高考数学选择题的解法技巧

合集下载

高考数学选择题技巧方法

高考数学选择题技巧方法

l 有且仅有一个平面与α垂
直;③异面直线 a、 b 不垂直, 那么过 a 的任一个平面与 b 都不垂直。其中正确命题的个数为(

A.0
B.1
C. 2
D.3
解析 :利用立几中有关垂直的判定与性质定理对上述三个命题作出判断,
例 3、已知 F1、F2 是椭圆
x 2 y2
+
=1 的两焦点,
经点 F2 的的直线交椭圆于点
x 1.
例 12. 1 2i ( C ) i
A. 2 i
解析: 1 2i i
B. 2 i
i 2 2i 2i
i
C. 2 i
D. 2 i
例 13. 等比数列 { an} 中 a1 512 , 公比 q
1
,记 n
2
a1 a 2 L
an (即
数列 { an} 的前 n 项之积),
8 , 9 , 10 , 11 中值为正数的个数是
根据 f(-x)=f(x) 可得 函数为偶函数且在( 0, + 无穷大)上单调递减
) 上单调增 ) 上单调增
例 9.集合 A { x | | x 2 | 2} , B { y | y x2 , 1 x 2} , 则 A I B C
A. R B . { x | x 0} C . {0}
D

A [ 0 , 4] , B [ 4 , 0] , 所以 A I B {0} .
一.选择题部分
(一)高考数学选择题的解题方法
1、直接法 :就是从题设条件出发, 通过正确的运算、推理或判断, 直接得出结论再与选择支对照, 从 而作出选择的一种方法。运用此种方法解题需要扎实的数学基础。
例 1、某人射击一次击中目标的概率为 ()

[全]高考数学选择题六大答题技巧(附例题详解)

[全]高考数学选择题六大答题技巧(附例题详解)

[全]高考数学选择题六大答题技巧(附例题详解)选择题是高考数学试卷的三大题型之一.选择题的分数一般占全卷的40%左右:(1)绝大部分数学选择题属于中低档题,且一般按由易到难的顺序排列,主要的数学思想和数学方法能通过它得到充分的体现和应用,并且因为它还有相对难度(如思维层次、解题方法的优劣选择,解题速度的快慢等),所以选择题已成为具有较好区分度的基本题型之一。

(2)选择题具有概括性强、知识覆盖面广、小巧灵活及有一定的综合性和深度等特点,且每一题几乎都有两种或两种以上的解法,能有效地检测学生的思维层次及观察、分析、判断和推理能力。

目前高考数学选择题采用的是一元选择题(即有且只有一个正确答案),由选择题的结构特点,决定了解选择题除常规方法外还有一些特殊的方法.解选择题的基本原则是:“小题不能大做”,要充分利用题目中(包括题干和选项)提供的各种信息,排除干扰,利用矛盾,作出正确的判断。

数学选择题的求解,一般有两条思路:一是从题干出发考虑,探求结果。

二是从题干和选择支联合考虑或从选择支出发探求是否满足题干条件。

解答数学选择题的主要方法包括直接法、概念辨析法、数型结合法、特殊值法、排除法、逆向思维法等,这些方法既是数学思维的具体体现,也是解题的有效手段。

一一、直接法直接对照型选择题是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,从而直接得出正确结论,然后对照题目所给出的选项“对号入座”,从而确定正确的选择支。

这类选择题往往是由计算题、应用题或证明题改编而来,其基本求解策略是由因导果,直接求解。

思路解析:关于直线与圆锥曲线位置关系的题目,通常是联立方程解方程组.本题即是利用渐近线与抛物线相切,求出渐近线斜率.二、概念辨析法概念辨析是从题设条件出发,通过对数学概念的辨析,进行少量运算或推理,直接选择出正确结论的方法.这类题目常涉及一些似是而非、很容易混淆的概念或性质,这需要考生在平时注意辨析有关概念,准确区分相应概念的内涵与外延,同时在审题时要多加小心,准确审题以保证正确选择.一般说来,这类题目运算量小,侧重判断,下笔容易,但稍不留意则易误入命题者设置的“陷阱”。

高考数学选择题答题技巧和套路(最新)

高考数学选择题答题技巧和套路(最新)

高考数学选择题答题技巧和套路(最新)高考数学选择题是很多考生感到头疼的题型,因为涉及范围广、题目多样,需要考生有一些技巧和策略进行应对。

本篇文档将分享一些最新的高考数学选择题答题技巧和套路,希望能对大家有所帮助。

一、减少遗漏很多考生在做高考数学选择题时,容易遗漏掉一些题目,进而影响成绩。

下面是一些减少遗漏的技巧:1.认真审题在做选择题时,应该认真审题,看清题目要求,确定所求答案,避免在做题时出现偏差,导致选错答案。

2.注意选项在给出的选项中,有些选项很容易错,需要进行仔细辨别,避免出现选错答案的情况。

另外,有些选项很容易漏选,需要在做题时特别留意。

3.确认答案做题时不能太着急,做完了题目就直接选答案。

应该多核对几遍答案,确保所选答案是正确的。

二、选择题常用技巧1.先排除显然的选项有些选项很显然是不对的,应该先把这些选项排除掉,降低选项的数量。

2.看选项相近程度有时候选项中的两个答案会非常相似,这时候就需要在细节中寻找差异,找到不同之处再做出选择。

3.利用常见套路有些选项出题人会使用一些常见的套路,比如“反过来”、“倒着来”,考生可以熟悉这些套路,从而避免出现错误的选择。

4.利用图形、数据、公式等信息选择题可能提供一些关键信息,如图形、数据、公式等,需要看清这些信息,并学会从这些信息中得出正确答案。

三、套路类题型1.函数类题目函数类题目一般会提供函数的定义或者图像,需要考生熟悉函数的性质,了解函数的基本图像和变形规律,并注意特殊点的位置。

2.数列类题目数列类题目可能涉及到数列的通项公式、项数公式、求和公式等,需要考生能够识别数列的性质,熟悉数列的通项公式和项数公式,并学会运用求和公式。

3.几何类题目几何类题目一般与图形有关,需要考生熟悉几何形状的性质和变形规律,注意直角、相似、全等等关系,同时还需要掌握一些基本的几何公式和定理。

四、总结在做高考数学选择题时,应该认真审题、注意选项、多确认答案,同时熟练掌握一些常用的答题技巧和套路,对于套路类题型要熟悉相应的知识点。

(完整版)高考数学选择题的解题技巧

(完整版)高考数学选择题的解题技巧

高考数学选择题的解题技巧解数学选择题的常用方法,主要分直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法,但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答,因此,我们还要研究解答选择题的一些技巧.总的来说,选择题属小题,解题的原则是:小题巧解,小题不能大做.方法一 直接法直接法就是从题干给出的条件出发,进行演绎推理,直接得出结论.这种策略多用于一些定性的问题,是解选择题最常用的策略.这类选择题是由计算题、应用题、证明题、判断题改编而成的,可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则等通过准确的运算、严谨的推理、合理的验证得出正确的结论,然后与选择支对照,从而作出相应的选择.例1 数列{a n }的前n 项和为S n ,已知a 1=13,且对任意正整数m 、n ,都有a m +n =a m ·a n ,若S n <a 恒成立,则实数a 的最小值为( ) A.12 B.23 C.32D .2解析 对任意正整数m 、n ,都有a m +n =a m ·a n ,取m =1,则有a n +1=a n ·a 1⇒a n +1a n =a 1=13,故数列{a n }是以13为首项,以13为公比的等比数列,则S n =13(1-13n )1-13=12(1-13n )<12,由于S n <a 对任意n ∈N *恒成立,故a ≥12,即实数a 的最小值为12,选A .思维升华 直接法是解答选择题最常用的基本方法.直接法适用的范围很广,只要运算正确必能得出正确的答案.平时练习中应不断提高用直接法解选择题的能力,准确把握题目的特点.用简便的方法巧解选择题,是建立在扎实掌握“三基”的基础上的,否则一味求快则会快中出错.将函数y =sin 2x (x ∈R )的图象分别向左平移m (m >0)个单位、向右平移n (n >0)个单位所得到的图象都与函数y =sin(2x +π3)(x ∈R )的图象重合,则|m -n |的最小值为( ) A.π6 B.5π6 C.π3D.2π3解析 函数y =sin 2x (x ∈R )的图象向左平移m (m >0)个单位可得y =sin 2(x +m )=sin(2x +2m )的图象,向右平移n (n >0)个单位可得y =sin 2(x -n )=sin(2x -2n )的图象.若两图象都与函数y =sin(2x +π3)(x ∈R )的图象重合,则⎩⎨⎧2m =π3+2k 1π,2n =-π3+2k 2π,(k 1,k 2∈Z )即⎩⎨⎧m =π6+k 1π,n =-π6+k 2π.(k 1,k 2∈Z )所以|m -n |=|π3+(k 1-k 2)π|(k 1,k 2∈Z ),当k 1=k 2时,|m -n |min =π3.故选C .方法二 特例法特例检验(也称特例法或特殊值法)是用特殊值(或特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,再对各个选项进行检验,从而做出正确的选择.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.特例检验是解答选择题的最佳方法之一,适用于解答“对某一集合的所有元素、某种关系恒成立”,这样以全称判断形式出现的题目,其原理是“结论若在某种特殊情况下不真,则它在一般情况下也不真”,利用“小题小做”或“小题巧做”的解题策略.例2(1)等差数列{a n }的前m 项和为30,前2m项和为100,则它的前3m 项和为( ) A .130 B .170 C .210 D .260(2)如图,在棱柱的侧棱A 1A 和B 1B 上各有一动点P 、Q 满足A 1P =BQ ,过P 、Q 、C 三点的截面把棱柱分成两部分,则其体积之比为( ) A .3∶1 B .2∶1 C .4∶1 D.3∶1解析 (1)取m =1,依题意a 1=30,a 1+a 2=100,则a 2=70,又{a n }是等差数列,进而a 3=110,故S 3=210,选C .(2)将P 、Q 置于特殊位置:P →A 1,Q →B ,此时仍满足条件A 1P =BQ (=0),则有1C AA B V -=1A ABC V -=1113ABC A B C V -,故选B .思维升华 特例法具有简化运算和推理的功效,比较适用于题目中含有字母或具有一般性结论的选择题,但用特例法解选择题时,要注意以下两点: 第一,取特例尽可能简单,有利于计算和推理;第二,若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解.已知O 是锐角△ABC 的外接圆圆心,∠A=60°,cos B sin C ·AB →+cos C sin B·AC →=2m ·AO →,则m 的值为( ) A.32 B.2 C .1 D.12答案 A解析 如图,当△ABC 为正三角形时,A =B =C =60°,取D 为BC 的中点, AO →=23AD →,则有13AB →+13AC →=2m ·AO →, ∴13(AB →+AC →)=2m ×23AD →,∴13·2AD →=43mAD →,∴m =32,故选A . 方法三 排除法(筛选法)例3函数y=x sin x在[-π,π]上的图象是()解析容易判断函数y=x sin x为偶函数,可排除D;当0<x<π时,y=x sin x>0,排除B;2当x=π时,y=0,可排除C;故选A.思维升华排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法.函数y=2|x|的定义域为[a,b],值域为[1,16],a变动时,方程b=g(a)表示的图形可以是()解析研究函数y=2|x|,发现它是偶函数,x≥0时,它是增函数,因此x=0时函数取得最小值1,而当x=±4时,函数值为16,故一定有0∈[a,b],而4∈[a,b]或者-4∈[a,b],从而有结论a=-4时,0≤b≤4,b=4时,-4≤a≤0,因此方程b=g(a)的图形只能是B.方法四数形结合法(图解法)在处理数学问题时,能够将抽象的数学语言与直观的几何图形有机结合起来,通过对规范图形或示意图形的观察分析,将数的问题(如解方程、解不等式、判断单调性、求取值范围等)与某些图形结合起来,利用图象的直观性,化抽象为直观,化直观为精确,从而使问题得到解决,这种方法称为数形结合法.例4函数f (x )=⎝⎛⎭⎫12|x -1|+2cos πx (-2≤x ≤4)的所有零点之和等于( ) A .2 B .4 C .6 D .8解析 由f (x )=⎝⎛⎭⎫12|x -1|+2cos πx =0, 得⎝⎛⎭⎫12|x -1|=-2cos πx , 令g (x )=⎝⎛⎭⎫12|x -1|(-2≤x ≤4), h (x )=-2cos πx (-2≤x ≤4),又因为g (x )=⎝⎛⎭⎫12|x -1|=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -1, 1≤x ≤4,2x -1, -2≤x <1.在同一坐标系中分别作出函数g(x)=⎝⎛⎭⎫1x-1|(-2≤x≤4)和h(x)=-2cos πx(-2≤x≤4)的图象2|(如图),由图象可知,函数g(x)=⎝⎛⎭⎫1x-1|关于x=1对称,2|又x=1也是函数h(x)=-2cos πx(-2≤x≤4)的对称轴,所以函数g(x)=⎝⎛⎭⎫1x-1|(-2≤x≤4)和h(x)=-2co s πx(-2≤x≤4)的交点也关于x=1对称,且2|两函数共有6个交点,所以所有零点之和为6.答案 C思维升华本题考查函数图象的应用,解题的关键是将零点问题转化为两图象的交点问题,然后画出函数的图象找出零点再来求和.严格地说,图解法并非属于选择题解题思路范畴,但它在解有关选择题时非常简便有效.运用图解法解题一定要对有关函数的图象、方程曲线、几何图形较熟悉.图解法实际上是一种数形结合的解题策略.过点(2,0)引直线l与曲线y=1-x2相交于A、B两点,O为坐标原点,当△AOB的面积取最大值时,直线l的斜率等于()A.33B.-33C.±33D.- 3答案 B解析由y=1-x2,得x2+y2=1(y≥0),其所表示的图形是以原点O为圆心,1为半径的上半圆(如图所示).由题意及图形,知直线l的斜率必为负值,故排除A,C选项.当其斜率为-3时,直线l的方程为3x+y-6=0,点O到其距离为|-6|3+1=62>1,不符合题意,故排除D选项.选B.方法五估算法由于选择题提供了唯一正确的选择支,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量,但是加强了思维的层次.例5 若A 为不等式组⎩⎪⎨⎪⎧ x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为( ) A.34 B .1 C.74D .2 解析 如图知区域的面积是△OAB 去掉一个小直角三角形.阴影部分面积比1大,比S △OAB =12×2×2=2小,故选C 项. 答案 C思维升华 “估算法”的关键是确定结果所在的大致范围,否则“估算”就没有意义.本题的关键在于所求值应该比△AOB 的面积小且大于其面积的一半.已知sin θ=m -3m +5,cos θ=4-2m m +5(π2<θ<π),则tan θ2等于( ) A.m -39-m B.m -3|9-m |C.13 D .5 答案 D解析 利用同角正弦、余弦的平方和为1求m 的值,再根据半角公式求tan θ2,但运算较复杂,试根据答案的数值特征分析.由于受条件sin 2θ+cos 2θ=1的制约,m 为一确定的值,进而推知tan θ2也为一确定的值,又π2<θ<π,因而π4<θ2<π2,故tan θ2>1.1.解选择题的基本方法有直接法、排除法、特例法、估算法、验证法和数形结合法.但大部分选择题的解法是直接法,在解选择题时要根据题干和选择支两方面的特点灵活运用上述一种或几种方法“巧解”,在“小题小做”、“小题巧做”上做文章,切忌盲目地采用直接法.2.由于选择题供选答案多、信息量大、正误混杂、迷惑性强,稍不留心就会误入“陷阱”,应该从正反两个方向肯定、否定、筛选、验证,既谨慎选择,又大胆跳跃.3.作为平时训练,解完一道题后,还应考虑一下能不能用其他方法进行“巧算”,并注意及时总结,这样才能有效地提高解选择题的能力.。

