数与式测试卷
初中数学《数与式》综合检测(含答案)
《数与式》综合检测(满分150分,90分钟完卷)班级:_________ 姓名:__________ 学号:________ 得分:________一、选择题(每小题4分,共40分)1.下列说法正确的是()A.-1的倒数是1 B.-1的相反数是-1C.1的算术平方根是1 D.1的立方根是±12.全国中小学危房改造工程实施五年来,已改造农村中小学危房7 800万平方米,如果按一幢教学楼总面积是750平方米计算,那么该工程共修建教学楼大约有().A.10幢B.10万幢C.20万幢D.100万幢3.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.000 •00156m,则这个数用科学记数法表示是().A.0.156×10-5m B.0.156×105mC.1.56×10-6m D.1.56×106m4.下列运算中正确的是().A.-(-x)3·(-x)5=-x8B.x5+x5=2x10C.(-2x22y)3·4x-3=-24x3y3D.(12x-3y)(-12x+3y)=14x2-9y5.为了美化城市,经统一规划,将一正方形草坪的南北方向增加3m,•东西方向缩短3m,则改造后的长方形草坪面积与原来正方形草坪面积相比().A.减少9m2B.减少6m2C.增加9m2D.保持不变6有意义,那么,直角坐标系中点P(m,n)的位置在().A.第一象限B.第二象限C.第三象限D.第四象限7.已知:a+b=m,ab=-4,化简(a-2)(b-2)的结果是().A.6 B.2m-8 C.2m D.-2m8.如果对于任何实数x,分式22 4x x k-+总有意义,则实数k的值应满足().A.k<4 B.k=4 C.k>4 D.k≥49.某商店的老板销售一种商品,他要以不低于进价20%的价格才能出售,•但为了获取更多的利润.他以高出进价80%的价格标价,你若想买下标价为360元的这种商品,最多降价(),商店老板才能出售.A.80元B.100元C.120元D.160元10.如图,在半圆形路上有均匀分布的四家工厂甲、乙、丙、丁,每家工厂都有足够的仓库供产品储存.现要将所有的产品集中到一家工厂的仓库储存,已知甲、乙、丙、丁四家工厂的产量之比为2:1:3:4,运费与路程的远近成正比,•为使选定的工厂仓库储存所有产品时的总运费最省,应选工厂( )来储存所有的产品. A .甲 B .乙 C .丙 D .丁二、填空题(每小题4分,共40分) 11.近似数2.0万精确到_____位,有_____个有效数字,用四舍五入法把1.5972精确到0.01约等于_________. 12.实验中学九年级12个班中共有团员a 人,则12a表示的实际意义是______. 13.如果a+b=2007,a -b=1,那么a 2-b 2=_______.14.已知│x -,以x ,y 为两边长的等腰三角形的周长是______.15.将3x 2-3x 3-34x 分解因式为_______. 16.若x -2y=-3,则(x -2y )(3x -4y )+x (2y -x )的值为_______.17.小敏中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;•②洗菜3分钟;③准备面条及佐料2分钟;④用锅把水烧开7分钟;⑤用烧开的水煮面条和菜要3分钟,以上各道工序外,除④外,一次只能进行一道工序,小敏要将面条煮好,最少用______分钟.18.已知实数m 、n 满足3,则m n =_______.19.某单位一名职工因公受伤住院治疗了一个月(按30天计),用去医疗费5 •000元,伙食费500元,工伤保险基金按规定给他补贴医疗费4 500元,•其单位按因公出差标准(每天30元)的百分之七十补助给他做伙食费,•则在这次工伤治疗中他自己只需支付________. 20.瑞士中学教师巴尔末成功地从光谱数据9162536,,,5122132…,中得到巴尔末公式,•从而打开了光谱奥秒的大门,请你按这种规律写出第七个数据是_______,第n 个数据是______.三、解答题(本大题共70分)21.计算:(每小题5分,共10分)(1)(-13)-2+16÷(-2)3+(2005-3π)0;(2)-.22.(6分)先化简:(2x-1)2-(3x+1)(3x-1)+5x(x-1),•再选取一个你喜欢的数代替x求值.23.(6分)已知y=2221111x x x xx x x-+-÷+-++1,试说明在右边代数式有意义的条件下,不论x为何值,y•值不变.24.(9分)当x2+2y2-时,求22222(2)()2224x y xy xx yx y x xy x y---+---的值.25.(8分)观察图形(每个正方形的边长均为1)和相应等式,•探究其中的规律:…(1)写出第五个等式,并在下图给出的五个正方形上画出与之对应的图示:(2)猜想并写出与第n个图形相对应的等式.26.(8分)设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去……(1)记正方形ABCD的边长为a1=1,依上述方法所作的正方形的边长依次为a2,a3,a4, …,a n,求出a2,a3的值.(2)根据以上规律写出第n个正方形的边长a n的表达式.27.(12分)阅读下列材料,解答问题.饮水问题是关系到学生身心健康的重要生活环节,东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天(除去各种节假日),春、夏、秋、冬各60天.原来,学生饮水一般都是购纯净水(其它碳酸饮料或果汁价格更高),纯净水零售价为1.5元/瓶,每个学生春、秋、冬季平均每天买1瓶纯净水,•夏季平均每天要买2瓶纯净水,学校为了减轻学生消费负担,要求每个班自行购买1台冷热饮水机.经调查,购买一台功率为500W的冷热饮水机约为150元,纯净水每桶6元,每班春、秋两季平均每1.5天购买4桶,夏季平均每天购买5桶,冬季平均每天购买1桶,•饮水机每天开10小时,当地民用电价为0.50元/度.请计算:(1)在未购买饮水机之前,全年平均每个学生要花费多少元钱来购买纯净水饮用?(2)在购买饮水机解决学生饮水问题后,每班当年共要花费多少元?(3)这项便利学生的措施实施后,东坡中学一年要为全体学生共节约多少元?28.(11分)某企业有九个生产车间,现在每个车间原有的成品一样多,•每个车间每天生产的成品也一样多,有A、B两组检验员,其中A组有8名检验员,•他们先用两天将第一、第二两个车间的所有成品(指原有的和后来生产的)检验完毕后,•再去检验第三、第四两个车间的所有成品,又用去了三天时间;同时,用这五天时间,B•组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,每个车间原有的成品为a件,每个车间每天生产b件成品.(1)试用a、b表示B组检验员检验的成品总数;(2)求B组检验员的人数.答案:一、1.C 2.B 3.C 4.A 5.A 6.C 7.D 8.C 9.C 10.C 二、11.千;两;1.60 12.平均每班有团员12a人 13.2007 14.15 15.-3x (x -12)2 •16.18 17.12 18.9 19.370元 20.2281(2),77(2)4n n ++- 三、21.(1)5 (2)-17 22.-9x+2 23.y=124.由(x -3)2+)2=0得x=3,y=22224442122(2)3y y y x y x y x x y x -+===-- 原式25.解:(1)5×56=5-56 (2)n×11n nn n n =-++26.(1)∵四边形ABCD 是正方形,∴AB=BC=1,∠B=90°,,同理AE=2,,即:a 2a 2=2,a 4(2)a n =-1为正整数)27.(1)450 (2)4 830 (3)424 08028.因为检验员的检验速度相同,所以有2(2)2(5)23a b a b ++=,即a=4b , 所以,•一名检验员每天检验的成品数为2(2)3284a b +=⨯b (件).对于B 组检验员,由(1)知,5个车间5天后的成品数为5(a+5b ), 则B 组检验员每天检验的成品数为5(5)5a b +件,即(a+5b )件, 由题意,知a≠0,b≠0, 所以,B •组检验员的人数为593344a b bb b +==12。
第四单元数与式单元过关测试题
第四单元《数与式》单元过关测试题(满分100分)一、选择题(本题共8个小题,每小题3分,共24分。
在每小题的四个选项中,只有一项符合题目要求)1.下列命题中,是假命题的是()A.如果一个等腰三角形由两边长分别是1,3,那么三角形的周长为7B.等边三角形一边上的高、中线和对应的角平分线一定重合C.两个全等三角形的面积一定相等D.有两条边对应相等的两个直角三角形一定全等2.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.3D.83.将一副三角板(∠A=30°,∠E=45°)按如图所示方式摆放,使得BA∥EF,则∠AOF等于()A.75°B.90°C.105°D.115°4.两个相似多边形的一组对应边分别是3cm和4.5cm,如果它们的周长之和是80cm,那么较大的多边形的周长是()A.16cm B.32cm C.48cm D.52cm5.如图,在平面直角坐标系中,已知点A(﹣2,1),B(﹣1,2),以原点O为位似中心,相似比为2,把△ABO放大,则点B的对应点B′的坐标是()A.(﹣4,2)B.(﹣2,4)C.(﹣4,2)或(﹣2,4)D.(﹣2,4)或(2,﹣4)6.如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.两处C.三处D.四处7.如图,在四边形ABCD中,E、F分别是AB、AD中点,若EF=6,BC=13,CD=5,则S△DBC=()A.60B.30C.48D.658.如图,△ABC中,AB=AC,作△BCE,点A在△BCE内,点D在BE上,AD垂直平分BE,且∠BAC=m°,则∠BEC=()A.90°﹣m°B.180°﹣2m°C.30°+m°D.m°二、选择题(本题共4个小题,每小题3分,共12分,在每小题给出的选项中,有多项符合题目要求。
数与式测试卷
数与式一、选择题(每小题3分,共24分)1、某山海拔是1200米,某低谷比海平面低200米,则它们相差( )米。
A .1000 B .1200 C .1400 D .2002、2016)1(-的相反数是( ) A .1 B .1- C .2016 D .—20163、2016)1(-的绝对值是( )A .1B .1-C .2016D .—20164、我国南海海域面积约为3500000,用科学记数法表示正确的是( )。
A .3.5×B .3.5×C .3.5×D .3.5× 5、下列计算正确的是( )A .844a a a =+B .523a a a =• C .532)(x x = D .()63262a a -=-6、49的平方根为( ) A 、7 B 、7- C 、±7D 77、多项式a ax ax 442+-因式分解正确的是( )A .2)2(+x a B .)2)(2(-+x x a C .)44(2+-x x a D .2)2(-x a8、如果226x x x ---的值为0,则x 等于( ).A 、±2B 、2C 、-2D 、3二、填空题(每小题4分,共40分)1、某地一天的最高气温是10℃,最低气温是2℃,则该地这天的温差是.2、计算:=-•-02016)3(1π,=•22b b。
3、321-的相反数是,绝对值是 。
4、用科学计数法表示下列各数:56 000 000= , 0.00000102= 。
5、分解因式:2a ab -=。
(1)2x 2+4x +2= _______;6、已知一个正数x 的平方根为2a-3和a-3,则a=________, x=_____________7、-3的绝对值是 ;-321 的倒数是 ;94的算术平方根是 。
8、当x_____时,分式1xx -有意义,当x=____时,分式1xx -的值等于0。
《数与式》综合检测卷
《数与式》综合检测卷(时间:90分钟 满 分:100分)一、选择题(每小题2分,共24分)1.下列各数:π3,sin 30°,-3,4,其中无理数的个数有( B )A .1个B .2个C .3个D .4个2.某种药品说明书上标明保存温度是(20±3) ℃,则该药品最合适保存的温度范围是( C )A .17℃~20℃B .20℃~23℃C .17℃~23℃D .17℃~24℃ 3.计算(-3)+4的结果是( C ) A .-7 B .-1 C .1D .74.通州区大运河森林公园占地面积10 700亩,是北京规模最大的滨河森林公园,将10 700用科学记数法表示为( D )A .10.7×104B .1.07×105C .1.7×104D .1.07×1045.设n 为正整数,且n <65<n +1,则n 的值为( D ) A .5 B .6 C .7D .86.如果ab >0,a +b <0,那么下面各式:①a b =ab;②a b ·ba=1;③ab ÷ab=-b ,其中正确的是( B )A .①②B .②③C .①③D .①②③7.若最简二次根式3a -12a +5b 与a -2b +8是同类二次根式,则a 、b 的值为( A )A .a =1,b =1B .a =2,b =-1C .a =-2,b =1D .a =-1,b =18.估计5-17的值在( A ) A .0和1之间 B .1和2之间 C .2和3之间D .3和4之间9.实数a 、b 在数轴上的位置如图所示,且|a |>|b |,则化简a 2-|a +b |的结果为( C )第9题A .2a +bB .-2a +bC .bD .2a -b10.如图1,把一个长为2m ,宽为2n (m >n )的矩形两次对折后展开,再用剪刀沿图中折痕剪开,把它分成四块完全相同的小矩形,最后按如图2那样拼成一个正方形,则中间空的部分的面积是( C )第10题A .2mB .(m +n )2C .(m -n )2D .m 2-n 211.把所有正偶数从小到大排列,并按如下规律分组:第一组:2,4;第二组:6,8,10,12;第三组:14,16,18,20,22,24;第四组:26,28,30,32,34,36,38,40……则现有等式A m =(i ,j )表示正偶数m 是第i 组第j 个数(从左到右数),如A 10=(2,3),则A 2018=( B )A .(31,63)B .(32,17)C .(33,16)D .(34,2)12.一组正方形按如图所示的方式放置,其中顶点B 1在y 轴上,顶点C 1、E 1、E 2、C 2、E 3、E 4、C 3、…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3,…,则正方形A 2019B 2019C 2019D 2019的边长是( D )第12题A .⎝⎛⎭⎫122018B .⎝⎛⎭⎫122019C .⎝⎛⎭⎫332019D .⎝⎛⎭⎫332018二、填空题(每小题2分,共16分) 13.若分式x +1x -1有意义,则x 的取值范围为__x ≥-1且x ≠1__. 14.计算:2(2-3)+6=__2__.15.将多项式m 2n -2mn +n 分解因式的结果是__n (m -1)2__. 16.若y =x -4+4-x 2-2,则(x +y )y =__14__.17.2018年3月2日,大型记录电影《厉害了,我的国》登陆全国各大院线.某影院针对这一影片推出了特惠活动:票价每人30元,团体购票超过10人,票价可享受八折优惠,学校计划组织全体教师观看此影片.若观影人数为a (a >10),则应付票价总额为__24a __元.(用含a 的式子表示)18.如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出输出的结果为12,…,则第2019次输出的结果为__6__.第18题19.若x 2-3x +1=0,则x 2x 4+x 2+1的值为__18__. 20.庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=12+122+123+…+12n +….图1图2 第20题图2也是一种无限分割:在△ABC 中,∠C =90°,∠B =30°,过点C 作CC 1⊥AB 于点C 1,再过点C 1作C 1C 2⊥BC 于点C 2,又过点C 2作C 2C 3⊥AB 于点C 3,如此无限继续下去,则可将△ABC 分割成△ACC 1、△CC 1C 2、△C 1C 2C 3、△C 2C 3C 4、…、△C n -2C n -1C n 、….