体外接球的体积为48πB .该四面体内切球的体积为23π C .该四面体外接球的表面积为323πD .该四面体内切球的表面积为2π9.在正方体1111ABCD A B C D -中,三棱锥11A B CD -的表面积为43的体积为( )A .3πB 6πC .3πD .86π 10.已知四面体ABCD ,AB ⊥平面BCD ,1AB BC CD BD ====,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( )A .73πB .7πC .712πD .79π 11.设m 、n 是两条不同的直线,α是平面,m 、n 不在α内,下列结论中错误的是( )A .m α⊥,//n α,则m n ⊥B .m α⊥,n α⊥,则//m nC .m α⊥,m n ⊥,则//n αD .m n ⊥,//n α,则m α⊥ 12.如图(1),Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,沿AD 将ACD △折起到AC D ',使得C '在平面ABD 上的射影H 落在AB 上,如图(2),则以下结论正确的是( )A .AC BD '⊥B .AD BC '⊥ C .BD C D ⊥' D .AB C D ⊥'二、填空题13.圆锥底面半径为1,母线长为4,轴截面为PAB ,如图,从A 点拉一绳子绕圆锥侧面一周回到A 点,则最短绳长为_________.14.如图,点E 是正方体1111ABCD A B C D -的棱1DD 的中点,点M 在线段1BD 上运动,则下列结论正确的有__________.①直线AD 与直线1C M 始终是异面直线②存在点M ,使得1B M AE ⊥③四面体EMAC 的体积为定值④当12D M MB =时,平面EAC ⊥平面MAC15.已知直三棱柱111ABC A B C -,90CAB ∠=︒,1222AA AB AC ===,则直线1A B 与侧面11B C CB 所成角的正弦值是______.16.在三棱锥P ABC -中,PA ⊥平面ABC ,22AB =,3BC =,4PA =,4ABC π∠=,则该三棱锥的外接球体积为___________.17.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中A C B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.18.已知正四棱锥的体积为18,侧棱与底面所成的角为45,则该正四棱锥外接球的表面积为___________.19.如图,圆柱的体积为16π,正方形ABCD 为该圆柱的轴截面,F 为AB 的中点,E为母线BC 的中点,则异面直线AC ,EF 所成的角的余弦值为______.20.在三棱锥-P ABC 中,侧面PBC 和底面ABC 都是边长为2的正三角形,若3PA =,则侧棱PA 与底面ABC 所成的角的大小是___________. 三、解答题21.如图,在正四棱柱1111ABCD A B C D -中,11,2AB AA ==,点E 为1CC 中点,点F 为1BD 中点.(1)求异面直线1BD 与1CC 的距离;(2)求直线1BD 与平面BDE 所成角的正弦值;(3)求点F 到平面BDE 的距离.22.正四棱台两底面边长分别为3和9,若侧棱所在直线与上、下底面正方形中心的连线所成的角为45,求棱台的侧面积.23.如图,圆柱的轴截面ABCD 是长方形,点E 是底面圆周上异于A ,B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,3AD =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离. 24.如图,在直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=︒且AC a =,侧棱12AA =,D ,E 分别是1CC ,11A B 的中点.(1)求直三棱柱111ABC A B C -的体积(用字母a 表示);(2)若点E 在平面ABD 上的射影是三角形ABD 的重心G ,①求直线EB 与平面ABD 所成角的余弦值;②求点1A 到平面ABD 的距离25.如图,已知三棱锥P ABC -﹐PC AB ⊥,ABC 是边长为23的正三角形,43PB =﹐60PBC ∠=,点F 为线段AP 的中点.(1)证明:PC ⊥平面ABC ;(2)求直线BF 与平面PAC 所成角的大小.26.我市论语广场准备设置一些多面体形或球形的石凳供市民休息,如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160dm 3.(Ⅰ)求正方体石块的棱长;(Ⅱ)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据221111M A B B A M =+即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12A C ,易知当1A 、M 、2C 共线时,1A M MC +取得最小值,因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M = 因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥,则222211111(2)3M B A A M B =+=+=故选:A.【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题. 2.B解析:B【分析】可证F 为AB 的中点,设1DD 的中点为G ,DFC △的外接圆的球心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,利用解三角形的方法可求DFC △的外接圆的半径,从而可求四面体1CDFD 的外接球的半径.【详解】设1DD 的中点为G ,DFC △的外接圆的圆心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,因为平面11//A ABB 平面11D DCC ,平面1CD E ⋂平面11A ABB EF =,平面1CD E ⋂平面111D DCC D C =,故1//EF D C ,而11//A B D C ,故1//EF A B ,故F 为AB 的中点, 所以145DF CF ==+=,故3cos 5255DFC ∠==⨯⨯, 因为DFC ∠为三角形的内角,故4sin 5DFC ∠=,故DFC △的外接圆的半径为1254245⨯=,1OO ⊥平面ABCD ,1DD ⊥平面ABCD ,故11//OO DD ,在平面1GDO O 中,111,OG DD O D DD ⊥⊥,故1//OG O D ,故四边形1GDO O 为平行四边形,故1//OO GD ,1OO GD =,所以四面体1CDFD 2541116+= 故四面体1CDFD 的外接球表面积为41414164ππ⨯=, 故选:B.【点睛】方法点睛:三棱锥的外接球的球的半径,关键是球心位置的确定,通常利用“球心在过底面外接圆的圆心且垂直于底面的直线上”来确定. 3.A解析:A【分析】由三视图可知,该几何体是四棱锥,其中四棱锥底面是边长为4的正方形,将四棱锥补成棱长为4的正方体,则该几何体的外接球就是正方体的外接球,进而可得答案. 【详解】由三视图可知,该几何体是如图所示的四棱锥P ABCD -, 其中四棱锥底面是边长为4的正方形,四棱锥的一条侧棱与底面垂直,四棱锥的高为4, 将四棱锥补成棱长为4的正方体, 则该几何体的外接球就是正方体的外接球, 外接球的直径2R 等于正方体的对角线长, 即24323R R =⇒=,所以该几何体外接球的体积为()34233π⨯=323π,故选:A.【点睛】方法点睛:三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.4.C解析:C 【分析】先由正视图、俯视图及题意还原三棱锥,过A 作AM ⊥BD 于点M ,连结MC ,把AC 放在直角三角形AMC 中解AC . 【详解】根据三棱锥A BCD -正视图和俯视图,还原后得到三棱锥的直观图如图示,由图可知:平面ABD ⊥平面CBD ,过A 作AM ⊥BD 于点M ,连结MC ,则AM ⊥平面CBD , ∴△MCA 为直角三角形. 过C 作CN ⊥BD 于点N ,在直角三角形ABD 中,AB =1,AD 3,∴222BD AB AD =+=所以∠ABD=60°,∠ADB=30°,则在直角三角形ABM 中,AB =1,∠ABM=60°,∴13,22BM AM ==. 同理,在直角三角形CBD 中,13,22DN CN ==. ∴MN =BD -BM -DN =112122--=, ∴222237()122CM CN MN =+=+= 在直角三角形AMC 中,22227310()222AC CM AM ⎛⎫=+=+= ⎪ ⎪⎝⎭故选:C 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整.(2)立体几何中求线段长度:①、把线段放在特殊三角形中,解三角形;②、用等体积法求线段.5.A解析:A 【分析】利用正弦定理求出ABC 的外接圆半径,则可求出三棱锥的高,进而求出三棱锥体积. 【详解】设ABC 的外接圆的圆心为D ,半径为r ,在ABC 中,72cos 4214ABC ∠==,14sin ABC ∴∠=, 由正弦定理可得28sin ACr ABC==∠,即4r =,则22543OD =-=,11114214273773324O ABC ABCV SOD -∴=⨯⨯=⨯⨯⨯⨯⨯=. 故选:A.【点睛】本题考查球内三棱锥的相关计算,解题的关键是利用正弦定理求出ABC 的外接圆半径,利用勾股关系求出高.6.A解析:A 【分析】利用线面垂直的判定定理可判断BCD 选项,利用假设法推出矛盾,可判断A 选项. 【详解】对于A 选项,连接B C ',假设A C '⊥平面MNP ,在正方体ABCD A B C D ''''-中,A B ''⊥平面BB C C '',B C '⊂平面BB C C '',A B B C '''∴⊥,所以,A B C ''为直角三角形,且A CB ''∠为锐角,因为M 、N 分别为BB '、BC 的中点,则//MN B C ',所以,MN 与A C '不垂直, 这与A C '⊥平面MNP 矛盾,故假设不成立,即A C '与平面MNP 不垂直;对于B 选项,连接B D ''、A C '',如下图所示:因为四边形A B C D ''''为正方形,则A C B D ''''⊥,CC '⊥平面A B C D '''',B D ''⊂平面A B C D '''',CC B D '''∴⊥, A C CC C ''''=,B D ''∴⊥平面A CC '',A C '⊂平面A CC '',A CB D '''∴⊥,M 、P 分别为A B ''、A D ''的中点,则//MN B D '',可得MP A C '⊥, 同理可证A C MN '⊥,MP MN M ⋂=,A C '∴⊥平面MNP ;对于C 选项,连接C D '、A N '、CN 、A P '、PC ,取A B ''的中点E ,连接C E '、PE ,因为四边形CC D D ''为正方形,则CD C D ''⊥,A D ''⊥平面CC D D '',C D '⊂平面CC D D '',C D A D '''∴⊥, CD A D D ''''=,C D '∴⊥平面A CD '',A C '⊂平面A CD '',A C C D ''∴⊥,M 、N 分别为DD '、C D ''的中点,//MN C D '∴,A C MN '∴⊥,在正方形A B C D ''''中,E 、N 分别为A B ''、C D ''的中点,//A E C N ''∴且A E C N ''=, 所以,四边形A EC N ''为平行四边形,所以,//A N C E ''且A N C E ''=, 同理可证四边形CC EP '为平行四边形,//C E CP '∴且C E CP '=, 所以,//A N CP '且A N CP '=,所以,四边形A PCN '为平行四边形, 易得A N CN '=,所以,四边形A PCN '为菱形,所以,A C PN '⊥,MN PN N =,A C '∴⊥平面MNP ;对于D 选项,连接AC 、BD ,因为四边形ABCD 为正方形,则AC BD ⊥,AA '⊥平面ABCD ,BD ⊂平面ABCD ,AA BD '∴⊥, AC AA A '⋂=,BD ∴⊥平面AA C ',A C '⊂平面AA C ',AC BD '∴⊥,M 、N 分别为CD 、BC 的中点,则//MN BD ,A C MN '∴⊥,同理可证A C MP '⊥,MN MP M ⋂=,A C '∴⊥平面MNP .故选:A. 