使用ZEMAX进行准直镜头设计

合集下载

ZEMAX光学设计软件操作说明详解_光学设计

ZEMAX光学设计软件操作说明详解_光学设计

ZEMAX光学设计软件操作说明详解介绍这一章对本手册的习惯用法和术语进行说明。

ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。

活动结构活动结构是指当前在镜头数据编辑器中显示的结构。

详见“多重结构”这一章。

角放大率像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。

切迹切迹指系统入瞳处照明的均匀性。

默认情况下,入瞳处是照明均匀的。

然而,有时入瞳需要不均匀的照明。

为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。

有三种类型的切迹:均匀分布,高斯型分布和切线分布。

对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。

在“系统菜单”这一章中有关于切迹类型和因子的讨论。

ZEMAX也支持用户定义切迹类型。

这可以用于任意表面。

表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。

对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。

后焦距ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。

如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。

基面基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。

基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。

除焦平面外,所有的基面都对应一对共轭面。

比如,像空间主面与物空间主面相共轭,等等。

如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。

ZEMAX列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。

主光线如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。

注意,没有渐晕和像差时,任何穿过入瞳中央的光线也一定会通过光阑和出瞳的中心。

基于ZEMAX的半导体激光器非球面准直透镜设计

基于ZEMAX的半导体激光器非球面准直透镜设计
杜 彬彬 ,高 文宏 ,李 江澜 ,石云 波 ,徐 美 芳 Байду номын сангаас赵鹏 飞 ,王艳 红
(中北 大学 电子测试技术 国家重点实验室 ,山西 太原 030051)
摘 要 :为 了解 决半 导体 激光器 出射光 束发散 角 大 的 问题 ,根 据 几何 光 学原 理 ,分 别针 对 半 导 体 激 光器 弧矢和 子 午方 向的不 同发 散角度 建 立 数 学模 型 ,设 计 出 了在 两个 相 互 垂 直 的方 向上 具有 不 同非球 面面 型 的非球 面透 镜 ,并 在 ZEMAX光 学设 计 软 件 中进 行 了仿 真 。经 非球 面 准 直透镜 准 直之 后 ,半 导体 激光器 快 慢轴 方 向 的发 散 角 分别 从 35。和 7.5。压 缩 到 了 1.8 mrad和 0.84 mrad,在 距 离光 源 10 1TI处接 收 面上 的总 光功率 为 0.497 W ,光 能利用 率高 达 99.4% 。 结 果表 明,在 相 互垂直 的方 向上 具有 不 同面 型 的非球 面准 直 透 镜 对半 导 体 激 光器 的准 直具 有 良 好 的效果 。 关 键词 :半 导体 激光 器 ;非球 面透镜 ;ZEMAX;准 直 中图分 类 号 :TN248 文 献标 识码 :A DOI:10.3969/j.issn.1001-5078.2013.12.15
基金项 目:国家 自然科学 基金 (No.61078036);山西省 重大专 项 (No.20111101045)资 助 。
作者简介 :杜彬彬 (1988一),女 ,硕士研究生 ,主要从 事光学设 计 以及红外气体 传感 器气 室结 构设 计 等方 面研 究 。E-mail:dubinbin—
第 43卷 第 12期 2013年 12月

zemax监控镜头课程设计

zemax监控镜头课程设计

zemax监控镜头课程设计一、课程目标知识目标:1. 让学生掌握Zemax软件的基本操作,理解监控镜头的设计原理;2. 使学生了解光学成像的基本知识,包括光圈、焦距、视场角等概念;3. 引导学生掌握监控镜头的参数设置,学会调整光学系统以满足不同监控需求。

技能目标:1. 培养学生运用Zemax软件进行监控镜头设计的能力,具备独立完成光学系统建模、优化和评估的能力;2. 培养学生分析监控场景,提出合理的光学设计方案的技能;3. 培养学生通过调整监控镜头参数,解决实际监控问题的能力。

情感态度价值观目标:1. 培养学生对光学设计产生兴趣,激发学生主动探索光学领域的精神;2. 培养学生具备团队协作意识,学会在团队中发挥自己的作用;3. 引导学生认识到监控镜头在现实生活中的应用价值,培养学生的社会责任感。

课程性质:本课程为实践性较强的课程,以理论为基础,注重培养学生的实际操作能力和创新能力。

学生特点:学生具备一定的光学基础知识,对Zemax软件有初步了解,具有较强的学习能力和动手能力。

教学要求:结合课程特点和学生特点,注重理论与实践相结合,强化实践操作环节,提高学生的实际应用能力。

在教学过程中,将目标分解为具体的学习成果,以便进行教学设计和评估。

二、教学内容1. Zemax软件基本操作与界面介绍:使学生熟悉软件环境,掌握基本操作方法;- 教材章节:第一章 Zemax基础- 内容列举:软件安装与启动、界面布局、基本操作命令。

2. 光学成像原理:使学生掌握光学成像基本概念,为监控镜头设计打下基础;- 教材章节:第二章 光学基础知识- 内容列举:光线传播、透镜成像、光圈、焦距、视场角等。

3. 监控镜头设计原理与参数设置:让学生了解监控镜头设计的基本原理和参数调整方法;- 教材章节:第三章 光学系统设计- 内容列举:监控镜头类型、设计原理、参数设置与优化。

4. 实际监控镜头设计案例分析:通过案例教学,培养学生实际操作和解决问题的能力;- 教材章节:第四章 实践案例- 内容列举:实际监控场景分析、光学设计方案制定、Zemax软件操作步骤。

ZEMAX在透射仪测量光路准直系统设计中的应用

ZEMAX在透射仪测量光路准直系统设计中的应用

ZEMAX在透射仪测量光路准直系统设计中的应用周树道;马忠良;王敏【摘要】在ZEMAX非序列环境下建立了透射仪光学系统模型.利用建立的模型研究了LED光源表面特征对透射仪测量光路准直的影响,并通过增加扩散片优化了光学系统结构.对提出的基于扫描方式的测量光路准直方法进行了仿真研究.研究结果表明,基于该方法方位角测量最大相对误差为2%,验证了该方法的可行性.%An optical system model of the transmittance meter is established in the ZEMAX non-sequence environment.The influence of the surface characteristics of LED on the alignment of optical path is studied by using the model, and the structure of optical system is optimized by increasing the diffusion sheet.The method of alignment for measuring light path based on scanning is studied in simulation.Research results show that the maximum relative error of azimuth measurement is 2% and the feasibility of the method is verified.【期刊名称】《微型机与应用》【年(卷),期】2016(035)022【总页数】4页(P92-94,97)【关键词】ZEMAX;准直系统;透射仪【作者】周树道;马忠良;王敏【作者单位】解放军理工大学气象海洋学院,江苏南京 211101;南京信息工程大学气象灾害预警与评估协同创新中心,江苏南京 211101;解放军理工大学气象海洋学院,江苏南京 211101;解放军理工大学气象海洋学院,江苏南京 211101【正文语种】中文【中图分类】TN12;P427.2透射仪是机场跑道进行水平能见度测量的常用设备[1],也是世界气象组织(WMO)进行大规模能见度测量仪器比对时采用的标准设备[2]。