假设AC =2,这些三角形的面积和可以得到一个等式是__23=32⎣⎡⎦⎤1+34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -1+⎝⎛⎭⎫34n +…__.三、解答题(共60分) 21.(5分)计算:⎝⎛⎭⎫46-412+38÷2 2.解:原式=(46-22+62)÷22=(46+42)÷22=23+2. 22.(5分)计算:-32+(-1)2019-18·sin 45°+(2-1.414)0. 解:原式==-9-1-32×22+1=-10-3+1=-12. 23.(5分)计算:⎝⎛⎭⎫-12-2-|3-2|+(2-1.414)0-3tan 30°-(-2)2.解:原式=4-(2-3)+1-3×33-2=4-2+3+1-3-2=1. 24.(5分)已知x =1-2,y =1+2,求x 2+y 2-xy -2x +2y 的值.解:∵x =1-2,y =1+2,∴x -y =(1-2)-(1+2)=-22,xy =(1-2)(1+2)=-1,∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-22)2-2×(-22)+(-1)=7+4 2.25.(5分)化简:⎝⎛⎭⎫3a +2+a -2÷a 2-2a +1a +2.解:原式=a 2-1a +2·a +2(a -1)2=a +1a -1.26.(5 分)化简:⎝⎛⎭⎪⎫x +2x 2-2x -x -1x 2-4x +4÷⎝⎛⎭⎫1-4x . 解:原式=⎣⎢⎡⎦⎥⎤x +2x (x -2)-x -1(x -2)2÷x -4x =x 2-4-(x 2-x )x (x -2)2·x x -4=x -4x (x -2)2·x x -4=1x 2-4x +4. 27.(5分)先化简,再求值:a 4-b 4a 2-2ab +b 2×b -aa 2+b 2,其中a =2019,b =2018.解:原式=(a 2+b 2)(a +b )(a -b )(a -b )2·-(a -b )a 2+b 2=-(a +b )=-a -b .当a =2019,b =2018时,原式=-2019-2018=-4037.28.(5分)先化简,再求值:a -2a 2-1÷⎝⎛⎭⎪⎫a -1-2a -1a +1,其中a 是方程x 2-x =6的根. 解:原式=a -2a 2-1÷(a +1)(a -1)-(2a -1)a +1=a -2a 2-1÷a 2-2a a +1=1a 2-a .∵a 是方程x 2-x =6的根,∴a 2-a =6,∴原式=16.29.(6分)先化简,再求值:a 2-6ab +9b 2a 2-2ab ÷⎝⎛⎭⎫5b 2a -2b -a -2b -1a ,其中a 、b 满足⎩⎪⎨⎪⎧a +b =4,a -b =2.解:原式=(a -3b )2a (a -2b )÷⎣⎢⎡⎦⎥⎤5b 2a -2b -(a -2b )(a +2b )a -2b -1a =(a -3b )2a (a -2b )÷9b 2-a 2a -2b -1a =(a -3b )2a (a -2b )·a -2b (3b -a )(3b +a )-1a =-(a -3b )a ()3b +a -1a =-(a -3b )a (3b +a )-3b +a a (3b +a )=-2a a (3b +a )=-2a +3b .解⎩⎪⎨⎪⎧ a +b =4,a -b =2,得⎩⎪⎨⎪⎧a =3,b =1.∴当a =3,b =1时,原式=-23+3×1=-13. 30.(6分)先化简,再求值:x 2+x x 2-2x +1÷⎝⎛⎭⎫2x -1-1x ,其中整数x 满足-2<x ≤2. 解:原式=x (x +1)(x -1)2÷2x -(x -1)x (x -1)=x (x +1)(x -1)2×x (x -1)x +1=x2x -1.其中⎩⎪⎨⎪⎧x 2-2x +1≠0,x (x -1)≠0,x +1≠0,即x ≠-1、0、1.又∵-2<x ≤2,且x 为整数,∴x =2.将x =2代入x 2x -1中,得原式=222-1=4.31.(8分)观察下列等式:第一个等式:a 1=21+3×2+2×22=12+1-122+1;第二个等式:a 2=221+3×22+2×(22)2=122+1-123+1;第三个等式:231+3×23+2×(23)2=123+1+124+1;第四个等式:a 4=241+3×24+2×(24)2=124+1-125+1.按上述规律,回答下列问题:(1)请写出第六个等式:a 6=__261+3×26+2×(26)2__=__126+1-127+1__;(2)用含n 的代数式表示第n 个等式:a n =__2n 1+3×2n +2×(2n )2__=__12n +1-12n +1+1__;(3)a 1+a 2+a 3+a 4+a 5+a 6=__1443__(得出最简结果);(4)计算:a 1+a 2+…+a n . 解:原式=12+1-122+1+122+1-123+1+…+12n +1-12n +1+1=12+1-12n +1+1=2n +1-23(2n +1+1).。
数与式测试卷
数与式测试卷班级 姓名 成绩一、选择题(每小题3分,共15分)1、在4,45sin ,32,14.3,3︒--,π,0.3030030003……,0.15172∙∙中,无理数有()个A 、1B 、2C 、3D 、42、温家宝总理有句名言:多么小的问题乘以13亿,都会变得很大;多么大的经济总量,除以13亿都会变得很小.将13亿用科学记数法表示为( )A 、1.3×108B 、1.3×109C 、1.3×1010D 、1.3×10113、不等式组10235x x +⎧⎨+<⎩≤,的解集在数轴上表示为( )4、下列各式运算正确的是( )A 、325x x x +=B 、32x x x -=C 、326x x x ⋅= D 、32xx x ÷=5、甲、乙二人沿相同的路线由A 到B 匀速行进,A ,B 两地间的路程 为20km .他们行进的路程s (km )与甲出发后的时间t (h )之间 的函数图像如图5所示.根据图像信息,下列说法正确的是( ) A .甲的速度是4 km/ h B .乙的速度是10 km/ h C .乙比甲晚出发1 h D .甲比乙晚到B 地3 h二、填空题(每小题4分,共20分)6、计算:5-= ,2= . 7、若212y xm -与n y x 2-是同类项,则()nm -= ;8、在函数52-=x x y 中,自变量x 的取值范围是___ __________.9、已知x 1、x 2是一元二次方程x 2-x -4=0的两个根,则代数式2111x x += 10、下列图案是由边长为单位长度的小正方形按一定的规律拼接而成。
依此规律,第5个图案中小正方形的个数为_______________。
A .B .C .D .图5第1个 (第10题图)第2个 第3个三、解答题(每小题6分,共30分)11、 解方程组{7273=+=-y x y x12、解方程:x 2+4x-12=013、121161)2()22004()31(201-+-++--×计算:14、给出三个多项式:2221111,31,,222x x x x x x +-++- 请你选择其中两个进行加法运算,并把结果因式分解。
《数与式》综合测试卷
第一章《数与式》综合测试卷[分值:120分]一、选择题(每小题3分,共30分) 1.-13的相反数是(B )A .-13 B.13C .-3D .3【解析】 根据相反数的定义,可得13是-13的相反数.2.某种细胞的直径是0.00000095 m ,将0.00000095用科学记数法表示为(A )A .9.5×10-7B .9.5×10-8C .0.95×10-7D .95×10-5【解析】 0.00000095=9.5×10-7.3.关于12的叙述,错误的是(A ) A.12是有理数B .面积为12的正方形的边长为12 C.12=2 3D .在数轴上可以找到表示12的点 【解析】 12是无理数,故选A.4.已知点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论:①b -a <0;②a +b >0;③|a |<|b |;④ba>0.其中正确的是(C )(第4题)A .①②B .③④C .①③D .②④【解析】 由题意,得b <-3<0<a <3,且|b |>|a |, ∴b -a <0,a +b <0,ba<0,故①③正确,②④错误.5.能说明“对于任何实数a ,|a |>-a ”是假命题的一个反例可以是(A ) A .a =-2 B .a =13 C .a =1 D .a = 2【解析】 若|a |>-a ,则|a |+a >0,此时a >0. ∴当a ≤0时,|a |>-a 不成立, ∴反例只要是非正数都可以. 6.下列计算正确的是(B )A .2a +3b =5ab B.8+2=3 2C .(-2a 2b )3=-6a 6b 3D .(a -b )2=a 2-b 2【解析】 A .2a 与3b 不是同类项,不能合并,故此选项错误. B.8+2=22+2=32,故此选项正确.C .(-2a 2b )3=-8a 6b 3,故此选项错误.D .(a -b )2=a 2-2ab +b 2,故此选项错误.7.已知实数a ,b 在数轴上对应的点的位置如图所示:(第7题)化简a 2+(a +b )2-(2a -b )2的结果是(B ) A. a B. -2b C. -3a D. -a +2b【解析】 从数轴中可知a <-1,0<b <1,∴a +b <0,2a -b <0,∴原式=-a -(a +b )+(2a -b )=-2b .8.若⎝⎛⎭⎫4a 2-4+12-a ·W =1,则W =(D )A. a +2(a ≠±2)B. -a +2(a ≠±2)C. a -2(a ≠±2)D. -a -2(a ≠±2) 【解析】 根据题意,得W =14(a +2)(a -2)-a +2(a +2)(a -2)=1a -2-(a +2)(a -2)=-(a +2)=-a -2.9.用大小相等的正方形按一定规律拼成下列图形,则第n 个图形中小正方形的个数是(C )(第9题)A .2n +1B .n 2-1C .n 2+2nD .5n -2【解析】 易知第1个图形小正方形的个数是22-1=3, 第2个图形小正方形的个数是32-1=8, 第3个图形小正方形的个数是42-1=15, ……依此类推,第n 个图形小正方形的个数是(n +1)2-1=n 2+2n .10.如图①,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“”的图案,如图②所示,再将剪下的两个小矩形拼成一个新的矩形,如图③所示,则新矩形的周长可表示为(B )(第10题)A. 2a -3bB. 4a -8bC. 2a -4bD. 4a -10b【解析】 根据题意,得2[a -b +(a -3b )]=4a -8b . 二、填空题(每小题3分,共24分)11.若分式2x -3有意义,则x 的取值范围是__x ≠3__.【解析】 x -3≠0,∴x ≠3.12.把多项式16m 3-mn 2分解因式的结果是m (4m +n )(4m -n ). 【解析】 16m 3-mn 2=m (16m 2-n 2) =m (4m +n )(4m -n ).13.若a +b =4,ab =2,则(a -b )2=__8__. 【解析】 (a -b )2=(a +b )2-4ab =42-4×2=8.14.设一列数中相邻的三个数依次为m ,n ,p ,且满足p =m 2-n ,若这列数为-1,3,-2,a ,-7,b ,…,则b =__128__.【解析】 由p =m 2-n ,得a =32-(-2)=11, ∴b =112-(-7)=121+7=128.15.已知a 2-4a +4+|b -3|+a -2b +c =0,则(bc )a =__144__. 【解析】 a 2-4a +4+|b -3|+a -2b +c =0, (a -2)2+|b -3|+a -2b +c =0, ∴a -2=0,b -3=0,a -2b +c =0, ∴a =2,b =3,c =4, ∴(bc )a =(3×4)2=144. 16.若关于x 的方程2x -2+x +m 2-x=2的解为正数,则m 的取值范围是__m <6且m ≠0__. 【解析】 原方程去分母,得2-x -m =2(x -2),解得x =2-m3.∵原方程的解为正数,∴2-m3>0,解得m <6.又∵x ≠2,∴2-m3≠2,解得m ≠0.综上所述,m <6且m ≠0.17.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:输入x ,第1次Fy 1=2x x +1,第2次Fy 2=2y 1y 1+1,第3次Fy 3=2y 2y 2+1,…F(第17题)则第n 次运算的结果y n =2n x(2n -1)x +1(用含字母x 和n 的代数式表示).【解析】 将y 1=2x x +1代入y 2=2y 1y 1+1,得y 2=2×2xx +12x x +1+1=4x3x +1.将y 2=4x 3x +1代入y 3=2y 2y 2+1,得y 3=2×4x 3x +14x 3x +1+1=8x7x +1.……依此类推,第n 次运算的结果y n =2n x(2n -1)x +1.18.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了(a +b )n (n =1,2,3,4,…)的展开式的系数规律(按a 的次数由大到小的顺序):1 1(a +b )1=a +b 12 1(a +b )2=a 2+2ab +b 213 3 1(a +b )3=a 3+3a 2b +3ab 2+b 31 4 6 4 1(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4……(第18题)根据上述规律,可知⎝⎛⎭⎫x -2x 2016的展开式中含x 2014项的系数是__-4032__.【解析】 由规律可知,⎝⎛⎭⎫x -2x 2016的展开式中含x 2014项就是展开式中的第二项,即2016x2015·⎝⎛⎭⎫-2x 1=-4032x 2014,∴系数是-4032. 三、解答题(共66分)19.(12分)计算:(1)2×[5+(-2)3]-(-|-4|÷2-1).【解析】 原式=2×(5-8)-⎝⎛⎭⎫-4÷12=-6-(-8)=2. (2)(-1)2017-|-2|+(3-π)0×38+⎝⎛⎭⎫14-1.【解析】 原式=-1-2+1×2+4=3. (3)-32+8+|1-2|-4sin 30°+318-4cos 45°. 【解析】 原式=-9+2 2+2-1-4×12+12-4×22=-9+3 2-1-2+12-22=2-232.20.(6分)已知4x =3y ,求代数式(x -2y )2-(x -y )(x +y )-2y 2的值. 【解析】 原式=x 2-4xy +4y 2-x 2+y 2-2y 2 =-4xy +3y 2.∵4x =3y ,∴原式=-3y 2+3y 2=0. 21.(6分)先化简,再求值:⎝⎛⎭⎫a a +2+1a 2-4÷a -1a +2+1a -2,其中a =2+ 2. 【解析】 原式=a (a -2)+1a 2-4·a +2a -1+1a -2 =(a -1)2(a -2)(a -1)+1a -2=aa -2. 当a =2+2时,原式=2+22=2+1.22.(6分)小明解方程1x -x -2x =1的过程如图所示,请指出他解答过程中的错误,并写出正确的解答过程.(第22题)【解析】 小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验.正确解法如下:方程两边同乘x ,得1-(x -2)=x . 去括号,得1-x +2=x . 移项,得-x -x =-1-2.合并同类项,得-2x =-3,解得x =32.经检验,x =32是原方程的解,∴原方程的解为x =32.23.(8分)如图为4×4的网格(每个小正方形的边长均为1)与数轴.(第23题)(1)求出图①中阴影部分的面积.(2)求出图①中阴影部分正方形的边长. (3)在图②的数轴上作出表示8的点A . 【解析】 (1)S 阴影=4×4×12=8.(2)边长=8=2 2.(3)在数轴上画边长为2的正方形,以原点为圆心、对角线长为半径画弧,交x 轴正半轴于点A ,则点A 即为表示8的点(画图略).24.(8分)若a ,b 为实数,且满足|a -1|+ab -2=0,求1ab +1(a +1)(b +1)+1(a +2)(b +2)+…+1(a +2014)(b +2014)的值.【解析】 ∵|a -1|+ab -2=0,∴a =1,ab =2,∴b =2,∴原式=11×2+12×3+…+12015×2016=1-12+12-13+…+12015-12016=1-12016=20152016.25.