习题:分式方程及增根、无解(含答案)

合集下载

初中数学分式方程的增根、无解问题解答题基础训练(附答案详解)

初中数学分式方程的增根、无解问题解答题基础训练(附答案详解)
16.m是什么数时,分式方程 有根.
17.若关于x的方程 的解是正数,求k值.
18.当k为何值时,分式方程 有增根?
19.已知关于x的方程 的根是x=1,求 的值.
参考答案
1.m<5且m≠2
【解析】
【分析】
先解分式方程,然后根据分式方程解的取值范围和增根的定义列出不等式即可求出结论.
【详解】
解:
解得:
∵关于x的分式方程 的解为正数,


解得:m<5且m≠2.
【点睛】
此题考查的是根据分式方程解的情况,求参数的取值范围,掌握分式方程的解法和增根的定义是解决此题的关键.
2.(1) ;(2) ,数轴上表示见解析.
【解析】
【分析】
(1)将y=-1代入原方程解出a即可.
(2)根据不等式的解法解出解集即可.
【详解】
(2)将新方程的x表示出来,令方程小于零,解出即可.
【详解】
由上得:2x=(m-2)x-6,整理得:(4-m)x=-6.
(1)①当4-m=0即m=4时,原方程无解;
②当分母x+3=0即x=-3时,方程无解;
故2×(-3)=(m-2)×(-3)-6,
解得m=2,
综上所述,m=4或m=2.
(2)
当m≠4时, ,
∵方程的解是负数,
∴a-4<0,
∴a<4,
又∵x+2≠0,
∴x≠-2,
∴a≠2
那么a的取值范围是:a<4且a≠2.
【点睛】
本题考查解分式方程,解题的关键是掌握分式方程的求解,注意x+2≠0.
9. 且
【解析】
【分析】
先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求a的取值范围.

分式方程的增根与无解详解(最新整理)

分式方程的增根与无解详解(最新整理)

x-2 (x-3)=m
整理得:
x=6-m
∵原方程有解,故 6-m 不是增根。
∴6-m≠3 即 m≠3
∵x>0
∴m<6
由此可得答案为 m 的取值范围是 m<6 且 m≠3。 一、分式方程有增根,求参数值
2
x2 4xa 例 7 a 为何值时,关于 x 的方程 x 3 =0 有增根?
解:原方程两边同乘以(x-3)去分母整理,得 x2-4x+a=0(※) 因为分式方程有增根,增根为 x=3,把 x=3 代入(※)得,9-12+a=0 a=3
整理得(a-1)x=-10

1
若原方程无解,则有两种情形: (1)当 a-1=0(即 a=1)时,方程②为 0x=-10,此方程无解,所以原方程无解。 (2)如果方程②的解恰好是原分式方程的增根,那么原分式方程无解.原方程若有增根,增根为 x=2 或-2,把 x=2 或-2 代入方程②中,求出 a=-4 或 6. 综上所述,a=1 或 a=一4或 a=6 时,原分式方程无解. 例 5:(2005 扬州中考题)
入(※)得 m=-2
3 所以 m=- 2 或-2 时,原分式方程有增根
k
2
点评:分式方程有增根,不一定分式方程无解(无实根),如方程 x 1 +1= ( x 1)( x 2) 有增根,可求得 k=-
2
8
3 ,但分式方程这时有一实根 x= 3 。
二、分式方程是无实数解,求参数值
x2 m 例 9 若关于 x 的方程 x 5 = x 5 +2 无实数,求 m 的值。
整理得:
m(x+1)=7-x2
当 x= -1 时,此时 m 无解;
当 x=1 时,解得 m=3。