高考数学必杀技之选择题解题方法

高考数学必杀技之选择题解题方法

高考数学必杀技之选择题解题方法乐至中学 冷世平数学选择题在当今高考试卷中,不但题目多,而且占分比例高,虽然选择题由原来的12题改为10题,但其分值仍占到试卷总分的三分之一。

数学选择题具有概括性强,知识覆盖面广,小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。

要想选择题准确率高,除了要有扎实的基础知识外,方法和技巧也非常重要。

现将高考数学中常用的几种求解选择题的方法列举如下,供同学们参考。

一、直接法通过阅读和观察,从题设条件出发,通过正确的运算、推理或判断,直接得出结论,然后再与选择支对照,从而作出选择的一种方法。

这种解题方法一般适用于基本无需转化或推理的简单题目,运用此种方法解题需要扎实的数学基础。

例1.已知12,F F 是椭圆221169x y +=的两个焦点,经点2F 的的直线交椭圆于点,A B ,若5AB =,则11AF BF +等于( ).9A .10B .11C .16D【答案】C【分析】从题设条件以及题目所求来看,此题主要考查椭圆的定义,故解决此题,可以从椭圆的定义入手。

【解析】由椭圆的定义可得121228,28AF AF a BF BF a +==+==,两式相加后将225AB AF BF ==+代入,得1111AF BF +=,故选C 。

例2.抛物线2y x =-上的点到直线4380x y +-=的距离的最小值是( )4.3A 7.5B 8.5C .3D 【答案】A【分析】本题主要考查抛物线上一个动点到定直线距离的求法,题目中要求距离的最小值,可以从两个方面考虑:一是转化为函数的最值问题;二是转化为两平行线之间的距离问题,很容易想到,当且仅当抛物线的切线与已知直线平行时,切点到已知直线的距离为最小值。

【法一】此题可以直接转化为求一个动点到一条定直线的距离的最小值,自然而然想到点到直线的距离公式。

不妨设动点200(,)P x x -,由点到直线的距离公式可知,22000220203()34843335553x x x d -+-+===≥=,故选A 。

高考数学选择题技巧(精选5篇)

高考数学选择题技巧(精选5篇)

高考数学选择题技巧(精选5篇)高考数学选择题技巧篇11、高考数学时带一个量角器进考场,因为高考解析几何题一定会有求度数的小题,这时考生就可以用量角器测一下,就可以写出最后结论,这是最简单也是最牛的高考数学蒙题技巧。

2、在高考数学计算题中,要首先写一答字!如果选项是4个数,一般是第二大的是正确选项。

单看选项,一般BD稍多,A较少。

还有一点,选了之后就不要改了,除非有90以上的把握。

这个经验堪称是史上最牛的高考数学蒙题技巧。

3、经过历年高考经验总结,高考数学第一题和最后一题一般不会是A!高考数学选择题的答案分布均匀!填空题不会就填0或1!答案有根号的,不选!答案有1的,选!有一个是正X,一个是负X的时候,在这两个中选!题目看起来数字简单,那么答案选复杂的,反之亦然。

上一题选什么,这一题选什么,连续有三个相同的则不适合本条!以上都不实用的时候选B!4、数学选择不会时去除最大值与最小值再二选一,老师告诉我们的!高考题百分之八十是这样的。

高考数学选择题技巧篇2一、利用已知条件和选项所提供的信息,从四个数学选择题选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

二、对于具有一般性的数学问题,在选择题解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

值得注意的是,特殊值法常常也与排除法同时使用.三、将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何、立体几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决数学选择题问题。