(10分)(1)已知a ,b ,c 为△ABC 的三边长,且满足关系式a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.(2)若a ,b ,c 是△ABC 的三边长,且满足关系式a 2+b 2+c 2-ab -ac -bc =0,试判断△ABC 的形状.(3)已知△ABC 的三边长分别为a ,b ,c ,且a =m 2-n 2,b =2mn ,c =m 2+n 2(m >n ,且m ,n 都是正整数),则△ABC 是直角三角形吗?请说明理由.【解析】 (1)∵a 2c 2-b 2c 2=a 4-b 4,且a ,b ,c 都是正数, ∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2), ∴(a 2+b 2)(a 2-b 2)-c 2(a 2-b 2)=0, ∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0或a 2+b 2-c 2=0, ∴a =b 或a 2+b 2=c 2,∴△ABC 是等腰三角形或直角三角形.(2)a 2+b 2+c 2-ab -ac -bc =0可配方成12[(a -b )2+(b -c )2+(a -c )2]=0,故a =b =c ,∴△ABC 为等边三角形.(3)是.理由:∵a 2+b 2=(m 2-n 2)2+(2mn )2=m 4-2m 2n 2+n 4+4m 2n 2=m 4+2m 2n 2+n 4=(m 2+n 2)2=c 2,∴△ABC 为直角三角形.26.(10分)阅读材料:把形如ax 2+bx +c 的二次三项式(或其中某一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a 2±2ab +b 2=(a ±b )2.例如:(x -1)2+3,(x -2)2+2x ,⎝⎛⎭⎫12x -22+34x 2是x 2-2x +4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项——见横线上的部分).请根据材料解决下列问题:(1)比照上面的例子,写出x 2-4x +2的三种不同形式的配方. (2)将a 2+ab +b 2配方(至少两种形式).(3)已知a 2+b 2+c 2-ab -3b -2c +4=0,求a +b +c 的值. 【解析】 (1)①x 2-4x +2=(x 2-4x +4)-2=(x -2)2-2.②x 2-4x +2=(x 2-2 2x +2)+(2 2-4)x =(x -2)2+(2 2-4)x . ③x 2-4x +2=[(2x )2-4x +2]-x 2=(2x -2)2-x 2.(2)(a +b )2-ab 或⎝⎛⎭⎫a +12b 2+34b 2或⎝⎛⎭⎫12a +b 2+34a 2. (3)由已知等式可得⎝⎛⎭⎫a -b 22+3⎝⎛⎭⎫b2-12+(c -1)2=0,∴⎩⎪⎨⎪⎧a =1,b =2,c =1,∴a +b +c =4.第五章《基本图形(一)》综合测试卷[分值:120分]一、选择题(每小题3分,共30分)1.如图,直线a ,b 被直线c 所截,则∠1与∠2的位置关系是(B ) A .同位角 B .内错角 C .同旁内角 D .对顶角【解析】 ∠1与∠2成“Z ”字形,是内错角.(第1题) (第2题)2.已知M ,N ,P ,Q 四点的位置如图所示,则下列结论中,正确的是(C ) A .∠NOQ =42° B .∠NOP =130°C .∠NOP 比∠MOQ 大D .∠MOQ 与∠MOP 互补 【解析】 由图可知,∠NOQ =138°,∠NOP =50°,∠MOQ =42°,∠MOP =130°,故选C.(第3题)3.如图,AB ∥CD ,DA ⊥AC ,垂足为A .若∠ADC =35°,则∠1的度数为(B ) A .65° B .55° C .45° D .35°【解析】 ∵DA ⊥AC ,∴∠CAD =90°. ∵∠ADC =35°,∴∠ACD =55°. ∵AB ∥CD ,∴∠1=∠ACD =55°.4.将一副直角三角尺如图所示放置,若∠AOD =20°,则∠BOC 的大小为(B ) A. 140° B. 160° C. 170° D. 150°【解析】 ∵∠AOB =∠COD =90°,∠AOD =20°, ∴∠BOC =∠AOB +∠COD -∠AOD =160°.(第4题) (第5题)5.如图,在Rt △ABC 中,∠A =30°,BC =1,D ,E 分别是直角边BC ,AC 的中点,则DE 的长为(A )A .1B .2C.3 D .1+ 3【解析】 在Rt △ABC 中,∵∠C =90°,∠A =30°, ∴AB =2BC =2.∵D ,E 分别是BC ,AC 的中点,∴DE =12AB =1.6.如图,已知AE =CF ,∠AFD =∠CEB ,则添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是(B )A. ∠A =∠CB. AD =CBC. BE =DFD. AD ∥BC【解析】 ∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE . A. 可根据“ASA ”推出△ADF ≌△CBE . B. 不能根据“SSA ”推出△ADF ≌△CBE . C. 可根据“SAS ”推出△ADF ≌△CBE .D. ∵AD ∥BC ,∴∠A =∠C .可根据“ASA ”推出△ADF ≌△CBE .(第6题) (第7题)7.如图,在△ABC 中,AB =AC ,D 为BC 上一点,CD =AD ,AB =BD ,则∠B 的度数为(B )A. 30°B. 36°C. 40°D. 45°【解析】 设∠B =x .∵AB =AC ,∴∠C =∠B =x . ∵CD =AD ,∴∠CAD =∠C =x .∵AB =BD ,∴∠BAD =∠BDA =∠CAD +∠C =2x . ∵∠BAD +∠B +∠BDA =180°,∴2x +x +2x =180°, 解得x =36°,即∠B =36°.(第8题)8.如图,已知边长为2的正三角形ABC 的顶点A 的坐标为(0,6),BC 的中点D 在y 轴上,且在点A 的下方,E 是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE 的最小值为(B )A. 3B. 4- 3C. 4D. 6-2 3【解析】 当点E 转到y 轴的正半轴上时,DE 最小. ∵OE =2,∴AE =6-2=4,∴DE =AE -AD =4- 3.9.如图①,分别以直角三角形的三边为边向外作等边三角形,面积分别为S 1,S 2,S 3;如图②,分别以直角三角形的三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S 4,S 5,S 6.其中S 1=16,S 2=45,S 5=11,S 6=14,则S 3+S 4=(A )(第9题)A .86B .64C .54D .48(第9题解) 【解析】 如解图,易得S 1=34AC 2,S 2=34BC 2,S 3=34AB 2.∵AB 2=AC 2+BC 2, ∴S 1+S 2=S 3.同理,S 4=S 5+S 6,∴S 3+S 4=16+45+11+14=86.(第10题)10.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,△AEF 是等边三角形,连结AC 交EF 于点G ,有下列结论:①BE =DF ;②∠DAF =15°;③AC 垂直平分EF ;④BE +DF =EF ;⑤S △CEF =2S △ABE .其中正确的结论有(C )A. 2个B. 3个C. 4个D. 5个【解析】 ∵四边形ABCD 是正方形, ∴AB =BC =CD =AD ,∠B =∠BCD =∠D =∠BAD =90°. ∵△AEF 是等边三角形, ∴AE =EF =AF ,∠EAF =60°. ∴∠BAE +∠DAF =30°.在Rt △ABE 和Rt △ADF 中,∵⎩⎪⎨⎪⎧AE =AF ,AB =AD ,∴Rt △ABE ≌Rt △ADF (HL ).∴BE =DF ,∠BAE =∠DAF ,故①正确; ∵∠BAE +∠DAF =30°, ∴∠DAF =15°,故②正确; ∵BC =CD ,∴BC -BE =CD -DF ,即CE =CF .又∵AE =AF ,∴AC 垂直平分EF ,故③正确; 设CE =x ,由勾股定理,得AE =EF =2x ,CG =EG =22x ,∴AG =62x ,∴AC =6x +2x2,∴AB =3x +x2,∴BE =3x +x 2-x =3x -x2,∴BE +DF =3x -x ≠2x ,故④错误;∵S △CEF =x 22,S △ABE =3x -x 2·3x +x22=x 24,∴2S △ABE =x22=S △CEF ,故⑤正确.综上所述,正确的结论有①②③⑤,共4个. 二、填空题(每小题4分,共24分)11.如图,在△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为__13__.【解析】 ∵DE 是AB 的垂直平分线,∴EA =EB ,∴△BCE 的周长=BC +EC +EB =BC +EC +EA =BC +AC =13.(第11题) (第12题)12.如图,矩形ABCD 的面积是15,边AB 的长比AD 的长大2,则AD 的长是__3__. 【解析】 ∵边AB 的长比AD 的长大2,∴AB =AD +2, ∴AD ·(AD +2)=15,解得AD =3或AD =-5(不合题意,舍去).13.如图,在△ABC 和△DEF 中,点B ,F ,C ,E 在同一条直线上,BF =EC ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是∠A =∠D (答案不唯一)(只需填写一个即可).【解析】 ∵AC ∥DF ,∴∠ACB =∠DFE . ∵BF =EC ,∴BC =EF .∴根据SAS 可添加AC =DF,根据ASA 可添加∠B =∠E 或AB ∥DE , 根据AAS 可添加∠A =∠D .(第13题) (第14题)14.如图,在Rt △ABC 中,∠ACB =90°,AD 是∠BAC 的平分线,与BC 交于点D .若AD =4,CD =2,则AB 的长是__43__.【解析】 在Rt △ACD 中,∵∠C =90°,AD =4,CD =2,∴∠CAD =30°,AC =AD 2-CD 2=2 3.∵AD 平分∠BAC ,∴∠BAC =60°,∴∠B =30°,∴AB =2AC =4 3.15.如图,在矩形ABCD 中,AB =3,BC =6,点E 在对角线BD 上,且BE =1.8,连结AE 并延长,交DC 于点F ,则CF CD =__13__. 【解析】 ∵四边形ABCD 是矩形,∴BC =AD ,∠BAD =90°.又∵AB =3,BC =6,∴BD =AB 2+AD 2=3.∵BE =1.8,∴DE =3-1.8=1.2. ∵AB ∥CD ,∴△FDE ∽△ABE , ∴DF BA =DE BE ,即DF 3=1.21.8,解得DF =233. ∴CF =CD -DF =33.∴CFCD=333=13. (第15题) (第16题)16.如图,在平面直角坐标系中,边长为1的正方形OA 1B 1C 1的两边在坐标轴上,以它的对角线OB 1为边作正方形OB 1B 2C 2,再以正方形OB 1B 2C 2的对角线OB 2为边作正方形OB 2B 3C 3……以此类推,则正方形OB 2015B 2016C 2016的顶点B 2016的坐标是(21008,0).【解析】 ∵正方形OA 1B 1C 1的边长为1,∴OB 1= 2.∵正方形OB 1B 2C 2是以正方形OA 1B 1C 1的对角线OB 1为边作成的,∴OB 2=2,∴点B 2(0,2).同理,点B 3(-2,2),B 4(-4,0),B 5(-4,-4),B 6(0,-8),B 7(8,-8),B 8(16,0),B 9(16,16),B 10(0,32)……可以发现,点的坐标符号特征为8个一循环,每次变换后正方形的边长变为原来的2倍. ∵2016÷8=252,∴点B 2016在x 轴的正半轴上,且OB 2016=(2)2016=21008,∴点B 2016的坐标是(21008,0).三、解答题(共66分)17.(6分)如图,已知EC =AC ,∠BCE =∠DCA ,∠A =∠E .求证:BC =DC .(第17题) 【解析】 ∵∠BCE =∠DCA ,∴∠BCE +∠ACE =∠DCA +∠ACE ,即∠ACB =∠ECD .在△ABC 和△EDC 中,∵⎩⎪⎨⎪⎧∠ACB =∠ECD ,AC =EC ,∠A =∠E ,∴△ABC ≌△EDC (ASA ).∴BC =DC.(第18题)18.(8分)如图,已知BD 是△ABC 的角平分线,点E ,F 分别在边AB ,BC 上,ED ∥BC ,EF ∥AC .求证:BE =CF .【解析】 ∵ED ∥BC ,EF ∥AC ,∴四边形EFCD 是平行四边形,∴DE =CF .∵BD 平分∠ABC ,∴∠EBD =∠DBC .∵DE ∥BC ,∴∠EDB =∠DBC ,∴∠EBD =∠EDB ,∴EB =ED ,∴EB =CF.(第19题)19.(8分)如图,在边长为4的正方形ABCD 中,请画出以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3.)【解析】 满足条件的所有等腰三角形如解图.(第19题解)(第20题)20.(10分)如图,已知E ,F 分别是▱ABCD 的边BC ,AD 上的点,且BE =DF .(1)求证:四边形AECF 是平行四边形.(2)若BC =10,∠BAC =90°,且四边形AECF 是菱形,求BE 的长.【解析】 (1)∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC .又∵DF =BE ,∴AF =CE .∴四边形AECF 是平行四边形.(2)∵四边形AECF 是菱形,∴AE =EC ,∴∠EAC =∠ECA .又∵∠BAC =90°,∴∠BAE =∠B ,∴BE =AE .∴BE =AE =EC .∵BC =10,∴BE =5.(第21题)21.(10分)如图,在△ABC 中(BC >AC ),∠ACB =90°,点D 在AB 边上,DE ⊥AC 于点E .(1)若AD DB =13,AE =2,求EC 的长. (2)设点F 在线段EC 上,点G 在射线CB 上,以F ,C ,G 为顶点的三角形与△EDC 有一个锐角相等,FG 交CD 于点P .问:线段CP 是△CFG 的高线、中线还是两者都有可能?请说明理由.【解析】 (1)∵∠ACB =90°,DE ⊥AC ,∴DE ∥BC ,∴AD DB =AE EC. ∵AD DB =13,AE =2,∴2EC =13,解得EC =6. (2)①若∠CFG 1=∠ECD ,此时线段CP 1为Rt △CFG 1的斜边FG 1上的中线.证明如下: ∵∠CFG 1=∠ECD ,∴∠CFG 1=∠FCP 1.又∵∠CFG 1+∠CG 1F =90°,∠FCP 1+∠P 1CG 1=90°,∴∠CG 1F =∠P 1CG 1,∴CP 1=G 1P 1.又∵∠CFG 1=∠FCP 1,∴CP 1=FP 1,∴CP 1=FP 1=G 1P 1,∴线段CP 1为Rt △CFG 1的斜边FG 1上的中线.②若∠CFG 2=∠EDC ,此时线段CP 2为Rt △CFG 2的斜边FG 2上的高线.证明如下: ∵DE ⊥AC ,∴∠DEC =90°,∴∠EDC +∠ECD =90°.∵∠CFG 2=∠EDC ,∴∠ECD +∠CFG 2=90°,∴CP 2⊥FG 2.∴线段CP 2为Rt △CFG 2的斜边FG 2上的高线.③当CD 为∠ACB 的平分线时,CP 既是△CFG 的FG 边上的高线,又是中线.22.(12分)我们给出如下定义:顺次连结任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图①,在四边形ABCD 中,E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点.求证:中点四边形EFGH 是平行四边形.(2)如图②,P 是四边形ABCD 内一点,且满足P A =PB ,PC =PD ,∠APB =∠CPD ,E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点,猜想中点四边形EFGH 的形状,并证明你的猜想.