(完整版)分式方程无解增根专题

(完整版)分式方程无解增根专题

分式方程专题一:知识梳理如果一个分式方程的根能使此方程的公分母为零,那么这个根就是原方程的增根。

产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。

在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根。

二:例题精讲例题1:若方程﹣=1有增根,则它的增根是,m=.【解答】解:由分式方程有增根,得到(x+1)(x﹣1)=0,解得:x=±1,分式方程去分母得:6﹣m(x+1)=x2﹣1,把x=1代入整式方程得:6﹣2m=0,即m=3;把x=﹣1代入整式方程得:6=0,无解,综上,分式方程的增根是1,m=3.故答案为:1;3.反馈:(1)若关于x的分式方程=1有增根,则增根为;此时a=.(2)关于x的方程+=2有增根,则m=.(3)若关于x的分式方程=﹣有增根,则k的值为.例题2:若关于x的方程的解为正数,则m的取值范围是.【解答】解:方程两边都乘以x﹣2,得:﹣2+x+m=2(x﹣2),解得:x=m+2,∵方程的解为正数,∴m+2>0,且m+2≠2,解得:m>﹣2,且m≠0,故答案为:m>﹣2且m≠0.反馈:(1)已知关于x的方程=3的解是正数,则m的取值范围是.(2)关于x的方程的解是负数,则a的取值范围是.例题3:若关于x的分式方程=a无解,则a的值为.【解答】解:两边同乘以x+1,得x﹣a=ax+a移项及合并同类项,得x(a﹣1)=﹣2a,系数化为1,得x=,∵关于x的分式方程=a无解,∴x+1=0或a﹣1=0,即x=﹣1或a=1,∴﹣1=,得a=﹣1,故答案为:±1.反馈:(1)关于x的方程无解,则k的值为.(2)若关于x的分式方程无解,则m的值为.(3)若关于x的分式方程无解,则m=.三:典型错题1.在中,x的取值范围为.2.要使方式的值是非负数,则x的取值范围是.3.已知,则分式的值为.4.将分式(a、b均为正数)中的字母a、b都扩大到原来的2倍,则分式值为原来的倍.5.若=+,则A=,B=.6.若解分式方程产生增根,则m=.7.若关于x的方程是非负数,则m的取值范围是.8.关于x的分式方程有解,则字母a的取值范围是9.已知,则的值为.10.已知a2+b2=9ab,且b>a>0,则的值为.参考答案:例题1:反馈:(1)若关于x的分式方程=1有增根,则增根为;此时a=.【解答】解:去分母得:2x﹣a=x+1,由分式方程有增根,得到x+1=0,即x=﹣1,把x=﹣1代入得:﹣2﹣a=0,解得:a=﹣2,故答案为:﹣1;﹣2(2)关于x的方程+=2有增根,则m=.【解答】解:去分母得:5x﹣3﹣mx=2x﹣8,由分式方程有增根,得到x﹣4=0,即x=4,把x=4代入整式方程得:20﹣3﹣4m=0,快捷得:m=,故答案为:(3)若关于x的分式方程=﹣有增根,则k的值为.【解答】解:去分母得:5x﹣5=x+2k﹣6x,由分式方程有增根,得到x(x﹣1)=0,解得:x=0或x=1,把x=0代入整式方程得:k=﹣;把x=1代入整式方程得:k=,则k的值为或﹣.故答案为:或﹣例题2:反馈:(1)已知关于x的方程=3的解是正数,则m的取值范围是.【解答】解:解关于x的方程=3得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.(2)关于x的方程的解是负数,则a的取值范围是.【解答】解:把方程移项通分得,∴方程的解为x=a﹣6,∵方程的解是负数,∴x=a﹣6<0,∴a<6,当x=﹣2时,2×(﹣2)+a=0,∴a=4,∴a的取值范围是:a<6且a≠4.故答案为:a<6且a≠4.例题3:反馈:(1)关于x的方程无解,则k的值为.【解答】解:去分母得:2x+4+kx=3x﹣6,当k=1时,方程化简得:4=﹣6,无解,符合题意;由分式方程无解,得到x2﹣4=0,即x=2或x=﹣2,把x=2代入整式方程得:4+4+2k=0,即k=﹣4;把x=﹣2代入整式方程得:﹣4+4﹣2k=﹣12,即k=6,故答案为:﹣4或6或1(2)若关于x的分式方程无解,则m的值为.【解答】解:两边都乘以(x﹣2),得x﹣1=m+3(x﹣2).m=﹣2x+5.分式方程的增根是x=2,将x=2代入,得m=﹣2×2=5=1,故答案为:1.(3)若关于x的分式方程无解,则m=.【解答】解:方程两边都乘以(x+1)(x﹣1),得:m﹣(x﹣1)=0,即m=x﹣1,∵关于x的分式方程无解,∴x=1或x=﹣1,当x=1时,m=0,当x=﹣1时,m=﹣2,故答案为:0或﹣2.典型错题:1.在中,x的取值范围为0<x≤1.2.要使方式的值是非负数,则x的取值范围是x≥1或x<﹣2.3.已知,则分式的值为.4.将分式(a、b均为正数)中的字母a、b都扩大到原来的2倍,则分式值为原来的倍.5.若=+,则A=﹣12,B=17.6.若解分式方程产生增根,则m=﹣2或1..7.若关于x的方程是非负数,则m的取值范围是m≥﹣2且m≠﹣1 .8.关于x的分式方程有解,则字母a的取值范围是a≠5,a≠0.9.已知,求的值.【解答】解:将两边同时乘以x,得x2+1=3x,===.10.已知a2+b2=9ab,且b>a>0,求的值.【解答】解:∵a2+b2=9ab,∴a2+b2+2ab=11ab,a2+b2﹣2ab=7ab,即(a+b)2=11ab,(a﹣b)2=7ab,∵b>a>0,即b﹣a>0,∴a+b=,b﹣a=,则原式=﹣=﹣=﹣.。