四、利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

如下题,根据题意,依次将点代入函数及其反函数即可。

五、将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。

高考数学答题技巧与解题思路

高考数学答题技巧与解题思路

高考数学答题技巧与解题思路在高考中,数学是许多学生普遍感到困扰的科目之一。

它需要灵活运用各种技巧和解题思路来处理各类题目。

本文将介绍一些高考数学答题技巧和解题思路,帮助学生更好地应对数学考试。

一、选择题解题思路选择题在高考数学试卷中占有重要的比重。

解答选择题需要注意以下几点:1. 首先,仔细阅读题目,理解题目所要求的内容。

阅读题干和选项时要注意细节,避免因为粗心而丢分。

2. 其次,列出已知条件,找到相关的数学概念和定理。

有时候,选择题通过对已知条件的解析可以得到答案。

3. 利用排除法。

根据选项中的信息,可以在几个选项中排除一些明显错误的答案,从而缩小答案的范围。

4. 适时使用近似计算法。

高考中有些选择题可以通过适当的近似计算法来估算答案,从而快速获得正确答案。

二、解答计算题技巧高考数学试卷中,计算题往往需要较长时间来解答,需要学生具备一定的计算技巧。

以下是一些解答计算题的技巧:1. 简化计算:在进行长算式计算时,可以通过化简或者简化计算过程,减少繁琐的步骤,以节省时间。

2. 小数计算:小数计算是高考数学试卷中常见的计算类型之一。

处理小数时,可以采用移位运算、精确估算等方法,提高计算的准确性和效率。

3. 分数计算:分数计算也是高考数学试卷中的重要考点。

在进行分数计算时,可以通过通分、约分、倒数等方法,简化计算过程。

4. 视觉化计算:有些计算题可以通过将计算过程转化为图形或者几何形状,从而提高计算速度和准确度。

例如,通过图形的面积计算来解决几何题。

三、解答证明题方法证明题在高考数学试卷中往往是分数较高的题目,需要学生具备一定的推理和证明能力。

以下是一些解答证明题的方法:1. 利用数学知识和定理:对于证明题,学生需要熟练掌握各类数学知识和定理,并能够将其运用到具体问题中。

在解答证明题时,可以先回顾所学知识和定理,找到相关理论支撑。

2. 逻辑推理法:证明题往往需要学生进行逻辑推理,通过推导和演绎的方式来得到结论。

高考数学单选题和多选题的答题技巧

高考数学单选题和多选题的答题技巧

高考数学单选题和多选题的答题技巧【命题规律】高考的单选题和多选题绝大部分属于中档题目,通常按照由易到难的顺序排列,每道题目一般是多个知识点的小型综合,其中不乏渗透各种数学的思想和方法,基本上能够做到充分考查灵活应用基础知识解决数学问题的能力.(1)基本策略:单选题和多选题属于“小灵通”题,其解题过程可以说是“不讲道理”,所以其解题的基本策略是充分利用题干所提供的信息作出判断和分析,先定性后定量,先特殊后一般,先间接后直接,尤其是对选择题可以先进行排除,缩小选项数量后再验证求解.(2)常用方法:单选题和多选题也属“小”题,解题的原则是“小”题巧解,“小”题快解,“小”题解准.求解的方法主要分为直接法和间接法两大类,具体有:直接法,特值法,图解法,构造法,估算法,对选择题还有排除法(筛选法)等.【核心考点目录】核心考点一:直接法核心考点二:特珠法核心考点三:检验法核心考点四:排除法核心考点五:构造法核心考点六:估算法核心考点七:坐标法核心考点八:图解法【真题回归】1.(2022·天津·统考高考真题)函数()21x f x x-=的图像为()A .B .C .D .2.(2022·天津·统考高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120︒,腰为3的等腰三角形,则该几何体的体积为()A .23B .24C .26D .273.(2022·全国·统考高考真题)函数()33cos x x y x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A .B .C .D .4.(2022·北京·统考高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=()A .40B .41C .40-D .41-5.(多选题)(2022·全国·统考高考真题)若x ,y 满足221+-=x y xy ,则()A .1x y +≤B .2x y +≥-C .222x y +≤D .221x y +≥6.(多选题)(2022·全国·统考高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则()A .322V V =B .31V V =C .312V V V =+D .3123V V =7.(多选题)(2022·全国·统考高考真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A B .32C D 8.(多选题)(2022·全国·统考高考真题)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则()A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【方法技巧与总结】1、排除法也叫筛选法或淘汰法,使用排除法的前提条件是答案唯一,具体的做法是采用简捷有效的手段对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰支逐一排除,从而获得正确结论.2、特殊值法:从题干(或选项)出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或图形位置,进行判断.特值法是“小题小做”的重要策略,要注意在怎样的情况下才可使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊数列等.3、图解法:对于一些含有几何背景的题,若能根据题目中的条件,作出符合题意的图形,并通过对图形的直观分析、判断,即可快速得出正确结果.这类问题的几何意义一般较为明显,如一次函数的斜率和截距、向量的夹角、解析几何中两点间距离等.4、构造法是一种创造性思维,是综合运用各种知识和方法,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造与问题相关的数学模型,揭示问题的本质,从而找到解题的方法5、估算法:由于选择题提供了唯一正确的选项,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量.6、检验法:将选项分别代人题设中或将题设代人选项中逐一检验,确定正确选项.【核心考点】核心考点一:直接法【典型例题】例1.(2022春·贵州贵阳·高三统考期中)基本再生数0R 与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:()e rtI t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R ,T 近似满足01R rT =+.有学者基于已有数据估计出0 3.28R =6T =.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加3倍需要的时间约为(ln 20.69≈)()A .1.8天B .2.5天C .3.6天D .4.2天例2.(2022春·广东深圳·高三深圳中学校考阶段练习)设函数()()πsin sin 03f x x x ωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π上有且仅有3个极值点,则ω的取值范围是().A .710,33⎛⎤⎥⎝⎦B .47,33⎛⎤ ⎥⎝⎦C .1013,33⎛⎤ ⎥⎝⎦D .14,33⎛⎤ ⎥⎝⎦例3.(多选题)(2022春·吉林长春·高一东北师大附中校考期中)设函数()f x 的定义域为R ,满足()2(2)f x f x =-,且当2(]0,x ∈时,()(2)f x x x =-,若对任意(,]x m ∈-∞,都有()3f x ≤,则实数m 的取值可以是()A .3B .4C .92D .112核心考点二:特珠法【典型例题】例4.(辽宁省鞍山市第一中学2022届高三下学期六模考试数学试题)若e b a >>>b m a =,a n b =,log a p b =,则m ,n ,p 这三个数的大小关系为()A .m n p >>B .n p m >>C .n m p>>D .m p n>>例5.(多选题)(广东省佛山市顺德区2022届高三下学期三模数学试题)已知01b a <<<,则下列不等式成立的是()A .log log a b b a<B .log 1a b >C .ln ln a b b a<D .ln ln a a b b>例6.(多选题)(2022春·重庆沙坪坝·高一重庆一中校考阶段练习)我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数.有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.现已知函数()11f x ax a x =++-,则下列说法正确的是()A .函数()12y f x a =+-为奇函数B .当0a >时,()f x 在()1,+∞上单调递增C .若方程()0f x =有实根,则()[),01,a ∞∞∈-⋃+D .设定义域为R 的函数()g x 关于()1,1中心对称,若12a =,且()f x 与()g x 的图象共有2022个交点,记为()(),1,2,,2022i i i A x y i = ,则()()()112220222022x y x y x y ++++++ 的值为4044核心考点三:检验法【典型例题】例7.(多选题)(2022·高一课时练习)对于定义在R 上的函数()y f x =,若存在非零实数0x ,使得()y f x =在()0,x -∞和()0,x +∞上均有零点,则称0x 为()y f x =的一个“折点”.下列函数中存在“折点”的是()A .()132x f x -=+B .()()1lg 32f x x =+-C .3()3x f x x=-D .21()4x f x x +=+例8.(多选题)(2022·全国·高三专题练习)已知函数()()2cos 10,02f x x πωϕωϕ⎛⎫=+-><< ⎪⎝⎭的图象经过原点,且恰好存在2个[]00,1x ∈,使得()f x 的图象关于直线0x x =对称,则()A .3πϕ=B .ω的取值范围为58,33ππ⎡⎫⎪⎢⎣⎭C .一定不存在3个[]10,1x ∈,使得()f x 的图象关于点()1,1x -对称D .()f x 在10,4⎡⎤⎢⎥⎣⎦上单调递减例9.(多选题)(2022秋·高二课时练习)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹·布劳威尔,简单地讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是()A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若函数2()(0)f x ax bx c a =++≠没有不动点,则方程(())f f x x =无实根D .设函数()f x =R a ∈,e 为自然对数的底数),若曲线sin y x =上存在点00(,)x y 使00(())f f y y =成立,则a 的取值范围是[]1,e 核心考点四:排除法【典型例题】例10.函数()y f x =的部分图象如图所示,则()A .B .C .D .例11.定义在R 上的函数()f x 满足(2)(2)f x f x -=+,且在(2,)+∞单调递增,(4)0f =,4()g x x =,则函数(2)()y f x g x =+的图象可能是()A .B .C .D .例12.如图1,已知PABC 是直角梯形,//AB PC ,AB BC ⊥,D 在线段PC 上,.AD PC ⊥将PAD 沿AD 折起,使平面PAD ⊥平面ABCD ,连接PB ,PC ,设PB的中点为N ,如图2.对于图2,下列选项错误的是()A .平面PAB ⊥平面PBC B .BC ⊥平面PDC C .PD AC⊥D .2PB AN=核心考点五:构造法【典型例题】例13.已知关于x 的不等式ln ln(1)0x e mx x m ---+在(0,)+∞恒成立,则m 的取值范围是()A .(1,1]e --B .(1,1]-C .(1,1]e -D .(1,]e 例14.已知函数()f x 在R 上可导,其导函数为()f x ',若()f x 满足(1)[()()]0x f x f x -'->,22(2)()xf x f x e--=⋅则下列判断一定正确的是()A .(1)(0)f f <B .2(2)(0)f e f >C .3(3)(0)f e f >D .4(4)(0)f e f <例15.已知log a π=12log sin 35b =︒,ee c ππ=,则()A .c b a >>B .c a b >>C .b c a >>D .a b c>>核心考点六:估算法【典型例题】例16.(2020春·江苏淮安·高三江苏省涟水中学校考阶段练习)古希腊时期,人们认为最美0.618≈称为黄金分割比例),已知一位美女身高160cm ,穿上高跟鞋后肚脐至鞋底的长度约103.8cm ,若她穿上高跟鞋后达到黄金比例身材,则她穿的高跟鞋约是()(结果保留一位小数)A .7.8cmB .7.9cmC .8.0cmD .8.1cm例17.设函数()f x 是定义在R 上的奇函数,在区间[1,0]-上是增函数,且(2)()f x f x +=-,则有()A .B .C .D .核心考点七:坐标法【典型例题】例18.在ABC 中,3AC =,4BC =,90.C P ∠=︒为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-例19.如图,在直角梯形ABCD 中,//,,2,AB CD AD DC AD DC AB E ⊥==为AD的中点,若(,)CA CE DB R λμλμ=+∈,则λμ+的值为()A .65B .85C .2D .83例20.(多选题)如图,在边长为2的正方形ABCD 中,P 为以A 为圆心、AB 为半径的圆弧(BD包含B ,)D 上的任意一点,且AP x AB y AD =+,则下列结论正确的是()A .x y +的最大值为B .x y +的最小值为2C .AP AD ⋅的最大值为4D .PB PD ⋅的最小值为4-核心考点八:图解法【典型例题】例21.已知函数31,(0),()2ln ,(0),x x f x x x --⎧=⎨>⎩若方程()f x ax =有三个不同的解1x ,2x ,3x ,则a 的取值范围为()A .2(0,eB .2(0,eC .2(,1]eD .(0,1)例22.已知A ,B 是圆O :221x y +=上的两个动点,||AB =,32OC OA OB =- ,M 为线段AB 的中点,则OC OM ⋅的值为()A .14B .12C .34D .32例23.过原点O 的直线交双曲线E :22221(0,0)x y a b a b-=>>于A ,C 两点,A 在第一象限,1F 、2F 分别为E 的左、右焦点,连接2AF 交双曲线E 右支于点B ,若2||||OA OF =,222||3||CF BF =,则双曲线E 的离心率为.()A .2145B .2134C.5D .535【新题速递】一、单选题1.已知函数()f x ,()g x 都是定义域为R 的函数,函数(1)g x -为奇函数,(1)()0f x g x +-=,(3)(2)0f x g x ----=,则(2)f =()A .1-B .0C .1D .22.已知a b <,0a ≠,0b ≠,c R ∈,则下列不等关系正确的是()A .22a b<B .11a b>C .a c b c -<-D .ac bc<3.某同学掷骰子5次,分别记录每次骰子出现的点数,根据5次的统计结果,可以判断一定没有出现点数6的是A .中位数是3,众数是2B .平均数是3,中位数是2C .方差是2.4,平均数是2D .平均数是3,众数是24.在平面内,,A B 是两个定点,C 是动点.若1AC BC ⋅=,则点C 的轨迹为()A .圆B .椭圆C .抛物线D .直线5.在ABC 中,3AC =,4BC =,90.C P ∠=︒为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-6.在平行四边形ABCD 中,3A π∠=,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足||||||||BM CN BC CD =,则AM AN ⋅ 的最大值是()A .2B .3C .4D .5二、多选题7.已知0a >,0b >,且41a b +=,则()A .162a b+B .1122log log 4a b +C .4ln 1ab e --- D .24sin 1a b -+8.定义在(0,)+∞上的函数()f x 的导函数为()f x ',且恒成立,则A.B .C.D.9.已知1a >,1b >,且333a b e e a b ++=+,则下列结论正确的是()A .322ab +>B .2218a b+<C .ln()1a b ->D .ln()ln 4a b +<10.已知定义在R 上的单调递增函数()f x 满足:任意x ∈R 有(1)(1)2f x f x -++=,(2)(2)4f x f x ++-=,则()A .当x ∈Z 时,()f x x =B .任意x ∈R ,()()f x f x -=-C .存在非零实数T ,使得任意x ∈R ,()()f x T f x +=D .存在非零实数c ,使得任意x ∈R ,|()|1f x cx - 11.已知函数()f x 及其导函数()f x '的定义域均为R ,对任意的x ,y ∈R ,恒有()()2()()f x y f x y f x f y ++-=⋅,则下列说法正确的有()A .(0)1f =B .()f x '必为奇函数C .()(0)0f x f +D .若1(1)2f =,则202311()2n f n ==∑12.函数2||()x f x x a=+的大致图象可能是()A.B.C.D .13.已知函数()tan(cos )cos(sin )f x x x =+,则()A .()f x 是定义域为R 的偶函数B .()f x 的最大值为2C .()f x 的最小正周期为πD .()f x 在[0,2π上单调递减14.若10a b c >>>>,则有()A .log log c c a b >B .cca b >C .()()a b c b a c +>+D .a b b c<15.十六世纪中叶,英国数学家雷科德在《砺志石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.若a ,b ,c R ∈,则下列命题正确的是()A .若0a b >>,则22ac bc>B .若0a b <<,则11a b b a+<+C .若0a b c <<<,则b b ca a c+<+D .若0,0a b >>,则22b a a ba b++ 16.下面有四个说法正确的有()A .1a <且12b a b <⇒+<且1ab <B .1a <且110b ab a b <⇒--+<C .D .111x x>⇒参考答案【真题回归】1.(2022·天津·统考高考真题)函数()21x f x x-=的图像为()A .B .C .D .【答案】D【解析】函数()21x f x -=的定义域为{}0x x ≠,且()()()2211x x f x f x xx----==-=--,函数()f x 为奇函数,A 选项错误;又当0x <时,()210x f x x -=≤,C 选项错误;当1x >时,()22111x x f x x xx x--===-函数单调递增,故B 选项错误;故选:D.2.(2022·天津·统考高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120︒,腰为3的等腰三角形,则该几何体的体积为()A .23B .24C .26D .27【答案】D【解析】该几何体由直三棱柱AFD BHC -及直三棱柱DGC AEB -组成,作HM CB ⊥于M ,如图,因为3,120CH BH CHB ==∠= ,所以32CM BM HM ===,因为重叠后的底面为正方形,所以AB BC ==在直棱柱AFD BHC -中,AB ⊥平面BHC ,则AB HM ⊥,由AB BC B ⋂=可得HM ⊥平面ADCB ,设重叠后的EG 与FH 交点为,I 则132713813333,=3333=322224I BCDA AFD BHC V V --=⨯=⨯⨯则该几何体的体积为8127222742AFD BHC I BCDA V V V --=-=⨯-=.故选:D.3.(2022·全国·统考高考真题)函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A .B .C .D .【答案】A【解析】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.4.(2022·北京·统考高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=()A .40B .41C .40-D .41-【答案】B【解析】令1x =,则432101a a a a a ++++=,令=1x -,则()443210381a a a a a -+-+=-=,故420181412a a a +++==,故选:B.5.(多选题)(2022·全国·统考高考真题)若x ,y 满足221+-=x y xy ,则()A .1x y +≤B .2x y +≥-C .222x y +≤D .221x y +≥【答案】BC【解析】因为22222a b a b ab ++⎛⎫≤≤⎪⎝⎭(,a b ÎR ),由221+-=x y xy 可变形为,()221332x y x y xy +⎛⎫+-=≤ ⎪⎝⎭,解得22x y -≤+≤,当且仅当1x y ==-时,2x y +=-,当且仅当1x y ==时,2x y +=,所以A 错误,B 正确;由221+-=x y xy 可变形为()222212x y x y xy ++-=≤,解得222x y +≤,当且仅当1x y ==±时取等号,所以C 正确;因为221+-=x y xy 变形可得223124y x y ⎛⎫-+= ⎪⎝⎭,设cos ,sin 22y x y θθ-==,所以cos ,x y θθθ==,因此2222511cos sin cos 12cos 2333x y θθθθ=θ-θ+=++42π2sin 2,23363θ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎝⎭⎣⎦,所以当,33x y ==-时满足等式,但是221x y +≥不成立,所以D 错误.故选:BC .6.(多选题)(2022·全国·统考高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则()A .322V V =B .31V V =C .312V V V =+D .3123V V =【答案】CD 【解析】设22AB ED FB a ===,因为ED ⊥平面ABCD ,FB ED ,则()2311114223323ACD V ED S a a a =⋅⋅=⋅⋅⋅= ,()232111223323ABC V FB S a a a =⋅⋅=⋅⋅⋅= ,连接BD 交AC 于点M ,连接,EM FM ,易得BD AC ⊥,又ED ⊥平面ABCD ,AC ⊂平面ABCD ,则ED AC ⊥,又ED BD D = ,,ED BD ⊂平面BDEF ,则AC ⊥平面BDEF ,又12BM DM BD ===,过F 作FG DE ⊥于G ,易得四边形BDGF 为矩形,则,FG BD EG a ===,则,EM FM ====,3EF a ==,222EM FM EF +=,则EM FM ⊥,212EFM S EM FM =⋅=,AC =,则33123A EFM C EFM EFM V V V AC S a --=+=⋅= ,则3123V V =,323V V =,312V V V =+,故A 、B 错误;C 、D 正确.故选:CD.7.