【点睛】方法点睛:证明线面垂直的方法: 一是线面垂直的判定定理; 二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.7.C解析:C 【分析】A 通过平移,找出异面直线所成角,利用直角三角形求余弦即可. B.求出三角形的三边,通过勾股定理说明是不是直角三角形.C.求出点M 到面11BB D D 的距离,再求直线BM 与平面11BDD B 所成角的正弦.D.可通过线线平行证明线面平行. 【详解】 设正方体棱长为2A. 取1BB 的中点为N ,则//BC MN ,则AM 与BC 所成角为AMN ∠ 由BC ⊥面11ABB A ,故MN ⊥面11ABB A ,故MN AN ⊥,在Rt ANM △中,5tan 2AMN ∠=,故2cos 3AMN ∠=B. BDM 中,5BM =,22BD =,5DM =,不满足勾股定理,不是直角三角形C. AC BD ⊥,1AC BB ⊥,故AC ⊥面11BB D D ,1//CC 面11BB D D ,故M 到面11BB D D 的距离等于C 到面11BB D D 的距离,即为122d AC ==直线BM 与平面11BDD B 所成角为θ210sin 55d BM θ===直线BM 与平面11BDD B 所成角的正弦值等于105D.如图ACBD O =OM 为1ACC △的中位线,有1//OM AC故直线1AC 与平面BDM 平行故选:C 【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.8.D解析:D 【分析】先找到几何体原图,再求出几何体的外接球的半径和内切球的半径,再判断每一个选项得解. 【详解】由三视图得几何体为下图中的三棱锥A BCD -,AB ⊥平面BCD ,42AB =,2CE DE ==,2BE =,由题得2CBD π∠=.设外接球的球心为,O 外接球的半径为R ,则OE ⊥平面BCD , 连接,OB OA ,取AB 中点F ,连接OF .由题得1222OE BF AB ===,所以222(22)2,23R R =+∴=, 所以外接球的体积为34(23)3233ππ⨯=,所以选项A 错误; 所以外接球的表面积为24(23)48ππ⨯=,所以选项C 错误; 由题得22(42)(22)210AC AD ==+=, 所以△ACD △的高为24026-=, 设内切球的半径为r ,则1111111(422242222446)24423222232r ⨯⨯+⨯⨯+⨯⨯+⨯⨯=⨯⨯⨯⨯ 所以22r, 所以内切球的体积为3422)323ππ⨯=(,所以选项B 错误; 所以内切球的表面积为224()22ππ⨯=,所以选项D 正确. 故选:D【点睛】方法点睛:求几何体外接球的半径一般有两种方法:模型法和解三角形法.模型法就是把几何体放在长方体中,使几何体的顶点和长方体的若干个顶点重合,则几何体的外接球和长方体的外接球是重合的,长方体的外接球的半径22212r a b c =++几何体的外接球半径.如果已知中有多个垂直关系,可以考虑用此种方法.解三角形法就是找到球心O 和截面圆的圆心O ',找到OO '、球的半径OA 、截面圆的半径O A '确定的Rt OO A '△,再解Rt OO A '△求出球的半径OA .9.B解析:B 【分析】根据三棱锥的表面积进一步求出正方体的棱长,最后求出正方体的外接球的半径,进一步求出结果. 【详解】解:设正方体的棱长为a ,则1111112B D AC AB AD B C D C a ======, 由于三棱锥11A B CD -的表面积为43, 所以()12133442242AB CS S a==⨯⨯=所以2a =()()()2222226++=, 所以正方体的外接球的体积为34663ππ⎛⎫= ⎪ ⎪⎝⎭故选:B . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.10.A解析:A 【分析】本题首先可根据题意将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分,然后求出直三棱柱的外接球的半径,最后根据球的表面积计算公式即可得出结果. 【详解】因为AB ⊥平面BCD ,1AB BC CD BD ====,所以可将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分,如图所示:则四面体ABCD 的外接球即直三棱柱的外接球,因为底面三角形BCD 的外心到三角形BCD 的顶点的长度为222131323, 所以直三棱柱的外接球的半径221372312r, 则球O 的表面积277π4π4π123S r , 故选:A. 【点睛】关键点点睛:本题考查四面体的外接球的表面积的计算,能否将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分是解决本题的关键,考查直三棱柱的外接球的半径的计算,是中档题.11.D解析:D 【分析】利用线面平行的性质定理和线面垂直的定义可判断A 选项的正误;由线面垂直的性质定理可判断B 选项的正误;根据已知条件判断直线n 与平面α的位置关系,可判断C 选项的正误;根据已知条件判断直线m 与平面α的位置关系,可判断D 选项的正误. 【详解】 对于A ,//n α,由线面平行的性质定理可知,过直线n 的平面β与平面α的交线l 平行于n ,m α⊥,l α⊂,m l ∴⊥,m n ∴⊥,故A 正确;对于B ,若m α⊥,n α⊥,由直线与平面垂直的性质,可得//m n ,故B 正确; 对于C ,若m α⊥,m n ⊥,则//n α或n ⊂α,又n α⊄,//n α∴,故C 正确;对于D ,若m n ⊥,//n α,则//m α或m 与α相交或m α⊂, 而m α⊄,则//m α或m 与α相交,故D 错误. 故选:D . 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.12.C解析:C 【分析】设AH a =,则BH a =,由线面垂直的性质和勾股定理可求得DH a AH ==,由等腰三角形的性质可证得BD ⊥DH ,再根据线面垂直的判定和性质可得选项. 【详解】设AH a =,则BH a =,因为'C H ⊥面ABD ,AB 面ABD ,DH ⊂面ABD ,所以'C H ⊥AB ,'C H ⊥DH ,'C H ⊥DB ,又Rt ABC ,1,2AC AB BC ===,D 为BC 的中点,所以'1,6C D BD B DAB π==∠=∠=,所以在'Rt AC H 中,'C H ==Rt C HD ’中,()2'222'211DH C D C H a a =-=--=,所以DH a AH ==,所以6ADH DAB π∠=∠=,又23ADB π∠=,所以2HDB π∠=,所以BD ⊥DH ,又'C HDH H =,所以BD ⊥面'C DH ,又'C D ⊂面'C DH ,所以BD ⊥'C D , 故选:C. 【点睛】关键点点睛:在解决折叠问题时,关键在于得出折叠的前后中,线线、线面、面面之间的位置关系的不变和变化,以及其中的边的长度、角度中的不变量和变化的量.二、填空题13.【分析】把圆锥侧面展开为一个平面图形利用平面上两点间线段最短可得【详解】由题意所以圆锥侧面展开图中心角为如图则故答案为:【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题空间几何体表面上两点间的最解析:【分析】把圆锥侧面展开为一个平面图形,利用平面上两点间线段最短可得. 【详解】由题意1,4r l ==,所以圆锥侧面展开图中心角为2142ππθ⨯==,如图,2APA π'∠=, 则2442AA '=⨯=.故答案为:42.【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题,空间几何体表面上两点间的最短距离问题的解决方法常常是把几何体的表面展开摊平为一个平面图形,利用平面上两点间线段最短求解.14.②③④【分析】取点为线段的中点可判断①建立空间直角坐标系假设存在点使得利用解出的值即可判断②;连接交于点证明线段到平面的距离为定值可判断③;求出点的坐标然后计算平面和平面的法向量即可判断④【详解】对解析:②③④. 【分析】取点M 为线段1BD 的中点可判断①,建立空间直角坐标系假设存在点M ,使得1B M AE ⊥,利用()1110AE B M AE B B BD λ⋅=⋅+=解出λ的值即可判断②;连接AC 、BD 交于点1O ,证明11//EO BD ,线段1BD 到平面AEC 的距离为定值,可判断③;求出点M 的坐标,然后计算平面AEC 和平面MAC 的法向量,即可判断④. 【详解】对于①:连接1AC 交1BD 于点O ,当点M 在O 点时直线AD 与直线1C M 相交,故①不正确,以D 为坐标原点,建立如图所示的空间直角坐标系,设正方体的边长为2,则()0,0,0D ,()10,0,2D ,()2,0,0A ,()0,2,0C ,()0,0,1E ,()2,2,0B ,()12,2,2B ,对于②:()2,0,1AE =-,假设存在点M ,使得1B M AE ⊥,()()()1110,0,22,2,22,2,22B M B B BD λλλλλ=+=-+--=---,[]0,1λ∈,所以14220AE B M λλ⋅=+-=,解得13λ=,所以当12D M MB =时1B M AE ⊥, 故②正确;对于③:连接AC 、BD 交于点1O ,因为点E 是棱1DD 的中点,此时11//EO BD ,故线段1BD 到平面AEC 的距离为定值,所以四面体EMAC 的体积为定值,故③正确;对于④:当12D M MB =时,442,,333M ⎛⎫⎪⎝⎭,()2,0,1AE =-,()2,2,0AC =-,设平面AEC 的法向量为()111,,m x y z =,由111120220m AE x z m AC x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 令12z =,可得11x =,11y =,可得()1,1,2m =,设平面MAC 的法向量为()222,,n x y z =,242,,333MA ⎛⎫=-- ⎪⎝⎭,由22222220242333n AC x y n MA x y z ⎧⋅=-+=⎪⎨⋅=--=⎪⎩解得:20y =,令 21x =可得22z =,所以1,1,1n,因为1111120m n ⋅=⨯+⨯-⨯=,m n ⊥所以平面EAC ⊥平面MAC ,故④正确; 故答案为:②③④. 【点睛】方法点睛:证明面面垂直的方法(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可; (2)利用性质://,αββγαγ⊥⇒⊥(客观题常用); (3)面面垂直的定义(不常用);(4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.15.【分析】取中点连接证明平面可得为直线与侧面所成的角进而可得答案【详解】取中点连接直三棱柱中平面平面又又面平面在平面上的射影为故为直线与侧面所成的角中中中故答案为:【点睛】方法点睛:求直线与平面所成的 解析:10 【分析】取11B C 中点D ,连接1,A D BD ,证明1A D ⊥平面11B C CB ,可得1A BD ∠为直线1A B 与侧面11B C CB 所成的角,进而可得答案. 【详解】取11B C 中点D ,连接1,A D BD ,直三棱柱中,1BB ⊥平面111A B C ,1A D ⊂平面111A B C ,11BB A D ∴⊥,又11111A B A C ==,111A D B C ∴⊥, 又1111B C BB B =,111,B C BB ⊂面11BB C C ,1A D ∴⊥平面11B C CB ,1A B ∴在平面11B C CB 上的射影为DB ,故1A BD ∠为直线1A B 与侧面11B C CB 所成的角,11Rt A B B 中,22211121125BB A B A B =+=+=111Rt B A C 中,1112212122B C A D=⨯==,1Rt A BD ∴中,1112102sin 5A D A BD AB ∠===, 故答案为:1010. 【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.16.【分析】利用余弦定理求得利用正弦定理计算出的外接圆直径可计算出三棱锥的外接球半径然后利用球体体积公式可求得结果【详解】如下图所示圆柱的底面圆直径为圆柱的母线长为则的中点到圆柱底面圆上每点的距离都相等 解析:1326π【分析】利用余弦定理求得AC ,利用正弦定理计算出ABC 的外接圆直径2r ,可计算出三棱锥P ABC -的外接球半径R ,然后利用球体体积公式可求得结果.