初中数学分式方程的增根、无解问题解答题培优训练2(附答案详解)

初中数学分式方程的增根、无解问题解答题培优训练2(附答案详解)

初中数学分式方程的增根、无解问题解答题培优训练2(附答案详解)1.若分式方程4522-x m x x=+-有增根,求m 的值。

2.已知关于x 的分式方程3266x m x x -=--的解是正数,求m 的取值范围. 3.当m 满足什么条件时,关于x 的方程352x m x +=-的解是正数? 4.先阅读下面的材料,然后回答问题: 方程1122x x +=+的解为12x =,212x =; 方程1133x x +=+的解为13x =,213x =; 方程1144x x +=+的解为14x =,214x =; … (1)观察上述方程的解,猜想关于x 的方程1155x x +=+的解是___; (2)根据上面的规律,猜想关于x 的方程11x a x a +=+的解是___; (3)猜想关于x 的方程x−1112x =的解并验证你的结论; (4)在解方程:21013y y y ++=+时,可将方程变形转化为(2)的形式求解,按要求写出你的变形求解过程。

5.阅读材料:关于x 的方程:11=c+x x c +的解121=;=x c x c 11=x c x c --(可变形为11=x c x c --++)的解为:121=,=x c x c- 22=x c x c ++的解为122=,=x c x c 33=x c x c ++的解为:123=,=x c x c ……….根据以上材料解答下列问题:(1)①方程11=22x x ++的解为1x =_______, 2x =__________; ②方程111=212x x -++-的解为1x =_______, 2x =__________; (2)解关于x 方程:33=(2)22x a a x a --≠-- 6.已知关于x 的分式方程211m x -=+的解是负数,求m 的取值范围.7.若关于x 的方程344x a x x -=--的解不小于2,求a 的取值范围. 8.(1)先化简,再求值:2336a a a --÷(242a a --﹣52a -),其中a 2+3a ﹣1=0. (2)若关于x 的分式方程2122x m x x -=--+1的解是正数,求m 的取值范围. 9.阅读材料:关于x 的方程:x +=c +的解是x 1=c ,x 2=;x -=c -(既x +=c +)的解是x 1=c ,x 2=-; x +=c +的解是x 1=c ,x 2=; x +=c +的解是x 1=c ,x 2=;…(1)请观察上述方程与解的特征,比较关于x 的方程x +=a +(m ≠0)与它们的关系,猜想它的解是什么,并利用“方程的解”的概念进行验证:(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程左边是未知数与其倒数的倍数的和,方程右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解下面关于x 的方程(直接写出答案); ①x +=4+ ; ②x +=a + . 10.(1)若a 12=-,先化简再求2222121a a a a a a a--+++-(2)已知若关于x 的分式方程213m x m x x+-=- 无解,则m 的值是多少? 11.关于x 的的分式方程2433x m m x x++=--的解为非负数,求实数m 的取值范围. 12.若关于x 的方程2132x 24k x x +=-+-有增根,求增根和k 的值. 13.关于x 的分式方程212x a x +=--的解是正数,求a 的取值范围. 14.已知关于x 的分式方程242111m x x x -=+--. (1)解这个分式方程(结果用m 表示); (2)若这个分式方程的解是非负数,求实数m 的取值范围.15.若关于x 的分式方程x m 3m 3x 242x++=--的解为正实数,求实数m 的取值范围.16.