用ZEMAX设计简易LED准直镜[1]

用ZEMAX设计简易LED准直镜[1]

用ZEMAX设计简易LED准直镜一. 初始解的构建1. 为了简单采用此透镜由三部分构成:A. 全反射部分,B. 折射部分,C.切除部分(这一部分在设计时也可以不考虑,可以在设计完成后再加入)图中光束分两个部分, 一部分为折射部分,另一部分为全反射部分, 可以看出,折射部分光束为三段,全反射部分光束分为四段,由于是平行光出射, 所以在优化时只要考虑第三段就可以了.初始数据:1) 几何体部分TIR部分是一个非球面透镜,中间部分是一个标准透镜(有曲率和圆锥系数),切除部分是一个圆柱体;注意中间的透镜部分的材料为空气,因为它相当于也是被切除掉的.2) 光源部分我们用SOURCE RAY做为光源, 这样可以NSRA来进行优化; 光源的生成与操作数的建立按如下的MACRO可以自动生成:steps=90incr=90/steps #max angle is 90 degreepi = 4*ATAN(1)dr = pi/180startobj=4For i,0,steps,1angle = i*incroo=i+startobjInsertObject 1,ooSetNSCProperty 1,oo,0,0,"NSC_SRAY" # surface,object,code,face,value SetNSCProperty 1,oo,3,0,2 # source inside of object 2 SetNSCPosition 1,oo,4,angleSetNSCParameter 1,oo,1,1 #layout raysSetNSCParameter 1,oo,2,1 #analysis raystar = 0opr = i+1InsertMFO oprsetoperand opr, 11, "NSRA"setoperand opr, 3, oo # src#setoperand opr, 6, 3 # seg#setoperand opr, 9, 1 # weightsetoperand opr, 7, 5 # y coordinatesetoperand opr, 8, tar # tarNextupdate我们每隔一度产生一条光线,最终的结果如下, 从图中可以看出,光线都不是平行的. 这里注意要调整参数保证所有光线都大概的按预期的方向会聚!!二. 优化经过上面的准备工作,这时我们就可以优化了, 当然那几个物体的相对位置需要用PICKUP来约束, 这里不就详细说明了.初步优化的结果如下:可以再调整一下透镜的口径, 再优化一次. 可以看出, 透镜的口径是在增加的, 并且其底部是一直往左移的. 最终会达到一个比较平衡的状态;到这里优化工作就已经完成了. 我们可以对这三个部分进行一个布尔操作得到我们想要的透镜!三. 最终模型的建立和模拟1) 布尔操作后的结果2) 模拟,将所有的SOURCE RAY都删除, 我们用SOURCE RECTANGLE来代替LED, 大小取1*1, COSINE EXPONENT 取1.0来做为朗伯发光体, 把DECTOR 设置到1010MM处, 模拟1M处的光斑, DETECTOR的大小设为500*5003) 模拟结果:A. 光斑B. 发散角以上是一个简单的准直镜的构建. 采用ZEAMX的优化算法结果特定的建模完成该设计, 当然还可能存在诸多不足之处,但此思路可供参考. 也可以设计相似的透镜或变型.。

ZEMAX单透镜设计例子详细多图

ZEMAX单透镜设计例子详细多图

ZEMAX单透镜设计例子,单透镜是最简单的透镜系统了,这个例子基本是很多ZEMAX教程开头都会讲的。

1-1 单透镜这个例子是学习如何在ZEMAX里键入资料,包括设罝系统孔径(System Aperture)、透镜单位(Lens Units)、以及波长围(Wavelength Range),并且进行优化。

你也将使用到光线扇形图(Ray Fan Plots)、弥散斑(Spot Diagrams)以及其它的分析工具来评估系统性能。

这例子是一个焦距100 mm、F/4的单透镜镜头,材料为BK7,并且使用轴上(On-Axis)的可见光进行分析。

首先在运行系统中开启ZEMAX,默认的编辑视窗为透镜资料编辑器(Lens Data Editor, LDE),在LDE可键入大多数的透镜参数,这些设罝的参数包括:•表面类型(Surf:Type)如标准球面、非球面、衍射光栅…等•曲率半径(Radius of Curvature)•表面厚度(Thickness):与下一个表面之间的距离•材料类型(Glass)如玻璃、空气、塑胶…等:与下一个表面之间的材料•表面半高(Semi-Diameter):决定透镜表面的尺寸大小上面几项是较常使用的参数,而在LDE后面的参数将搭配特殊的表面类型有不同的参数涵义。

1-2 设罝系统孔径首先设罝系统孔径以及透镜单位,这两者的设罝皆在按钮列中的「GEN」按钮里(System->General)。

点击「GEN」或透过菜单的System->General来开启General 的对话框。

点击孔径标签(Aperture Tab)(默认即为孔径页)。

因为我们要建立一个焦距100 mm、F/4的单透镜。

所以需要直径为25 mm的入瞳(Entrance Pupil),因此设罝:•Aperture Type:Entrance Pupil Diameter•Aperture Value:25 mm点击单位标签(Units Tab),并确认透镜单位为Millimeters。