(3)若改变(2)中的条件,使∠APB =∠CPD =90°,其他条件不变,直接写出中点四边形EFGH 的形状(不必证明).(第22题)【解析】 (1)如解图①,连结BD .∵E ,H 分别为边AB ,DA 的中点,∴EH ∥BD ,EH =12BD . ∵F ,G 分别为边BC ,CD 的中点,∴FG ∥BD ,FG =12BD . ∴EH ∥FG ,EH =FG .∴中点四边形EFGH 是平行四边形.①②(第22题解)(2)四边形EFGH 是菱形.证明如下:如解图②,连结AC ,BD .∵∠APB =∠CPD ,∴∠APB +∠APD =∠CPD +∠APD ,即∠APC =∠BPD .在△APC 和△BPD 中,∵⎩⎪⎨⎪⎧P A =PB ,∠APC =∠BPD ,PC =PD ,∴△APC ≌△BPD (SAS ).∴AC =BD .∵E ,F ,G 分别为边AB ,BC ,CD 的中点,∴EF =12AC ,FG =12BD .∴EF =FG . 同(1)可得四边形EFGH 是平行四边形,∴四边形EFGH 是菱形.(3)四边形EFGH 是正方形.如解图②,设AC 与BD 相交于点O ,AC 与PD 相交于点M ,AC 与EH 相交于点N . ∵△APC ≌△BPD ,∴∠ACP =∠BDP .∵∠DMO =∠CMP ,∴∠COD =∠CPD =90°.∵EH ∥BD ,AC ∥HG ,∴∠EHG =∠ENO =∠BOC =∠COD =90°.又∵四边形EFGH 是菱形,∴四边形EFGH 是正方形.23.(12分)如图,在等边三角形ABC 中,点D 在直线BC 上,连结AD ,作∠ADN =60°,直线DN 交射线AB 于点E ,过点C 作CF ∥AB 交直线DN 于点F .(第23题)(1)如图①,当点D 在线段BC 上,∠NDB 为锐角时,求证:CF +BE =CD (提示:过点F 作FM ∥BC 交射线AB 于点M ).(2)如图②,当点D 在线段BC 的延长线上,∠NDB 为锐角时;如图③,当点D 在线段CB 的延长线上,∠NDB 为钝角时,请分别写出线段CF ,BE ,CD 之间的数量关系,不需要证明.(3)在(2)的条件下,若∠ADC =30°,S △ABC =43,则BE =__8__,CD =4或8.【解析】 (1)如解图①,过点F 作FM ∥BC 交射线AB 于点M .∵FM ∥BC ,∴∠EMF =∠ABC ,∠BDE =∠MFE .∵CF ∥AB ,FM ∥BC ,∴四边形BMFC 是平行四边形,∴BC =MF ,CF =BM .∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,BC =AC ,∴∠EMF =∠ACB ,MF =CA .∵∠ADE =∠ACB =60°,∴∠BDE +∠CDA =120°,∠CAD +∠CDA =120°,∴∠BDE =∠CAD .∴∠MFE =∠CAD .在△MEF 与△CDA 中,∵⎩⎪⎨⎪⎧∠MFE =∠CAD ,MF =CA ,∠EMF =∠DCA ,∴△MEF ≌△CDA (ASA ).∴CD =ME =BE +BM .∴CD =BE +CF .(第23题解)(2)题图②中,CD =BE -CF ;题图③中,CD =CF -BE .(3)如解图②.由题意,易得∠CDA =∠CAD =30°,∠BAD =90°,BC =AC =CD .∵S △ABC =12BC ·BC ·sin60°=34BC 2=43, ∴BC =4.∴CD =4.∵∠BDE =∠ADN -∠ADC =30°,∠BED =90°-∠ADN =30°,∴∠BDE =∠BED ,∴BE =BD =BC +CD =8;。
(完整版)九年级数学总复习总结《数与式》测试题.doc
九年级数学总复习总结《数与式》测试题九年级数学总复习《数与式》测试题一、选择题(每题 4 分,共 32 分)1.实数 a 、 b 在数轴上的位置如图所示,则化简代数式||)a+b –a 的结果是(A . 2a+bB . 2aC . aD . bab2.下列计算中,正确的是()(第 1 题图 )A . x ? x 3x 3 B . x 3x xC . x 3 x x 2D . x 3x 3x 63.若 2 与 a 互为倒数,则下列结论正确的是()。
A 、 a1 B 、 a2 C 、 a1D 、 a 2224.计算 6m 3 ( 3m 2 ) 的结果是()( A )3m( B )2m( C ) 2m ( D ) 3m5. 代数式 3x 24x 6 的值为 9,则 x 2 4 x 6 的值为()3A . 7B . 18C . 12D . 96.2007 年 10 月中国月球探测工程的“嫦娥一号” 卫星发射升空飞向月球。
已知地球距离月球表面约为 384000 千米,那么这个距离用科学记数法(保留三个有效数字)表示应为()A 、 3.84 × 104 千米B 、 3.84 × 105 千米C 、 3.84 × 106 千米D 、 38.4 × 104 千米7.下列因式分解正确的是()A . 4x 2 3x(2 x)( 2 x) 3x ; B . x23x 4 (x 4)( x 1) ;C . 1 4 x x 2(1 2 x) 2 ;D . x 2 y xy x 3 y x( xy y x 2 y) 。
8. 下列等式正确的是()( A ) a x b x(a b) x( B )818 24 9( C ) a 2b2a b( D )二、填空题(每题 4 分,共 40 分)(a b)2a b9.已知点P(x , y) 位于第二象限,并且y ≤ x 4 , x ,y 为整数,写出一个 符合上述.. 条件的点 P 的坐标:10. 用“ ”定义新运算:对于任意实数 a ,b ,都有 a b=b 2+1。
中考数学专题复习《数与式》测试卷(附带答案)
中考数学专题复习《数与式》测试卷(附带答案) 学校:___________班级:___________姓名:___________考号:___________一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×10112.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×1083.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×1044.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×1085.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×1066.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×1097.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×10118.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×1099.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×10810.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×10711.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×10312.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×10313.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<115.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥316.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数.(答案不唯一)四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.20.(2024•房山区一模)计算:.21.(2024•石景山区一模)计算:.22.(2024•通州区一模)计算:.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.26.(2024•大兴区一模)计算:.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.28.(2024•东城区一模)计算:.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.30.(2024•顺义区一模)计算:.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.31.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.32.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.33.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.34.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.六.提公因式法与公式法的综合运用(共11小题)36.(2024•平谷区一模)分解因式:ax2+2ax+a=.37.(2024•房山区一模)分解因式:x2y﹣4y=.38.(2024•石景山区一模)分解因式:xy2﹣4x=.39.(2024•北京一模)分解因式:8a2﹣8b2=.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=.41.(2024•朝阳区一模)分解因式:3x2+6xy+3y2=.42.(2024•大兴区一模)分解因式:ax2﹣4a=.43.(2024•海淀区一模)分解因式:a3﹣4a=.44.(2024•东城区一模)因式分解:2xy2﹣18x=.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=.46.(2024•顺义区一模)分解因式:4m2﹣4=.七.分式有意义的条件(共3小题)47.(2024•房山区一模)若代数式有意义,则实数x的取值范围是.48.(2024•丰台区一模)若代数式有意义,则实数x的取值范围是.49.(2024•顺义区一模)代数式有意义,则实数x的取值范围是.八.分式的值(共2小题)50.(2024•海淀区一模)已知b2﹣4a=0,求代数式的值.51.(2024•东城区一模)已知2x﹣y﹣9=0,求代数式的值.九.分式的加减法(共1小题)52.(2024•平谷区一模)化简:的结果为.一十.分式的化简求值(共2小题)52.(2024•石景山区一模)已知x2﹣3x﹣6=0,求代数式的值.53.(2024•丰台区一模)已知x﹣3y﹣2=0,求代数式的值.一十一.二次根式有意义的条件(共6小题)55.(2024•平谷区一模)若代数式有意义,则实数x的取值范围是.56.(2024•石景山区一模)若在实数范围内有意义,则实数x的取值范围是.57.(2024•通州区一模)若在实数范围内有意义,则实数x的取值范围为.58.(2024•朝阳区一模)若式子在实数范围内有意义,则x的取值范围是.59.(2024•海淀区一模)代数式在实数范围内有意义,则x的取值范围是.60.(2024•东城区一模)若二次根式有意义,则实数x的取值范围是.参考答案与试题解析一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:70000000000=7×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:12089000=1.2089×107故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:8500=8.5×103故选:C.【点评】本题考查了科学记数法表示绝对值较大的数的方法,掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数是关键.4.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×108【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:22300000000=2.23×1010故选:B.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.5.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×106【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:921000=9.21×105故选:C.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.6.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:10000000000=1×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:74870000000=7.487×1010故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×109【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:43700000=4.37×107.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×108【分析】根据科学记数法的规则进行作答即可.【解答】解:17500000=1.75×107.故选:C.【点评】本题主要考查科学记数法,解题的关键是熟练掌握科学记数法的规则.10.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:1330000=1.33×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:19000=1.9×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:3998000=3.998×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:210000000=2.1×108故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<1【分析】根据数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,由此逐一判断各选项即可.【解答】解:由数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1A、∵﹣2<b<﹣1,0<c<1,∴b﹣c<0,故选项A不符合题意;B、∵﹣3<a<﹣2,0<c<1,∴ac<0,故选项B不符合题意;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,故选项C符合题意;D、∵﹣3<a<﹣2<b<﹣1,∴ab>1,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,熟悉数轴上各点的分布特点是解题的关键.15.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥3【分析】由数轴可知,﹣3<a<﹣2,由此逐一判断各选项即可.【解答】解:由数轴可知,﹣3<a<﹣2A、﹣3<a<﹣2,故选项A不符合题意;B、﹣3<a<﹣2,故选项B不符合题意;C、∵﹣3<a<﹣2,∴2<﹣a<3,故选项C符合题意;D、∵﹣3<a<﹣2,∴2<﹣a<3,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,从题目中提取已知条件是解题的关键.16.