已知关于x 的方程233x m x x 的解是一个正数,求m 的取值范围. 17.按要求解答下列各题:(1)化简:()222211121a a a a a a +-÷+---+; (2)解分式方程:11121x x x ++=-+; (3)已知关于x 的方程233x m x x -=--有一个正数解,求m 的取值范围. 18.当m 为何值时,关于x 的方程的解是非负数?19.若关于x 的方程21339x m x x -=--有增根,求m 的值. 20.若关于x 的分式方程21-1-1x m x x +-=1的解是负数,求m 的取值范围. 21.阅读下列材料: 关于x 的分式方程x+1x =c+1c 的解是x 1=c ,x 2=1c; x ﹣1x =c ﹣1c ,即x+1x -=c+1c -的解是x 1=c ,x 2=﹣1c ; x+2x=c+2c 的解是x 1=c ,x 2=2c ; x+3x =c+3c 的解是x 1=c ,x 2=3c . (1)请观察上述方程与解的特征,猜想关于x 的方程x+m x=c+m c (m≠0)的解是什么?并利用方程解的概念(使得方程等号两边相等的未知数的值叫做方程的解)进行验证.(2)根据以上的规律方法解关于x 的方程:x+21x -=a+2a 1- 22.当m 为何值时,关于x 的方程22011mx x x -=+-会产生增根? 23.阅读下列材料:在学习“分式方程及其解法”过程中,老师提出一个问题:若关于x 的分式方程14a x =-的解为正数,求a 的取值范围? 经过独立思考与分析后,小明和小聪开始交流解题思路如下:小明说:解这个关于x 的分式方程,得到方程的解为4x a =+.由题意可得40a +>,所以4a >-,问题解决.小聪说:你考虑的不全面.还必须保证0a ≠才行.请回答:_______________的说法是正确的,并说明正确的理由是:__________________. 完成下列问题:(1)已知关于x 的方程233m x x x-=--的解为非负数,求m 的取值范围; (2)若关于x 的分式方程322133x nx x x --+=---无解.直接写出n 的取值范围. 24.若方程11x -=2x a -的解为正数,求a 的取值范围. 25.阅读理解下列一组方程:①x+=3,②x+=5,③x+=7,…小明通过观察,发现了其中蕴含的规律,并顺利地求出了前三个方程的解,他的解过程如下:由①x+=1+2得x=1或x=2; 由②x+=2+3得x=2或x=3; 由③x+=3+4得x=3或x=4.(1)问题解决:请写出第四个方程,并技照小明的解题思路求出该方程的解;(2)规律探究:若n 为正整数,请写出第n 个方程及其方程的解;(3)变式拓展:若n 为正整数,关于x 的方程x+=2n ﹣1的一个解是x=10,求n 的值.26.如果关于x 的方程1+2x x -=224m x -的解,也是不等式组1222(3)5x x x x -⎧>-⎪⎨⎪-≤-⎩的解,求m 的取值范围. 27.a 为何值时,关于x 的方程213242ax x x x +=--+会产生增根? 28.若关于x 的方程3333x m m x x++=--的解为正数,求m 的取值范围. 29.当m 为何值时.关于x 的方程21212m x x x x x x -=---+- 的解是负数? 30.当a 为何值时, 12221(2)(1)x x x a x x x x --+-=-+-+的解是负数? 31.m 是什么数时,分式方程3601(1)x m x x x x ++-=--有根.32.若关于x 的方程21111x k x x x x --=--+的解是正数,求k 值. 33.当k 为何值时,分式方程()62511x k x x x x +=--- 有增根? 34.已知关于x 的方程223ax a x =-的根是x=1,求a 的值.