基于ZEMAX的照相物镜的设计

基于ZEMAX的照相物镜的设计

燕山大学课程设计说明书题目:基于ZEMAX的照相物镜设计学院(系):电气工程学院年级专业:10级仪表三班学号:学生姓名:指导教师:教师职称:副教授燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:自动化仪表系学号学生姓名专业(班级) 10级仪表三班设计题目设计技术参数1、焦距:f’=15mm;2、相对孔径:1/2.8;3、在可见光波段设计(取d、F、C三种色光)4、视场角2w=74°设计要求1、简述照相物镜的设计原理和类型;2、确定照相物镜的基本性能要求,并确定恰当的初始结构;3、输入镜头组数据,设置评价函数操作数,进行优化设计和像差结果分析;4、给出像质评价报告,撰写课程设计论文工作量查阅光学设计理论和像差分析的相关文献和资料,提出并较好地的实施方案设计简单透镜组,并用zemax软件对初级像差进行分析和校正,从而对镜头进行优化设计工作计划第一天、第二天:熟悉ZEMAX软件的应用,查阅资料,确定设计题目进行初级理论设计第三天、第四天:完善理论设计,运用ZEMAX软件进行设计优化,撰写报告第五天:完善过程,进行答辩参考资料《光学设计》,西安电子科技大学出版社,刘钧,高明,2006,10 《几何光学像差光学设计》,浙江大学出版社,李晓彤,岑兆丰,2003.11《实用光学技术手册》,机械工业出版社,王之江,2007.1指导教师签字基层教学单位主任签字目录摘要 (1)第一章简述照相物镜的设计原理和类型 (2)第二章设计过程 (4)2.1根据参数要求确定恰当的初始结构 (4)2.2优化设计过程 (5)2.3优化结果像差结果分析 (8)第四章课设总结 (13)参考文献摘要人们早就有长期保存各种影像的愿望。

在摄影技术尚未发明前的公元四世纪时,人们按投影来描画人物轮廓像的方法达到了全盛时代,至今这种方法仍然作为剪纸艺术流传着。

后来,人们让光线通过小孔形成倒立像,进而将小孔改为镜片,并加装一只暗箱。

ZEMAX光学设计软件操作说明详解_光学设计

ZEMAX光学设计软件操作说明详解_光学设计

ZEMAX光学设计软件操作说明详解_光学设计.txt9母爱是一滴甘露,亲吻干涸的泥土,它用细雨的温情,用钻石的坚毅,期待着闪着碎光的泥土的肥沃;母爱不是人生中的一个凝固点,而是一条流动的河,这条河造就了我们生命中美丽的情感之景。

ZEMAX光学设计软件操作说明详解介绍这一章对本手册的习惯用法和术语进行说明。

ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。

活动结构活动结构是指当前在镜头数据编辑器中显示的结构。

详见“多重结构”这一章。

角放大率像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。

切迹切迹指系统入瞳处照明的均匀性。

默认情况下,入瞳处是照明均匀的。

然而,有时入瞳需要不均匀的照明。

为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。

有三种类型的切迹:均匀分布,高斯型分布和切线分布。

对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。

在“系统菜单”这一章中有关于切迹类型和因子的讨论。

ZEMAX也支持用户定义切迹类型。

这可以用于任意表面。

表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。

对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。

后焦距ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。

如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。

基面基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。

基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。

除焦平面外,所有的基面都对应一对共轭面。

比如,像空间主面与物空间主面相共轭,等等。

如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。

使用ZEMAX设计、优化、公差和分析

使用ZEMAX设计、优化、公差和分析

使用 ZEMAX®于设计、优化、公差和分析 摘要 光学设计软件 ZEMAX®的功能讨论可藉由使用 ZEMAX 去设计和分析一个投影系统 来讨论,包括使用透镜数组 (lenslet arrays) 来建构聚光镜 (condenser)。

简介 ZEMAX 以非序列性 (non-sequential) 分析工具来结合序列性 (sequential) 描光程序的传统功能, 且为一套能够研究所有表面的光学设计和分析的整合性软 件包,并具有研究成像和非成像系统中的杂散光 (stray light) 和鬼影 (ghosting) 的能力,从简单的绘图 (Layout)一直到优化和公差分析皆可达成。

根据过去的经验,对于光学系统的端对端 (end to end)分析往往是需要两 种不同的设计和分析工具。

一套序列性描光软件, 可用于设计、 优化和公差分析, 而一套非序列性或未受限制的 (unconstrained) 描光软件, 可用来分析杂散光、 鬼影和一般的非成像系统分析,包括照明系统。

序列性描光程序这个名词是与定义一个光学系统为一连串表面的工具有关。

所有的光线打到光学系统之后,会依序的从一个表面到另一个表面穿过这个系 统。

在定义的顺序上,所有的光线一定会交到所有的表面,否则光路将终止。

光 线不会跳过任何中间的表面;光线只能打在每一个已定义的表面一次。

若实际光 线路径交到一个表面上超过一次,如使用在二次描光 (double pass) 中的组件, 然后在序列性列表中,必须再定义超过一次的表面参数。

大部份成像光学系统,如照相机镜头、望远镜和显微镜,可在序列性模式中 完整定义。

对于这些系统,序列性描光具有许多优点:非常快、非常弹性和非常 普遍。

几乎任何形状的光学表面和材质特性皆可建构。

在成像系统中,序列性描 光最重要的优点为使用简单且高精确的方法来做优化和分析。

序列性描光的缺 点, 包括无法追迹所有可能的光路径 (即鬼影反射) 和许多无法以序列性方式来 描述的光学系统或组件。

用ZEMAX设计简易LED准直镜

用ZEMAX设计简易LED准直镜

用ZEMAX设计简易LED准直镜一. 初始解的构建1. 为了简单采用此透镜由三部分构成:A. 全反射部分,B. 折射部分,C.切除部分(这一部分在设计时也可以不考虑,可以在设计完成后再加入)图中光束分两个部分, 一部分为折射部分,另一部分为全反射部分, 可以看出,折射部分光束为三段,全反射部分光束分为四段,由于是平行光出射, 所以在优化时只要考虑第三段就可以了.初始数据:1) 几何体部分TIR部分是一个非球面透镜,中间部分是一个标准透镜(有曲率和圆锥系数),切除部分是一个圆柱体;注意中间的透镜部分的材料为空气,因为它相当于也是被切除掉的.2) 光源部分我们用SOURCE RAY做为光源, 这样可以NSRA来进行优化; 光源的生成与操作数的建立按如下的MACRO可以自动生成:steps=90incr=90/steps #max angle is 90 degreepi = 4*ATAN(1)dr = pi/180startobj=4For i,0,steps,1angle = i*incroo=i+startobjInsertObject 1,ooSetNSCProperty 1,oo,0,0,"NSC_SRAY" # surface,object,code,face,value SetNSCProperty 1,oo,3,0,2 # source inside of object 2 SetNSCPosition 1,oo,4,angleSetNSCParameter 1,oo,1,1 #layout raysSetNSCParameter 1,oo,2,1 #analysis raystar = 0opr = i+1InsertMFO oprsetoperand opr, 11, "NSRA"setoperand opr, 3, oo # src#setoperand opr, 6, 3 # seg#setoperand opr, 9, 1 # weightsetoperand opr, 7, 5 # y coordinatesetoperand opr, 8, tar # tarNextupdate我们每隔一度产生一条光线,最终的结果如下, 从图中可以看出,光线都不是平行的. 这里注意要调整参数保证所有光线都大概的按预期的方向会聚!!二. 优化经过上面的准备工作,这时我们就可以优化了, 当然那几个物体的相对位置需要用PICKUP来约束, 这里不就详细说明了.初步优化的结果如下:可以再调整一下透镜的口径, 再优化一次. 可以看出, 透镜的口径是在增加的, 并且其底部是一直往左移的. 最终会达到一个比较平衡的状态;到这里优化工作就已经完成了. 我们可以对这三个部分进行一个布尔操作得到我们想要的透镜!三. 最终模型的建立和模拟1) 布尔操作后的结果2) 模拟,将所有的SOURCE RAY都删除, 我们用SOURCE RECTANGLE来代替LED, 大小取1*1, COSINE EXPONENT 取1.0来做为朗伯发光体, 把DECTOR 设置到1010MM 处, 模拟1M处的光斑, DETECTOR的大小设为500*5003) 模拟结果:A. 光斑B. 发散角以上是一个简单的准直镜的构建. 采用ZEAMX的优化算法结果特定的建模完成该设计, 当然还可能存在诸多不足之处,但此思路可供参考. 也可以设计相似的透镜或变型.。