【详解】如下图所示,圆柱12O O 的底面圆直径为2r ,圆柱的母线长为h , 则12O O 的中点O 到圆柱底面圆上每点的距离都相等, 所以,圆柱12O O 的外接球直径为()2222R r h =+.本题中,作出ABC 的外接圆2O ,由于PA ⊥平面ABC ,可将三棱锥P ABC -放在圆柱12O O 中,在ABC 中,22AB =3BC =,4ABC π∠=,由余弦定理可得222cos 5AC AB BC AB BC ABC +-⋅∠=,由正弦定理可知,ABC 的外接圆直径为5210sin 2ACr ABC===∠ 则三棱锥P ABC -的外接球直径为()222226R PA r =+=26R =, 因此,三棱锥P ABC -的外接球的体积为334426132633V R ππ==⨯=⎝⎭. 故答案为:13263. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.17.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:2【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可. 【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABCSBC AO =⋅=⨯⨯= 故答案为:82 【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.18.【分析】作出图形计算出正四棱锥的高与底面边长设底面的中心为计算得出为正四棱锥的外接球球心可求得该正四棱锥的外接球半径即可得解【详解】如下图所示设正四棱锥的底面的中心为连接设正四棱锥的底面边长为则由于 解析:36π【分析】作出图形,计算出正四棱锥P ABCD -的高与底面边长,设底面ABCD 的中心为E ,计算得出E 为正四棱锥P ABCD -的外接球球心,可求得该正四棱锥的外接球半径,即可得解. 【详解】如下图所示,设正四棱锥P ABCD -的底面ABCD 的中心为E ,连接PE 、AC 、BD ,设正四棱锥P ABCD -的底面边长为a ,则2AC BD a ==,由于E 为正四棱锥P ABCD -的底面ABCD 的中心,则PE ⊥平面ABCD , 由于正四棱锥P ABCD -的侧棱与底面所成的角为45,则45PAC PCA ∠=∠=, 所以,PAC △是以APC ∠为直角的等腰直角三角形, 同理可知,PBD △是以BPD ∠为直角的等腰直角三角形,E 为AC 的中点,122PE AC a ==,2ABCD S a =正方形,2311183326P ABCD ABCD V S PE a a a -=⋅=⨯⨯==正方形,解得a =,232PE a ==,由直角三角形的性质可得1122PE AC BD ==,即PE AE BE CE DE ====,所以,E 为正四棱锥P ABCD -外接球的球心, 球E 的半径为3r PE ==,该球的表面积为2436r ππ=. 故答案为:36π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.19.【分析】由圆柱体积求得底面半径母线长设底面圆心为可得为异面直线与所成的角(或其补角)在对应三角形中求解可得【详解】设圆柱底面半径为则母线长为由得设底面圆心为连接则所以为异面直线所成的角在中所以故答案【分析】由圆柱体积求得底面半径,母线长,设底面圆心为O ,可得OEF ∠为异面直线AC 与EF 所成的角(或其补角).在对应三角形中求解可得. 【详解】设圆柱底面半径为r ,则母线长为2r ,由2216r r ππ⋅=得2r.设底面圆心为O ,连接OE ,OF .则//OE AC ,所以OEF ∠为异面直线AC ,EF 所成的角.在Rt OEF △中,2OF =,OE =EF =所以cos 3OE OEF EF ∠==..【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.20.【分析】先画出直观图证明平面平面然后侧棱与底面ABC 所成的角即为根据题目中的数据算出即可【详解】如图作的中点连结因为侧面PBC 和底面ABC 都是边长为2的正三角形而为的中点所以又所以平面同时平面所以平解析:o 60. 【分析】先画出直观图,证明平面PAD ⊥平面ABC ,然后侧棱PA 与底面ABC 所成的角即为PAD ∠,根据题目中的数据算出即可.【详解】如图,作BC 的中点D ,连结AD 、PD 因为侧面PBC 和底面ABC 都是边长为2的正三角形 而D 为BC 的中点,所以BC PD ⊥,BC AD ⊥,又PD AD D ⋂=,所以BC ⊥平面PAD ,同时BC ⊂平面ABC。
最新高考立体几何压轴题精选
ABCDE F1.甲烷分子由一个碳原子和四个氢原子组成,其空间构型为一正四面体,碳原子位于该正四 面体的中心,四个氢原子分别位于该正四面体的四个顶点上.若将碳原子和氢原子均视为一 个点(体积忽略不计),且已知碳原子与每个氢原子间的距离都为a ,则以四个氢原子为顶点 的这个正四面体的体积为( ) A,3827a3 C,313a D,389a 2.夹在两个平行平面之间的球,圆柱,圆锥在这两个平面上的射影都是圆,则它们的体积之比为( )A,3:2:1 B,2:3:1 C,3:6:2 D,6:8:33.设二面角a αβ--的大小是060,P 是二面角内的一点,P 点到,αβ的距离分别为1cm, 2cm,则点P 到棱a 的距离是( )A,3B,3cm C,23cmD,3cm 4.如图,E,F 分别是正三棱锥A -BCD 的棱AB,BC的中点,且DE ⊥EF.若BC=a ,则此正三棱锥的体积是( )A,324aB,324aC,312aD,312a 5.棱长为的正八面体的外接球的体积是( ) A,6πB,27C,3D,3 6.若线段AB 的两端点到平面α的距离都等于2,则线段AB 所在的直线和平面α的位置关系是 .7.若异面直线,a b 所原角为060,AB 是公垂线,E,F 分别是异面直线,a b 上到A,B 距离为 2和平共处的两点,当3EF =时,线段AB 的长为 .8.如图(1),在直四棱柱1111A B C D ABCD -中,当底面四边形ABCD 满足条件 时,有1A C ⊥1B 1D (注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)CDF ABOCD EOAA B C D P Q9.如图(2),是一个正方体的展开图,在原正方体中,有下列命题: ①AB 与EF 所连直线平行; ②AB 与CD 所在直线异面; ③MN 与BF 所在直线成060; ④MN 与CD 所在直线互相垂直.其中正确命题的序号为 .(将所有正确的都写出)10.如图,在ABC ∆中,AB=AC=13,BC=10,DE//BC 分别交AB,AC 于D,E.将ADE ∆沿 DE 折起来使得A 到1A ,且1A DE B --为060的二面角,求1A 到直线BC 的最小距离.11.如图,已知矩形ABCD 中,AB=1,BC=a (0)a >,PA ⊥平面ABCD,且PA=1.(1)问BC 边上是否存在点Q 使得PQ ⊥QD?并说明理由;(2)若边上有且只有一个点Q,使得PQ ⊥QD,求这时二面角Q PD A --的正切.12. 已知三角形ABC 的顶点分别是A (1, 2, 3)、B (3, 4, 5)、C (2, 4, 7), 求三角形ABC 的面积.A BCDA BC D图(1)A BENM 图(2)Pz13.在正四棱柱1111ABCD A B C D -中,122AB BB ==,P 为B 1C 1的中点.(1)求直线AC 与平面ABP 所成的角;(2)求异面直线AC 与B P 所成的角; (3)求点B 到平面APC 的距离.14.如图,正四棱锥P-ABCD 中,侧棱P A 与底面ABCD 所成的角的正切值为26。
立体几何压轴题
1. 如图,四棱锥P-ABCD中,底面ABC[为矩形,AB=8 AD=4 3,侧面PAD为等边三角形,并且与底面ABCD所成二面角为60(1)求四棱锥P-ABCD勺体积(2)证明PAL BD2、如图,长方体框架ABCD- A,B,C,D,,三边AB、AD、AA,的长分别为6、&3.6,AE与底面的对角线B,D,垂直于E。
(1)证明A,E BD ;(2)求AE的长n(2)若直线AM 与平面VAC 所成角为-,求三棱锥B-ACM 的体积 43、如图,已知。
O 的直径AB=3点C 为。
0上异于A , B 的一点,VC 1平面ABC, 且VC=2点M 为线段VB 的中点。
(1)求证:BC 丄平面VAC;4、如图,在多面体ABCDE中,四边形ABCD是正方形,AB=2EF=2 EF// AB, EF 丄FB,CF丄FB, BF=CF G为BC的中点,(1)求证:FG//平面BDE⑵求平面BDE与平面BCF所成锐二面角的大小;⑶求四面体B-DEF的体积。
5、如图,三棱锥P-ABC中,PC丄平面ABC PC=AC=2AB=BC D是PB上的一点, 且CD L平面PAB(1)求证AB丄平面PCB(2)求二面角C-PA-B的大小的余弦值。
仁BE7、如图,直二面角D-AB-E 中,四边形ABCD 是边长为2的正方形,AE=EB,F 为 CE上的点,且BF 丄平面ACE(1)求证AE!平面BCE(2)求二面角B-AC-E 的正弦值;(3)求点D 到平面ACE 的距离。
1.如图,四棱锥 P-ABCD 中,底面ABCD 为矩形,AB=8, AD=4. 3,侧面PAD 为等边三角形, 并且与底面ABCD 所成二面角为60°(3 )求四棱锥P-ABCD 的体积(4)证明 PA ^ BD解;< I )如园L ,5UD 的中点E ,连接FE ,则PE 丄舶)・所以NFEO 为側面P2D 与底面所成的二面角的平面角*所以PO3也,四複锥P-ABCD 的体积^P-ABCO=y x 8^443«343=96 ・迭二:如图2,连接込 延卡;L O 交BD 于点F.通过计算可得£0二4 AE=2^J )又知和二4於,A0=S -得 EO-ADAE AB朋以5.t AAEGcoRt A BAD - 得 ZEAO=ZABD-所以 ZIAO+ZADF=90°所BUF 丄BD ・因为直线AF 为頁线菲在平面圧CDF1的身剧,所以醐丄前. 2、如图,长方体框架 ABCD - A 'BC 'D ',三边 与底面的对角线 B ,D ,垂直于E 。
八年级数学经典压轴题:立体几何综合
八年级数学经典压轴题:立体几何综合立体几何是数学中的一个重要分支,对于学生的几何思维和空间想象力的培养有着重要的作用。
在八年级数学中,立体几何是一个重要的内容,也是经常出现的考点。
本文将介绍一些八年级数学经典压轴题,帮助学生更好地复和应对考试。
题目一:正方体的展开图题目描述:将一个边长为a的正方体展开,得到一个平面的展开图,请回答以下问题:1. 展开图中有多少个正方形?2. 展开图中哪两个正方形是相邻的?3. 展开图中的边长为多少?解析:正方体展开图中有6个正方形,分别为正方体的6个面。
其中,邻边的正方形是相邻的,如上面和下面的正方形、前面和后面的正方形等。
展开图中的边长等于正方体的边长a。
题目二:圆柱的体积和表面积题目描述:一个圆柱的底面半径为r,高度为h,请回答以下问题:1. 圆柱的体积公式是什么?2. 圆柱的表面积公式是什么?3. 如果底面半径r=4cm,高度h=10cm,圆柱的体积和表面积分别是多少?解析:圆柱的体积公式为V = πr^2h,其中π取近似值3.14。
圆柱的表面积公式为A = 2πr^2 + 2πrh。
根据给定的底面半径r和高度h,代入公式计算可得圆柱的体积和表面积分别为V ≈ 502.4cm^3,A ≈ 301.6cm^2。
题目三:三棱锥的体积和表面积题目描述:一个三棱锥的底面是一个边长为a的等边三角形,高度为h,请回答以下问题:1. 三棱锥的体积公式是什么?2. 三棱锥的表面积公式是什么?3. 如果底面边长a=6cm,高度h=8cm,三棱锥的体积和表面积分别是多少?解析:三棱锥的体积公式为V = (1/3) * 底面积 * 高度 = (1/3) * (a^2 * √3/4) * h。
三棱锥的表面积公式为A = 底面积 + 侧面积 = (a^2 * √3/4) + (1/2 * a * √3 * l),其中l为斜高。
根据给定的底面边长a和高度h,代入公式计算可得三棱锥的体积和表面积分别为V ≈ 64cm^3,A ≈ 91.4cm^2。
(压轴题)高中数学必修二第一章《立体几何初步》测试题(包含答案解析)(2)