参考答案1.8x=-【解析】【分析】分式方程增根问题,首先需要将方程解出,然后根据增根相关性质求解即可【详解】由4522x mx x=+--得:()452x x m=--,即10x m=+,又因为原方程有增根,所以2x=,即102m+=,所以8x=-【点睛】本题主要考查分式方程里的增根问题,遇到增根问题,抓住其公分母为零是关键2.m>12且m≠18【解析】【分析】根据分式的方程的解法即可求出的x的表达式,然后列出不等式即可求出m的范围.【详解】去分母可得:3x-2(x-6)=m∴3x-2x+12=m∴x=m-12将x=m-12代入最简公分母可知:m-12-6≠0,∴m≠18∵分式方程的解是正数,∴m-12>0,∴m>12∴m的取值范围为m>12且m≠18【点睛】本题考查分式方程的解法,涉及分式方程的増根,不等式的解法.易错点是列不等式时只考虑解是正数,没有考虑分母不为0.3.m>-10且m≠-6.【解析】【分析】首先解方程,得出含有m 的解,然后列出不等式,即可得解.【详解】解方程得,3510x m x +=-102m x += 方程的解为正数,即1002m +>,且20x -≠ 解得m>-10且m ≠-6.【点睛】此题主要考查利用分式方程的解,求解参数的取值范围,熟练掌握,即可解题.4.(1)15=x ,215x =;(2) 1x a =,21x a = ;(3)x 1=2,x 2=−12;(4) 1222,3y y ==- ; 【解析】【分析】(1)观察阅读材料中的方程解过程,归纳总结得到结果;(2)仿照方程解方程,归纳总结得到结果;(3)方程变形后,利用得出的规律得到结果即可;(4)方程变形后,利用得出的规律得到结果即可.【详解】 (1)猜想方程1155x x +=+ 的解是1215,5x x == ; (2)猜想方程11x a x a +=+ 的解是1x a =,21x a=; (3)猜想关于x 的方程x−1112x =的解为x 1=2,x 2=12,理由为: 方程变形得:x−112-2x =,即x+(−1x )=2+(−12),依此类推得到解为x 1=2,x 2=−12; (4)方程变形得:111313y y ++=++,可得13y +=或 113y +=,解得:1222,3y y ==-. 【点睛】 此题考查分式方程的解,解题关键在于找到基本规律掌握解分式方程的基本步骤. 5.(1)①1x =2, 2x =12;②1x =3, 2x =32;(2)1x =a, 2x =272a a -- 【解析】【分析】(1)①由方程11=22x x ++,根据题意即可求解;②由方程111=212x x -++-,根据题意即可求解;(2)本题要求的方程和题目给出的例子中的方程形式不一致,可先将所求的方程进行变形.变成式子中的形式后再根据给出的规律进行求解.【详解】解:(1)①方程11=22x x ++的解为:1x =2, 2x =12; ②根据题意得:112,12x x -=-=解得:1x =3, 2x =32(2)两边同时减2变形为:332222x a x a --=---- 得:322,22x a x a --=--=- 解得:1x =a, 2x =272a a -- 【点睛】 本题考查了分式方程的解,要注意给出的例子中的方程与解的规律,还要注意套用列子中的规律时,要保证所求方程与例子中的方程的形式一致.6.3m <且2m ≠.【解析】【分析】先解出关于x 的分式方程211m x -=+,根据解为负数,即可求得m 的取值范围. 【详解】 由21m x -+=1得,12x m +=- ∴3x m =-∵x <0,且x+1≠0∵3m -<0且31m -≠-∴3m <且2m ≠【点睛】本题考查了分式方程的求解,考查了一元一次不等式的求解.根据解为负数,表示成不等式再求解是解题的关键.7.a 的取值范围是a ≤8且a ≠4.【解析】【分析】根据解分式方程,可得关于a 的表达式,根据解不等式,可得答案.