(多选题)(2022·全国·统考高考真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A B .32C .2D .2【答案】AC【解析】[方法一]:几何法,双曲线定义的应用情况一M 、N 在双曲线的同一支,依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为B ,所以1OB F N ⊥,因为123cos 05F NF ∠=>,所以N 在双曲线的左支,OB a =,1OF c =,1FB b =,设12F NF α∠=,由即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,21NF NF 2a-=532222a a b a ⎛⎫--= ⎪⎝⎭,2b e 2a =∴=,选A 情况二若M 、N 在双曲线的两支,因为123cos 05F NF ∠=>,所以N 在双曲线的右支,所以OB a =,1OF c =,1FB b =,设12F NF α∠=,由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,12NF NF 2a -=352222a b a a +-=,所以23b a =,即32b a =,所以双曲线的离心率2c e a ==选C[方法二]:答案回代法A e 2=选项特值双曲线())22121,F ,F 4x y -=∴,过1F 且与圆相切的一条直线为(y 2x =+,两交点都在左支,N ⎛∴ ⎝,2112NF 5,NF 1,FF ∴===则123cos 5F NF ∠=,C e 2=选项特值双曲线())2212x y 1,F ,F 49-=∴,过1F 且与圆相切的一条直线为(2y x 3=,两交点在左右两支,N 在右支,N ∴,2112NF 5,NF 9,FF ∴===则123cos 5F NF ∠=,[方法三]:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,若,M N 分别在左右支,因为1OG NF ⊥,且123cos 05F NF ∠=>,所以N 在双曲线的右支,又OG a =,1OF c =,1GF b =,设12F NF α∠=,21F F N β∠=,在12F NF △中,有()212sin sin sin NF NF cβαβα==+,故()122sin sin sin NF NF cαββα-=+-即()sin sin sin a c αββα=+-,所以sin cos cos sin sin sin a cαβαββα=+-,而3cos 5α=,sin a c β=,cos b c β=,故4sin 5α=,代入整理得到23b a =,即32b a =,所以双曲线的离心率c e a ==若,M N 均在左支上,同理有()212sin sin sin NF NF c βαβα==+,其中β为钝角,故cos bcβ=-,故()212sin sin sin NF NF cβαβα-=-+即sin sin cos cos sin sin a c βαβαβα=--,代入3cos 5α=,sin a c β=,4sin 5α=,整理得到:1424a b a =+,故2a b =,故e ==故选:AC.8.(多选题)(2022·全国·统考高考真题)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则()A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【答案】BC【解析】[方法一]:对称性和周期性的关系研究对于()f x ,因为322f x ⎛⎫- ⎪⎝⎭为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭①,所以()()3f x f x -=,所以()f x 关于32x =对称,则(1)(4)f f -=,故C 正确;对于()g x ,因为(2)g x +为偶函数,(2)(2)g x g x +=-,(4)()g x g x -=,所以()g x 关于2x =对称,由①求导,和()()g x f x '=,得333333222222f x f x f x f x g x g x ''⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''-=+⇔--=+⇔--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,所以()()30g x g x -+=,所以()g x 关于3(,0)2对称,因为其定义域为R ,所以302g ⎛⎫= ⎪⎝⎭,结合()g x 关于2x =对称,从而周期34222T ⎛⎫=⨯-= ⎪⎝⎭,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知()g x 周期为2,关于2x =对称,故可设()()cos πg x x =,则()()1sin ππf x x c =+,显然A ,D 错误,选BC.故选:BC.[方法三]:因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-,所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【整体点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.【方法技巧与总结】1、排除法也叫筛选法或淘汰法,使用排除法的前提条件是答案唯一,具体的做法是采用简捷有效的手段对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰支逐一排除,从而获得正确结论.2、特殊值法:从题干(或选项)出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或图形位置,进行判断.特值法是“小题小做”的重要策略,要注意在怎样的情况下才可使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊数列等.3、图解法:对于一些含有几何背景的题,若能根据题目中的条件,作出符合题意的图形,并通过对图形的直观分析、判断,即可快速得出正确结果.这类问题的几何意义一般较为明显,如一次函数的斜率和截距、向量的夹角、解析几何中两点间距离等.4、构造法是一种创造性思维,是综合运用各种知识和方法,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造与问题相关的数学模型,揭示问题的本质,从而找到解题的方法5、估算法:由于选择题提供了唯一正确的选项,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量.6、检验法:将选项分别代人题设中或将题设代人选项中逐一检验,确定正确选项.【核心考点】核心考点一:直接法【典型例题】例1.(2022春·贵州贵阳·高三统考期中)基本再生数0R 与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:()e rtI t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R ,T 近似满足01R rT =+.有学者基于已有数据估计出0 3.28R =,6T =.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加3倍需要的时间约为(ln 20.69≈)()A .1.8天B .2.5天C .3.6天D .4.2天【答案】C【解析】把0 3.28R =,6T =代入01R rT =+,可得0.38r =,所以()0.38e tI t =.设在新冠肺炎疫情初始阶段,累计感染病例数增加3倍需要的时间为1t ,则有()()14I t t I t +=,即()10.380.38t e 4e t t +=,整理有10.38t e 4=,则10.38ln 4t =,解得1ln 42ln 220.693.60.380.380.38t ⨯==≈≈.故选:C .例2.(2022春·广东深圳·高三深圳中学校考阶段练习)设函数()()πsin sin 03f x x x ωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π上有且仅有3个极值点,则ω的取值范围是().A .710,33⎛⎤⎥⎝⎦B .47,33⎛⎤ ⎥⎝⎦C .1013,33⎛⎤ ⎥⎝⎦D .14,33⎛⎤ ⎥⎝⎦【答案】A【解析】由题知,()ππsin sin sin326f x x x x x x ωωωωω⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭,因为[]0,πx ∈,所以πππ,π666x ωω⎡⎤+∈+⎢⎥⎣⎦,因为()f x 在[]0,π上有且仅有3个极值点,所以5ππ7ππ262ω<+≤,解得71033ω<≤,所以ω的取值范围是710,33⎛⎤ ⎥⎝⎦,故选:A例3.(多选题)(2022春·吉林长春·高一东北师大附中校考期中)设函数()f x 的定义域为R ,满足()2(2)f x f x =-,且当2(]0,x ∈时,()(2)f x x x =-,若对任意(,]x m ∈-∞,都有()3f x ≤,则实数m 的取值可以是()A .3B .4C .92D .112【答案】ABC【解析】因为函数()f x 的定义域为R ,满足()2(2)f x f x =-,且当2(]0,x ∈时,()(2)f x x x =-,所以当(2,4]x ∈时,()2(2)[2(2)]2(2)(4)f x x x x x =---=--,当6(4],x ∈时,()4[(2)2][4(2)]4(4)(6)f x x x x x =----=--,函数部分图象如图所示,由4(4)(6)3x x --=,得2440990x x -+=,解得92x =或112x =,因为对任意(,]x m ∈-∞,都有()3f x ≤,所以由图可知92m ≤,故选:ABC核心考点二:特珠法【典型例题】例4.(辽宁省鞍山市第一中学2022届高三下学期六模考试数学试题)若e b a >>>b m a =,a n b =,log a p b =,则m ,n ,p 这三个数的大小关系为()A .m n p >>B .n p m >>C .n m p >>D .m p n>>【答案】C【解析】因为e b a >>>所以取52,2a b ==,则()5225,6bm a ====,2525 6.2524an b ⎛⎫=== ⎪⎝⎭=,()25log log 1,22a pb ==∈,所以n m p >>.故选:C.例5.(多选题)(广东省佛山市顺德区2022届高三下学期三模数学试题)已知01b a <<<,则下列不等式成立的是()A .log log a b b a <B .log 1a b >C .ln ln a b b a <D .ln ln a a b b>【答案】BC【解析】选项A :()()22lg lg lg lg lg lg lg lg log log lg lg lg lg lg lg a b b a b a b a b a b a a b a b a b-+--=-==由01b a <<<,可得lg lg 0b a <<,则lg lg 0b a >,lg lg 0b a -<,lg lg 0b a +<则()()lg lg lg lg 0lg lg b a b a a b-+>,则log log a b b a >.判断错误;选项B :由01a <<,可得log a y x =为(0,)+∞上减函数,又0b a <<,则log log 1a a b a >=.判断正确;选项C :由01a <<,可知x y a =为R 上减函数,又b a <,则a b a a >由0a >,可知a y x =为(0,)+∞上增函数,又b a <,则a a b a <,则b a a b >又ln y x =为(0,)+∞上增函数,则ln ln b a a b >,则ln ln a b b a <.判断正确;选项D :令211e e a b ==,,则01b a <<<,e ln l 111e n e a a =-=,222ln ln 112e e eb b =-=则22122e0e ln eln e a a b b --+==<-,即ln ln a a b b <.判断错误.故选:BC例6.(多选题)(2022春·重庆沙坪坝·高一重庆一中校考阶段练习)我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数.有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.现已知函数()11f x ax a x =++-,则下列说法正确的是()A .函数()12y f x a =+-为奇函数B .当0a >时,()f x 在()1,+∞上单调递增C .若方程()0f x =有实根,则()[),01,a ∞∞∈-⋃+D .设定义域为R 的函数()g x 关于()1,1中心对称,若12a =,且()f x 与()g x 的图象共有2022个交点,记为()(),1,2,,2022i i i A x y i = ,则()()()112220222022x y x y x y ++++++ 的值为4044【答案】ACD【解析】对于A.()()11121211f x a a x a a ax x x+-=+++-=++-由解析式可知1y ax x=+是奇函数,故A 正确;对于B.特殊值法33152322212f a a a ⎛⎫=++=+ ⎪⎝⎭-,()1223121f a a a =++=+-即3(2)122a f f ⎛⎫-=- ⎪⎝⎭,若02a <<,则()f x 在()1,+∞上不是单调递增,故B 错误.对于C.令()101f x ax a x =++=-,分离参数后211a x=-,()(]21,0)(0,1x ∞-∈-⋃故()[)21,01,1x ∞∞∈-⋃+-,C 正确;对于D.由A 可知,当12a =时,()f x 关于()1,1中心对称,且()g x 关于()1,1中心对称,所以这2022个交点关于()1,1对称,故()()122022122022202220224044x x x y y y +++++++=+= ,D 正确.故选:ACD核心考点三:检验法【典型例题】例7.(多选题)(2022·高一课时练习)对于定义在R 上的函数()y f x =,若存在非零实数0x ,使得()y f x =在()0,x -∞和()0,x +∞上均有零点,则称0x 为()y f x =的一个“折点”.下列函数中存在“折点”的是()A .()132x f x -=+B .()()1lg 32f x x =+-C .3()3x f x x=-D .21()4x f x x +=+【答案】BC【解析】A :因为10()32323x f x -=+≥+=,所以()f x 没有零点,即()f x 没有“折点”;B :当0x ≥时1()lg(3)2f x x =+-单调递增,又1(0)lg 302f =-<,1(7)lg1002f =->,所以()f x 在()0,+∞上有零点.又()()1lg 32f x x =+-是偶函数,所以()f x 在(),0-∞上有零点,所以()f x 存在“折点”.C :令3()03x f x x =-=,得0x =或()f x 在()0,+∞上有零点,在(),0-∞上有零点,即()f x 存在“折点”.D :令21()04x f x x +==+,解得=1x -,所以()f x 只有一个零点,即()f x 没有“折点”.故选:BC例8.(多选题)(2022·全国·高三专题练习)已知函数()()2cos 10,02f x x πωϕωϕ⎛⎫=+-><< ⎪⎝⎭的图象经过原点,且恰好存在2个[]00,1x ∈,使得()f x 的图象关于直线0x x =对称,则()A .3πϕ=B .ω的取值范围为58,33ππ⎡⎫⎪⎢⎣⎭C .一定不存在3个[]10,1x ∈,使得()f x 的图象关于点()1,1x -对称D .()f x 在10,4⎡⎤⎢⎥⎣⎦上单调递减【答案】ABD【解析】因为()02cos 10,02f πϕϕ=-=<<,得3πϕ=,A 正确.设3u x πω=+,则2cos 1y u =-如图所示,由[]0,1x ∈,得,333x πππωω⎡⎤+∈+⎢⎥⎣⎦,所以233ππωπ≤+<,得5833ππω≤<,B 正确.如图所示,当5323ππωπ≤+<时,存在3个[]10,1x ∈,使得()f x 的图象关于点()1,1x -对称.C 错误.因为10,4x ⎡⎤∈⎢⎥⎣⎦,所以1,3343x πππωω⎡⎤+∈+⎢⎥⎣⎦,又5833ππω≤<,所以31443ππωπ≤+<,所以()f x 在10,4⎡⎤⎢⎥⎣⎦上单调递减,D 正确.故选:ABD例9.(多选题)(2022秋·高二课时练习)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹·布劳威尔,简单地讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是()A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若函数2()(0)f x ax bx c a =++≠没有不动点,则方程(())f f x x =无实根D .设函数()f x =R a ∈,e 为自然对数的底数),若曲线sin y x =上存在点00(,)x y 使00(())f f y y =成立,则a 的取值范围是[]1,e 【答案】BCD【解析】对于A ,令()sin g x x x =-,x ∈R ,()cos 10g x x '=-≤,当且仅当cos 1x =时取“=”,则()g x 在R 上单调递减,而(0)0g =,即()g x 在R 上只有一个零点,函数()f x 只有一个不动点,A 不正确;对于B ,因二次函数2(1)y ax b x c =+-+至多有两个零点,则函数()f x 至多有两个不动点,B 正确;对于C ,依题意,方程2()0(1)0f x x ax b x c -=⇔+-+=无实数根,即2(1)40b ac ∆=--<,当0a >时,二次函数()y f x x =-的图象开口向上,则()0f x x ->恒成立,即R x ∀∈,恒有()f x x >,而()R f x ∈,因此有[()]()f f x f x x >>恒成立,即方程(())f f x x =无实根,当a<0时,二次函数()y f x x =-的图象开口向下,则()0f x x -<恒成立,即R x ∀∈,恒有()f x x <,而()R f x ∈,因此有[()]()f f x f x x <<恒成立,即方程(())f f x x =无实根,所以函数2()(0)f x ax bx c a =++≠没有不动点,则方程(())f f x x =无实根,C 正确;对于D ,点00(,)x y 在曲线sin y x =上,则0[1,1]y ∈-,又00(())f f y y =,即有001y ≤≤,当001y ≤≤时,00()f y y =满足00(())f f y y =,显然函数()f x =函数,若00()f y y >,则000(())()f f y f y y >>与00(())f f y y =矛盾,若00()f y y <,则000(())()f f y f y y <<与00(())f f y y =矛盾,因此,当001y ≤≤时,00()f y y =,即当01x ≤≤时,()f x x =,对[0,1]x ∈,2e e x x x a x a x x +-=⇔=-+,令2()e x h x x x =-+,[0,1]x ∈,()e 21220x h x x x '=-+≥-≥,而两个“=”不同时取得,即当[0,1]x ∈时,()0h x '>,于是得()h x 在[0,1]上单调递增,有(0)()(1)h h x h ≤≤,即1()e h x ≤≤,则1e a ≤≤,D 正确.故选:BCD核心考点四:排除法【典型例题】例10.函数()y f x =的部分图象如图所示,则()A .B .C .D .【答案】A【解析】由题意,函数()f x 图象可得函数()f x 为奇函数,对于A ,111()2(1)2(1)f x x x x -=++-+---,符合题意,对于B ,111()2(1)2(1)f x x x x -=-+-+---,符合题意,对于C ,111()2(1)2(1)f x x x x -=+--+---,不符合题意,对于D ,111()2(1)2(1)f x x x x -=--+-+---,不符合题意,故排除C ,D 选项,又当0.1x =时,代入B 中函数解析式,即111(0.1)2(0.11)0.12(0.11)f =-++-55100119=--<,不符合题意;故排除B 选项,故选.A 例11.定义在R 上的函数()f x 满足(2)(2)f x f x -=+,且在(2,)+∞单调递增,(4)0f =,4()g x x =,则函数(2)()y f x g x =+的图象可能是()A .B .C .D .【答案】B【解析】依题意可知函数()f x 的对称轴方程为2x =,在(2,)+∞上单调递增,且(4)0f =,设()(2)h x f x =+,则函数()h x 的对称轴方程为0x =,在(0,)+∞上单调递增,且(2)0h =,()h x ∴是偶函数,且当02x <<时,()0.h x <因此函数4(2)()()y f x g x h x x =+=⋅也是偶函数,其图象关于y 轴对称,故可以排除选项A 和D ;当02x <<时,4()0y h x x =⋅<,由此排除选项.C 例12.如图1,已知PABC 是直角梯形,//AB PC ,AB BC ⊥,D 在线段PC 上,.AD PC ⊥将PAD 沿AD 折起,使平面PAD ⊥平面ABCD ,连接PB ,PC ,设PB的中点为N ,如图2.对于图2,下列选项错误的是()A .平面PAB ⊥平面PBC B .BC ⊥平面PDC C .PD AC⊥D .2PB AN=【答案】A【解析】解:因为AD PC ⊥,所以AD DC ⊥,AD PD ⊥,又DC ,PD ⊂平面PDC ,DC PD D ⋂=,即AD ⊥平面PDC ,折叠前有//AB PC ,AB BC ⊥,AD PC ⊥,所以//AD BC ,所以BC ⊥平面PDC ,故B 正确.由于平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PD ⊂平面PAD ,且AD PD ⊥,所以PD ABCD ⊥平面,又AC ABCD ⊂平面,所以PD AC ⊥,故C 正确.DC PD ⊥ ,DC AD ⊥,PD AD D ⋂=,PD 、AD 在平面PAD 内,DC ∴⊥平面PAD ,//AB DC ,AB ∴⊥平面PAD ,又PA ⊂平面PAD ,故AB PA ⊥,PAB ∴∆为直角三角形,N 为斜边的中点,所以2PB AN =,故D 正确.由排除法可得A 错误.故选.A 核心考点五:构造法【典型例题】例13.已知关于x 的不等式ln ln(1)0xe mx x m ---+在(0,)+∞恒成立,则m 的取值范围是()A .(1,1]e --B .(1,1]-C .(1,1]e -D .(1,]e 【答案】A【解析】解:由ln ln(1)0xe mx x m ---+得ln(1)x e mx m x -+ ,即,令()xf x e x =+,(0,)x ∈+∞,则,故()f x 在(0,)x ∈+∞单调递增,若()(ln(1))f x f m x + ,则在(0,)x ∈+∞恒成立,记()ln(1)g x x m x =-+,则()0g x 在(0,)x ∈+∞上恒成立,即min ()0g x ,因为1()1g x x'=-,则当1x <时,()0,g x '<当1x >时,()0,g x '>故()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,故min ()(1)1ln(1)0g x g m ==-+所以,即01m e <+,解得11m e -<- ,所以m 的取值范围是(1,e --故选:.A 例14.已知函数()f x 在R 上可导,其导函数为()f x ',若()f x 满足(1)[()()]0x f x f x -'->,22(2)()xf x f x e--=⋅则下列判断一定正确的是()A .(1)(0)f f <B .2(2)(0)f e f >C .3(3)(0)f e f >D .4(4)(0)f e f <【答案】C【解析】解:令()()x f x g x e =,则()()().xf x f xg x e''-=()f x 满足:(1)[()()]0x f x f x -'->,∴当1x <时,()()0.()0.f x f x g x '-<∴'<此时函数()g x 单调递减.(1)(0).g g ∴->即10(1)(0)(0).f f f e e-->=。