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵﹣2<a<﹣1,0<b<1∴1<|a|<2,0<|b|<1∴|a|>|b|∴选项A不符合题意;∵﹣2<a<﹣1,0<b<1∴a<b∴a+1<b+1∴选项B符合题意;∵﹣2<a<﹣1,0<b<1∴1<a2<4,0<b2<1∴a2>b2∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴a<﹣b∴选项D不符合题意.故选:B.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵a<﹣1∴选项A不符合题意;∵b<1∴选项B不符合题意;∵﹣2<a<﹣1∴1<﹣a<2∵0<b<1∴﹣a>b∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴﹣b>a∴选项D符合题意.故选:D.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数π.(答案不唯一)【分析】由于开方开不尽的数是无理数,然后确定的所求数的范围即可求解.【解答】解:∵1=,4=∴只要是被开方数大于1而小于16,且不是完全平方数的都可.同时π也符合条件.【点评】此题主要考查了无理数的大小的比较,其中无理数包括开方开不尽的数,和π有关的数,有规律的无限不循环小数.四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.【分析】根据特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简分别计算即可.【解答】解:2cos30°+()﹣1+|﹣1|﹣===1.【点评】本题考查了实数的运算,熟练掌握特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简是解题的关键.20.(2024•房山区一模)计算:.【分析】利用特殊锐角三角函数值,负整数指数幂,绝对值的性质,二次根式的性质计算即可.【解答】解:原式=6×+2+3﹣3=3+2+3﹣3=5.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.21.(2024•石景山区一模)计算:.【分析】利用绝对值的性质,二次根式的性质,特殊锐角三角函数值及负整数指数幂计算即可.【解答】解:原式=2﹣+2﹣2×+5=2﹣+2﹣+5=7.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.22.(2024•通州区一模)计算:.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负整数指数幂的性质分别化简得出答案.【解答】解:原式=4×=2+4+1=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.【分析】sin45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式=4×+2﹣3+2=2﹣3+4=4.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.【分析】利用特殊角的三角函数值及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式===﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.【分析】分别根据绝对值、零指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2=3=2.【点评】本题考查的是实数的运算,熟知绝对值、零指数幂的运算法则,熟记特殊角的三角函数值是解答此题的关键.26.(2024•大兴区一模)计算:.【分析】cos45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式==.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.【分析】根据实数的运算法则、负整数指数幂和特殊角的三角函数值的定义进行计算.【解答】解:原式=2×+1+2﹣2=+1+2﹣2=3﹣.【点评】本题考查了实数的运算法则、负整数指数幂和特殊角的三角函数值,掌握实数的运算法则、负整数指数幂和特殊角的三角函数值的定义是关键.28.(2024•东城区一模)计算:.【分析】利用二次根式的性质,特殊锐角三角函数值,零指数幂,绝对值的性质计算即可.【解答】解:原式=4﹣2×+1﹣2=4﹣+1﹣2=3﹣1.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.【分析】直接利用特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=3+2×﹣3﹣2=3+﹣3﹣2=﹣.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2024•顺义区一模)计算:.【分析】利用负整数指数幂,特殊锐角三角函数值,二次根式的性质,零指数幂计算即可.【解答】解:原式=﹣4×+2+1=﹣2+2+1=.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:4x(x﹣1)+(2x+1)(2x﹣1)=4x2﹣4x+4x2﹣1=8x2﹣4x﹣1∵2x2﹣x﹣1=0∴2x2﹣x=1∴当2x2﹣x=1时,原式=4(2x2﹣x)﹣1=4×1﹣1=4﹣1=3.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.32.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:(3x+2)(3x﹣2)﹣3x(x+1)=9x2﹣4﹣3x2﹣3x=6x2﹣3x﹣4∵2x2﹣x﹣1=0∴2x2﹣x=1当2x2﹣x=1时,原式=3(2x2﹣x)﹣4=3×1﹣4=3﹣4=﹣1.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.33.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.【分析】利用完全平方公式,多项式乘多项式的法则进行计算,然后把x2﹣x=4代入化简后的式子进行计算,即可解答.【解答】解:(x﹣2)2+(x﹣1)(x+3)=x2﹣4x+4+x2+3x﹣x﹣3=2x2﹣2x+1∵x2﹣x﹣4=0∴x2﹣x=4∴当x2﹣x=4时,原式=2(x2﹣x)+1=2×4+1=8+1=9.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.34.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.【分析】利用完全平方公式,单项式乘多项式法则进行计算,然后把a2+3a=1代入化简后的式子进行计算即可解答.【解答】解:(a+1)2+a(a+4)﹣2=a2+2a+1+a2+4a﹣2=a2+a2+2a+4a+1﹣2=2a2+6a﹣1∵a2+3a﹣1=0∴a2+3a=1当a2+3a=1时,原式=2(a2+3a)﹣1=2×1﹣1=2﹣1=1.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.35.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.【分析】利用完全平方公式,单项式乘多项式的法则进行计算,然后把x2+2x=1代入化简后的式子进行计算,即可解答.【解答】解:4(x+1)+(x﹣1)2=4x+4+x2﹣2x+1=x2+2x+5当x2+2x=1时,原式=1+5=6.【点评】本题考查了整式的混合运算﹣化简求值,代数式求值,完全平方公式,准确熟练地进行计算是解题的关键.六.提公因式法与公式法的综合运用(共11小题)【分析】先提取公因式,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:ax2+2ax+a=a(x2+2x+1)﹣﹣(提取公因式)=a(x+1)2.﹣﹣(完全平方公式)【点评】本题考查了提公因式法与公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意要分解彻底.37.(2024•房山区一模)分解因式:x2y﹣4y=y(x+2)(x﹣2).【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:x2y﹣4y=y(x2﹣4)=y(x+2)(x﹣2)故答案为:y(x+2)(x﹣2).【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.38.(2024•石景山区一模)分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2)故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.39.(2024•北京一模)分解因式:8a2﹣8b2=8(a+b)(a﹣b).【分析】提公因式后利用平方差公式因式分解即可.【解答】解:原式=8(a2﹣b2)=8(a+b)(a﹣b)故答案为:8(a+b)(a﹣b).【点评】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=y(x﹣6)2.【分析】提取公因式后用完全平方公式分解即可.【解答】解:x2y﹣12xy+36y=y(x2﹣12x+36)=y(x﹣6)2故答案为:y(x﹣6)2.【点评】本题考查了因式分解,熟练掌握提取公因式和公式法分解因式是关键.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2=3(x2+2xy+y2)=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.42.(2024•大兴区一模)分解因式:ax2﹣4a=a(x+2)(x﹣2).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.43.(2024•海淀区一模)分解因式:a3﹣4a=a(a+2)(a﹣2).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.44.(2024•东城区一模)因式分解:2xy2﹣18x=2x(y+3)(y﹣3).【分析】提取公因式后再用平方差公式分解即可.【解答】解:2xy2﹣18x=2x(y2﹣9)=2x(y+3)(y﹣3).故答案为:2x(y+3)(y﹣3).【点评】本题考查了因式分解,熟练掌握公式法和提取公因式法是关键.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=a(x+2y)(x﹣2y).【分析】观察原式ax2﹣4ay2,找到公因式a,提出公因式后发现x2﹣4y2符合平方差公式,利用平方差公式继续分解可得.【解答】解:ax2﹣4ay2=a(x2﹣4y2)。
初中数学《数与式》综合测试试题
《数与式》综合测试卷[分值:120分]一、选择题(每小题3分,共30分)1.- 22=( B)A. - 2B. —4C. 2D. 4【解析】一22= 一4.2.研究表明,可燃冰是一种可代替石油的新型清洁能源,在我国某海域已探明的可燃冰存储量达150000000000 m3,其中数字150000000000用科学记数法可表示为(C)A. 15X 1010B . 0.15 X 1012C. 1.5 X 1011D , 1.5 X 1012【解析】150000000000= 1.5 X 1011.3.在下列的计算中,正确的是(B)A.吊+宿=哥B . m+m=m3 2C.(2m)=6川D.(班1)=M+1【解析】常+吊=m-3= m.4.计算|2 +乖| +|2 —般|的结果是(D)A. — 2 邓 B . — 4 C . 4 D . 2平【解析】原式=2+。
5 +45-2= 245.5.若a+b=4, ab=2,则(a—b)2=(CA. 0 B . 6 C . 8 D . 12【解析】(a — b)2= (a+ b)2—4ab= 42-4X2=8.6.已知点A, B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:①b-a<。
;®a+b>0;③即1 b1;④a>0.其中正确的是(o-3 0 3(第6题)A.①② B .③④ C .①③ D .②④【解析】由题意,得b<- 3<0<a<3,且|b|>| a| , b• -b-a<0, a+b<0, -<0,故①③正确,②④错误. a7.能说明“对于任何实数a, |a|>—a”是假命题的一个反例可以是(A)A. a=-2 B . a=1 C . a= 1 D , a=V23 -=2「上广2120 万840.二、填空题(每小题4分,共24分)11.若、/x"23有意义,则x的取值范围是x>3—【解析】•- x- 3>0, x>3.【解析】若|a|>—a,则|a|+a>0,此时a>0. ,当aw。
初中数学总复习-数与式测试题
数学总复习《数与式》测试题(一)一、选择题(每题3分,共36分)1、( )A. 3B.D.2、下列实数中,有理数是()A. B. C.D.0.1010010013、下列运算正确的是( )A. B.C. D.4、如果,,那么下面各式:12,3。
其中正确的是( )A. ○1○2B. ○2○3C. ○1○3D. ○1○2○35、已知2,2a b=+=的值为()A. 3B. 4C. 5D. 66、把多项式分解因式,所得结果是( )A. B. C. D.7、下列运算错误的是( )A. B.C. D.8、若实数满足,。
则的值是( )A. -2B. 2C. 50D. -509、已知,,,则多项式的值为( )A. 0B. 1C. 2D. 310、若实数n满足,则等于( )A. -1B. 0C. 1D. 无法计算11、已知,则的值为( )3±=326b b b⋅=()2351x x-÷=32()()xy xy xy--⋅-=-ab>0a b+<=1=b=-42816x x-+22(2)(2)x x-+22(4)(4)x x-+2(4)x-4(4)x+()()221a bb a-=-1a bb a--=-+0.55100.20.323a b a ba b a b++=--a b b aa b b a--=++a b、=5a b+2210a b ab-=-ab20052004a x=+20052005b x=+20052006c x=+222a b c ab bc ac++---()22(2011)20121n n-+-=()2012(2011)n n--22x y+=()()x yy x y x x y---A. B.12、下列等式正确的是( )A. x b a x b xa )(-=-B. 942188+=+ C. ba b a +=+22 D. b a b a +=+2)(二、填空题(每题3分,共21分)13、分解因式:_________________________。
专题01 数与式(61题)(原卷版)
35.(2023·上海徐汇·统考二模)计算: =____.
36.(2023·上海嘉定·统考二模)1纳米=0.000000001米,则2.5纳米用科学记数法表示为________
37.(2023·上海徐汇·统考二模)已知f(x)= ,则 =_____.
38.(2023·上海嘉定·统考二模)方程 -x=1的根是_________.
39.(2023·上海闵行·统考二模)计算: ______.
40.(2023·上海黄浦·统考二模)冬季某日中午12时的气温是3 ,经过10小时后气温下降8 ,那么该时刻的气温是________ .
41.(2023·上海杨浦·二模)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿,那么2兆=________.(用科学记数法表示)
59.(2023·上海崇明·统考二模)计算:
60.(2023·上海徐汇·统考二模)先化简: ,然后从 、 、0、2、3中选一个数代入求值.
29.(2023·上海静安·统考二模)计算: ______.
30.(2023·上海宝山·统考二模)分解因式: __________.
31.(2023·上海金山·统考二模)因式分解:a3-a=______.
32.(2023·上海闵行·统考二模)因式分解: __________.
33.(2023·上海崇明·统考二模) 的立方根是__________.
4.(2023·上海金山·统考二模) 的相反数为()