【详解】两边都乘(x ﹣4),得x ﹣3(x ﹣4)=a ,解得x =122a - ≠4, 由关于x 的方程344x a x x -=-- 的解不小于2,得 122a -≥2, 解得a ≤8,a 的取值范围是a ≤8且a ≠4.【点睛】本题考查分式方程的解,利用方程的解不小于2得出不等式是解题关键.8.(1)13;(2)m >1且m ≠3. 【解析】【分析】(1)根据分式混合运算顺序和运算法则化简原式,再将a 2+3a-1=0,即a 2+3a=1整体代入可得;(2)解分式方程得出x=m-1,由分式方程的解为正数得m-1>0且m-1≠2,解之即可.【详解】(1)原式=33(2)aa a--÷292aa--=33(2)aa a--•2+3a-3)aa-()(=13(+3)a a=213(+3a)a,当a2+3a﹣1=0,即a2+3a=1时,原式=131⨯=13.(2)解方程212xx--=2mx-+1,得:x=m﹣1,根据题意知m﹣1>0且m﹣1≠2,解得:m>1且m≠3.【点睛】本题考查分式的混合运算、解分式方程,解题关键是熟练掌握分式的混合运算顺序和运算法则.9.(1),验证见解析;(2)①;②x1=a或x2=【解析】【分析】(1)通过观察例题方程与解得特征,得到关于x的方程(m≠0)的解,利用“方程的解”的概念,把解代入原方程,验证后即可,(2),整理得:,得到关于x的一元一次方程,解之即可,x+=x﹣1+,整理得:x ﹣1+,解之即可.【详解】解:(1)该方程的解是x1=a,x2=,验证:把x=a代入x+得:,把x=代入x+得:x+=a+,故得证,(2),整理得:x+1+=5+,即x+1=5或x+1=,解得:x 1=4,x 2=﹣,故答案为:x 1=4,x 2=﹣ , ,整理得:x ﹣1+=a ﹣1+,即x ﹣1=a ﹣1或x ﹣1=, 解得:x 1=a 或x 2=,故答案为:x 1=a 或x 2=.【点睛】 本题考查了解分式方程和分式方程的解,正确掌握观察与分析的能力是解题的关键. 10.(1)322+(2)﹣3,32-或0. 【解析】【分析】(1)先根据a 的值判断出a ﹣1<0,再根据二次根式的性质和运算法则化简原式,继而将a 的值代入计算可得;(2)将分式方程转化为整式方程,整理得出(m +3)x =﹣3m ,再分m +3=0和m +3≠0分别求解可得.【详解】(1)原式=21111()()()()+--++a a a a a , ∵a 12=-1,∴原式=112a a a a a ---=, 将a 12=- 212212213221212()----==+=+--(2)两边都乘以x (x ﹣3),得:x (2m +x )﹣x (x ﹣3)=m (x ﹣3),整理,得:(m +3)x =﹣3m ,①当m +3=0时,原方程无解;②当m ≠﹣3时,x =33m m -+, 若x =0,即m =0时,原方程无解;若x =3,即m =﹣32时,原方程无解; ∴原方程无解时m 的值为﹣3,﹣32或0. 【点睛】本题主要考查二次根式的化简求值和分式方程,解题的关键是掌握二次根式的性质和运算法则及分式方程无解的情况.11.123m m ≤≠且【解析】【分析】分式方程去分母转化为整式方程,求得x 的值,再根据分式方程的解为非负数,确定出m 的范围即可.【详解】 解:2433x m m x x++=-- 去分母,得:()243x m m x +-=- 解得:123m x -=; ∵关于x 的的分式方程2433x m m x x ++=--的解为非负数, ∴12031233m m -⎧≥⎪⎪⎨-⎪≠⎪⎩ 123m m ∴≤≠且.【点睛】考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 12.增根为x=-2,k=-34.【解析】【分析】先去分母化为整式方程,然后根据原分式方程有增根,确定出最简公分母为0,求出x的值后代入整式方程进行求解即可.【详解】方程两边都乘(x-2)(x+2),得x+2+k(x-2)=3,∵原方程有增根,∴最简公分母(x-2)(x+2)=0,解得x=2或-2,当x=2时,4=3,这是不可能的;当x=-2时,k=-34,符合题意,所以增根为x=-2,k=-3 4 .