数学选择题解题技巧

数学选择题解题技巧

数学选择题解题技巧数学选择题解题技巧1直接法(推演法):定义:直接从题设条件出发,运用有关的概念、定义、公理、定理、性质、公式等,使用正确的解题方法,经过严密的推理和准确的运算,得出正确的结论,然后对照题目中给出的选择项“对号入座”,作出相应的选择,这种方法称之为直接法.是一种基础的、重要的、常用的方法,一般涉及概念、性质的辨析或运算较简单的题目常用直接法.排除法定义:利用选择题的特征:答案唯一,来去伪存真,舍弃不符合题目要求的错误答案。

途径有二种:1)从已知条件出发,通过观察分析或推理运算各选项提供的信息,对于错误的选项,逐一剔除,从而获得正确的结论,这种方法称为排除法.2)从选项入手,根据题设的条件与选项的关系,通过分析、推理、计算、判断,对选项进行筛选,逐步缩小范围,得到正确结果.称为反排法.排除法常应用于条件多于一个时,先根据一些已知条件,在选择项中找出与其相矛盾的选项,予以排除,然后再根据另一些已知条件,在余下的选项中,再找出与其矛盾的选项,再予以排除,直到得出正确的选项为止.等价转化法定义:根据题目的条件和要求,将题目等价转化为一个容易解答的方式进行解决。

在解决有关排列组合的的应用问题尤为突出.定义法定义:根据题目中涉及到的知识的定义出发进行解答,因此回归定义是解决问题的一种重要策略.总结:要注意定义的成立条件或约束条件,平时要掌握定义的推导和证明过程.直觉判断法定义:通过平时的练习积累,可根据直觉对题目中的答案进行判断.比如一个长方形面积最小时,长与宽的关系是什么样的?二点间的直线距离最短等.要点:需要平时多积累、多观察、多总结.数学选择题解题技巧2先易后难就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

先熟后生高考数学书卷发下来后,通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对高考数学全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的数学计算。