A. B.6C. D.
5.(2023·上海金山·统考二模)单项式 的系数是()
A. B.2C.3D.8
中考数学数与式真题训练50题含参考答案
中考数学数与式真题训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列各数中,是无理数的是( )A .17B C .2π D 2.下列各组单项式中,为同类项的是( ) A .3ab 2与3a 2bB .a 与1C .2bc 与3abcD .a 2b 与23a b3.下列运算正确的是( )A4±B .()3327-=C 2=D 3=4.下列运算正确的是( ) A .a 3+a 3=a 6B .(a 3)2=a 6C .(ab )2=ab 2D .2a 5·3a 5=5a 55.下列计算中,正确的是( ).A 3=-B 6=C 122= D 76.将数据72000000用科学记数法表示是( ) A .72×107B .0.72×109C .7.2×107D .7.2×1087 )AB C D8.在920,5.55,2π,133-,0.232333223332333,,123中,无理数的个数是( ) A .2B .3C .4D .59.当1<x<3 ) A .3 B .-3 C .1 D .-110在两个整数之间,下列结论正确的是( ) A .2-3之间B .3-4之间C .4-5之间D .5-6之间11.将-3-(+6)-(-5)+(-2)写成省略括号的和的形式是( )A .-3+6-5-2B .-3-6+5-2C .-3-6-5-2D .-3-6+5+212.下列结论中,不正确的是( ) A .-1<0<3 B .23>-2>-212C .-4>-3>-2D .-212>-3>-3.113.下列式子中,正确的是( )A8k =-BC )3x >D 1=-14.在31x +,3m +,23a b -,2a ,0,12-中,单项式的个数( )A .2B .3C .4D .515.代数式243x x -+的最小值为( ). A .1-B .0C .3D .516.已知边长分别为a 、b 的长方形的周长为10,面积4,则ab 2+a 2b 的值为( ) A .10B .20C .40D .8017.若x 2+mxy +4y 2是一个完全平方式,那么m 的值是( ) A .±4B .﹣2C .±2D .418.据有关部门统计,2019年“五一小长假”期间,广东各大景点共接待游客约14400000人次,将数14400000用科学记数法表示为( ) A .71.4410⨯ B .70.14410⨯C .81.4410⨯D .80.14410⨯19.在化简分式23311x x x-+--的过程中,开始出现错误的步骤是( )A .AB .BC .CD .D二、填空题 20.函数35y x =-中,自变量x 的取值范围是________. 21.在实数范围内因式分解:222ax ay -=_____. 22.把多项式24a -分解因式的结果是_____.23.14的算术平方根是_________.24.用配方法将方程2210x x +-=变为2()x a b +=的形式,则a b +=______. 25.化简2232a b a b a b--=-+__________.26.若2a b +=,3a b -=-,则22a b -=_____. 27.多项式2412xy xyz +的公因式是______. 28.计算:37-=__________.29_____.30.如图,显示的是新冠肺炎全国(含港澳台)截至4月27日20时30分,现存确诊人数数据统计结果,则昨日(4月26日)现存确诊人数是__________人.31.一种细菌半径是1.91×10-5米,用小数表示为________________米.3233.在实数范围内分解因式:-1+9a 4=____________________。
数与式测试题
数学测试题 姓名 分数一、精心选一选(每题3分,共30分)1、在(0222sin 45090.2020020002273π-⋅⋅⋅、、、、、、这七个数中,无理数有( )A .1个;B .2个;C .3个;D .4个2、一个数的倒数的相反数是115 ,则这个数是()A .65 B .56 C .-65 D .-563、数轴上的点并不都表示有理数,如右图中数轴上的点P 所表示的数是 2 ”,这种说明问题的方式体现的数学思想方法叫做( ) A .代人法 B .换元法 C .数形结合D .分类讨论4、下列说法中,正确的是( )A .|m|与—m 互为相反数B 2121-与互为倒数C .1998.8用科学计数法表示为1.9988×102D .0.4949用四舍五入法保留两个有效数字的近似值为0.505、在2221123,0,,13,,,,323x y x x x x x x y π+-中,整式和分式的个数分别为( )A .5,3B .7,1C .6,2D .5,26、若单项式421m a b -+与2723m m a b +-是同类项,则m =( )A.2 B.±2 C.-2 D.47、已知方程组5354x y ax y +=⎧⎨+=⎩与2551x y x by -=⎧⎨+=⎩有相同的解,则a 、b 的值为( )A 、12a b =⎧⎨=⎩B 、46a b =-⎧⎨=-⎩C 、62a b =-⎧⎨=⎩D 、142a b =⎧⎨=⎩8、要把面值为10元的人民币换成2元或1元的零钱,现有足够的面值为2元、1元的人民币,那么共有换法( )A. 5种 B. 6种 C. 8种 D. 10种9、方程x+y=22x+2y=3⎧⎨⎩没有解,由此一次函数y=2-x 与y=32-x 的图象必定( )A .重合B .平行C .相交D .无法判断10、某品牌商品,按标价九折出售,仍可获得20%的利润.若该商品标价为28元,则商品的进价 为( ) A. 21元 B. 19.8元 C. 22.4元 D. 25.2元二、耐心填一填(每空3分,共30分)11、近似数0.030万精确到 位。
数与式测试题
《数与式》测试题一、选择题1、-π的相反数是( )A 、-πB 、-π1C 、πD 、π12、37的整数部分是( )A 、4B 、5C 、6D 、73.-32的倒数是( )A .32 B .23 C .32- D .23-4.在实数π、13、sin30°,无理数的个数为( )A.1B.2C.3D.45.下列计算正确的是( )A.a 2+a 3=a 5B. a 6÷a 3=a 2C. 4x 2-3x 2=1D.(-2x 2y )3=-8 x 6y 36、已知关于x 的一元二次方程046)2(22=+-+-m x x m 的一根为0,则m=( )A 、-1B 、1C 、-2D 、27.下列说法正确的是( )A .近似数3.9×103精确到十分位B .按科学计数法表示的数8.04×105其原数是80400C .把数50430保留2个有效数字得5.0×104.D .用四舍五入得到的近似数8.1780精确到0.0018.若x ,y 为实数,且011=-++y x ,则2019⎪⎪⎭⎫ ⎝⎛y x 的值是 A.0 B.1 C.-1 D.-20199.把代数式 322363x x y xy -+分解因式,结果正确的是( )A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -10.当1<x<2时,化简∣1-x ∣+4-4x +x 2 的结果是( )。
A.-1B.2x -1C.1 D .3-2x二、填空题(本大题共10小题,每小题3分,满分30分)11、计算sin30°-2-= .12、- лa 2b 312 的系数是_________,是_________次单项式。
13、因式分解 3222x x y xy -+= .14、若523m x y +与3n x y 的和是同类项,则m n = .15、如果分式23273x x --的值为0,则x 的值应为 .16.已知13x x +=,则代数式221x x+的值为_________. 17.已知一个正数的平方根是32x -和56x +,则这个数是 . 18、甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为 米19、按下面程序计算:输入x =3,则输出的答案是__ _ .20. 填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值是 .三、解答题21、计算:()1013-3cos3012 1.22π-︒⎛⎫+-+ ⎪⎝⎭22. 先化简,再求值:(x -1x -x -2x +1)÷2x 2-x x 2+2x +1,其中x =3.23、解不等式组:3(2) 8143x x x x +>+⎧⎪-⎨≥⎪⎩,并把它的解集在数轴上表示出来.24、已知关于x 的方程xm x x -=+-3533无解,求m。
第一章 数与式(测试)(解析版)
第一章数与式(考试时间:100分钟试卷满分:120分)一.选择题(共10小题,满分30分,每小题3分)1.【原创题】《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿,则1兆等于()表示照相机镜头的焦距,是解本题的关键.3a b 展开式中所有项的系数和为8,……na b 展开式中所有项的系数和为2n ,8a b 展开式中所有项的系数和为82256 .故选:C .【点睛】本题考查了“杨辉三角”展开式中所有项的系数和的求法,解题关键是通过观察得出系数和的规律.10.对于多项式a b c d e ,在任意一个字母前加负号,称为“加负运算”,例如:对b 和d 进行“加负运算”,得到: a b c d e a b c d e .规定甲同学每次对三个字母进行“加负运算”,乙同学每次对两个字母进行“加负运算”,下列说法正确的个数为()①乙同学连续两次“加负运算”后可以得到a b c d e ;②对于乙同学“加负运算”后得到的任何代数式,甲同学都可以通过“加负运算”后得到与之相反的代数式;③乙同学通过“加负运算”后可以得到16个不同的代数式A .0B .1C .2D .3【答案】C【分析】①乙同学第一次对a 和d ,第二次对a 和e 进行加负运算,可得①正确;若乙同学对a 和b进行加负运算得: a b c d e a b c d e ,可得其相反的代数式为a b c d e ,则甲同学对c 、d 、e 进行加负运算,可得与之相反的代数式,同理乙同学可改变字母ac 或ad 或ae 或bc 或bd 或be 或cd 或ce 或de ,甲同学都可以通过“加负运算”后得到与之相反的代数式,可得②正确;若固定改变a ,乙同学可改变字母ab 或ac 或ad 或ae ;若固定改变b ,乙同学可改变字母bc 或bd 或be ;固定改变c ,乙同学可改变字母cd 或ce ;固定改变d ,乙同学可改变字母de ,可得③错误,即可.【详解】解:①乙同学第一次对a 和d 进行加负运算得a b c d e a b c d e ;第二次对a 和e 进行加负运算得a b c d e a b c d e ,故①正确;②若乙同学对a 和b进行加负运算得: a b c d e a b c d e ,则其相反的代数式为a b c d e ,∵甲同学对c 、d 、e 进行加负运算得: e a b c d e a b c d ,同理乙同学可改变字母ac 或ad 或ae 或bc 或bd 或be 或cd 或ce 或de ,甲同学都可以通过“加负运算”后得到与之相反的代数式,故②正确;若固定改变a ,乙同学可改变字母ab 或ac 或ad 或ae ;若固定改变b ,乙同学可改变字母bc 或bd 或be ;固定改变c ,乙同学可改变字母cd 或ce ;固定改变d ,乙同学可改变字母de ,所以一共有4+3+2+1=10种,故③错误.故选:C【点睛】本题主要考察逻辑分析,注意甲乙同学可改变字母个数的不同是解题的关键.二.填空题(共6小题,满分18分,每小题3分)11.【原创题】12024的倒数是_________.|-2024|的相反数是_________.-[+(-2024)]=_________.牌面上的数字进行混合运算(每张牌上的数字只能用一次),使得运算结果等于【答案】(5-3+2)×6(答案不唯一)【分析】根据有理数的加、减、乘、除、乘方运算法则,进行计算即可解答.【详解】解:由题意得:(5-3+2)×6=24,故答案为:(5-3+2)×6(答案不唯一).【点睛】本题考查了有理数的混合运算,熟练掌握有理数的加、减、乘、除、乘方运算法则是解题的关键.(1)取甲、乙纸片各1块,其面积和为(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片【点睛】本题考查了正方形的面积公式以及完全平方公式的几何意义,解决本题的关键是牢记公式特点,灵活运用公式等,本题涉及到的方法为观察、假设与实践,涉及到的思想为数形结合的思想.【新考法】信息题16.当今大数据时代,“二维码”其中小方格专门用做纠错码和其他用个方格作为数据码.根据相关数学知识,这三.解答题(共9小题,满分72分,其中17、18、19题每题6分,20题、21题每题7分,22题8分,23题9分,24题10分,25题13分)【新考法】数学与实际生活——游戏中的数学17.如图,佳佳玩一个摸球计算游戏,在一个密闭的容器中放入五个小球,小球分别标有如图所示的数(x 为正整数);现从容器中摸取小球,规定:若摸取到白色球,就加上球上的数:若摸到灰色球,就减去球(1)若佳佳摸取到如下两个小球,请计算出结果;(2)佳佳摸出全部的五个球,若计算结果为【答案】(1)3(2)x 的值为31【分析】(1)由题意得,02020 (2)由题意得,011220202 【详解】(1)解:由题意得,2020 ∴结果为3;(2)解:由题意得,0122020 ∴343x ,解得31x ,∴x 的值为31 .【点睛】本题考查了根据二次根式的性质化简,零指数幂,负整数指数幂,绝对值,解一元一次方程.解题的关键在于根据题意列方程并正确的计算求解.18.【原创题】根据a 这条性质,解答下列问题:【点睛】本题考查了化简二次根式、特殊角的正切三角函数、零指数幂、分式的化简求值等知识点,熟练(1)求线段AB的长;m ,且m<0;在点B右侧且到点B(2)若2∴22226+9=0a ab b b b ∴ 223=0a b b ∴=03=0a b b ,∴3=3a b ,根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y ,求2x y 的值;(2)已知2254210a b ab b ,求a b 、的值;(3)若24,8200m n mn t t ,求2m t n 的值.【答案】(1)23x y (2)2a ,1b (3)21m t n 【分析】(1)首先把第3项22y 裂项,拆成22y y ,再用完全平方公式因式分解,利用非负数的性质求得x 和y ,代入求得数值;(2)首先把第2项25b 裂项,拆成224b b ,再用完全平方公式因式分解,利用非负数的性质求得a 和b ;(3)先把4m n 代入28200mn t t ,得到关于n 和t 的式子,再仿照(1)(2)题求解.【详解】(1)解:2222210x xy y y ∵,2222210x xy y y y ,22()(1)0x y y ,0x y ,10y ,x y ,1y ,1x y ,23x y ;(2)解:2254210a b ab b ∵,22244210a b ab b b ,22(2)(1)0a b b ,20a b ,10b ,2a b ,1b ,2a ,1b ;(2)推导该结论的其他思路还有:①利用a b c , 2a a , 2b b ,再配方,……②利用a bc ,使用平方差公式,…….③利用a b c ,……上述思路都不完整,请写出一种完整的推导思路.【答案】(1)①2a b ab ,②a b ,③ ,④a b c ,⑤a b c(2)见解析【分析】(1)根据完全平方公式即可得出①;根据二次根式的性质,即可得出②;根据不等式的性质,即可得出③;根据三角形三边之间的关系,即可得出④;根据不等式的性质即可得出⑤;(2)根据题目所给思路,进行推理论证即可.【详解】(1)解:∵22a b a b ab , 2a b a b ,∴22a b a b ,∴a b a b ,25.【阅读理解】数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们进行推理,获得结论.初中数学里的一些代数公式,很多都可以借助几何图形进行直观推导和解释.例如:求1+2+3+4+…+n的值(其中n是正整数).如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求,斜线左边的三角形图案是由上到下每层依次分别为1+2+3+4+…+【问题提出】求3333123n 的值(其中n 是正整数).【问题解决】为解决上述问题,我们借鉴已有的经验,采用由特殊到一般,归纳的研究方法,利用数形结3221111 31 ;B 表示1个22 的正方形,其面积为:212 ;,,B C D 的面积和为恰好可以拼成一个 1212 的大正方形.由此可得:然后利用上面归纳的结论,通过计算,可得图(4)【逆向应用】如果由若干个棱长为棱长为1的小正方体的个数为(5)【拓展探究】观察下列各式:33311;235;379 若3m (m 为正整数)按上面规律展开后,发现等式右边含有【答案】(1)333123 ;6(2)解:由(1)探究过程发现的规律,推广到一般情况中去,通过归纳,我们便可以得到: 222333311231234n n n n ;(3)解:图4中大小正方体的个数为 33331236123 故答案为:441;(4)解:由(2)得(1+2+3+…+n )2=36100,∴1+2+3+…+n =190,∴(1)1902n n ,解得:n 1=19,n 2=-20(舍去),∴棱长为1的小正方体的个数为193=6859.故答案为:6895;(5)解:由23=3+5,分裂中的第一个数是:3=2×1+1,33=7+9+11,分裂中的第一个数是:7=3×2+1,4=13+15+17+19,分裂中的第一个数是:13=4×3+1,53=21+23+25+27+29,分裂中的第一个数是:21=5×4+1,…发现奇数的个数与前面的底数相同,每一组分裂中的第一个数是底数×(底数-1)+1,∴453,分裂中的第一个数是:45×44+1=1981,463,分裂中的第一个数是:46×45+1=2071,∵1981<2021<2071,∴2021在第45组里.∵3m(m为正整数)按上面规律展开后,发现等式右边含有“2021”这个数,∴m=45,故答案为:45.【点睛】本题考查数字规律探究,利用数形结合,探究出规律是解题的关键.。