光学工程课程设计——照相物镜的ZEMAX设计

光学工程课程设计——照相物镜的ZEMAX设计

光学工程课程设计班级:T1003-3班学号:20100030305姓名:李金鑫一.光学设计软件ZEMAX 的使用设计要求:1. 镜头镜片数小于10片2. 图像传感器(CCD)指标像素:1200×960,像元:3.8 3.8m m μμ? 。

3. 物镜定焦,焦距28.0mm ,畸变 < 3.5%焦距280.2f mm mm '=±,相对孔径/1/3.5D f '=轴上点100/lp mm 的MTF 值在0.3以上,轴外0.707视场100/lp mm 的MTF 值在0.15以上, 渐晕:中心相对照度 > 65 %在可见光波段设计(取d 、F 、C 三种色光,d 为主波长)。

4.计算过程:成像面积:(1200*3.8)*(960*3.8)=4.56*3.648mm 2 对角线长度:22648.356.4+=5.84mm像高:5.84/2=2.92mm 无限远入射光线的半视场角为: 96.5)arctan(''==fy w CCD 的特征频率为:1/(2*0.038)=131.6 lp/mm 有效焦距长度:'f =28mm 由于相对孔径'13.5D f =,所以8D mm =。

软件设计结果:1.透镜结构参数,视场、孔径等光学特性参数:GENERAL LENS DATA:Surfaces : 12Stop : 6System Aperture : Entrance Pupil Diameter = 8Glass Catalogs : SCHOTTRay Aiming : OffApodization : Uniform, factor = 0.00000E+000Effective Focal Length : 28.0008(in air at system temperature and pressure) Effective Focal Length : 28.0008(in image space)Back Focal Length : 17.49979Total Track : 40.26Image Space F/# : 3.499992Paraxial Working F/# : 3.499992Working F/# : 3.498718Image Space NA : 0.1414217Object Space NA : 4e-010Stop Radius : 2.446367Paraxial Image Height : 2.92315Paraxial Magnification : 0Entrance Pupil Diameter : 8Entrance Pupil Position : 17.94124Exit Pupil Diameter : 9.552524Exit Pupil Position : -33.42397Field Type : Angle in degrees Maximum Field : 5.96 Primary Wave : 0.5875618Lens Units : MillimetersAngular Magnification : 0.837475Fields: 4Field Type: Angle in degrees# X-Value Y-Value Weight1 0.000000 0.000000 1.0000002 0.000000 3.440000 1.0000003 0.000000 4.860000 1.0000004 0.000000 5.960000 1.000000Vignetting Factors# VDX VDY VCX VCY VAN1 0.000000 0.000000 0.000000 0.000000 0.0000002 0.000000 0.000000 0.000000 0.000000 0.0000003 0.000000 0.000000 0.000000 0.000000 0.0000004 0.000000 0.000000 0.000000 0.000000 0.000000 Wavelengths: 3Units: Microns# Value Weight1 0.486133 1.0000002 0.587562 1.0000003 0.656273 1.000000 Surface 6 Data Summary Title:Date : WED JAN 9 2012 Lens units: 毫米Thickness : 3.71 Diameter : 4.93475 Edge Thickness:Y Edge Thick: 3.0744 X Edge Thick: 3.0744 Index of Refraction: Glass:# Wavelength Index1 0.48613 1.00000000002 0.58756 1.00000000003 0.65627 1.0000000000Surface Powers (as situated):Surf 5 : -0.096255Surf 6 : 0Power 5 6 : -0.096255EFL 5 6 : -10.389F/# 5 6 : -1.6343Surface Powers (in air):Surf 5: 0Surf 6: 0Power 5 6 : 0EFL 5 6 : 0Shape Factor: 1SURFACE DATA SUMMARY:Surf Type Radius Thickness Glass Diameter Conic OBJ STANDARD 无限远无限远 0 01 STANDARD 17.412 2.21 SSK4A 11.54063 02 STANDARD 44.806 0.54 10.92813 03 STANDARD 10.871 5.05 N-SK16 10.21084 04 STANDARD 无限远 0.87 F14 7.583943 05 STANDARD 6.248 4.05 6.356952 0 STO STANDARD 无限远 3.71 4.9347557 STANDARD -6.576 0.84 F14 5.641057 08 STANDARD 无限远 2.78 N-SK16 6.386702 09 STANDARD -8.484 0.54 7.365621 010 STANDARD 40.196 2.18 N-SK16 7.733431 011 STANDARD -22.428 17.49 7.845499 0 IMA STANDARD 无限远 5.836295 0EDGE THICKNESS DATA:Surf Edge1 1.5604792 1.4790143 3.7765684 1.7388935 3.181107STO 3.0744047 1.4755968 1.9389819 1.56743310 1.64786811 17.835717IMA 0.000000INDEX OF REFRACTION DATA:Surf Glass Temp Pres 0.486133 0.587562 0.6562730 20.00 1.00 1.00000000 1.00000000 1.000000001 SSK4A 20.00 1.00 1.62546752 1.61764975 1.614266422 20.00 1.00 1.00000000 1.00000000 1.000000003 N-SK16 20.00 1.00 1.62755635 1.62040997 1.617271664 F14 20.00 1.00 1.61249349 1.60140055 1.596763175 20.00 1.00 1.00000000 1.00000000 1.000000006 20.00 1.00 1.00000000 1.00000000 1.000000007 F14 20.00 1.00 1.61249349 1.60140055 1.596763178 N-SK16 20.00 1.00 1.62755635 1.62040997 1.617271669 20.00 1.00 1.00000000 1.00000000 1.0000000010 N-SK16 20.00 1.00 1.62755635 1.62040997 1.6172716611 20.00 1.00 1.00000000 1.00000000 1.0000000012 20.00 1.00 1.00000000 1.00000000 1.00000000 THERMAL COEFFICIENT OF EXPANSION DATA:Surf Glass TCE *10E-60 0.000000001 SSK4A 6.100000002 0.000000003 N-SK16 6.300000004 F14 7.900000005 0.000000006 0.000000007 F14 7.900000008 N-SK16 6.300000009 0.0000000010 N-SK16 6.3000000011 0.0000000012 0.00000000F/# DATA:F/# calculations consider vignetting factors and ignore surface apertures.Wavelength: 0.486133 0.587562 0.656273 # Field Tan Sag Tan Sag Tan Sag1 0.0000 deg: 3.4999 3.4999 3.4987 3.4987 3.5003 3.50032 3.4400 deg: 3.5059 3.5034 3.5047 3.5022 3.5063 3.50383 4.8600 deg: 3.5115 3.5068 3.5105 3.5056 3.5121 3.50714 5.9600 deg: 3.5169 3.5102 3.5160 3.5090 3.5176 3.5105 CARDINAL POINTS:Object space positions are measured with respect to surface 1.Image space positions are measured with respect to the image surface.The index in both the object space and image space is considered.Object Space Image SpaceW = 0.486133Focal Length: -28.009159 28.009159Focal Planes: -5.396361 0.018674Principal Planes: 22.612798 -27.990486Anti-Principal Planes : -33.405520 28.027833Nodal Planes: 22.612798 -27.990486Anti-Nodal Planes: -33.405520 28.027833W = 0.587562 (Primary)Focal Length: -28.000842 28.000876Focal Planes: -5.508010 0.009789Principal Planes: 22.491928 -27.990148Anti-Principal Planes : -33.507947 28.009727Nodal Planes: 22.491928 -27.990148Anti-Nodal Planes: -33.507947 28.009727W = 0.656273Focal Length: -28.011708 28.011708Focal Planes: -5.572853 0.025235Principal Planes: 22.438855 -27.986473Anti-Principal Planes : -33.584560 28.036943Nodal Planes: 22.438855 -27.986473Anti-Nodal Planes: -33.584560 28.0369432.