一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O 是其中心,则正视图(等腰三角形)的腰长等于( )A 5B .2C 3D 22.在正方体1111ABCD A B C D -中,点,E F 分别是梭BC ,CD 的中点,则1A F 与1C E 所成角的余弦值为( )A 5B 25C 5D 25 3.已知正方体1111ABCD A B C D -的棱长为2,E 为棱1AA 的中点,截面1CD E 交棱AB 于点F ,则四面体1CDFD 的外接球表面积为( )A .394πB .414πC .12πD .434π 4.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:3cm )为( )A.43B.2C.4 D.65.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是()A.24 B.30 C.47D.76.一个几何体的三视图如图所示,则该几何体的外接球的表面积是()A .2πB .3πC .4πD .16π7.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6πB .4πC .3πD .2π 8.如下图所示是一个正方体的平面展开图,在这个正方体中①//BM平面ADE ;②DE BM ⊥;③平面//BDM 平面AFN ;④AM ⊥平面BDE .以上四个命题中,真命题的序号是( )A .①②③④B .①②③C .①②④D .②③④ 9.在四棱锥P -ABCD 中,//AD BC ,2AD BC =,E 为PD 中点,平面ABE 交PC 于F ,则PF FC=( )A .1B .32C .2D .310.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径意思是:球的体积V 乘16,除以9,再开立方,即为球的直径d ,由此我们可以推测当时球的表面积S 计算公式为( )A .2278S d =B .2272S d =C .292S d =D .21114S d = 11.αβ是两个不重合的平面,在下列条件中,可判定平面α与β平行的是( ) A .m 、n 是α内的两条直线,且//m β,βn//B .α、β都垂直于平面γC .α内不共线三点到β的距离相D .m 、n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α12.已知直线a 、b 都不在平面α内,则下列命题错误的是( )A .若//a b ,//a α,则//b αB .若//a b ,a α⊥,则b α⊥C .若a b ⊥,//a α,则b α⊥D .若a b ⊥,a α⊥,则//b α二、填空题13.已知直三棱柱111ABC A B C -,90CAB ∠=︒,1222AA AB AC ===,则直线1A B 与侧面11B C CB 所成角的正弦值是______.14.如图,已知直四棱柱1111ABCD A B C D -的所有棱长均相等,3BAD π∠=,E 是棱AB 的中点,设平面α经过直线1A E ,且α平面111,B BCC l α=⋂平面112C CDD l =,若α⊥平面11A ACC ,则异面直线1l 与2l 所成的角的余弦值为_______.15.如图,在一个底面面积为4,侧棱长为10的正四棱锥P ABCD -中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的体积为___________.16.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角的大小为_________.17.如图,正方形BCDE 的边长为a ,已知3AB BC =,将ABE △沿边BE 折起,折起后A 点在平面BCDE 上的射影为D 点,则翻折后的几何体中有如下描述:①AB 与DE 所成角的正切值是2;②//AB CE ;③B ACE V -体积是316a ;④平面ABC ⊥平面ADC .其中正确的有______.(填写你认为正确的序号)18.世界四大历史博物馆之首卢浮宫博物馆始建于1204年,原是法国的王宫,是法国文艺复兴时期最珍贵的建筑物之一,以收藏丰富的古典绘画和雕刻而闻名于世,卢浮宫玻璃金字塔为正四棱锥,且该正四棱锥的高为21米,底面边长为30米,是华人建筑大师贝聿铭设计的.若玻璃金字塔五个顶点恰好在一个球面上,则该球的半径为______米.19.如图,已知一个八面体的各条棱长均为2,四边形ABCD 为正方形,给出下列说法:①该八面体的体积为83;②该八面体的外接球的表面积为8π; ③E 到平面ADF 3;④EC 与BF 所成角为60°.其中正确的说法为__________.(填序号)20.棱长为a 的正四面体的外接球的表面积为______.三、解答题21.如图,在三棱柱111ABC A B C -中,1B C ⊥平面ABC ,侧面11ABB A 为矩形,11,2AB AA AC ===.(1)证明:平面11ABB A ⊥平面1BB C ;(2)求四棱锥11C ABB A -的体积.22.如图所示,已知在三棱锥A BPC -中,,AP PC AC BC ⊥⊥,M 为AB 的中点,D 为PB 的中点,且PMB △为正三角形.(Ⅰ)求证://DM 平面APC ;(Ⅱ)求证:平面ABC ⊥平面APC ;(Ⅲ)若4,20BC AB ==,求三棱锥D BCM -的体积.23.如图所示,在四棱锥P ABCD -中,底面ABCD 是60DAB ∠=且边长为a 的菱形,侧面PAD 为正三角形,其所在平面垂直于底面ABCD ,若G 为AD 的中点,E 为BC 的中点.(1)求证://BG平面PDE;(2)在棱PC上是否存在一点F,使平面DEF⊥平面ABCD,若存在,确定点F的位置;若不存在,说明理出.24.如图,四棱锥P ABCD-中,PA⊥平面ABCD,四边形ABCD为梯形,//AD BC,6BC=,2PA AD CD===,E是BC上一点且23BE BC=,PB AE⊥.(1)求证:AB⊥平面PAE;(2)求点C到平面PDE的距离.25.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,∠ADP=90°,PD=AD,∠PDC=60°,E为PD中点.(1)求证:PB//平面ACE:(2)求四棱锥E ABCD-的体积.26.在四棱锥P ABCD-中,底面ABCD为矩形,AP⊥平面PCD,E,F分别为PC,AB 的中点求证:(1)平面PAD ⊥平面ABCD ;(2)//EF 平面PAD【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===1333x OE CE ==,即可求出x ,进而求出腰长.【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC , 由三视图可知5AB AC AD ===45AEC ∠=,设底面边长为2x ,则DE x =,则25AE x =-则在等腰直角三角形AOE 中,2522x AO OE -===, O 是底面中心,则1333x OE CE ==, 2532x x -=,解得3x = 则1AO =,底面边长为23则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.D解析:D【分析】延长DA至G,使AG CE=,可证11//A G C E,得1GA F∠是异面直线1A F与1C E所成的角(或其补角).在1AGF△中,由余弦定理可得结论.【详解】延长DA至G,使AG CE=,连接1,GE GA,GF,11,AC A C,又//AG CE所以AGEC是平行四边形,//,GE AC GE AC=,又正方体中1111//,AC AC AC AC=,所以1111//,AC DE AC DE=,所以11AC EG是平行四边形,则11//A G C E,所以1GA F∠是异面直线1A F与1C E所成的角(或其补角).设正方体棱长为2,在正方体中易得15AG=10GF=22222112(21)3A F AA AF=+=++=,1AGF△中,2221111125cos2253AG A F GFGA FAG A F+-∠===⋅⨯⨯.故选:D.【点睛】方法点睛:本题考查空间向量法求异面直线所成的角,求异面直线所成角的方法: (1)定义法:根据定义作出异面直线所成的角并证明,然后解三角形得结论; (2)建立空间直角坐标系,由两异面直线的方向向量的夹角得异面直线所成的角.3.B解析:B 【分析】可证F 为AB 的中点,设1DD 的中点为G ,DFC △的外接圆的球心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,利用解三角形的方法可求DFC △的外接圆的半径,从而可求四面体1CDFD 的外接球的半径.【详解】设1DD 的中点为G ,DFC △的外接圆的圆心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,因为平面11//A ABB 平面11D DCC ,平面1CD E ⋂平面11A ABB EF =,平面1CD E ⋂平面111D DCC D C =,故1//EF D C , 而11//A B D C ,故1//EF A B ,故F 为AB 的中点, 所以145DF CF ==+=,故3cos 5255DFC ∠==⨯⨯,因为DFC ∠为三角形的内角,故4sin 5DFC ∠=,故DFC △的外接圆的半径为1254245⨯=,1OO ⊥平面ABCD ,1DD ⊥平面ABCD ,故11//OO DD ,在平面1GDO O 中,111,OG DD O D DD ⊥⊥,故1//OG O D , 故四边形1GDO O 为平行四边形,故1//OO GD ,1OO GD =, 所以四面体1CDFD 的外接球的半径为2541116+=, 故四面体1CDFD 的外接球表面积为41414164ππ⨯=, 故选:B. 【点睛】方法点睛:三棱锥的外接球的球的半径,关键是球心位置的确定,通常利用“球心在过底面外接圆的圆心且垂直于底面的直线上”来确定.4.B解析:B 【分析】根据三视图判断出几何体的结构,利用椎体体积公式计算出该几何体的体积. 【详解】根据三视图可知,该几何体为如图所示四棱锥,该棱锥满足底面是直角梯形,且侧棱ED ⊥平面ABCD ,所以其体积为11(12)22232V =⨯⨯+⨯⨯=, 故选:B. 【点睛】方法点睛:该题考查的是有关根据几何体三视图求几何体体积的问题,解题方法如下: (1)首先根据题中所给的几何体的三视图还原几何体;(2)结合三视图,分析几何体的结构特征,利用体积公式求得结果.5.D解析:D 【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解. 【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-7 所以几何体的体积为11(24)676732⋅+⋅=. 故选:D 【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解.6.C解析:C 【分析】由三视图还原出原几何体,确定其结构,再求出外接球的半径得球的表面积. 【详解】由三视图,知原几何体是一个四棱锥P ABCD -,如图,底面ABCD 是边长为1的正方形,PB ⊥底面ABCD ,由PB ⊥底面ABCD ,AD ⊂面ABCD ,得PB AD ⊥,又AD AB ⊥,AB PB B ⋂=,,AB PB ⊂平面PAB ,所以AD ⊥平面PAB ,而PA ⊂平面PAB ,所以AD PA ⊥,同理DC PC ⊥,同样由PB ⊥底面ABCD 得PB BD ⊥,所以PD 中点O 到四棱锥各顶点距离相等,即为其外接球球心,PD 为球直径,222222PD PB BD PA AD AB =+=++=,∴外接球半径为12ADr ==, 表面积为2414S ππ=⨯=. 故选:C .【点睛】关键点点睛:本题考查由三视图还原几何体,考查棱锥的外接球表面积.解题关键是确定外接球的球心.棱锥的外接球球心在过各面外心(外接圆圆心)且与该面垂直的直线上.7.D解析:D 【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解. 【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形, 所以,2FG AE ==,1AG =,2BG =, 由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.8.A解析:A 【分析】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,得出BM ∥平面ADNE ,判断①正确;由连接AN ,则AN ∥BM ,又ED AN ⊥,判断②正确;由BD ∥FN ,得出BD ∥平面AFN ,同理BM ∥平面AFN ,证明平面BDM ∥平面AFN ,判断③正确;由MC BD ⊥,ED ⊥AM ,根据线面垂直的判定,判断④正确. 