数与式综合测试卷(原卷版)—2024年中考数学一轮复习【举一反三】系列(全国通用)
数与式综合测试卷考试时间:60分钟;满分:100分姓名:___________班级:___________考号:___________考卷信息:本卷试题共23题,单选10题,填空6题,解答7题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本章内容的具体情况!一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2023·青海西宁·统考中考真题)算式―3□1的值最小时,□中填入的运算符号是()A.+B.-C.×D.÷2.(3分)(2023·江苏宿迁·统考中考真题)下列运算正确的是()A.2a―a=1B.a3⋅a2=a5C.(ab)2=ab2D.(a2)4=a63.(3分)(2023·浙江衢州·统考中考真题)手机信号的强弱通常采用负数来表示,绝对值越小表示信号越强(单位:dBm),则下列信号最强的是()A.―50B.―60C.―70D.―804.(3分)(2023·河北·统考中考真题)光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于9.46×1012km.下列正确的是()A.9.46×1012―10=9.46×1011B.9.46×1012―0.46=9×1012C.9.46×1012是一个12位数D.9.46×1012是一个13位数5.(3分)(2023·重庆·×)A.4和5之间B.5和6之间C.6和7之间D.7和8之间6.(3分)(2023·天津·统考中考真题)计算1x―1―2x2―1的结果等于()A.―1B.x―1C.1x+1D.1x2―17.(3分)(2023·山东·统考中考真题)实数a,b,c在数轴上对应点的位置如图所示,下列式子正确的是()A.c(b―a)<0B.b(c―a)<0C.a(b―c)>0D.a(c+b)>08.(3分)(2023·河北·统考中考真题)若k为任意整数,则(2k+3)2―4k2的值总能()A .被2整除B .被3整除C .被5整除D .被7整除9.(3分)(2023·四川德阳·统考中考真题)在“点燃我的梦想,数学皆有可衡”数学创新设计活动中,“智多星”小强设计了一个数学探究活动:对依次排列的两个整式m ,n 按如下规律进行操作:第1次操作后得到整式串m ,n ,n ―m ;第2次操作后得到整式串m ,n ,n ―m ,―m ;第3次操作后…其操作规则为:每次操作增加的项,都是用上一次操作得到的最末项减去其前一项的差,小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是( )A .m +nB .mC .n ―mD .2n10.(3分)(2023·四川内江·统考中考真题)对于正数x ,规定f(x)=2xx+1,例如:f(2)=2×22+1=43,=2×1212+1=23,f(3)=2×33+1=32,=2×1313+1=12,计算:+++⋯+++f(1)+f(2)+f(3)+⋯+f(99)+f(100)+f(101)=( )A .199B .200C .201D .202二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2023·四川巴中·统考中考真题)在0,,―π,―2四个数中,最小的实数是.12.(3分)(2023·江苏·统考中考真题)若圆柱的底面半径和高均为a ,则它的体积是 (用含a 的代数式表示).13.(3分)(2023·江苏泰州·统考中考真题)若2a ―b +3=0,则2(2a +b)―4b 的值为 .14.(3分)(2023·山东潍坊·统考中考真题)从―(□+○)2÷“□”与“○”中,计算该算式的结果是 .(只需写出一种结果)15.(3分)(2023·黑龙江大庆·统考中考真题)1261年,我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表,人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图,根据图中各式的规律,(a+b)7展开的多项式中各项系数之和为.16.(3分)(2023·湖南娄底·统考中考真题)若干个同学参加课后社团——舞蹈活动,一次排练中,先到的n个同学均匀排成一个以O点为圆心,r为半径的圆圈(每个同学对应圆周上一个点),又来了两个同学,先到的同学都沿各自所在半径往后移a米,再左右调整位置,使这(n+2)个同学之间的距离与原来n个同学之间的距离(即在圆周上两人之间的圆弧的长)相等.这(n+2)个同学排成圆圈后,又有一个同学要加入队伍,重复前面的操作,则每人须往后移米(请用关于a的代数式表示),才能使得这(n+3)个同学之间的距离与原来n个同学之间的距离相等.三.解答题(共7小题,满分52分)17.(6分)(2023·江苏无锡·统考中考真题)(1)计算:(―3)2―+|―4|(2)化简:(x+2y)(x―2y)―x(x―y)18.(6分)(2023·广东广州·统考中考真题)已知a>3,代数式:A=2a2―8,B=3a2+6a,C=a3―4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.19.(8分)(2023·河北·统考中考真题)现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(a>1).某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为S1,S2.(1)请用含a的式子分别表示S1,S2;当a=2时,求S1+S2的值;(2)比较S1与S2的大小,并说明理由.20.(8分)(2023·四川攀枝花·统考中考真题)2022年卡塔尔世界杯共有32支球队进行决赛阶段的比赛.决赛阶段分为分组积分赛和复赛.32支球队通过抽签被分成8个小组,每个小组4支球队,进行分组积分赛,分组积分赛采取单循环比赛(同组内每2支球队之间都只进行一场比赛),各个小组的前两名共16支球队将获得出线资格,进入复赛;进入复赛后均进行单场淘汰赛,16支球队按照既定的规则确定赛程,不再抽签,然后进行18决赛,14决赛,最后胜出的4支球队进行半决赛,半决赛胜出的2支球队决出冠、亚军,另外2支球队决出三、四名.(1)本届世界杯分在C 组的4支球队有阿根廷、沙特、墨西哥、波兰,请用表格列一个C 组分组积分赛对阵表(不要求写对阵时间).(2)请简要说明本届世界杯冠军阿根廷队在决赛阶段一共踢了多少场比赛?(3)请简要说明本届世界杯32支球队在决赛阶段一共踢了多少场比赛?21.(8分)(2023·福建厦门·统考模拟预测)“歌唱家在家唱歌”“蜜蜂酿蜂蜜”这两句话从左往右读和从右往左读,结果完全相同.文学上把这样的现象称为“回文”,数学上也有类似的“回文数”,比如252,7887,34143,小明在计算两位数减法的过程中意外地发现有些等式从左往右读的结果和从右往左读的结果一样,如:65―38=83―56;91―37=73―19;54―36=63―45.数学上把这类等式叫做“减法回文等式”.(1)①观察以上等式,请你再写出一个“减法回文等式”;②请归纳“减法回文等式”的被减数ab (十位数字为a ,个位数字为b )与减数cd 应满足的条件,并证明.(2)两个两位数相乘,是否也存在“乘法回文等式”?如果存在,请你直接写出“乘法回文等式”的因数xy 与因数mn 应满足的条件.22.(8分)(2023·山东青岛·统考中考真题)如图①,正方形ABCD 的面积为1.(1)如图②,延长AB到A1,使A1B=BA,延长BC到B1,使B1C=CB,则四边形AA1B1D的面积为______;(2)如图③,延长AB到A2,使A2B=2BA,延长BC到B2,使B2C=2CB,则四边形AA2B2D的面积为______;(3)延长AB到A n,使A n B=nBA,延长BC到B n,使B n C=nCB,则四边形AA n B n D的面积为______.23.(8分)(2023·山东潍坊·统考中考真题)[材料阅读]用数形结合的方法,可以探究q +q 2+q 3+...+q n +…的值,其中0<q <1.例求12+++⋯++⋯的值.方法1:借助面积为1的正方形,观察图①可知12+++⋯++⋯的结果等于该正方形的面积,即12+++⋯++⋯=1.方法2:借助函数y =12x +12和y =x 的图象,观察图②可知12+++⋯++⋯的结果等于a 1,a 2,a 3,…,a n …等各条竖直线段的长度之和,即两个函数图象的交点到x 轴的距离.因为两个函数图象的交点(1,1)到x 轴的距为1,所以,12+++⋯++⋯=1.【实践应用】任务一 完善23+++⋯++⋯的求值过程.方法1:借助面积为2的正方形,观察图③可知23+++⋯++⋯=______.方法2:借助函数y =23x +23和y =x 的图象,观察图④可知因为两个函数图象的交点的坐标为______,所以,23+++⋯++⋯=______.任务二 参照上面的过程,选择合适的方法,求34+++⋯++⋯的值.任务三 用方法2,求q +q 2+q 3+⋯+q n +⋯的值(结果用q 表示).【迁移拓展】的矩形是黄金矩形,将黄金矩形依次截去一个正方形后,得到的新矩形仍是黄金矩形.观察图⑤+++⋯++⋯的值.。
中考数学复习《数与式》专项检测卷(附带答案)
中考数学复习《数与式》专项检测卷(附带答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题(本大题共15道小题)1. (2023•淄博)设m=,则( )A.0<m<1B.1<m<2C.2<m<3D.3<m<42. (2023•杭州)因式分解:1﹣4y2=( )A.(1﹣2y)(1+2y)B.(2﹣y)(2+y)C.(1﹣2y)(2+y)D.(2﹣y)(1+2y)3. (2023秋•莫旗期末)下列说法中,不正确的是( )A.﹣ab2c的系数是﹣1,次数是4B.3xy-1是整式C.6x2﹣3x+1的项是6x2、﹣3x,1D.2πR+πR2是三次二项式4. (2023•东营)下列运算结果正确的是( )A.x2+x3=x5B.(﹣a﹣b)2=a2+2ab+b2C.(3x3)2=6x6D.5. (2023•雅安)若分式的值等于0,则x的值为( )A.﹣1B.0C.1D.±16. (2023春•渝中区校级月考)已知x是整数,当|x-23|取最小值时,x的值是( )A.3B.4C.5D.67. (2023•乐山)某种商品m千克的售价为n元,那么这种商品8千克的售价为( )A.(元)B.(元)C.(元)D.(元)8. (2023•达州)实数+1在数轴上的对应点可能是( )A.A点B.B点C.C点D.D点9. (2022·贵州贵阳)若代数式3(2-x)与代数式122x 的值相等,则x的值为( )A.87B.85C.﹣87D.10710. (2023•宁波)2023年5月15日,“天问一号”着陆巡视器成功着陆于火星乌托邦平原,此时距离地球约320000000千米.数320000000用科学记数法表示为( )A.32×107B.3.2×108C.3.2×109D.0.32×10911. (2023•台州)将x克含糖10%的糖水与y克含糖30%的糖水混合,混合后的糖水含糖( )A.20%B.×100%C.×100%D.×100%12. (2023•绍兴)第七次全国人口普查数据显示,绍兴市常住人口约为5270000人,这个数字5270000用科学记数法可表示为( )A.0.527×107B.5.27×106C.52.7×105D.5.27×10713. (2022八下·冠县期末)有三个实数a1,a2,a3满足a1-a2=a2-a3>0,若a1+a3<0 则下列判断中正确的是( )A.a1<0B.a2<0C.a1+a2<0D.a2×a3=014. (2022·太原模拟)中国人很早就开始使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放着表示正数,斜放着表示负数,如图(1)表示(+2)+(-2).按照这种表示法,如图(2)表示的是( )A.(+3)+(+6)B.(-3)+(-6)C.(-3)+(+6)D.(+3)+(-6)15. (2023•达州)生活中常用的十进制是用0~9这十个数字来表示数,满十进一,例:12=1×10+2,212=2×10×10+1×10+2;计算机也常用十六进制来表示字符代码,它是用0~F来表示0~15,满十六进一,它与十进制对应的数如表:例:十六进制2B对应十进制的数为2×16+11=43,10C对应十进制的数为1×16×16+0×16+12=268,那么十六进制中14E对应十进制的数为( )A.28B.62C.238D.334二、填空题(本大题共8道小题)16. (2023•浙江自主招生)分解因式:2x2+7xy-15y2-3x+11y-2=.17. (2023•温州)分解因式:2m2﹣18=.18. (2023•宁波)分解因式:x2﹣3x=.19. (2023秋•沙坪坝区校级月考)实数a,b在数轴上对应点的位置如图所示,则下列式子正确的是.(填序号)①ab<0;②|a|<|b|;③﹣a>b;④a﹣b>0.20. (2023•广元)如图,实数﹣,,m在数轴上所对应的点分别为A,B,C,点B关于原点O的对称点为D.若m为整数,则m的值为.21. (2023秋•顺城区期末)有一数值转换器,原理如图所示,如果开始输入x的值为1,则第一次输出的结果是4,第二次输出的结果是5,……;那么2023次输出的结果是.22. (2023•嘉兴)观察下列等式:1=12﹣02,3=22﹣12,5=32﹣22,…按此规律,则第n个等式为2n﹣1=.23. (2023•眉山)观察下列等式:x1===1+;x2===1+;x3===1+;…根据以上规律,计算x1+x2+x3+…+x2023﹣2023=.三、解答题(本大题共6道小题)24. (2023秋•长春期末)已知多项式A=2m2-4mn+2n2,B=m2+mn-3n2,求:(1)3A+B;(2)A-3B.25. (2023•聊城)先化简,再求值:,其中a=﹣.26. (2023•威海)先化简,然后从﹣1,0,1,3中选一个合适的数作为a的值代入求值.27. (2023秋•达州期中)有理数a,b,c在数轴上的位置如图所示:(1)用“>”或“<”填空:b﹣c 0,a+b 0,c﹣a 0.(2)化简:|a+b|﹣|a+c|+|b﹣c|﹣|a|.28. (2023秋•内江期中)仔细观察,探索规律:(1)(a-b)(a+b)=a2-b2;(a-b)(a2+ab+b2)=a3-b3;(a-b)(a3+a2b+ab2+b3)=a4-b4.(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=①(其中n为正整数,且n≥2).②(2-1)(2+1)=;③(2-1)(22+2+1)=;④(2-1)(23+22+2+1)=;⑤(2n-1+2n-2+…+2+1)=;(2)根据上述规律,求22019+22018+22017+…+2+1的个位数字是多少?(3)根据上述规律,求29-28+27-…+23-22+2的值?29. (2023秋•内江期中)仔细观察,探索规律:(1)(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4.