像质指标实际值目标值'= 28f mm28.0008畸变:0.28% ﹤3.5% MTF:100lp/mm 70.29% >30%(轴上) 100lp/mm 66.4% >15%(轴外)3.公差数据分析结果:Analysis of TolerancesUnits are 毫米.Paraxial Focus compensation is on. In this mode, allcompensators are ignored, except paraxial back focus change.WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. WARNING: Boundary constraints on compensators are ignored whenusing fast mode or user-defined merit functions.Criteria : RMS Spot Radius in 毫米Mode : SensitivitiesSampling : 3Nominal Criteria : 0.00090019Test Wavelength : 0.6328Fields: Y Symmetric Angle in degrees# X-Field Y-Field Weight VDX VDY VCX VCY1 0.000E+000 0.000E+000 2.000E+000 0.000 0.000 0.000 0.0002 0.000E+000 4.172E+000 1.000E+000 0.000 0.000 0.000 0.0003 0.000E+000 -4.172E+000 1.000E+000 0.000 0.000 0.000 0.0004 0.000E+000 5.960E+000 1.000E+000 0.000 0.000 0.000 0.0005 0.000E+000 -5.960E+000 1.000E+000 0.000 0.000 0.000 0.000 Worst offenders:Type Value Criteria ChangeTIRY 7 -0.200000000 0.020355900 0.019455709TIRY 7 0.200000000 0.020355900 0.019455709TSDY 7 -0.200000000 0.017442564 0.016542373TSDY 7 0.200000000 0.017442564 0.016542373TIRX 7 -0.200000000 0.017321649 0.016421459TIRX 7 0.200000000 0.017321649 0.016421459TIRY 9 -0.200000000 0.016494937 0.015594747TIRY 9 0.200000000 0.016494937 0.015594747TIRX 9 -0.200000000 0.015405686 0.014505496TIRX 9 0.200000000 0.015405686 0.014505496Estimated Performance Changes based upon Root-Sum-Square method: Nominal RMS Spot Radius : 0.000900Estimated change : 0.055470Estimated RMS Spot Radius: 0.056370Compensator Statistics:Change in back focus:Minimum : -1.006356 Maximum : 1.112564 Mean : 0.000982 Standard Deviation : 0.183198Monte Carlo Analysis:Number of trials: 20Initial Statistics: Normal DistributionTrial Criteria Change1 0.010973013 0.0100728222 0.055717068 0.0548168783 0.018735173 0.0178349824 0.014194669 0.0132944785 0.037745158 0.0368449676 0.019405575 0.0185053847 0.032397994 0.0314978048 0.007928807 0.0070286179 0.035414796 0.03451460610 0.028473194 0.02757300411 0.016118938 0.01521874812 0.013851098 0.01295090713 0.043797393 0.04289720314 0.018751552 0.01785136215 0.027123362 0.02622317216 0.026825230 0.02592504017 0.028410049 0.02750985818 0.024295827 0.02339563719 0.022359906 0.02145971520 0.024840539 0.023940348Nominal 0.000900191Best 0.007928807 Trial 8 Worst 0.055717068 Trial 2 Mean 0.025367967 Std Dev 0.011350176Compensator Statistics:Change in back focus:Minimum : -1.962392Maximum : 1.332779Mean : -0.175784Standard Deviation : 0.90742990% <= 0.03774515850% <= 0.02429582710% <= 0.010973013End of Run.Tolerance Data SummaryRadius and Thickness data are in 毫米.Power and Irregularity are in double pass fringes at 0.6328 祄Only spherical and astigmatism irregularity tolerances are listedin the "SURFACE CENTERED TOLERANCES";Zernike irregularity tolerances are listed under "OTHER TOLERANCES".Surface Total Indicator Runout (TIR) are in 毫米.Index and Abbe tolerances are dimensionlessSurface and Element Decenters are in 毫米.Surface and Element Tilts are in degrees.SURFACE CENTERED TOLERANCES:Surf Radius Tol Min Tol Max Power Irreg Thickness Tol Min Tol Max1 17.412 -0.2 0.2 - 0.2 2.21 -0.2 0.22 44.806 -0.2 0.2 - 0.2 0.54 -0.2 0.23 10.871 -0.2 0.2 - 0.2 5.05 -0.2 0.24 Infinity - - 1 0.2 0.87 -0.2 0.25 6.248 -0.2 0.2 - 0.2 4.05 -0.2 0.26 Infinity - - - - 3.71 -0.2 0.27 -6.576 -0.2 0.2 - 0.2 0.84 -0.2 0.28 Infinity - - 1 0.2 2.78 -0.2 0.29 -8.484 -0.2 0.2 - 0.2 0.54 -0.2 0.210 40.196 -0.2 0.2 - 0.2 2.18 -0.2 0.211-22.428 -0.2 0.2 - 0.2 17.49 - -12Infinity - - - - 0 - -SURFACE DECENTER/TILT TOLERANCES:Surf Decenter X Decenter Y Tilt X Tilt Y TIR X TIR Y1 0.2 0.2 - - 0.2 0.22 0.2 0.2 - - 0.2 0.23 0.2 0.2 - - 0.2 0.24 0.2 0.2 - - 0.2 0.25 0.2 0.2 - - 0.2 0.26 - - - - - -7 0.2 0.2 - - 0.2 0.28 0.2 0.2 - - 0.2 0.29 0.2 0.2 - - 0.2 0.210 0.2 0.2 - - 0.2 0.211 0.2 0.2 - - 0.2 0.212 - - - - - - GLASS TOLERANCES:Surf Glass Index Tol Abbe Tol1 SSK4A 0.001 0.551423 N-SK16 0.001 0.603244 F14 0.001 0.382327 F14 0.001 0.382328 N-SK16 0.001 0.6032410 N-SK16 0.001 0.60324ELEMENT TOLERANCES:Ele# Srf1 Srf2 Decenter X Decenter Y Tilt X Tilt Y1 12 0.2 0.2 0.2 0.22 3 5 0.2 0.2 0.2 0.23 7 9 0.2 0.2 0.2 0.24 10 11 0.2 0.2 0.2 0.2二.简易望远镜的组装1.原理图2零件清单零件清单物镜零件名称数量名称数量物镜 2 物镜推杆 2 物镜座 2 卡环 2 物镜压圈 2 物镜盖2目镜零件右目镜座 1 左目镜座 1 右目镜内筒 1 左目镜内筒 1 目镜盖 2 场栏 2 隔圈 2 挡圈 2 视度调节圈 1 目镜套 1 目镜 2棱镜零件上棱镜 2 下棱镜 2 棱镜座 2 压盖 2 隔片 2整体零件镜筒 2 滚珠 4 导向杆 2 小拖板 1 大拖板 1 调焦螺钉 1 调焦螺母 1 铰链螺钉 23.装配3.1目镜的组装(1)装配目镜1.将胶合目镜放在下面,凸面朝上,再放隔圈,将单片目镜放在隔圈上,凸面向下,保证凸面对凸面。