【详解】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,如图1所示; 对于①,平面BCMF ∥平面ADNE ,BM ⊂平面BCMF , ∴BM ∥平面ADNE ,①正确;对于②,如图2所示,连接AN ,则AN ∥BM ,又ED AN ⊥,所以DE BM ⊥,②正确; 对于③,如图2所示,BD ∥FN ,BD ⊄平面AFN ,FN ⊂平面AFN ,∴BD ∥平面AFN ;同理BM ∥平面AFN ,且BD ∩BM =B ,∴平面BDM ∥平面AFN ,③正确; 对于④,如图3所示,连接AC ,则BD AC ⊥,又MC ⊥平面ABCD ,BD ⊂平面ABCD ,所以MC BD ⊥,又ACMC C ,所以BD ⊥平面ACM ,所以BD ⊥AM ,同理得ED ⊥AM ,ED BD D =,所以AM ⊥平面BDE ,∴④正确. 故选:A .【点睛】关键点点睛:解决本题的关键在于展开空间想象,将正方体的平面展开图还原,再由空间的线线,线面,面面关系及平行,垂直的判定定理去判断命题的正确性.9.C解析:C 【分析】首先通过延长直线,DC AB ,交于点G ,平面BAE 变为GAE ,连结PG ,EG 交于点F ,再根据三角形中线的性质,求PFFC的值. 【详解】延长,DC AB ,交于点G ,连结PG ,EG 交PC 于点F ,//AD BC ,且2AD BC =,可得点,B C 分别是,AG DG 的中点,又点E 是PD 的中点,PC ∴和GE 是△PGD 的中线,∴点F 是重心,得2PFFC=故选:C 【点睛】关键点点睛:本题的关键是找到PC 与平面BAE 的交点,即将平面BAE 转化为平面GAE 是关键. 10.A解析:A【分析】根据已知条件结合球的体积公式3432d π⎛⎫ ⎪⎝⎭求解出π的值,然后根据球的表面积公式242d π⎛⎫⎪⎝⎭求解出S 的表示,即可得到结果. 【详解】因为3169V d =,所以33941632d d V π⎛⎫==⎪⎝⎭,所以278π=,所以2222727442848d d S d π⎛⎫==⨯⨯= ⎪⎝⎭,故选:A. 【点睛】关键点点睛:解答本题的关键是根据球的体积公式得到π的表示,再将π带入到球的表面积公式即可完成求解.11.D解析:D 【分析】取a αβ⋂=,且//m a ,//n a ,利用线面平行的判定定理可判断A 选项;根据αγ⊥,βγ⊥判断平面α与β的位置关系,可判断B 选项;设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,判断出A 、B 、C 三点到平面β的距离相等,可判断C选项;过直线n 作平面γ,使得a αγ⋂=,利用线面平行、面面平行的判定定理可判断D 选项. 【详解】对于A 选项,若a αβ⋂=,且//m a ,//n a ,m β⊄,n β⊄,则//m β,βn//,但α与β相交;对于B 选项,若αγ⊥,βγ⊥,则α与β平行或相交;对于C 选项,设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,如下图所示:D 、E 分别为AB 、AC 的中点,则//DE BC ,DE β⊂,BC β⊄,//BC β∴,所以,点B 、C 到平面β的距离相等,由于D 为AB 的中点,则点A 、B 到平面β的距离相等,所以,点A 、B 、C 三点到平面β的距离相等,但平面α与平面β相交; 对于D 选项,如下图所示:由于//n α,过直线n 作平面γ,使得a αγ⋂=,则//a n ,//n a ,a β⊄,n β⊂,//a β∴,//m β,m a A =,m α⊂,a α⊂,//αβ∴.故选:D. 【点睛】方法点睛:证明或判断两个平面平行的方法有: ①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行”⇒“面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明; ④借助“传递性”来完成.12.C解析:C 【分析】利用线面平行的性质和判定定理可判断A 选项的正误;由线面垂直的定义可判断B 选项的正误;根据已知条件判断b 与α的位置关系,可判断C 选项的正误;根据已知条件判断b与α的位置关系,可判断D 选项的正误. 【详解】由于直线a 、b 都不在平面α内.在A 中,若//a α,过直线a 的平面β与α的交线m 与a 平行,因为//a b ,可得//b m ,b α⊄,m α⊂,所以,//b α,A 选项正确;在B 中,若a α⊥,则a 垂直于平面α内所有直线,//a b ,则b 垂直于平面α内所有直线,故b α⊥,B 选项正确; 在C 中,若a b ⊥,//a α,则b 与α相交或平行,C 选项错误;在D 中,若a b ⊥,a α⊥,则//b α或b α⊂,b α⊄,//b α∴,D 选项正确.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.二、填空题13.【分析】取中点连接证明平面可得为直线与侧面所成的角进而可得答案【详解】取中点连接直三棱柱中平面平面又又面平面在平面上的射影为故为直线与侧面所成的角中中中故答案为:【点睛】方法点睛:求直线与平面所成的解析:10【分析】取11B C 中点D ,连接1,A D BD ,证明1A D ⊥平面11B C CB ,可得1A BD ∠为直线1A B 与侧面11B C CB 所成的角,进而可得答案. 【详解】取11B C 中点D ,连接1,A D BD ,直三棱柱中,1BB ⊥平面111A B C ,1A D ⊂平面111A B C ,11BB A D ∴⊥,又11111A B A C ==,111A D B C ∴⊥, 又1111B C BB B =,111,B C BB ⊂面11BB C C ,1A D ∴⊥平面11B C CB ,1A B ∴在平面11B C CB 上的射影为DB ,故1A BD ∠为直线1A B 与侧面11B C CB 所成的角,11Rt A B B 中,22211121125BB A B A B =+=+= 111Rt B A C 中,1112212122B C A D ===,1Rt A BD ∴中,1112102sin 5A D A BD AB ∠===10【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.14.【分析】取的中点连接证明平面平面平面即平面然后分别取的中点证明平面平面可得可得异面直线与所成的角即与所成的角由余弦定理可得答案【详解】由直四棱柱的所有棱长均相等所以是菱形连接且所以因为平面平面所以且解析:910【分析】取AD 的中点F ,连接1A F ,证明平面1A EF ⊥平面11A ACC ,平面1A EF 即平面α,然后分别取1111B C D C 、的中点M N 、,证明平面1//A EF 平面MNC ,可得//CM 1l ,//CN 2l ,可得异面直线1l 与2l 所成的角即CM 与CN 所成的角,由余弦定理可得答案.【详解】由直四棱柱1111ABCD A B C D -的所有棱长均相等,3BAD π∠=,所以ABCD 是菱形,连接AC BD 、,1111AC B D 、,且ACBD O =,11111A C B D O ⋂=,所以BD AC ⊥,1111B D A C ⊥,因为1AA ⊥平面ABCD ,BD ⊂平面ABCD , 所以1AA BD ⊥,且1AA AC A =,所以BD ⊥平面11A ACC ,取AD 的中点F ,连接1A F ,连接EF 交AC 与G ,所以//EF BD ,且G 是AO 的中点,所以EF ⊥平面11A ACC ,所以平面1A EF ⊥平面11A ACC , 又1A E ⊂平面1A EF ,所以平面1A EF 即平面α,分别取1111B C D C 、的中点M N 、,连接MN 交11A C 与H 点,H 即为11O C 的中点, 所以1A H GC =,且1//A H GC ,所以四边形1A HCG 是平行四边形,所以1//A G HC ,1AG ⊄平面CMN ,CH ⊂平面CMN ,所以//A G 平面CMN , 又因为11//////EF BD B D MN ,EF ⊄平面CMN ,MN ⊂平面CMN , 所以//MN 平面CMN ,又1AG EF G =,所以平面1//A EF 平面MNC ,且平面11B C CB ⋂平面MNC MC =, 平面11D C CD平面MNC NC =,所以//CM 1l ,//CN 2l ,所以异面直线1l 与2l 所成的角即CM 与CN 所成的角,设2AB =, 则直四棱柱1111ABCD A B C D -的所有棱长均为2,由3BAD π∠=,所以112BD AB B D ===,11112MN D B ==,且CM CN ====,由余弦定理得222551922510CM CN MN MCN CM CN +-+-∠===⨯⨯.故答案为:910.【点睛】本题考查了异面直线所成的角,关键点是作出平面α及找出异面直线所成的角,考查了学生分析问题、解决问题的能力及空间想象力.15.【分析】设为正方形的中心的中点为连接求出如图分别可求得大球与小球半径分别为和进而可得小球的体积【详解】解:由题中条件知底面四边形是边长为2的正方形设O 为正方形的中心的中点为M 连接则如图在截面中设N 为 解析:224【分析】设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,求出OM ,PM ,PO ,如图,分别可求得大球1O 与小球2O 半径分别为22和24,进而可得小球的体积. 【详解】解:由题中条件知底面四边形ABCD 是边长为2的正方形.设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,则1OM =,221013PM PA AM =-=-=,9122PO =-=,如图,在截面PMO 中,设N为球1O 与平面PAB 的切点,则N 在PM 上,且1O N PM ⊥,设球1O 的半径为R ,则1O N R =,∵1sin 3OM MPO PM ∠==,∴1113NO PO =,则13PO R =,11422PO PO OO R =+==∴22R =,设球1O 与球2O 相切于点Q ,则22PQ PO R R =-=,设球2O 的半径为r ,同理可得4PQ r =,∴224R r ==,故小球2O 的体积342324V r π==.故答案为:224.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.40°【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图根据面面平行的性质定理和线面垂直的定义判定有关截线的关系根据点处的纬度计算出晷针与点处的水平面所成角【详解】画出截面图如下图所示其中是赤解析:40° 【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角. 【详解】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥.. 由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故答案为:40°.【点睛】本小题主要考查中国古代数学文化,解题的关键是将稳文中的数据建立平面图形,属于中档题.17.①③④【分析】作出折叠后的几何体的直观图由题中条件得到是异面直线与所成的角求出其正切可判断①正确;根据线面垂直的的判定定理先证明平面可判断②错;根据等体积法由体积公式求出可判断③正确;根据面面垂直的解析:①③④ 【分析】作出折叠后的几何体的直观图,由题中条件,得到ABC ∠是异面直线AB 与DE 所成的角,求出其正切,可判断①正确;根据线面垂直的的判定定理,先证明CE ⊥平面ABD ,可判断②错;根据等体积法,由体积公式求出B ACE V -,可判断③正确;根据面面垂直的判定定理,可判断④正确. 【详解】作出折叠后的几何体直观图如图所示:由题意,3AB a =,BE a =,∴2AE a =;∴22AD AE DE a =-=,222AC CD AD a ∴=+=,∵//BC DE ,∴ABC ∠是异面直线AB 与DE 所成的角, 在Rt ABC 中, tan 2ACABC BC∠==①正确; 连结BD ,CE ,则CE BD ⊥,又AD ⊥平面BCDE ,CE ⊂平面BCDE , ∴CE AD ⊥,又BDAD D ,BD ⊂平面ABD ,AD ⊂平面ABD ,∴CE ⊥平面ABD ,又AB 平面ABD , ∴CE AB ⊥.故②错误.三棱锥B ACE -的体积2311113326B ACE A BCE BCE V V S AD a a a --===⨯⨯=⋅⨯.故③正确.∵AD ⊥平面BCDE ,BC ⊂平面BCDE ,∴BC AD ⊥,又BC CD ⊥,CD AD D =,CD ⊂平面ADC ,AD ⊂平面ADC ,∴BC ⊥平面ADC ,∵BC ⊂平面ABC , ∴ABC ⊥平面ADC .