高考数学选择题、填空题的六大解题方法和技巧

高考数学选择题、填空题的六大解题方法和技巧

高考数学选择题、填空题的六大解题方法和技巧方法一:直接法直接法就是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,得出正确结论,此法是解选择题和填空题最基本、最常用的方法.【典例1】(1)(2021·新高考Ⅱ卷)在复平面内,复数2-i 1-3i对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】选A.因为2-i1-3i =(2-i )(1+3i )(1-3i )(1+3i ) =5+5i 10 =12 +12 i ,所以复数2-i 1-3i 对应的点位于第一象限.(2)(2021·烟台二模)已知双曲线C :x 2a 2 -y 2b 2 =1(a>0,b>0)的左、右焦点分别为F 1,F 2,点A 在C 的右支上,AF 1与C 交于点B ,若2F A ·2F B =0,且|2F A |=|2F B |,则C 的离心率为( ) A . 2 B . 3 C . 6 D .7【解析】选B.由F 2A·F 2B =0且|2F A |=|2F B |知:△ABF 2为等腰直角三角形且 ∠AF 2B =π2 、∠BAF 2=π4 ,即|AB|= 2 |2F A |= 2 |2F B |, 因为⎩⎪⎨⎪⎧|F 1A|-|F 2A|=2a ,|F 2B|-|F 1B|=2a ,|AB|=|F 1A|-|F 1B|,所以|AB|=4a ,故|F 2A|=|F 2B|=2 2 a ,则|F 1A|=2( 2 +1)a ,而在△AF 1F 2中,|F 1F 2|2=|F 2A|2+|F 1A|2-2|F 2A||F 1A|cos ∠BAF 2, 所以4c 2=8a 2+4(3+2 2 )a 2-8( 2 +1)a 2,则c 2=3a 2,故e =ca = 3 . 【变式训练】1.(2021·北京高考)在复平面内,复数z 满足(1-i)z =2,则z =( ) A .1 B .i C .1-i D .1+i【解析】选D.方法一:z =21-i =2(1+i )(1-i )(1+i )=1+i.方法二:设z =a +bi ,则(a +b)+(b -a)i =2,联立⎩⎪⎨⎪⎧a +b =2,b -a =0, 解得a =b =1,所以z =1+i.2.(2021·郑州二模)已知梯形ABCD 中,以AB 中点O 为坐标原点建立如图所示的平面直角坐标系.|AB|=2|CD|,点E 在线段AC 上,且AE→ =23 EC → ,若以A ,B 为焦点的双曲线过C ,D ,E 三点,则该双曲线的离心率为( )A .10B .7C . 6D . 2【解析】选B.设双曲线方程为x 2a 2 -y 2b 2 =1,由题中的条件可知|CD|=c , 且CD 所在直线平行于x 轴, 设C ⎝ ⎛⎭⎪⎫c 2,y 0 ,A(-c ,0),E(x ,y),所以AE → =(x +c ,y),EC →=⎝ ⎛⎭⎪⎫c 2-x ,y 0-y ,c 24a 2 -y 20 b 2 =1,由AE → =23 EC →,可得⎩⎪⎨⎪⎧x =-25c y =25y 0,所以E ⎝ ⎛⎭⎪⎫-25c ,25y 0 ,因为点E 的坐标满足双曲线方程,所以4c 225a 2 -4y 2025b 2 =1, 即4c 225a 2 -425 ⎝ ⎛⎭⎪⎫c 24a 2-1 =1,即3c 225a 2 =2125 ,解得e =7 .方法二:特例法从题干出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或特殊图形或特殊位置,进行判断.特例法是“小题小做”的重要策略,要注意在怎样的情况下才可以使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊函数等.【典例2】(1)(2021·郑州三模)在矩形ABCD 中,其中AB =3,AD =1,AB 上的点E 满足AE +2BE =0,F 为AD 上任意一点,则EB ·BF =( ) A .1 B .3 C .-1 D .-3 【解析】选D.(直接法)如图,因为AE +2BE =0, 所以EB =13 AB , 设AF =λAD ,则BF =BA +λAD =-AB +λAD ,所以EB ·BF =13 AB ·(-AB +λAD )=-13 |AB |2+13 λAB ·AD =-3+0=-3.(特例法)该题中,“F为AD上任意一点”,且选项均为定值,不妨取点A为F. 因为AE+2BE=0,所以EB=13AB.故EB·BF=13AB·(-AB)=-132 AB=-13×32=-3.(2)(2021·成都三模)在△ABC中,内角A,B,C成等差数列,则sin2A+sin2C-sin A sin C=________.【解析】(方法一:直接法)由内角A,B,C成等差数列,知:2B=A+C,而A+B+C=π,所以B=π3,而由余弦定理知:b2=a2+c2-2ac cos B=a2+c2-ac,结合正弦定理得:sin2B=sin2A+sin2C-sin A sin C=3 4.(方法二:特例法)该题中只有“内角A,B,C成等差数列”的限制条件,故可取特殊的三角形——等边三角形代入求值.不妨取A=B=C=π3,则sin 2A+sin2C-sin A sin C=sin2π3+sin2π3-sinπ3sinπ3=34.(也可以取A=π6,B=π3,C=π2代入求值.)答案:34【变式训练】设四边形ABCD为平行四边形,|AB→|=6,|AD→|=4,若点M,N满足BM→=3MC→,DN→=2NC → ,则AM → ·NM → 等于( ) A .20 B .15 C .9 D .6【解析】选C.若四边形ABCD 为矩形,建系如图,由BM → =3MC → ,DN → =2NC→ ,知M(6,3),N(4,4),所以AM → =(6,3),NM → =(2,-1),所以AM → ·NM → =6×2+3×(-1)=9.方法三:数形结合法对于一些含有几何背景的问题,往往可以借助图形的直观性,迅速作出判断解决相应的问题.如Veen 图、三角函数线、函数图象以及方程的曲线等,都是常用的图形.【典例3】已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2C . 2D .22【解析】选C.如图,设OA→ =a ,OB → =b ,则|OA → |=|OB → |=1,OA → ⊥OB → ,设OC → =c ,则a-c =CA → ,b -c =CB → ,(a -c )·(b -c )=0,即CA → ·CB → =0.所以CA → ⊥CB → .点C 在以AB 为直径的圆上,圆的直径长是|AB→ |= 2 ,|c |=|OC → |,|OC → |的最大值是圆的直径,长为 2 .【变式训练】1.设直线l :3x +2y -6=0,P(m ,n)为直线l 上动点,则(m -1)2+n 2的最小值为( ) A .913 B .313 C .31313 D .1313【解析】选A.(m -1)2+n 2表示点P(m ,n)到点A(1,0)距离的平方,该距离的最小值为点A(1,0)到直线l 的距离,即|3-6|13 =313,则(m -1)2+n 2的最小值为913 .2.(2021·河南联考)已知函数f(x)=⎩⎪⎨⎪⎧x ln x -2x (x>0),x 2+1(x≤0), 若f(x)的图象上有且仅有2个不同的点关于直线y =-32 的对称点在直线kx -y -3=0上,则实数k 的取值是________. 【解析】直线kx -y -3=0关于直线y =-32 对称的直线l 的方程为kx +y =0,对应的函数为y =-kx ,其图象与函数y =f(x)的图象有2个交点.对于一次函数y =-kx ,当x =0时,y =0,由f(x)≠0知不符合题意. 当x≠0时,令-kx =f(x),可得-k =f (x )x ,此时, 令g(x)=f (x )x =⎩⎨⎧ln x -2(x>0),x +1x (x<0).当x>0时,g(x)为增函数,g(x)∈R ,当x<0时,g(x)为先增再减函数,g(x)∈(-∞,-2]. 结合图象,直线y =-k 与函数y =g(x)有2个交点, 因此,实数-k =-2,即k =2. 答案:2方法四:排除法排除法也叫筛选法、淘汰法,它是充分利用单选题有且只有一个正确的选项这一特征,通过分析、推理、计算、判断,排除不符合要求的选项,从而确定正确选项.【典例4】(1)(2021·郑州二模)函数f(x)=sin x ln π-xπ+x在(-π,π)的图象大致为()【解析】选A.根据题意,函数f(x)=sin x ln π-xπ+x,x∈(-π,π),f(-x)=sin (-x)ln π+xπ-x=sin x lnπ-xπ+x=f(x),则f(x)在区间(-π,π)上为偶函数,所以排除B,C,又由f ⎝ ⎛⎭⎪⎫π2 =sin π2 ln π23π2=ln 13 <0,所以排除D.(2)(2021·太原二模)已知函数y =f(x)部分图象的大致形状如图所示,则y =f(x)的解析式最可能是( )A .f(x)=cos x e x -e -xB .f(x)=sin x e x -e -xC .f(x)=cos x e x +e -xD .f(x)=sin x e x +e -x 【解析】选A.由图象可知,f(2)<0,f(-1)<0, 对于B ,f(2)=sin 2e 2-e -2>0,故B 不正确;对于C ,f(-1)=cos (-1)e -1+e=cos 1e -1+e>0,故C 不正确; 对于D ,f(2)=sin 2e 2+e -2 >0,故D 不正确.【变式训练】1.(2021·嘉兴二模)函数f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x 的图象可能是()【解析】选C.由f(-x)=⎝⎛⎭⎪⎫1-x -1+1-x +1 cos (-x) =-⎝ ⎛⎭⎪⎫1x -1+1x +1 cos x =-f(x)知, 函数f(x)为奇函数,故排除B.又f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x =2x x 2-1 cos x , 当x ∈(0,1)时,2xx 2-1 <0,cos x>0⇒f(x)<0.故排除A ,D.2.(2021·石家庄一模)甲、乙、丙三人从红、黄、蓝三种颜色的帽子中各选一顶戴在头上,每人帽子的颜色互不相同,乙比戴蓝帽的人个头高,丙和戴红帽的人身高不同,戴红帽的人比甲个头小,则甲、乙、丙所戴帽子的颜色分别为( ) A .红、黄、蓝 B .黄、红、蓝 C .蓝、红、黄 D .蓝、黄、红【解析】选B.丙和戴红帽的人身高不同,戴红帽的人比甲个头小,故戴红帽的人为乙,即乙比甲的个头小;乙比戴蓝帽的人个头高,故戴蓝帽的人是丙. 综上,甲、乙、丙所戴帽子的颜色分别为黄、红、蓝.方法五:构造法构造法实质上是转化与化归思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等模型转化为熟悉的问题求解.【典例5】(1)(2021·昆明三模)已知函数f(x)=e x -a -ln x x -1有两个不同的零点,则实数a 的取值范围是( )A .(e ,+∞)B .⎝ ⎛⎭⎪⎫e 2,+∞C .⎝ ⎛⎭⎪⎫12,+∞ D .(1,+∞)【解析】选D.方法一(切线构造):函数f(x)=e x -a -ln xx -1有两个不同的零点, 则e x -a -1=ln xx 有两个解, 令g(x)=e x -a -1,h(x)=ln xx (x>0),则g(x)与h(x)有2个交点,h′(x)=1-ln xx 2 (x>0), 当x>e 时h′(x)<0,h(x)单调递减, 当0<x<e 时h′(x)>0,h(x)单调递增, 由g′(x)=e x -a (x>0)得g(x)单调递增, 图象如下,当g(x)与h(x)相切时,设切点为⎝ ⎛⎭⎪⎫x 0,ln x 0x 0 , h′(x 0)=1-ln x 0x 2=g′(x 0)=0x ae -, 同时ln x 0x 0 =ex 0-a -1,得ln x 0x 0 +1=1-ln x 0x 2,即x0ln x0+x20=1-ln x0,(x0+1)ln x0=-(x0+1)(x0-1),又x0>0,ln x0=1-x0,所以x0=1,此时1=e1-a,所以a=1,当a>1时,可看作g(x)=e x-1-1的图象向右平移,此时g(x)与h(x)必有2个交点,当a<1时,图象向左平移二者必然无交点,综上a>1.方法二(分离参数):由题意,方程e x-a-ln xx-1=0有两个不同的解,即e-a=ln xx+1e x有两个不同的解,所以直线y=e-a与g(x)=ln xx+1e x的图象有两个交点.g′(x)=⎝⎛⎭⎪⎫ln xx+1′×e x-(e x)′×⎝⎛⎭⎪⎫ln xx+1(e x)2=-(x+1)(ln x+x-1)x2e x.记h(x)=ln x+x-1.显然该函数在(0,+∞)上单调递增,且h(1)=0,所以0<x<1时,h(x)<0,即g′(x)>0,函数单调递增;所以x>1时,h(x)>0,即g′(x)<0,函数单调递减.所以g(x)≤g(1)=ln 11+1e1=1e.又x→0时,g(x)→0;x→+∞时,g(x)→0.由直线y=e a与g(x)=ln xx+1e x的图象有两个交点,可得e -a <1e =e -1,即-a<-1,解得a>1.方法三:由题意,方程e x -a -ln x x -1=0有两个不同的解,即e x -a =ln x x +1,也就是1e a (xe x )=x +ln x =ln (xe x ).设t =xe x (x>0),则方程为1e a t =ln t ,所以1e a =ln t t .由题意,该方程有两个不同的解.设p(x)=xe x (x>0),则p′(x)=(x +1)e x (x>0),显然p′(x)>0,所以p(x)单调递增,所以t =p(x)>p(0)=0.记q(t)=ln t t (t>0),则q′(t)=1-ln t t 2 .当0<t<e 时,q′(t)>0,函数单调递增;当t>e 时,q′(t)<0,函数单调递减.所以q(t)≤q(e)=ln e e =1e .又t→0时,q(t)→0;t→+∞时,q(t)→0.由方程1e a =ln t t 有两个不同的解,可得0<1e a <1e ,解得a>1.(2)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P-ABC 为鳖臑,PA ⊥平面ABC ,PA =AB =2,AC =4,三棱锥P-ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π【解析】选C.将三棱锥P-ABC 放入长方体中,如图,三棱锥P-ABC 的外接球就是长方体的外接球.因为PA =AB =2,AC =4,△ABC 为直角三角形,所以BC =42-22 =2 3 .设外接球的半径为R ,依题意可得(2R)2=22+22+(2 3 )2=20,故R 2=5,则球O 的表面积为4πR 2=20π.【变式训练】1.已知2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),则( )A .a<b<cB .b<a<cC .c<b<aD .c<a<b【解析】选D.因为2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),化为:ln a a =ln 22 ,ln b b =ln 33 ,ln c c =ln 55 ,令f(x)=ln x x ,x ∈(0,e),f′(x)=1-ln x x 2 ,可得函数f(x)在(0,e)上单调递增,在(e ,+∞)上单调递减,f(c)-f(a)=ln 55 -ln 22 =2ln 5-5ln 210=ln 253210 <0,且a ,c ∈(0,e), 所以c<a ,同理可得a<b.所以c<a<b.2.(2021·汕头三模)已知定义在R 上的函数f(x)的导函数为f′(x),且满足f′(x)-f(x)>0,f(2 021)=e 2 021,则不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 的解集为( ) A .(e 2 021,+∞)B .(0,e 2 021)C .(e 2 021e ,+∞)D .(0,e 2 021e )【解析】选D.令t =1e ln x ,则x =e et ,所以不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 等价转化为不等式f(t)<e e et =e t ,即f (t )e t <1 构造函数g(t)=f (t )e t ,则g′(t)=f′(t )-f (t )e t, 由题意,g′(t)=f′(t )-f (t )e t>0, 所以g(t)为R 上的增函数,又f(2 021)=e 2 021,所以g(2 021)=f (2 021)e 2 021 =1,所以g(t)=f (t )e t <1=g(2 021),解得t<2 021,即1e ln x<2 021,所以0<x<e 2 021e .方法六:估算法估算法就是不需要计算出准确数值,可根据变量变化的趋势或极值的取值情况估算出大致取值范围,从而解决相应问题的方法.【典例6】(2019·全国Ⅰ卷)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12 (5-12 ≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12 .若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A.165 cm B.175 cmC.185 cm D.190 cm【解析】选B.头顶至脖子下端的长度为26 cm,可得咽喉至肚脐的长度小于42 cm,肚脐至足底的长度小于110 cm,则该人的身高小于178 cm,又由肚脐至足底的长度大于105 cm,可得头顶至肚脐的长度大于65 cm,则该人的身高大于170 cm,所以该人的身高在170~178 cm之间.【变式训练】设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9 3 ,则三棱锥D-ABC体积的最大值为()A.12 3 B.18 3C.24 3 D.54 3【解析】选B.等边三角形ABC的面积为9 3 ,显然球心不是此三角形的中心,所以三棱锥的体积最大时,三棱锥的高h应满足h∈(4,8),所以13×9 3 ×4<V三棱锥D-ABC <13×9 3 ×8,即12 3 <V三棱锥D-ABC<24 3 .。