【点睛】本题考查了分式方程的增根,让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.13.a<2且a≠-4【解析】【分析】先求得方程的解,再解0x>,求出a的取值范围.【详解】解方程212x ax+=--得,23ax-=,方程212x ax+=--的解为正数, 0x∴>,且x≠2,即23a->且223a-≠且解得a<2且a≠-4,故选答案为a<2且a≠-4.【点睛】此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.14.(1) 62m x +=;(2)6m ≥-且4m ≠- 【解析】 分析:(1)把m 看做已知量,按照去分母,化分式方程为整式方程,解方程.(2)利用非负求不等式.详解:(1)242111m x x x -=+--, 4(x -1)-2(x +1)=m,解得,62m x +=; (2)根据题意有 602m +≥且612m +≠ 解得64m m ≥-≠-且点睛:带参数的分式方程,应该把参数看做一个已知量,按照解一般分式方程的方法,把分式方程化成整式方程,再求解.15.m <12且m≠4.【解析】【分析】用含m 的代数式表示出分式方程的解,由于分式方程的解为正实数,得关于m 的不等式,求解即可.【详解】 解:原方程可变形为:()x m 3m 3x 22x 2+-=--, 去分母,得2x 2m 3m 6x 12+-=-,整理,得4x 12m =- 解得,12m x 4-= 方程的解为正实数,12m x 04-∴=>且12m x 24-=≠ 解得:m 12<且m 4≠.【点睛】本题考查分式方程的解法和一元一次不等式的解法,解题的关键是掌握解分式方程、一元一次不等式的一般步骤,本题易错,易只关注分式方程的解为正实数,而忽略了分式方程有意义的条件.16.m <6且m ≠3【解析】试题分析: 根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,根据解不等式,可得答案.试题解析:233x m x x=--- 方程两边都乘以(x −3),得x =2(x −3)+m解得x =6−m ≠3,关于x 的方程233x m x x=---有一个正数解, ∴x =6−m >0, ∴m <6,且m ≠3.17.(1)-1;(2)x=-0.25;(3)m <6且m ≠3..【解析】【分析】(1)分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.(2)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论. (3)分式方程去分母转化为整式方程,由分式方程有正数解,确定出m 的范围即可.【详解】(1)原式=()222211121a a a a a a +-÷+---+ =()()()()221111111a a a a a a ++-⨯--+- =2111a a a +--- =11a a -- =﹣1;(2)111 21xx x++= -+去分母,可得(x+1)2+x﹣2=(x﹣2)(x+1),解得x=﹣14,检验:当x=﹣14时,(x﹣2)(x+1)≠0,∴x=﹣14是原方程的解;(3)去分母得:x﹣2x+6=m,解得:x=6﹣m,由分式方程有一个正数解,得到6﹣m>0,且6﹣m≠3,解得:m<6且m≠3,故m的取值范围为:m<6且m≠3.【点睛】此题考查了分式的混合运算,解分式方程以及分式方程的解,在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.18.当m≥2且m≠3时,关于的方程的解为非负数.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的范围即可.