故④正确. 故答案为:①③④. 【点睛】 思路点睛:判断空间中线线、线面、面面位置关系时,一般根据相关概念,结合线面平行、垂直的判定定理及性质,以及面面平行、垂直的判定定理及性质,根据题中条件,进行判断或证明.18.【分析】作出图形设球体的半径为根据几何关系可得出关于的等式进而可解得的值【详解】如下图所示:在正四棱锥中设为底面正方形的对角线的交点则底面由题意可得则设该球的半径为设球心为则由勾股定理可得即解得故答解析:29714【分析】作出图形,设球体的半径为R ,根据几何关系可得出关于R 的等式,进而可解得R 的值. 【详解】 如下图所示:在正四棱锥P ABCD -中,设M 为底面正方形ABCD 的对角线的交点,则PM ⊥底面ABCD ,由题意可得21PM =,30AB =,2302BD ==,则152BM = 设该球的半径为R ,设球心为O ,则O PM ∈,由勾股定理可得222OB OM BM =+,即()(22221152R R =-+,解得29714R =. 故答案为:29714. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.19.②④【分析】①求出该八面体的体积即可判断;②可得球心为正方形ABCD 对角线交点即可得出半径求出表面积;③取AD 的中点G 连接EGFGEF 过E 作求出即可;④可得为所成角【详解】①八面体的体积为;②八面体解析:②④ 【分析】①求出该八面体的体积即可判断;②可得球心为正方形ABCD 对角线交点,即可得出半径求出表面积;③取AD 的中点G ,连接EG ,FG ,EF ,过E 作EH FG ⊥,求出EH 即可;④可得DEC ∠为所成角. 【详解】①八面体的体积为21822(22)33⨯⨯⨯=; ②八面体的外接球球心为正方形ABCD 对角线交点,易得外接球半径为2,表面积为8π;③取AD 的中点G ,连接EG ,FG ,EF ,易得3EG FG ==AD ⊥平面EGF ,过E 作EH FG ⊥,交FG 的延长线于H ,又EH AD ⊥,AD FG G ⋂=,故EH ⊥平面ADF , 解得26EH =,所以E 到平面ADF 26; ④因为//ED BF ,所以EC 与BF 所成角为60︒. 故答案为:②④. 【点睛】解本题的关键是正确理解正八面体的性质,根据线面垂直关系得到点到平面的垂线段.20.【分析】由正四面体性质可知球心在棱锥高线上利用勾股定理可求出半径R 即可求出球的面积【详解】正四面体的棱长为:底面三角形的高:棱锥的高为:设外接球半径为R 解得所以外接球的表面积为:;故答案为:【点睛】解析:232a π 【分析】由正四面体性质可知,球心在棱锥高线上,利用勾股定理可求出半径R ,即可求出球的面积. 【详解】正四面体的棱长为:a ,底面三角形的高:22a a =,3a =, 设外接球半径为R ,222))R R a =-+,解得R =,所以外接球的表面积为:22342a ππ⎫⨯=⎪⎪⎝⎭; 故答案为:232a π. 【点睛】本题考查球的表面积的求法,解题的关键是根据球心的位置,在正四面体中求出球的半径.三、解答题21.(1)证明见解析;(2)3. 【分析】(1)根据线面垂直的判定定理,先证明AB ⊥平面1BB C ,再由面面垂直的判定定理,即可证明结论成立;(2)先由(1)得到AB BC ⊥,求出BC 和1B C ,过点C 作1CD BB ⊥于点D ,求出CD ,再由棱锥的体积公式,即可求出结果. 【详解】(1)∵1B C ⊥平面ABC ,AB平面ABC ,∴1B C AB ⊥,又四边形11ABB A 为矩形,∴1AB B B ⊥.又∵111B B B C B ⋂=,1B B ⊂平面1BB C ,1B C ⊂平面1BB C ,∴AB ⊥平面1BB C , 又AB平面11ABB A ,∴平面11ABB A ⊥平面1BB C .(2)由(1)知AB ⊥平面1BB C ,∴AB BC ⊥,则223BC AC AB =-=,从而()221231B C =-=,在1BB C △中,过点C 作1CD BB ⊥于点D , 由于平面11ABB A ⊥平面1BB C ,平面11ABB A 平面11BB C BB =,∴CD ⊥平面11ABB A , 由1111122BCB SB C BC BB CD =⋅=⋅可得32CD =, ∴四棱锥11C ABB A -的体积为111133123323ABB A V S CD =⋅=⨯⨯⨯=.【点睛】 方法点睛:证明空间中位置关系时,通常根据空间中线面、面面平行或垂直的判定定理及性质,直接证明即可;有时也可建立适当的空间直角坐标系,求出对应的直线的方向向量,以及平面的法向量等,根据空间位置的向量表示进行判断. 22.(1)见详解;(2)见详解;(3)107 【分析】(1)先证DM AP ∥,可证//DM 平面APC .(2)先证AP ⊥平面PBC ,得⊥AP BC ,结合AC BC ⊥可证得BC ⊥平面APC . (3)等积转换,由D BCM M DBC V V --=,可求得体积. 【详解】证明:因为M 为AB 的中点,D 为PB 的中点,所以MD 是ABP △的中位线,MD AP .又MD平面APC ,AP ⊂平面APC ,所以MD 平面APC .(2)证明:因为PMB △为正三角形,D 为PB 的中点,所以MD PB ⊥.又MDAP ,所以AP PB ⊥.又因为AP PC ⊥,PB PC P =,所以AP ⊥平面PBC .因为BC ⊂平面PBC ,所以⊥AP BC . 又因为BC AC ⊥,AC AP A ⋂=, 所以BC ⊥平面APC . (3)因为AP ⊥平面PBC ,MDAP ,所以MD ⊥平面PBC ,即MD 是三棱锥M DBC -的高. 因为20AB =,M 为AB 的中点,PMB △为正三角形, 所以310,53PB MB MD MB ====. 由BC ⊥平面APC ,可得BC PC ⊥,在直角三角形PCB 中,由104PB BC =,=,可得221PC =. 于是1114221221222BCD BCP S S ⨯⨯⨯=△△==.112215310733D BCM M DBC BCD V V S MD --⨯⨯=△===【点睛】关键点睛:三棱锥的体积直接求不便时,常采用等积转换的方法,选择易求的底面积和高来求体积.23.(1)证明见解析;(2)点F 为PC 的中点,证明见解析. 【分析】(1)连接,DE PE ,可证明四边形DGBE 是平行四边形,得出//BG DE ,利用线面平行的判断定理即可证明;(2)猜想点F 为PC 的中点时,平面DEF ⊥平面ABCD ,再利用面面垂直的性质定理证明PG ⊥平面ABCD ,//OF PG ,可得OF ⊥平面ABCD ,利用面面垂直的判定定理即可证明. 【详解】。
最新立体几何高考压轴选择题
精品资料立体几何高考压轴选择题........................................1.已知棱长都为2的正三棱柱ABC﹣A1B1C1的直观图如图,若正三棱柱ABC﹣A1B1C1绕着它的一条侧棱所在直线旋转,则它的侧视图可以为()A.B.C.D.【分析】根据所给视图,用排除法可得【解答】解:四个选项高都是2,若侧视图为A,中间应该有一条竖直的实线或虚线.若为C,则其中有两条侧棱重合,不应有中间竖线.若为D,则长应为,而不是1.故选:B.【点评】本题考查三视图,主要是考查空间想象能力,为基础题.2.如图,正方体ABCD﹣A1B1C1D1中,O为底面ABCD 的中心,M为棱BB1的中点,则下列结论中错误的是()A.D1O∥平面A1BC1B.D1O⊥平面MACC.异面直线BC1与AC所成的角为60°D.MO⊥平面ABCD【分析】在A中,取A1C1中点E,则D1O∥BE,从而D1O∥平面A1BC1;在B中,以D为原点,DA,DC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能证明D1O⊥平面MAC;在C中,由AC∥A1C1,得∠BC1A1是异面直线BC1与AC 所成的角,由△A1C1B是正三角形,得异面直线BC1与AC所成的角为60°;在D中,MB⊥平面ABCD,MO∩MB=M,故MO与平面ABCD不垂直.【解答】解:在A中,取A1C1中点E,则D1O∥BE,∵D1O⊄平面A1BC1,BE⊂平面A1BC1,∴D1O∥平面A1BC1,故A正确;在B中,以D为原点,DA,DC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,则O(1,1,0),D1(0,0,2),A(2,0,0),C(0,2,0),M(2,2,1),=(﹣1,﹣1,2),=(0,2,1),=(﹣2,2,0),=0,=0,∴D1O⊥AM,D1O⊥AC,∴D1O⊥平面MAC,故B正确;在C中,∵AC∥A1C1,∴∠BC1A1是异面直线BC1与AC所成的角,又△A1C1B是正三角形,∴异面直线BC1与AC所成的角为60°,故C正确;在D中,MB⊥平面ABCD,MO∩MB=M,故MO与平面ABCD不垂直,故D 错误.故选:D.【点评】本题考查三有形面积和四边形面积的比值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.3.已知A,B,C三点都在表面积为100π的球O的表面上,若AB=4,∠ACB=60°.则球内的三棱锥O﹣ABC的体积的最大值为()A.8B.10C.12D.16【分析】由题意画出图形,由已知求出球O的半径,再由正弦定理求出三角形ABC外接圆的半径,利用勾股定理求O到平面ABC的距离,利用余弦定理及不等式求AC•BC的最大值,可得三角形ABC面积的最大值,代入棱锥体积公式求解.【解答】解:由球O得表面积为100π,得球半径R=5,∵AB=4,∠ACB=60°.∴A,B,C三点所在圆的半径r=×=4,∴球心O到平面ABC的距离d=.在△ABC中,由,得48=AC2+BC2﹣AC•BC≥AC•BC,则.∴球内的三棱锥O﹣ABC的体积的最大值为.故选:C.【点评】本题考查球心到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题4.在正方体ABCD﹣A1B1C1D1中,点E∈平面AA1B1B,点F是线段AA1的中点,若D1C⊥CF,则当△EBC的面积取得最小值时,=()A.B.C.D.【分析】取AB的中点G,由题意得CF⊥平面B1D1G,当点E在直线B1G上时,D1E⊥CF,当△EBC的面积取最小值时,线段EB的长度为点B到直线B1G的距离,由此能求出.【解答】解:如图所示,取AB的中点G,由题意得CF⊥平面B1D1G,∴当点E在直线B1G上时,D1E⊥CF,设BC=a,则,当△EBC的面积取最小值时,线段EB的长度为点B到直线B1G的距离,∴线段EB长度的最小值为,∴==.故选:D.【点评】本题考查三有形面积和四边形面积的比值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.5.如图所示,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,且侧视图中的曲线都为圆弧线,则该几何体的表面积为()A.8πB.8π+4C.6π+4D.6π【分析】画出几何体的直观图,利用三视图的数据求解几何体的体积即可.【解答】解:三视图定义的几何体的直观图如图:几何体是上下底面是半径为1的4段的圆弧,柱体的高为3,所以几何体的表面积为:4×=6π+4.故选:C.【点评】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键也的难点.6.“斗拱”是中国古代建筑中特有的构件,从最初的承重作用,到明清时期集承重与装饰作用于一体.在立柱顶、额枋和檐檩间或构架间,从枋上加的一层层探出成弓形的承重结构叫拱,拱与拱之间垫的方形木块叫斗.如图所示,是“散斗”(又名“三才升”)的三视图,则它的体积为()A.B.C.53D.【分析】画出几何体的直观图利用柱体的体积,转化求解即可.【解答】解:由题意可知几何体的直观图如图:下部是四棱台,上部是棱柱挖去一个小棱柱的组合体.几何体的体积为:4×1.5×4﹣1×2×4+×1×(16+9+)=.故选:B.【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.7.如图,在三棱柱ABC﹣A1B1C1中,点P在平面A1B1C1内运动,使得二面角P﹣AB﹣C的平面角与二面角P﹣BC﹣A的平面角互余,则点P的轨迹是()A.一段圆弧B.椭圆的一部分C.抛物线D.双曲线的一支【分析】本题对三棱柱ABC﹣A1B1C1没做特殊要求,可以用特值法,假设三棱柱ABC﹣A1B1C1为直三棱柱,且底面为直角三角形,∠ABC为直角,计算可得.【解答】解:假设三棱柱ABC﹣A1B1C1为直三棱柱,且底面为直角三角形,∠ABC为直角,三棱柱高为h.