基于ZEMAX的半导体激光准直仿真设计

基于ZEMAX的半导体激光准直仿真设计

引言
半导体激光器( laser diode,LD) 以其体积小效率高易于集成可高速直接调制等优点,被广泛用于激光雷达激光测量激光照明激光制导激光打印以及高密度信息记录与读取等领域。

但是半导体激光器发射的激光光束具有在垂直和平行于结平面两个方向发散角不同光斑形状不规则( 如一般是椭圆型或长条型) 存在固有像散等缺点,这使得半导体激光3 维扫描成像雷达的测程测距精度大大受影响,为了适用于远距离空间激光测距,必须对半导体激光发散光束进行准直。

作者主要采用椭圆面柱透镜,对905nm 的半导体激光做准直整形处理,使得激光的发散角尽可能的小,接收物体表面的激光光斑尽可能的小,而且规则,从而达到提高测程和测距精度的目的。

1.理论分析及计算
采用OSARM 公司的型号为SPL LL90 _3 的半导体激光器查看使用说明书得到: SPL LL90_3 型号的半导体激光器在弧矢( 平行于结平面) 方向上的发散
角= 15°,在子午( 垂直于结平面) 方向上的发散角= 30°,整个激光器的峰值功率为70W半导体激光器有源区只有约0. 1 m ~0. 2 m 的厚度,可以近似看作沿慢轴方向的线光源根据半导体激光束两个方向的发散角不同的特点,采用两个互相垂直的柱透镜组分别对两个方向的光束进行准直,选用的两个柱面镜面型为椭圆面如图
1 所示,半导体激光器发出的子午光线先经过母线平行于激光束慢轴方向的柱透镜后变成准平行光束( 平行光束不可能实现) 由于第
2 个柱透镜M2对于子午光线的发散角无影响,可看作平板玻璃图2 显示弧矢光线经过第1 个透镜M1 时,光束会发生偏移,但不会影响光束的发散角,在经过第 2 个柱透镜时,弧矢光也同样得到准直,输出准平行光。

如有侵权请联系告知删除,感谢你们的配合!。

使用ZEMAX进行准直镜头设计

使用ZEMAX进行准直镜头设计
ZEMAX TFCalc LAS-CAD 光学软件亚太独家总代理 销售信箱: sales@ 技术支持: support@
WAVELAB 光研科学
设计准备
• • • • •
ZEMAX-EE(专业版)光学设计软件 掌握准直径的特点:Afocal系统 使用的功能:ZEMAX像空间Afocal模式 优化方法:Afocal模式,RMS+Wavefront 分析方法:采用ZEMAX的Afocal的模式可以 直接读取镜头的发散角
WAVELAB
光研科学
致谢!
• • •
感谢您对光研科学有限公司的支持 感谢您对ZEMAX光学设计软件的信任 我们将努力为您提供优质的技术和售后服务!技 术支持:
support@
• 我们将让国外优秀的的各种光学设计软件为中国 •
的技术工作者所用! 更多技术信息请登陆