高考数学选择题的解题技巧归纳

高考数学选择题的解题技巧归纳

高考数学选择题的解题技巧归纳高考数学选择题蒙题技巧数量原则理想状态:15道题,每题5个选项,A、B、C、D、E平均每个选项共出现3次。

答案排列:3、3、3、3、3实际状态:每个选项在2——4的范围内。

选项排列:3、3、3、2、4(此种状态略多呈现)或3、2、4、2、4。

即某一个选项为2个,某一个选项为4个三不相同原则即连续三个问题不会连续出现相同答案答案排列不会出现ABCDE的英文字母排列顺序中庸之道即数值优先选择“中间量”选项,选项优先考虑BCD。

在同一道题中优先考虑数值的“中间量”后考虑选项BCD。

(如E选项对应数值为中间量时,优先从数值入手考虑)出现诸如“以上结果都不对”的选项不予考虑由提干给定信息入手,通过选项特征排除错误选项选项基本特征如下:单值与多值(例如提干出现“偶次方、绝对值、对称性”等结果出现多值) 正值与负值(考前冲刺P12/25题根据提干排除负值)有零与无零区间的开与闭(看极端情况能否取等号)正无穷与负无穷(通过极限考虑)整数与小数(分数)质数与合数大于与小于整除与不能整除带符号与不带符号(例如根号、平方号等等)少数服从多数原则即看选项特征,具有同一特征多的选项优先考虑。

复杂表达式化简题一般情况下选项出现1、2、0、-1、-2的情况比较多前后无定位,连续几道题均不会都需猜蒙答案的情况观察已做完的选项情况,哪个选项少就将这几道题全写成这个选项。

答案往往出现在互为相反数、互为倒数、相加为一(概率题)的几个选项。

高考数学选择题解题技巧高考数学选择题解题技巧一、排除法所谓排除法,就是经过判断推理,将四个备选答案中的三个迷惑答案一一排除,剩下一个正确答案.排除法也叫筛选法.例1 若a b,且c为实数,则下列各式中正确的是( ).A.ac bcB.acbc2 D.ac2≥bc2解析:由于c为实数,所以c可能大于0、小于0、也可能等于0.当c=0时,显然A、B、C均不成立,故应排除A、B、C.对于D来说,当c 0,c 0,c=0时,ac2≥bc2都成立,故应选D.例2 在Rt△ABC中,∠C=90°,AC=15,BC=8,则sinA+sinB+sinC=( ). A. B. C. D.解析:由∠C=90°可得 sinC=1. 又因为∠A、∠B均为锐角,所以sinA、sinB均为正数,从而 sinA+sinB+sinC 1.而A、B、C三个选项中的值均小于1,于是排除A、B、C ,故选 D.高考数学选择题解题技巧二、特殊值法当某些题目比较抽象,难以对其作出判断时,我们可以在符合题目条件的`范围内,用某些特殊值代替题目中的字母,然后作出判断.我们将这种解题的方法称为特殊值法.例3 若二次方程x2+2px+2q=0有实数根,其中p,q为奇数,那么它的根一定为( ).A.奇数B.偶数C.分数D.无理数解析:此题关于x的方程的系数为字母p、q,虽然知道p、q为奇数,但仍比较抽象,我们可以根据题设条件赋予未知字母特定的值,然后再去解这个一元二次方程,它的根的情况便一目了然了.不妨设p=3,q=1,则原方程变为x2+6x+2=0解得x=± -3,显然这是一个无理数,故应选择D.例4 若a、b、c都不为零,但a+b+c=0,则 + + 的值( ).A.正数B.零C.负数D.不能确定解析:此题若按传统方法进行通分将非常麻烦且不易求解,若采用特殊值法,则能化繁为简.令a=1、b=1、c=-2,代入原式得 + + = + - =0,故选B. 高考数学选择题解题技巧三、代入检验法当某些问题(如方程、函数等)解起来比较麻烦时,可以换一个角度进行分析判断,即把给出的根、给出的点或给出的值代入方程或函数式中进行验证,从而使问题得以简化.这类处理问题的方法被称为代入法,又叫验证法.例5 若最简根式和是同类根式,则a、b的值为( ).A.a=1 b=1B.a=1 b=-1C.a=-1 b=-1D.a=-1 b=1解析:由同类根式的定义可知根指数相同,被开方数也相同,这样便可列出一个二元一次方程组,再解这个二元一次方程组,用求出的解去检验给出的a、b的值,显然比较麻烦,如采用将给出的a、b的值分别代入最简根式中,再作出判断便容易多了.当把a=1、b=1代入根式后分别得出和,显然它们为同类根式,故应选A. 例6 若△ABC的三边长分别为整数,周长为11,且一边长为4,则这个三角形的最大边长为( ).A.7B.6C.5D.4解析:(1)若最大边为7,7+4=11,两边长就等于周长显然不行;(2)若最大边为6,则另一边只能为1,1、4、6无法构成三角形;(3)若最大边为5,且一边长为4.则第三边为2,因此5为最大边,无需再考虑4的情况.故选C.高考数学选择题解题技巧四、估算法估算法是一种粗略的计算方法,实质上是一种快速的近似计算方法,即对题目所给条件或信息作适当的变形与整理,从而对结果确定出一个范围或作出一个估计.例7 已知地球的表面积约等于5.1亿平方千米,其中水面面积约等于陆地面积的倍,则陆地面积约等于( )亿平方千米(精确到0.1).数学高考选择答题技巧一、按部就班的解题方法。

高考数学的解题思路技巧

高考数学的解题思路技巧

高考数学的解题思路技巧高考数学的解题思路指导(一)选择题对选择题的审题,主要应清楚:是单选还是多选,是选择正确还是选择错误?答案写在什么地方,等等。

做选择题有四种基本方法:1 回忆法。

直接从记忆中取要选择的内容。

2 直接解答法。

多用在数理科的试题中,根据已知条件,通过计算、作图或代入选择依次进行验证等途径,得出正确答案。

3 淘汰法。

把选项中错误中答案排除,余下的便是正确答案。

4 猜测法。

(二) 应用性问题的审题和解题技巧解答应用性试题,要重视两个环节,一是阅读、理解问题中陈述的材料;二是通过抽象,转换成为数学问题,建立数学模型。

函数模型、数列模型、不等式模型、几何模型、计数模型是几种最常见的数学模型,要注意归纳整理,用好这几种数学模型。

(三) 最值和定值问题的审题和解题技巧最值和定值是变量在变化过程中的两个特定状态,最值着眼于变量的最大/小值以及取得最大/小值的条件;定值着眼于变量在变化过程中的某个不变量。

近几年的数学高考试题中,出现过各种各样的最值问题和定值问题,选用的知识载体多种多样,代数、三角、立体几何、解析几何都曾出现过有关最值或定值的试题,有些应用问题也常以最大/小值作为设问的方式。

分析和解决最值问题和定值问题的思路和方法也是多种多样的。

命制最值问题和定值问题能较好体现数学高考试题的命题原则。

应对最值问题和定值问题,最重要的是认真分析题目的情景,合理选用解题的方法。

(四) 计算证明题解答这种题目时,审题显得极其重要。

只有了解题目提供的条件和隐含的信息,确定具体解题步骤,问题才能解决。

在做这种题时,有一些共同问题需要注意:1 注意完成题目的全部要求,不要遗漏了应该解答的内容。

2 在平时练习中要养成规范答题的习惯。

3 不要忽略或遗漏重要的关键步骤和中间结果,因为这常常是题答案的采分点。

4 注意在试卷上清晰记录细小的步骤和有关的公式,即使没能获得最终结果,写出这些也有助于提高你的分数。

5 保证计算的准确性,注意物理单位的变换。

高考数学选择题秒杀技巧

高考数学选择题秒杀技巧

高考数学选择题秒杀技巧
目前的高中数学选择题倾向于单项选择,表面看来降低了不少难度,但是选项中的相近答案极易给学生以误导。

通常来说,选择题的知识覆盖面较广,思维具有跳跃性,题目由浅到深,是检测学生观察、分析以及推理判断能力的有效手段。

下面分享几个选择题答题技巧。

高考数学选择题秒杀技巧1.特值法
通过取特值的方式提高解题速度,题中的一般情况必须满足我们取值的特殊情况,因而我们根据题意选取适当的特值帮助我们排除错误答案,选取正确选项。