以B为坐标原点,AB所在直线建立如图坐标系,PO平行于z轴,交xBy坐标面与点O,平面PODD1垂直于x轴,交AB于D点,交A1B1于D1点,平面POEE1垂直于y轴,交BC与E点,交B1C1于E1,设P点坐标为(x,y,h).则二面角P﹣AB﹣C的平面角为∠PDO,二面角P﹣BC﹣A的平面角为∠PEO,∴∠PDO+∠PEO=90°,∴tan∠PDO=cot∠PEO,∵PO⊥xBy坐标面,∴PO⊥OD,PO⊥OE,∴tan∠PDO=,cot∠PEO=,∴,∴PO2=OD×OE,∴OD×OE =h2,由P点与D,E,D1,E1D的位置关系可知,x=﹣OD,y=OE,∴﹣xy=h2,∴xy=﹣h2,∴P点轨迹为双曲线的一支(x<0,y>0的一支).故选:D.【点评】本题考查三角形的外接圆和矩形的外接圆的半径之和的最大值的求法,考查直三棱柱、球、圆的性质、均值定理等基础知识,考查运算求解能力,是难题.8.《九章算木》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”,现有一阳马,其正视图和侧视图是如图所示的直角三角形,该“阳马”的体积为,若该阳马的顶点都在同一个球面上,则该球的表面积为()A.12πB.8πC.24πD.36π【分析】利用视图得长方形的长和宽,由体积公式求得高,再结合长方体外接球直径为其体对角线长即可得解.【解答】解:由正视图,侧视图可知,底面长方形的长,宽分别为4,2,故四棱锥的高为=4,∴外接球的直径为,=4π×9=36π.∴S球故选:D.【点评】此题考查了三视图,棱锥外接球问题,难度不大.9.在长方体ABCD﹣A1B1C1D1中,AD=DD1=1,,E,F,G分别是棱AB,BC,CC1的中点,P是底面ABCD内一动点,若直线D1P与平面EFG没有公共点,则三角形PBB1面积的最小值为()A.B.1C.D.【分析】由直线与平面没有公共点可知线面平行,补全所给截面后,易得两个平行截面,从而确定点P所在线段,得解.【解答】解::补全截面EFG为截面EFGHQR如图,设BR⊥AC,∵直线D1P与平面EFG不存在公共点,∴D1P∥平面EFGHQR,易知平面ACD1∥平面EFGHQR,∴P∈AC,且当P与R重合时,BP=BR最短,此时△PBB1的面积最小,由等积法:BR×AC=BE×BF,=,∴BP=,又BB1⊥平面ABCD,∴BB1⊥BP,△PBB1为直角三角形,∴△PBB1的面积为:=,故选:C.【点评】此题考查了线面平行,面面平行,有探索性质,设计较好,难度适中.10.设A,B,C,D是球面上四点,已知,,球的表面积为32π,则四面体ABCD的体积的最大值为()A.B.C.D.【分析】根据几何体的特征,判定外接球的球心,求出球的半径,即可求出球的内接四面体高的最大值,则答案可求.【解答】解:根据题意知,△ABC是一个直角三角形,其面积为6,其所在球的小圆的圆心在斜边BC的中点上,设小圆的圆心为G,球的表面积为32π,球的半径为r,则4πR2=32π,R=,不变,则高最大,若四面体ABCD的体积的最大值,底面积S△ABC就是D到底面ABC距离最大值时,h=R+.∴四面体ABCD的体积的最大值为.故选:A.【点评】本题考查球内接多面体,球的表面积,其中分析出何时四面体ABCD 的体积的最大值,是解答的关键,是中档题.11.如图所示,正方体ABCD﹣A1B1C1D1边长为2,N为CC1的中点,M为线段上的动点(不含端点),若过点A,M,N的平面截该正方体所得截面为四边形,则线段BM长度的取值范围是()A.(0,1]B.[1,2)C.(0,]D.[,2)【分析】当点M为线段BC的中点时,截面为四边形AMND1,从而当0<BM ≤1时,截面为四边形,当BM>1时,截面为五边形,或六边形,由此能求出线段BM的取值范围.【解答】解:解:∵正方体ABCD﹣A1B1C1D1的体积为1,点M在线段BC上(点M异于B,C两点),点N为线段CC1的中点,平面AMN截正方体ABCD﹣A1B1C1D1所得的截面为四边形,∴依题意,当点M为线段BC的中点时,由题意可知,截面为四边形AMND1,从而当0<BM≤1时,截面为四边形,当BM>1时,截面为五边形,或六边形,故线段BM的取值范围为(0,1].故选:A.【点评】本题考查线段的取值范围的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.12.已知长方体ABCD﹣A1B1C1D1内接于半球O,且底面ABCD落在半球的底面上,底面A1B1C1D1的四个顶点落在半球的球面上,若半球的半径为3,AB=BC,则该长方体体积的最大值为()A.12B.6C.48D.72【分析】设该正四棱柱的高为h,底面边长为a,计算出底面外接圆的半径r=a,利用勾股定理h2+r2=9,得出a2=18﹣2h2,利用柱体体积公式得出柱体体积V关于h的函数关系式,然后利用导数可求出V的最大值.【解答】解:设正四棱柱ABCD﹣A1B1C1D1的高为h,底面棱长为a,则正四棱柱的底面外接圆直径为2r=a,所以,r=a.由勾股定理得h2+r2=32,即h2+a2=9,得a2=18﹣2h2,其中0<h<3,所以,正四棱柱ABCD﹣A1B1C1D1的体积为V=a2h=(18﹣2h2)h=﹣2h3+18h,其中0<h<3,构造函数f(h)=﹣2h3+18h,其中0<h<3,则f′(h)=﹣6h2+18,令f′(h)=0,得h=.当0<h<时,f′(h)>0;当<h<3时,f′(h)<0.所以,函数V=f(h)在h=处取得极大值,亦即最大值,则V max=f()=12.因此,该正四棱柱的体积的最大值为12.故选:A.【点评】本题考查球体内接几何体的相关计算,解决本题的关键在于找出相应几何量所满足的关系式,考查计算能力,属于中等题.13.已知某多面体的三视图如图所示,则在该多面体的距离最大的两个面中,两个顶点距离的最大值为()A.2B.C.D.【分析】根据三视图知该多面体是由正方体截去两个正三棱锥所成的几何体,结合图形得出该多面体的距离最大的两个面为截面三角形,求出这两个平面三角形对应顶点距离的最大值是面对角线的长.【解答】解:根据几何体的三视图知,该多面体是由正方体截去两个正三棱锥所成的几何体,如图所示;则该多面体的距离最大的两个面为截面三角形,所以这两个平面三角形对应顶点距离的最大值是面对角线的长,为2.故选:D.【点评】本题考查了利用三视图求几何体结构特征的应用问题,是基础题.14.如图,在正方体ABCD﹣A1B1C1D1中,点F是线段BC1上的动点,则下列说法错误的是()A.无论点F在BC1上怎么移动,异面直线A1F与CD所成角都不可能是30°B.无论点F在BC1上怎么移动,都有A1F⊥B1DC.当点F移动至BC1中点时,才有A1F与B1D相交于一点,记为点E,且=2D.当点F移动至BC1中点时,直线A1F与平面BDC1所成角最大且为60°【分析】先分析A,B,C都正确,故用排除法可得选D.【解答】解:对于选项A,当点F从B运动到C1时,异面直线A1F与CD所成角由大到小再到大,且F为B1C的中点时最小角的正切值为=>,最小角大于30°,故A正确;对于选项B,在正方形中,DB1⊥面A1BC1,又A1F⊂面A1BC1,所以A1F⊥B1D,故B正确;对于选项C,F为BC1的中点时,也是B1C的中点,它们共面于平面A1B1CD,且必相交,设为E,连A1D和B1C,根据三角形A1DE∽三角形FB1E,可得==2,故选C也正确;故选:D.【点评】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.15.我国古代名著《张丘建算经》中记载:“今有方锥下广二丈,高三丈,欲斩末为方亭;令上方六尺;问亭方几何?”大致意思是:有一个正四棱锥下底边长为二丈,高三丈;现从上面截去一段,使之成为正四棱台状方亭,且正四棱台的上底边长为六尺,则该正四棱台的体积是(注:1丈=10尺)()A.1946立方尺B.3892立方尺C.7784立方尺D.11676立方尺【分析】根据题意画出图形,利用棱锥与棱台的结构特征求出正四棱台的高,再计算它的体积.【解答】解:如图所示,正四棱锥P﹣ABCD的下底边长为二丈,即AB=20尺,高三丈,即PO=30尺;截去一段后,得正四棱台ABCD﹣A′B′C′D′,且上底边长为A′B′=6尺,所以=,解得OO′=21,所以该正四棱台的体积是V=×21×(202+20×6+62)=3892(立方尺).故选:B.【点评】本题考查了棱锥与棱台的结构特征与应用问题,也考查了棱台的体积计算问题,是基础题.16.如图,已知正方体ABCD﹣A1B1C1D1的棱长为4,P是AA1的中点,点M 在侧面AA1B1B内,若D1M⊥CP,则△BCM面积的最小值为()A.8B.4C.D.【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出△BCM面积取最小值.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,则P(4,0,2),C(0,4,0),D1(0,0,4),B(4,4,0),设M(4,a,b),则=(4,a,b﹣4),=(4,﹣4,2),∵D1M⊥CP,∴•=16﹣4a+2b﹣8=0,解得2a﹣b=4,∴M(4,a,4﹣2a),|BM|===,∴a=2,即M(4,2,0)时,△BCM面积取最小值S==4.故选:B.【点评】本题考查三角形的面积的最小值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.17.《九章算术》给出求羡除体积的“术”是:“并三广,以深乘之,又以袤乘之,六而一”,其中的“广”指羡除的三条平行侧棱的长,“深”指一条侧棱到另两条侧棱所在平面的距离,“袤”指这两条侧棱所在平行线之间的距离,用现代语言描述:在羡除ABC﹣A1B1C1中,AA1∥BB1∥CC1,AA1=a,BB1=b,CC1=c,两条平行线AA1与BB1间的距离为h,直线CC1到平面AA1B1B 的距离为h′,则该羡除的体积为V=(a+b+c).已知某羡除的三视图如图所示,则该羡除的体积为()A.3B.C.D.2【分析】根据三视图求出羡除的体积V=(a+b+c)中所需数据,代入得答案.【解答】解:由三视图还原原几何体知,羡除ABC﹣A1B1C1中,AB∥EF,底面ABCD是矩形,AB=CD=2,EF=1,平面ADE⊥平面ABCD,AB,CD间的距离h=AD=2,如图,取AD中点G,连接EG,则EG⊥平面ABCD,由侧视图知,直线EF到平面ABCD的距离为h′=1,∴该羡除的体积为V=(a+b+c)=.故选:B.【点评】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.18.已知四棱锥M﹣ABCD,MA⊥平面ABCD,AB⊥BC,∠BCD+∠BAD=180°,MA=2,BC=2,∠ABM=30°.若四面体MACD的四个顶点都在同一个球面上,则该球的表面积为()A.20πB.22πC.40πD.44π【分析】先由题中条件得知四边形ABCD四点共圆,利用锐角三角函数计算出AB,再由勾股定理得出四边形ABCD的外接圆直径AC,再利用公式可得出球的直径,最后利用球体的表面积公式可得出答案.【解答】解:由于∠BCD+∠BAD=180°,则四边形ABCD四点共圆,由于MA⊥平面ABCD,AB⊂平面ABCD,所以,MA⊥AB,在Rt△ABM中,∵∠ABM=30°,MA=2,所以,,∵AB⊥BC,所以,四边形ABCD的外接圆直径为,因此,四面体MACD的外接球直径为,所以,该球的表面积为4πR2=π×(2R)2=40π.故选:C.【点评】本题考查球体表面积的计算,解决本题的关键在于确定底面四点共圆,并利用合适的方法求出外接圆的半径,考查计算能力,属于中等题.19.已知m,n是两条不同的直线,α,β是两个不同的平面,给出下列命题:①若m∥α,m⊥n,则n⊥α;②若m⊥α,n∥α,则m⊥n;③若m,n是异面直线,m⊂α,m∥β,n⊂β,n∥α,则α∥β;④若m,n不平行,则m与n不可能垂直于同一平面.其中为真命题的是()A.②③④B.①②③C.①③④D.①②④【分析】在①中,n与α的位置关系不确定;在②中,由线面垂直、线面平行的位置关系得m⊥n;在③中,由面面平行的判定定理得α∥β;在④中,若m,n不平行,则m与n不可能垂直于同一平面的逆否命题是真命题.【解答】解:由m,n是两条不同的直线,α,β是两个不同的平面,知:在①中,m∥α,m⊥n,则n与α的位置关系不确定,故①错误;在②中,若m⊥α,n∥α,则由线面垂直、线面平行的位置关系得m⊥n,故②正确;在③中,若m,n是异面直线,m⊂α,m∥β,n⊂β,n∥α,则由面面平行的判定定理得α∥β,故③正确;在④中,若m,n不平行,则m与n不可能垂直于同一平面的逆否命题为:若m,n垂直于同一平面,则m,n平行,是真命题,故④正确.故选:A.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.《九章算术》是世界数学发展史上的一颗璀璨明珠,书中《商功》有如下问题:今有委菽依垣,下周三丈,高七尺,问积及为菽各几何?