光研科学
WAVELAB
光研科学
WAVELAB
设计参数要求:
• • •
有效焦距:9mm 通光孔径:4mm 工作波长: 468nm~656nm
设计思路和方法通用
• 准直后的光线发散角<=3mrad
(对于本例,我们采用的材料BK7,物距等根 据设计要求自行设定)
WAVELAB 光研科学
设计完成后的光路图:
WAVELAB
光路图
发散角度评价:
RMS为主要的评价标准: 发散角度<1.279 mrad GEO为参考的评价标准: 发散角度<3.009 mrad 设计结果符合设计要求 Afocla 的点列图 WAVELAB 光研科学
加工图纸输出:
WAVELAB
光研科学
加工图纸输出:
可以编定各种公差数据,以及其他信息

zemax课程设计_手机镜头设计

zemax课程设计_手机镜头设计

zemax课程设计_手机镜头设计一、教学目标本课程的目标是让学生掌握手机镜头设计的基本原理和Zemax软件的使用技巧。

知识目标包括了解手机镜头的基本结构、光学原理和设计流程,以及掌握Zemax软件的基本操作和功能。

技能目标包括能够使用Zemax软件进行手机镜头的设计和优化,以及能够分析并解决设计过程中遇到的问题。

情感态度价值观目标包括培养学生的创新意识和团队合作精神,提高他们对光学科技的兴趣和热情。

二、教学内容本课程的教学内容主要包括手机镜头的基本原理、设计流程和Zemax软件的使用。

首先,将介绍手机镜头的基本结构和工作原理,包括光学镜头的焦距、光圈、像距等基本概念。

然后,将讲解手机镜头的设计流程,包括需求分析、光学设计、光学仿真和生产制造等步骤。

最后,将介绍Zemax软件的基本操作和功能,包括光学镜头的设计、仿真和优化等。

三、教学方法为了实现课程目标,将采用多种教学方法,包括讲授法、案例分析法和实验法。

首先,将通过讲授法向学生传授手机镜头的基本原理和设计流程,以及Zemax软件的基本操作和功能。

然后,将通过案例分析法让学生分析并解决实际设计过程中遇到的问题,提高他们的分析和解决问题的能力。

最后,将通过实验法让学生亲手操作Zemax软件,进行手机镜头的设计和优化,提高他们的实践能力。

四、教学资源为了支持教学内容的实施和教学方法的应用,将准备多种教学资源。

教材方面,将选用《手机镜头设计》一书,作为学生的主要学习材料。

参考书方面,将推荐《光学设计手册》等书籍,供学生深入研究。

多媒体资料方面,将制作PPT课件和教学视频,帮助学生更好地理解和掌握课程内容。

实验设备方面,将准备Zemax软件的安装环境和相关实验设备,让学生能够进行实际操作和实验。

五、教学评估本课程的评估方式包括平时表现、作业和考试三个部分。

平时表现主要评估学生的课堂参与和提问,占课程总评的30%。

作业包括课后练习和项目设计,占课程总评的40%。

zemax在多模光纤准直器设计中的应用

zemax在多模光纤准直器设计中的应用

zemax在多模光纤准直器设计中的应用
Zemax是一款广泛应用于光学设计的软件,它可以对多模光纤准直器进行设计和仿真。

多模光纤准直器可以将光束从光纤的一个端口输送到另一个端口,保持光波的相位一致性。

在准直器的设计中,需要考虑光学元件的表面精度、光路长度、折射率分布等因素。

使用Zemax进行仿真可以分析准直器的成像质量、光束大小、光功率损耗等参数,并进行优化设计。

此外,Zemax还提供了多种优化算法,能够使得准直器的性能达到最优。

综上所述,Zemax在多模光纤准直器设计中起着重要的作用,可以有效提高准直器的成像质量和光功率传输效率。

ZEMAX在多模光纤准直器设计中的应用

ZEMAX在多模光纤准直器设计中的应用
1 2 ( 长春理工大学光电工程学院 ,吉林 长春 1 中国科学院半导体研究所 ,北京 1 ) 3 0 0 2 1; 0 0 0 8 3
摘要 利用 Z EMA X 软件进行多模光纤准直器的设 计 。 在 Z EMA X 开发环境下建立多模光纤准直器光路系统的 理论模型 , 通过人工优化的方法 , 设计并制作了可调 焦 的 多 模 光 纤 准 直 器 , 仿 真 结 果 与 实 际 结 果 相 一 致, 证实了利 分析了各 种 因 素 对 光 纤 准 直 器 耦 合 用Z EMA X 进行多模光纤准直器设计的可行性和准确性 。 利用所建立的模型 , 效率和准直度的影响 。 关键词 光纤光学 ;多模光纤 ; Z EMA X 软件 ;耦合效率 ;准直度 中图分类号 O : / 4 3 7. 4 文献标识码 A 犱 狅 犻 1 0. 3 7 8 8 犔 犗 犘 4 8. 0 1 0 6 0 5
狕=
犽 =-1 为抛物面 , 犽 = 0 为球面 , 犽 > 1 为扁圆 。 -1 为双曲面 , -1 < 犽 < 0 为椭圆 , 5] 在非球面透镜的应用中 , 平面 ( 或凸面 ) 双曲面透镜可以将无限远目标聚焦成无像差的光 斑 [ 。 利用这
可以运用平面 ( 或凸面 ) 双曲面透镜对半导体激光器的快轴进行准直 , 如图 1 所示 。 个特性 ,
2, 3] 高光纤系统的耦合效率 [ 。 光纤准直器通常主要由准直系 统和光纤两 部分组成 。 光纤 准 直 器 根 据 光 纤 的
不同可以分为单模光纤准直器和多模光纤准直器 。 其中 , 多 模光纤 准直 器由于其 耦 合 效 率 高 而 被 广 泛 应 用 在传能方面 。 本文从实用的角度出发阐述 Z 通过建模来验证 EMAX 在光 无 源 器 件 多 模 光 纤 准 直 器 设 计 中 的 应 用 , Z EMA X 在多模光纤准直器设计中的可行性 。