2.估算法
当选项差距较大,且没有合适的解题思路时我们可以通过适当的放大或者缩小部分数据估算出答案的大概范围或者近似值,然后选取与估算值最接近的选项。

注意:带根号比较大小或者寻找近似值时要平方去比较这样可以减少误差。

3.逆代法
充分发挥选项的作用,观察选项特点,制定解题的特殊方案,可以大大的简化解题步骤,节省时间,做选择题我们切记不要不管选项。

4.特殊情况分析法
当题中没有限定情况时,我们考虑问题可以从最特殊的情况开始分析,特殊情况往往可以帮助我们排除部分选项,然后分析从特殊情况到一般情况的[过度](变大、变小)等选出正确答案。

高考数学选择题答题口诀:1、小题不能大做
2、不要不管选项
3、能定性分析就不要定量计算
4、能特值法就不要常规计算
5、能间接解就不要直接解
6、能排除的先排除缩小选择范围
7、分析计算一半后直接选选项
8、三个相似选相似。

高考数学选择题秒杀技巧

高考数学选择题秒杀技巧

高考数学选择题秒杀技巧
1. 嘿,你知道吗?特殊值法简直就是高考数学选择题的大救星啊!比如这道题“若函数 f(x)满足 f(2)=3,那 f(4)等于多少”,咱就直接找个满足条件的特殊值带进去,说不定一下就出来啦,这多省事儿呀!
2. 哇塞,选项代入排除法可太好用啦!就像找宝藏一样,把不合适的选项一个一个排除掉,最后剩下的不就是正确答案嘛!比如那道求角度的题,一试就知道哪个对啦!
3. 哎呀呀,图形结合法真是绝了呀!碰到几何题,画个图出来,答案有时候就一目了然啦!像那道求阴影面积的,画出来不就清楚多啦!
4. 嘿,数量关系分析法也很牛呀!看看题目里的数量关系,分析分析,答案也许就自己蹦出来咯!比如那道算速度的题,通过关系一分析不就懂啦!
5. 哇哦,反推法有时候能带来大惊喜呢!从答案反推条件,看看合不合理,不就知道选哪个啦!就像那道判断函数奇偶性的题,反推一下嘛!
6. 哈哈,极限思维法也是个厉害角色呀!把数值往极限去想,往往能找到突破点呢!像那道求最大值的题,想想极限情况呀!
7. 哟呵,整体代换法可别小瞧呀!把一个复杂的式子整体代换一下,说不定难题就变简单啦!比如那道含有多项式的题,整体代换一下多轻松呀!
8. 哎呀,类比法也很有趣呀!想想类似的题目怎么做的,这道题也许就有思路啦!就像那道和之前做过的类似的题,类比一下就懂啦!
9. 哇,估算法有时候能快速解决问题呀!大致估算一下范围,就能排除好多选项呢!比如那道计算面积的题,先估算个大概嘛!
10. 嘿,规律总结法可是很重要的哟!多做几道题总结总结规律,以后碰到类似的题就不怕啦!就像那类找数列规律的题,总结好规律就简单啦!
我的观点结论就是:这些高考数学选择题秒杀技巧真的超有用,大家一定要好好掌握呀,能帮你在考场上节省不少时间,提高准确率呢!。

考试选择题答题口诀技巧完整版整理

考试选择题答题口诀技巧完整版整理

让知识带有温度。

考试选择题答题口诀技巧完整版整理选择题是高考各科必考题型,不管是考高分还是建立答题的信念,选择题都必需答好。

下面是我为大家整理的考试选择题答题口诀技巧完整版,仅供参考,喜爱可以(保藏)共享一下哟!考试选择题答题技巧口诀1、三长一短就选短,三短一长就选长。

两长两短就选B,参差不齐C无敌。

2、以蒙为主,以抄为辅,蒙抄结合,保证及格。

3、培育“蒙感”:这个所谓“蒙感”,就是这蒙题的感觉。

由于不行能一面卷子上你一道题也不会做(当然也有例外),你也有很大可能有不会做的题。

这时,就要看蒙题的感觉了。

全部考试的人都知道,选择题中选择B、C选项的占绝大多数。

所以遇到不会的题,就往B、C上靠,几率会大一点。

选择题的蒙题技巧一、排解法1、在单项选择题中,如其中两个或两个上述的选项存在承接、递进关系,即这两个或两个上述选项会另外成立,则正确项只能在以上选项之外去寻求。

2、在单项选择题中,如其中两个或两个上述的选项内容相近或类似,即这两个或两个上述选项会另外成立,则正确项只能在以上选项之外去寻求。

第1页/共3页千里之行,始于足下。

3、单项选择题中,一旦消失一对内容相互对立的选项,则正确选项往往由这两个对立选项中产生。

二、因果分析法1、因果分析法,是指解答因果关系选择题时,把题肢与题干结合起来,具体分析它们之间是否构成因果关系而做出正确推断的方法。

2、正确把握事物之间的因果联系,必需明确缘由和结果既是先行后续的关系,又是引起和被引起的关系。

3、需要留意的是事物的因果联系是多种多样的缘由既有客观缘由,也是有主观缘由;既有根本缘由,也是有一般缘由;既有主要缘由,也是有次要缘由。

所以,解题时肯定要通过题目的不同要求,分析它们之间的因果联系。

运用因果分析法解答因果关系题,应把题肢和题干结合起来分析,以题干为因,所选题肢为果。

4、需要留意的是,因果关系题三不选:一是答非所问者不选;二是与题干规定性重复或变相重复不选;三是因果颠倒者不选。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.9
B.8
C.7
D.6
解析 因为a1=S1=-8<6,所以m≥2, 所以am=Sm-Sm-1=m2-9m-(m-1)2+9(m-1)=2m-10,
所以 6<am<9 即 6<2m-10<9,解得 8<m<129,
又m∈N*,所以m=9.
(2)(2015·四川)执行如图所示的程序框图,输出S的值为( )
故∁RQ={x|-3≤x≤1}, 故P∩(∁RQ)={-3,-2,-1,1}.
答案 C
(2)在△ABC 中,角 A、B、C 所对的边分别为 a、b、c,若 a
= 3,A=3π,cos B= 55,则 b 等于( C )
A.8 5 5
B.2 5 5
C.4 5 5
D.125 5
解析 由题意可得,△ABC 中,sin B= 1-cos2B=255,
A.n(2n-1)
B.(n+1)2
C.n2
D.(n-1)2
解析 因为a5·a2n-5=22n(n≥3), 所以令n=3,代入得a5·a1=26, 再令数列为常数列,得每一项为8,
则log2a1+log2a3+log2a5=9=32. 结合选项可知只有C符合要求.
思维升华
特例法具有简化运算和推理的功效,比较适用于题目 中含有字母或具有一般性结论的选择题,但用特例法 解选择题时,要注意以下两点: 第一,取特例尽可能简单,有利于计算和推理; 第二,若在不同的特殊情况下有两个或两个以上的结 论相符,则应选另一特例情况再检验,或改用其他方 法求解.
3>0},则 P∩(∁RQ)等于( )
A.[-3,0)
B.{-3,-2,-1}
C.{-3,-2,-1,1} D.{-3,-2,-1,0}
解析 当 x>0 时,x+1x≥2; 当 x<0 时,x+1x≤-2,
故集合P={x|x<0或x=1,x∈Z}.x2+2x-3>0, 故x<-3或x>1, 故集合Q={x|x<-3或x>1},
再由正弦定理可得sina
解得
b=4
5 5.
A=sinb
B,即sin 33π=2
b 5
5,
思维升华
涉及概念、性质的辨析或运算较简单的题目常用直 接法.只要推理严谨,运算正确必能得出正确的答 案.平时练习中应不断提高用直接法解选择题的能 力,不能一味求快导致快中出错.
跟踪演练1 (1)已知数列{an}的前n项和Sn=n2-9n,第m项满 足6<am<9,则m等于( A)
x2,x≤0, 若 a=0,则 f(x)=x+1x,x>0, 易知f(0)是f(x)的最小值,故排除C.D正确. 答案 D
(2)已知等比数列{an}满足an>0,n=1,2,3,…,且a5·a2n-5= 22n(n≥3),当n≥1时,log2a1+log2a3+…+log2a2n-1等于
( C)
x-a2,x≤0, 例 2 (1)(2014·上海)设 f(x)=x+1x+a,x>0. 若 f(0)是 f(x)
的最小值,则 a 的取值范围为( )
A.[-1,2]
B.[-1,0]
C.[1,2]
D.[0,2]
x+12,x≤0, 解析 若 a=-1,则 f(x)=x+1x-1,x>0,
易知f(-1)是f(x)的最小值,排除A,B;
方法一 直接法
直接从题设条件出发,运用有关概念、性质、定理、法则 和公式等知识,通过严密地推理和准确地运算,从而得 出正确的结论,然后对照题目所给出的选项“对号入 座”,作出相应的选择.涉及概念、性质的辨析或运算 较简单的题目常用直接法.
例 1 (1)集合 P={x|x+1x≤2,x∈Z},集合 Q={x|x2+2x-
跟踪演练2 (1)已知f(x),g(x)分别是定义在R上的偶函数和奇
函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)等于( C)
A.-3
B.-1
C.1
D.3
解析 ∵f(x)-g(x)=x3+x2+1,
∴f(-x)-g(-x)=-x3+x2+1.
∵f(x)是偶函数,g(x)是奇函数,
∴f(-x)=f(x),g(-x)=-g(x).
∴f(x)+g(x)=-x3+x2+1.
∴f(1)+g(1)=-1+1+1=1.
(2)已知
O
是锐角△ABC
的外接圆圆心,∠A=60°,csions
B→ C·AB
+csoins BC·A→C=2m·A→O,则 m 的值为(
)
A.
3 2
B. 2
C.1
D.12
第二篇 掌握技巧,快速解答客观题
第1讲 选择题的解法技巧
内容索引
题型概述 方法一 直接法 方法二 特例法 方法三 排除法
方法四 数形结合法 方法五 构造法 方法六 估算法 选择题突破练
题型概述
选择题考查基础知识、基本技能,侧重于解题的严谨性 和快捷性,以“小”“巧”著称.解选择题只要结果, 不看过程,更能充分体现学生灵活应用知识的能力. 解题策略:充分利用题干和选项提供的信息作出判断, 先定性后定量,先特殊后推理,先间接后直接,先排除 后求解,一定要小题巧解,避免小题大做.
A.-
3 2Leabharlann C.-213 B. 2
1 D.2
解析 每次循环的结果依次为: k=2,k=3,k=4,k=5>4, ∴S=sin 56π=21.选 D. 答案 D
方法二 特例法
从题干(或选项)出发,通过选取特殊情况代入,将问题特殊 化或构造满足题设条件的特殊函数或图形位置,进行判 断.特殊化法是“小题小做”的重要策略,要注意在怎样 的情况下才可使用,特殊情况可能是:特殊值、特殊点、 特殊位置、特殊函数等.
解析 如图,当△ABC为正三角形时,
A=B=C=60°,取D为BC的中点, A→O=32A→D,则有 13A→B+ 13A→C=2m·A→O,
∴ 13(A→B+A→C)=2m×32A→D,
∴ 13·2A→D=43mA→D, ∴m= 23,故选 A. 答案 A
方法三 排除法
排除法也叫筛选法或淘汰法,使用排除法的前提条件是答 案唯一,具体的做法是采用简捷有效的手段对各个备选 答案进行“筛选”,将其中与题干相矛盾的干扰项逐一 排除,从而获得正确答案.
例3 (1)(2015·课标全国Ⅱ)根据下面给出的2004年至2013年 我国二氧化硫排放量(单位:万吨)柱形图.以下结论不正确的 是( )
A.逐年比较,2008年减少二氧化硫排放量的效果最显著 B.2007年我国治理二氧化硫排放显现成效 C.2006年以来我国二氧化硫年排放量呈减少趋势 D.2006年以来我国二氧化硫年排放量与年份正相关
相关文档
最新文档