其意思为:现将大豆靠墙堆放成半圆锥形,底面半圆的弧长为3丈,高7尺,问这堆大豆的体积是多少立方尺?应有大豆是多少斛?主人欲卖掉该堆菽,已知圆周率约为3,一丈等于十尺,1斛约为2.5立方尺,1斛菽卖300钱,一两银子等于1000钱,则主人可得银子()两A.40B.42C.44D.45【分析】推导出2πR=60,解得R=≈10(尺),求出这堆大豆的体积V==350(立方尺),由此能求出结果.【解答】解:∵现将大豆靠墙堆放成半圆锥形,底面半圆的弧长为3丈,高7尺,圆周率约为3,∴2πR=60,解得R=≈10(尺),∴这堆大豆的体积V==350(立方尺),350÷2.5=140(斛),主人欲卖掉该堆菽,则主人可得银子:=42(两).故选:B.【点评】本题考查圆锥的体积的求法及应用,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.21.如图,已知正方体ABCD﹣EFGR的上底面中心为H,点O为AH上的动点,P为FG的三等分点(靠近点F),Q为BF的中点,分别记二面角P﹣OQ ﹣R、Q﹣OR﹣P、R﹣OP﹣Q的平面角为α、β、γ,则()A.γ<α<βB.α<γ<βC.β<α<γD.α<β<γ【分析】以E为原点,EF为x轴,ER为y轴,EA为z轴,建立空间直角坐标系,设正方体ABCD﹣EFGR的棱长为3,设AO=AC,利用向量法能比较三个二面角α、β、γ的大小.【解答】解:以E为原点,EF为x轴,ER为y轴,EA为z轴,建立空间直角坐标系,设正方体ABCD﹣EFGR的棱长为3,设AO=AC,则P(3,1,0),O(1,1,3),Q(,0,0),R(0,0,3),=(,﹣1,﹣3),=(﹣1,﹣1,0),=(2,0,﹣3),设平面OQP的法向量=(x,y,z),则,取z=2,得=(3,﹣,2),设平面OQR的法向量=(x,y,z),则,取x=1,得=(1,﹣1,),∴cosα===≈0.9835;设平面OPR的法向量=(x,y,z),则,取x=3,得=(3,﹣3,2),∴cosβ===≈0.9798;cosγ===≈0.9949,∴γ<α<β.故选:A.【点评】本题考查二面角的大小的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.22.如图,正方体AC1的棱长为a,作平面α(与底面不平行)与棱A1A,B1B,C1C,D1D分别交于E,F,G,H,记EA,FB,GC,HD分别为h1,h2,h3,h4,若h1+h2=2h3,h3+h4=3h3,则多面体EFGHABCD的体积为()A.a2h1B.a2h2C.a2h3D.a2h4【分析】由正方体的对面平行及面面平行的性质定理得四边形EFGH是平行四边形,连结AC,BD交于点O,连结EG,FH,交于点O1,连结OO1,则h1+h2=h3+h4=2OO1,由两个多面体EFGHABCD可以拼成都市个长方体,能求了多面体EFGHABCD的体积.【解答】解:由正方体的对面平行及面面平行的性质定理得:EF∥GH,EH∥FH,∴四边形EFGH是平行四边形,连结AC,BD交于点O,连结EG,FH,交于点O1,连结OO1,则h1+h2=h3+h4=2OO1,∵h1+h2=2h3,h3+h4=3h3,∴,,,∵两个多面体EFGHABCD可以拼成都市个长方体,∴多面体EFGHABCD的体积为:V====.故选:C.【点评】本题考查多面体的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.23.我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥.现有一如图所示的堑堵ABC﹣A1B1C1,AC⊥BC,A1A=2,当堑堵ABC﹣A1B1C1的外接球的体积为时,则阳马B﹣A1ACC1体积的最大值为()A.2B.4C.D.【分析】由已知求出三棱柱外接球的半径,得到A1B,进一步求得AB,再由棱锥体积公式结合基本不等式求最值.【解答】解:∵堑堵ABC﹣A1B1C1的外接球的体积为,∴其外接球的半径R=,即,又A1A=2,∴AB=2.则AC2+BC2=4.∴==.即阳马B﹣A1ACC1体积的最大值为.故选:D.【点评】本题考查多面体的体积、均值定理等基础知识,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,是中档题.24.我国南北朝时期的数学家祖暅提出了计算几何体体积的祖暅原理:“幂势既同,则积不容异”.意思是两个同高的几何体,如果在等高处的截面积都相等,那么这两个几何体的体积相等.现有同高的三棱锥和圆锥满足祖暅满足祖暅原理的条件.若圆锥的侧面展开图是半径为2的半圆,由此推算三棱锥的体积为()A.B.C.D.【分析】根据圆锥侧面积展开图是半径为2的半圆,计算出圆锥的体积,由此能求出三棱锥的体积.【解答】解:设圆锥的底面半径为r,则2πr=,解得r=1,∴圆锥的高h==,∴圆锥的体积也即三棱锥的体积为:=.故选:D.【点评】本题考查三棱锥的体积的求法,考查圆锥侧面展开图与底面圆的关系等基础知识,考查运算求解能力,考查中国古代数学文化,是中档题.25.如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧面SCD⊥底面ABCD,△SCD为等腰直角三角形,SC=SD=2.若点P在线段AC(不含端点)上运动,则SP+BP的最小值为()A.B.C.D.【分析】由△SCD为等腰直角三角形,且SC=SD=2,可得CD=,设PC =x(0<x<2),把SP+BP用含有x的代数式表示,变形后再由其几何意义求解.【解答】解:如图,∵△SCD为等腰直角三角形,且SC=SD=2,∴CD=,设PC=x(0<x<2),则,SP═,BP==.∴SP+BP==.其几何意义为动点(x,0)到两定点M(1,)与N(2,2)距离和,如图,N关于x轴的对称点为G(2,﹣2),则SP+BP的最小值为=.故选:B.【点评】本题考查棱锥的结构特征,考查空间中点线面间的距离计算,考查数学转化思想方法,是中档题.26.如图,在正方体ABCD﹣A′B′C′D′中,平面α垂直于对角线AC′,且平面α截得正方体的六个表面得到截面六边形,记此截面六边形的面积为S,周长为l,则()A.S为定值,l不为定值B.S不为定值,l为定值C.S与l均为定值D.S与l均不为定值【分析】将正方体切去两个正三棱锥A﹣A′BD与C′﹣D′B′C后,得到一个以平行平面A′BD与D′B′C为上、下底面的几何体V,V的每个侧面都是等腰直角三角形,截面多边形W的每一条边分别与V的底面上的一条边平行,将V的侧面沿棱A′B′剪开,展平在一张平面上,得到一个▱A′B′B1A1,考查E′的位置,确定S,l.【解答】解:将正方体切去两个正三棱锥A﹣A′BD与C′﹣D′B′C后,得到一个以平行平面A′BD与D′B′C为上、下底面的几何体V,V的每个侧面都是等腰直角三角形,截面多边形W的每一条边分别与V的底面上的一条边平行,将V的侧面沿棱A′B′剪开,展平在一张平面上,得到一个▱A′B′B1A1,如图,而多边形W的周界展开后便成为一条与A′A1平行的线段(如图中E′E1),由题意得E′E1=A′A1,故l为定值.当E′位于A′B′中点时,多边形W为正六边形,而当E′移至A′处时,W 为正三角形,由题意知周长为定值l的正六边形与正三角形面积分别为与,故S 不为定值.故选:B.【点评】本题考查利用平面几何的知识解决立体几何,考查学生的空间想象能力,考查运算求解能力,是难题.27.如图,在直三棱柱ABC﹣A1B1C1中,D,E分别是A1B1,BB1的中点,点P 在该直三棱柱表面上运动,且满足EP⊥BD,∠BAC=90°,AB=AA1=AC=2,则点P的轨迹形成的曲线的长等于()A.4+2B.2++2C.5+D.2+2【分析】利用线面的垂直关系得到BD垂直平面ACE,即得P点轨迹为三角形ACE,求解较易.【解答】解:如图连接CE,AE,易证BD⊥AE,AC⊥BD,∴BD⊥平面ACE,∵EP⊥BD,∴P点轨迹为△ACE,可求得其周长为5+,故选:C.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.如图,四棱锥P-ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面ABCD 所成二面角为60°
(1)求四棱锥P-ABCD 的体积
(2)证明PA ⊥BD
2、如图,长方体框架ABCD -,,,,D C B A ,三边,、、AA AD AB 的长分别为6、8、
3.6,AE 与底面的对角线,,D B 垂直于E 。
(1)证明,,,D B E A ;
(2)求AE 的长
3、如图,已知⊙O 的直径AB=3,点C 为⊙O 上异于A ,B 的一点,VC ⊥平面ABC,且VC=2,点M 为线段VB 的中点。
(1)求证:BC ⊥平面VAC;
(2)若直线AM 与平面VAC 所成角为4π,求三棱锥B-ACM 的体积
4、如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,CF⊥FB,BF=CF,G为BC的中点,
(1)求证:FG∥平面BDE;
(2)求平面BDE与平面BCF所成锐二面角的大小;
(3)求四面体B-DEF的体积。
5、如图,三棱锥P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB 上的一点,且CD⊥平面PAB
(1)求证AB⊥平面PCB;
(2)求二面角C-PA-B的大小的余弦值。
6、ABCD为平行四边形,P为平面ABCD外的一点,PA⊥平面ABCD,且PA=AD=2,AB=1,AC=3
(1)求证:平面ACD⊥平面PAC;
(2)求异面直线PC与BD所成角的余弦值;
(3)设二面角A-PC-B的大小为θ,试求θ
tan的值。
7、如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,F 为CE上的点,且BF⊥平面ACE
(1)求证AE⊥平面BCE;
(2)求二面角B-AC-E的正弦值;
(3)求点D到平面ACE的距离。
8、如图所示,四棱锥P-ABCD 的底面ABCD 是直角梯形,BC ∥AD ,AB ⊥AD ,
AB=BC=2
1AD ,PA ⊥底面ABCD ,过BC 的平面交PD 于M ,交PA 与N (M 与D 不重合)。
(1)求证:MN ∥BC ;
(2)求证:CD ⊥PC ;
(3)如果BM ⊥AC ,求此时PD PM
的值。
1.如图,四棱锥P-ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面ABCD 所成二面角为60°
(3)求四棱锥P-ABCD 的体积
(4)证明PA ⊥BD
2、如图,长方体框架ABCD -,,,,D C B A ,三边,
、、AA AD AB 的长分别为6、8、3.6,AE 与底面的对角线,,D B 垂直于E 。
(3)证明,,,D B E A ;
(4)求AE 的长
3、如图,已知⊙O 的直径AB=3,点C 为⊙O 上异于A ,B 的一点,VC ⊥平面ABC,且VC=2,点M 为线段VB 的中点。
(3)求证:BC ⊥平面VAC;
(4)若直线AM 与平面VAC 所成角为4
π,求三棱锥B-ACM 的体积
4、如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB=2EF=2,EF ∥AB ,EF ⊥FB,CF ⊥FB ,BF=CF ,G 为BC 的中点,
(4)求证:FG ∥平面BDE ;
(5)求平面BDE 与平面BCF 所成锐二面角的大小;
(6)求四面体B-DEF 的体积。
6、如图,三棱锥P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上的一点,且CD⊥平面PAB
(3)求证AB⊥平面PCB;
(4)求二面角C-PA-B的大小的余弦值
7、ABCD为平行四边形,P为平面ABCD外的一点,PA⊥平面ABCD,且PA=AD=2,AB=1,AC=3
(4)求证:平面ACD⊥平面PAC;
(5)求异面直线PC与BD所成角的余弦值;
tan的值。
(6)设二面角A-PC-B的大小为θ,试求θ
8、如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE
(4)求证AE⊥平面BCE;
(5)求二面角B-AC-E的正弦值;
(6)求点D到平面ACE的距离。
8、如图所示,四棱锥P-ABCD 的底面ABCD 是直角梯形,BC ∥AD ,AB ⊥AD ,AB=BC=21AD ,PA ⊥底面ABCD ,过BC 的平面交PD 于M ,交PA 与N (M 与D 不重合)。
(4)求证:MN ∥BC ;
(5)求证:CD ⊥PC ;
(6)如果BM ⊥AC ,求此时
PD
PM 的值。