用ZEMAX设计简易LED准直镜

用ZEMAX设计简易LED准直镜

用ZEMAXS计简易LED准直镜一.初始解的构建1.为了简单采用此透镜由三部分构成:A.全反射部分,B.折射部分,C.切除部分(这一部分在设计时也可以不考虑,可以在设计完成后再加入)图中光束分两个部分,一部分为折射部分,另一部分为全反射部分,可以看出, 折射部分光束为三段,全反射部分光束分为四段,由于是平行光出射,所以在优化时只要考虑第三段就可以了•初始数据:1)几何体部分TIR部分是一个非球面透镜,中间部分是一个标准透镜(有曲率和圆锥系数),切除部分是一个圆柱体;注意中间的透镜部分的材料为空气,因为它相当于也是被切除掉的2) 光源部分我们用SOURCEAY故为光源,这样可以NSRA来进行优化;光源的生成与操作数的建立按如下的MACR可以自动生成:steps=90in cr=90/steps #max an gle is 90 degreepi = 4*ATAN(1)dr = pi/180startobj=4For i,0,steps,1an gle = i*i ncroo=i+startobjIn sertObject 1,ooSetNSCProperty 1,oo,0,0,"NSC_SRAY" # surface,object,code,face,valueSetNSCProperty 1,oo,3,0,2 # source in side of object 2SetNSCPositio n 1,oo,4,a ngleSetNSCParameter 1,oo,1,1 #layout raysSetNSCParameter 1,oo,2,1 #an alysis raystar = 0opr = i+1In sertMFO oprsetopera nd opr, 11, "NSRA" setopera nd opr, 3, oo # src# setopera nd opr, 6, 3 # seg# setopera nd opr, 9, 1 # weight setopera nd opr, 7, 5 # y coord in ate setopera nd opr, 8, tar # tarNextupdate我们每隔一度产生一条光线,最终的结果如下,从图中可以看出,光线都不是平行的.这里注意要调整参数保证所有光线都大概的按预期的方向会聚!!二.优化经过上面的准备工作,这时我们就可以优化了,当然那几个物体的相对位置需要用PICKUP来约束,这里不就详细说明了.初步优化的结果如下:可以再调整一下透镜的口径,再优化一次.可以看出,透镜的口径是在增加的并且其底部是一直往左移的•最终会达到一个比较平衡的状态;到这里优化工作就已经完成了•我们可以对这三个部分进行一个布尔操作得到我们想要的透镜1)布尔操作后的结果2)模拟,将所有的SOURCEAFE删除,我们用SOURCRECTANG来代替LED,大小取1*1, COSINE EXPONENT 1.0来做为朗伯发光体,把DECTOF设置至U 1010MMi,模拟1M处的光斑,DETECTOR勺大小设为3)模拟结果: A.光斑0.OIHD0.OL260 * 0Q98s oaseQ.0Q2G広0(31* 口ETECTOP IMAGE: THCDHE貝ENT 卬阳MRMESffr flMG B 20^DETOCTOH C, MSCC SUSPACE J-SEE 1006 KV U X LCCfiU丽H MlLLlMEr^ 1RRRDU«:£; I」网E-UU2 頂nS/DlP TDfTflL FEJEE ;啊22J7EF(H WRITS PIXELS w u x H. rofTiflL Htrs = KAIU'U ■$ *X COORDINATE VALUE It is5C2I.Xn.tctjiir?RRDIRNF INTENSITY SAT AUD 8 2SB9KrttiK B L IIE awn i:eou(Bfs r ■ ■彊锻■媲HK I;-U M n £JS»,YI -i^mtn Ltmn. nms m HX NSH, IORWE am KK WWirf : l.WM2UITS^WaiMiam t 谢粧M wr- LED aJLLIHfiraP IJTQRIRL-ZMX CONFIGURHTION 1 OF 1以上是一个简单的准直镜的构建.采用ZEAMX勺优化算法结果特定的建模完成该设计,当然还可能存在诸多不足之处,但此思路可供参考•也可以设计相似的透镜或变型.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
WAVELAB 光研科学
设计准备
• • • • •
ZEMAX-EE(专业版)光学设计软件 掌握准直径的特点:Afocal系统 使用的功能:ZEMAX像空间Afocal模式 优化方法:Afocal模式,RMS+Wavefront 分析方法:采用ZEMAX的Afocal的模式可以 直接读取镜头的发散角

光研科学
WAVELAB
WAVELAB
光研科学
致谢!
• • •
感谢您对光研科学有限公司的支持 感谢您对ZEMAX光学设计软件的信任 我们将努力为您提供优质的技术和售后服务!技 术支持:
support@
• 我们将让国外优秀的的各种光学设计软件为中国 •
的技术工作者所用! 更多技术信息请登陆
发散角度评价:
RMS为主要的评价标准: 发散角度<1.279 mrad GEO为参考的评价标准: 发散角度<3.009 mrad 设计结果符合设计要求 Afocla 的点列图 WAVELAB 光研科学
加工图纸输出:
WAVELAB
光研科学
加工图纸输出:
可以编定各种公差数据,以及其他信息
可以对镜头进行公差分析, 以及模拟装配等、 (此例中不做详细介绍)
准直质量
光研科学
设定系统参数:
• 选用Afocal像空间 • 设定入瞳直径为 • •
4mm 系统默认长度单位为 mm 系统默认角度单位为 mrad
WAVELAB
光研科学
设定系统参数:
• 物体是点,选用物高为零
WAVELAB
光研科学
设定工作波长:
• 采用系统自带的
可见光波长设定 • F\ D \C • 系统中可以自动 选择各种波长
光研科学
WAVELAB
设定目标:
• EFFL设定
有效焦距 控制 • 下面是系 统自动生 成的控制 光程差
WAVELAB 光研科学
优化:
• 自动收敛设计 • 观察MF(评价函
数的变化) • 自动update实时 观察系统变化
WAVELAB
光研科学
查看结果:
2D外型图形
WAVELAB
3D外型图形
光研科学
光研科学
WAVELAB
设计参数要求:
• • •
有效焦距:9mm 通光孔径:4mm 工作波长: 468nm~656nm
设计思路和方法通用
• 准直后的光线发散角<=3mrad
(对于本例,我们采用的材料BK7,物距等根 据设计要求自行设定)
WAVELAB 光研科学设计完成后 Nhomakorabea光路图:
WAVELAB
光路图
使用ZEMAX进行准直镜头设计
光研科学有限公司 赵伟星
ZEMAX TFCalc LAS-CAD 光学软件亚太独家总代理 销售信箱: sales@ 技术支持: support@
WAVELAB
光研科学
设定初始结构:
WAVELAB
平板玻璃
光研科学
设定变量:
• 曲率半径 • 第二个面采用偶次非球面
– (本实例只采用1个单片透镜)
WAVELAB
光研科学
设定目标:
• • •
RMS+Wavefront Rings+Arms 这种系统的默认 的评价函数将可 以实现准直设计 (我们已经选择 了Afocal模式)
相关文档
最新文档