(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=①(其中n为正整数,且n≥2).②(2﹣1)(2+1)=;③(2﹣1)(22+2+1)=;④(2﹣1)(23+22+2+1)=;⑤(2n﹣1+2n﹣2+…+2+1)=;(2)根据上述规律,求22019+22018+22017+…+2+1的个位数字是多少?(3)根据上述规律,求29﹣28+27﹣…+23﹣22+2的值?答案一、选择题(本大题共15道小题)1. 解:∵4<5<9,∴2<<3,∴1<﹣1<2,∴<<1,∴0<m<1故选:A.2. 解:1﹣4y2=1﹣(2y)2=(1﹣2y)(1+2y).故选:A.3. 故选:D.4. 解:A、x2与x3不能合并,所以A选项错误;B、(﹣a﹣b)2=[﹣(a+b)]2=(a+b)2=a2+2ab+b2,所以B选项正确;C、(3x3)2=9x6,所以C选项错误;D、与不能合并,所以D选项错误.故选:B.5. 解:由题意得:|x|﹣1=0,且x﹣1≠0,解得:x=﹣1,故选:A.【题目】(2023•宜宾)在我国远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,类似现在我们熟悉的“进位制”.如图所示是远古时期一位母亲记录孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满五进一,根据图示可知,孩子已经出生的天数是( )A.27B.42C.55D.2106. 故选:C.7. 解:根据题意,得:×8=(元),故选:A.8. 解:∵1<2<4,∴1<<2,∴2<+1<3则实数+1在数轴上的对应点可能是点D,故选:D.9. A10. 解:320000000=3.2×108,故选:B.11. 解:由题意可得,故选:D.12. 解:5270000=5.27×106.故选:B.13. D14. D15. 解:由题意得14E=1×16×16+4×16+14=334.故选:D.二、填空题(本大题共8道小题)16. 解:∵2x2+7xy-15y2=(x+5y)(2x-3y)∴可设2x2+7xy-15y2-3x+11y-2=(x+5y+a)(2x-3y+b),a、b为待定系数∴2a+b=-3,5b-3a=11,ab=-2,解得a=-2,b=1∴原式=(x+5y-2)(2x-3y+1).故答案为:(x+5y-2)(2x-3y+1).17. 解:原式=2(m2﹣9)=2(m+3)(m﹣3).故答案为:2(m+3)(m﹣3).18. 解:原式=x(x﹣3),故答案为:x(x﹣3)19. 解:由图可得:a<0<b,且|a|>|b|,∴ab<0,﹣a>b,a﹣b<0,∴正确的有:①③;故答案为:①③.20. 解:∵点B表示的数是,点B关于原点O的对称点是点D∴点D表示的数是﹣,∵点C在点A、D之间∴﹣<m<﹣,∵﹣4<﹣<﹣3,﹣3<﹣<﹣2,∴﹣<﹣3<﹣∵m为整数,∴m的值为﹣3.答案为:﹣3.21. 故答案为:10.22. 解:∵1=12﹣02,3=22﹣12,5=32﹣22,…∴第n个等式为2n﹣1=n2﹣(n﹣1)2,故答案为:n2﹣(n﹣1)2.23. 解:∵x1===1+;x2===1+;x3===1+;…∴x1+x2+x3+…+x2023﹣2023=1++1++1++…+1+﹣2023=2023+1﹣+﹣+﹣+…﹣﹣2023=﹣故答案为:﹣.三、解答题(本大题共6道小题)24. 解:(1)∵A=2m2-4mn+2n2,B=m2+mn-3n2∴3A+B=3(2m2-4mn+2n2)+(m2+mn-3n2)=6m2-12mn+6n2+m2+mn-3n2=7m2-11mn+3n2;(2)∵A=2m2-4mn+2n2,B=m2+mn-3n2∴A-3B=(2m2-4mn+2n2)-3(m2+mn-3n2)=2m2-4mn+2n2-3m2-3mn+9n2=-m2-7mn+11n2.25. 解:原式=+÷=+÷=+•=﹣=当a=﹣时,原式==6.26. 解:原式=[﹣(a+1)]÷=•=•=•=2(a﹣3)=2a﹣6∵a=﹣1或a=3时,原式无意义,∴a只能取1或0当a=1时,原式=2﹣6=﹣4.(当a=0时,原式=﹣6.)27. 解:(1)由数轴可得,a<0<b<c,且|b|<|a|<|c|,∴b﹣c<0,a+b<0,c﹣a>0 故答案为:<,<,>;(2)∵b﹣c<0,a+b<0,a+c>0∴|a+b|﹣|a+c|+|b﹣c|﹣|a|=﹣a﹣b﹣(a+c)+(﹣b+c)﹣(﹣a)=﹣a﹣b﹣a﹣c﹣b+c+a=﹣a﹣2b.28. 解:(1)由上式的规律可得,a n-b n,①故答案为:a n-b n;由题干中提供的等式的规律可得,②(2+1)(2-1)=22-1;故答案为:22-1;③(2-1)(22+2+1)=23-1,故答案为:23-1;④(2-1)(23+22+2+1)=24-1故答案为:24-1;⑤(2n-1+2n-2+…+2+1)=(2-1)(2n-1+2n-2+…+2+1)=2n-1,故答案为:2n-1;(2)22019+22018+22017+…+2+1=(2-1)(22019+22018+22017+…+2+1)=22023-1又∵21=2,22=4,23=8,24=16,25=32,……∴22023的个位数字为6∴22023-1的个位数字为6-1=5,答:22019+22018+22017+…+2+1的个位数字是5.(3)(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=2n-1,取a=2,b=-1,n=10∴(2-1)(29-28+27-…+23-22+2-1)=210-1∴29-28+27-…+23-22+2=210=1024.29. 解:(1)由上式的规律可得,a n﹣b n①故答案为:a n﹣b n;由题干中提供的等式的规律可得②(2+1)(2﹣1)=22﹣1;故答案为:22﹣1;③(2﹣1)(22+2+1)=23﹣1,故答案为:23﹣1;④(2﹣1)(23+22+2+1)=24﹣1故答案为:24﹣1;⑤(2n﹣1+2n﹣2+…+2+1)=(2﹣1)(2n﹣1+2n﹣2+…+2+1)=2n﹣1,故答案为:2n﹣1;(2)22019+22018+22017+…+2+1=(2﹣1)(22019+22018+22017+…+2+1)=22023﹣1又∵21=2,22=4,23=8,24=16,25=32,……∴22023的个位数字为6,∴22023﹣1的个位数字为6﹣1=5答:22019+22018+22017+…+2+1的个位数字是5.(3)(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=2n﹣1取a=2,b=﹣1,n=10∴(2﹣1)(29﹣28+27﹣…+23﹣22+2﹣1)=210﹣1∴29﹣28+27﹣…+23﹣22+2=210=1024.。
2022修订版-数与式测试卷
第一章 数与式测试卷班级 姓名 成绩一、选择题( 24分)1、下列计算正确的是( )aa a A 6332=+、 x xB 523=)(、 a a a C 326=÷、 m m m D 422=•、 2、下列运算正确的是( )532=+、A a B 42a-2-=)(、 4222-=-a a C )(、 2312=÷、D3、某桑蚕丝的直径是 016米,将 016用科学计数法表示是( )A 、104-6.1⨯B 、105-6.1⨯C 、106-16⨯D 、104-16.0⨯4、若分式2-x x有意义,则实数x 的取值范围是( )A 、x=0B 、x=2C 、x ≠0D 、x ≠2 5、化简4422+--x yxy x的结果是( )A 、2+x xB 、2-x xC 、2-x yD 、2+x y6、如果0122=-+a a,那么代数式242-•-a a a a )(的值是( )A 、-3B 、-1C 、3D 、1 二、填空题(28分)7、-2022的相反数是 。
8、分解因式=-y y x2。
9、要使二次根式3-x 有意义,则x 的取值范围是 。
10、计算316-27的结果是 。
11、若分式112--x x的值为零,则x 的值为 。
12、实数a 在数轴上的位置如图,则3a -= . 13、已知12=+a a,则代数式a a 222-3-的值为 。
三、解答题(48分) 14、计算:))(-)2-(2y x y x y x +-( 15、计算241221-348+⨯÷)21(452sin 28-1-216-++、计算23,23,22111822-=+=++÷+--y x xy yyx y x yx其中)、先化简再求值:(、19化简求值:(),其中a=2+.)31()23(301tan 6-1217--+-、计算圆1、(2022临沂)如图,AB 是⊙O 的直径,BT 是⊙O 的切线,若∠ATB =45°,AB =2,则阴影部分的面积是( ) A .2 B .3124π- C .1 D .1124π+ 2. (2022浙江丽水·9·3分)如图,点C 是以AB 为直径的半圆O 的三等分点,AC =2,则图中阴影部分的面积是( ) A .433π- B .4233π- C .233π- D .2332π- 4. (2022年四川绵阳,8,3分)“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8cm ,圆柱部分的高BC=6cm ,圆锥体部分的高CD=3cm ,则这个陀螺的表面积是 A .68πcm 2B .74πcm 2C .84πcm 2D .100πcm 25.(8分)(2022宁夏)在Rt △ABC 中,∠ACB=90º,D 是AB 边上的一点,以BD 为直径作⊙O 交AC 于点E ,连结DE 并延长,与BC 的延长线交于点F.且BD=BF. (1) 求证:AC 与⊙O 相切. (2) 若BC=6,AB=12,求⊙O 的面积.6、(2022四川省凉山州)如图,已知AB 为⊙O 的直径,AD 、BD 是⊙O 的弦,BC 是⊙O 的切线,切点为B , OC ∥AD ,BA 、CD 的延长线相交于点E .(1)求证:D C 是⊙O 的切线; (2)若AE =1,ED =3,求⊙O 的半径.7. (2022年四川绵阳,23,11分)(本题满分11分)如图,已知AB 是圆O 的直径.弦CD ⊥AB ,垂足为H .与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N . (1)求证:CA =CN ;(2)连接DF ,若cos ∠DFA =,AN =2,求圆O 的直径的长度.8.(2022山东潍坊)(本小题满分9分)如图,AB 为半圆O 的直径,AC 是⊙O 的一条弦,D 为BC ︵的中点,作DE ⊥AC ,交AB 的延长线于点F ,连接DA .(1)求证:EF 为半圆O 的切线;(2)若DA =DF =63,求阴影区域的面积.(结果保留根号和π)O B C FE A D□。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数与式
一、选择题(每小题3分,共24分)
1、某山海拔是1200米,某低谷比海平面低200米,则它们相差( )米。
A .1000 B .1200 C .1400 D .200
2、2016
)1(-的相反数是( ) A .1 B .1- C .2016 D .—2016
3、2016
)
1(-的绝对值是( )
A .1
B .1-
C .2016
D .—2016 4、我国南海海域面积约为3500000
,用科学记数法表示正确的是( )。
A .×
B .×
C .×
D .× 5、下列计算正确的是( )
A .8
4
4
a a a =+ B .5
2
3
a a a =• C .5
3
2)(x x = D .(
)
63
262a a -=-
6、49的平方根为( ) A 、7 B 、7- C 、±7
D 7
7、多项式a ax ax 442
+-因式分解正确的是( )
A .2
)2(+x a B .)2)(2(-+x x a C .)44(2
+-x x a D .2
)2(-x a
8、如果
2
26
x x x ---的值为0,则x 等于( ).
A 、±2
B 、2
C 、-2
D 、3
二、填空题(每小题4分,共40分)
1、某地一天的最高气温是10℃,最低气温是2℃,则该地这天的温差是 .
2、计算:=-•-02016
)3(1
π
,
=•2
2b b。
3、321-的相反数是
,绝对值是。
4、用科学计数法表示下列各数:
56 000 000= , = 。
5、分解因式:2
a a
b -=。
(1)2x 2
+4x +2= _______;
6、已知一个正数x 的平方根为2a-3和a-3,则a=________, x=_____________
7、-3的绝对值是 ;-3
21 的倒数是 ;9
4
的算术平方根是 。
8、当x_____时,分式1
x
x -有意义,
当x=____时,分式
1
x
x -的值等于0。
1
x -x 应满足的条件是 .
三、计算: (每小题3分,共12分)
(1) 012)2003(5)2
1()1(π-÷-+-- (2)(-2)3
+(1—2)
2007
+3-1
×6
(3) (4)、16)3()3
1(30tan 3|31|01
+--+---π
四、分式化简(每小题5分,共20分)
1 、 y x y x +•⎪⎪⎭
⎫ ⎝⎛+211 2、2222(2)a b a b a b ab -+÷+-
3、⎪⎭⎫ ⎝⎛--+÷--25223x x x x
4、()444222+-+-+x x x x ÷2
-x x
1
031()(21)815
2
-+---
方程与不等式
一、选择题(30分)
1、已知0,1==n m ,则代数式n m +的值为( ) A .-1 B .1 C .-2 D .2
2、已知,b a =下列式子不成立的是( )
A.
c b c a = B. b a +-=+-21
21 C. b a 33-=- D. 22+=+b a
3、小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍.小郑今年的岁数是( )岁。
A . 7
B .8
C .9
D .10
4、已知方程组⎩
⎨⎧=+=+425
2y x y x ,则y x +的值是( )
A .-1
B .0
C .3
D .2
5、方程
04142=----x
x x 的解是 ( ) A .3=x 或4=x B .3=x C .4=x D .无解 6、方程0)3)(2(=+-x x 的解是( ) A.2=x B. 3,221=-=x x C. 3=x D.3,221-==x x
7、已知,b a <下列不式子成立的是( ) A.11+<+b a B.b a 33<
C.b a 2121->-
D.如果c
b c a c <<那么,0
8、不等式53-x <x +3的正整数解有( )个。
A .1
B .2
C .3
D .4
9、不等式组⎩⎨
⎧≥+<-1
327
14x x 的解集是( )
A .21<≤-x
B .1-≥x
C .2<x
D .21≤<-x
10、不等式组312840
x x ->⎧⎨-⎩,
≤的解集在数轴上表示为( )
二、填空题(30分)
1、方程72=+x 的解为 .
2、已知关于
x 的方程423=-m x 的解是m x =,则m 的值是______. 3
、已知x =2是一元二次方程022
=++mx x 的解,则m 的值是______.
4
、把分式方程
x x 1
42=+转化为一元一次方程时,方程两边需同乘以____________ 5、一元二次方程122
=-x x 的解是_____________
6、方程组321026
x y x y +=⎧⎨+=⎩,
的解为 .
7、不等式5(1)31x x -<+的解集是 .
8、方程
0112=+-x
x 的解是_____________ 9、不等式组314,
2 2.x x x ->⎧⎨<+⎩
的解集是 。
10、某企业五月份的利润是25万元,预计七月份的利润将达到36万元,设月平均增长率为x ,根据题意所列方程
是 。
二、解答题(40分) 1、解方程:()()() 3175301x x x --+=+
2、解方程组:38534
x y x y +=⎧⎨-=⎩ 3、解方程:32
21+=
x x
4、解一元二次方程:2
213x x
5、解不等式2356x x +≤-,并把它的解集在数轴上表示出来。
6、解不等式组35
232
x x x +⎧⎨-+⎩><
7、已知不等式组:36
280
x x ≥⎧⎨
-≤⎩.
(1)解不等式组:并把它的解集在数轴上表示出来。
(2)求满足此不等式组的所有整数解;
(3)从此不等式的所所有整数解中任取一个数,它是偶数的概率是多少
A .
B .
C .
D .。