【详解】解:去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.∴当m≥2且m≠3时,关于的方程的解为非负数.【点睛】本题考查分式方程的解,解题关键是注意分母不为0这个条件.19.m【解析】【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母3(x-3)=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】方程两边都乘以3(x ﹣3),得3(x ﹣1)=m 2,∵方程有增根,∴最简公分母3(x ﹣3)=0, x =3,把x =3代入整式方程,得m .答:m .【点睛】本题考查了分式方程的增根,解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.m<2且m ≠0.【解析】【分析】 解方程2111x m x x +---=1,得x=-1+2m , 再由-1+2m <0,-1+2m ≠1且-1+2m ≠-1得出m 的取值范围. 【详解】解:由21-1-1x m x x +-=1,得(x+1)2-m=x 2-1,解得x=-1+2m . 由已知可得-1+2m <0,-1+2m ≠1且-1+2m ≠-1, 解得m<2且m ≠0.【点睛】此题主要考察含参数分式方程的解法.21.(1)见解析(2)x1=a,x2=11 aa+ -【解析】【分析】(1)观察已知分式方程及解的特征确定出所求方程解即可;(2)已知方程变形后,利用得出的规律求出解即可.【详解】(1)关于x的方程x+mx=c+mc(m≠0)的解为x1=c,x2=mc;验证:把x=c代入方程得:左边=c+mc,右边=c+mc,即左边=右边,符合题意;把x=mc代入方程得:左边=mc+mmc=c+mc=右边,符合题意;(2)方程整理得:x﹣1+2x1-=a﹣1+2a1-,可得x﹣1=a﹣1或x﹣1=2a1 -,解得:x1=a,x2=a1 a1 +-.【点睛】本题考查了解分式方程以及分式方程的解,掌握解分式方程和检验分式方程的解是解题的关键.22.当m=4时原方程会产生增根.【解析】【分析】把所给方程转换为整式方程,进而把可能的增根代入求得m的值即可.【详解】将原分式方程去分母,得2(x-1)-mx=0,化简得(2-m)x=2,若分式方程产生增根,则x=-1或x=1,当x=-1时,(2-m)×(-1)=2,解得m=4;当x=1时,(2-m)×1=2,解得m=0,又∵当m=0时,原方程为2x1=+,此时原方程无解,∴当m =4时原方程会产生增根.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.23.(1)见解析(2)见解析【解析】【分析】根据分式方程解为正数,且分母不为0判断即可;(1)分式方程去分母转化为整式方程,由分式方程的解为非负数确定出m 的范围即可.(2) 分式方程去分母转化为整式方程,根据分式方程无解,得到有增根或整式方程无解,确定出n 的范围即可.【详解】小聪的说法是正确的,正确的理由是分式的分母不为0,故4x ≠,从而0a ≠.故答案为小聪;分式的分母不为0,故4x ≠,从而0a ≠.(1)去分母得:m +x =2x −6,解得:x =m +6,由分式方程的解为非负数,得到60m +≥,且m +6≠3,解得:6m ≥-且3m ≠-(2) 分式方程去分母得:3−2x +nx −2=−x +3,即(n −1)x =2,由分式方程无解,得到x −3=0,即x =3, 代入整式方程得:53n =;当n −1=0时,整式方程无解,此时n =1,综上,n =1或5.3n =【点睛】考查知识点是解一元一次不等式以及分式方程,熟练掌握分式方程的解法是解题的关键. 24.a <2且a≠1.【解析】【分析】正常求解方程,用含a 的代数式表示x,根据x 是正数,列出不等式即可解题.【详解】解:方程两边同时乘(x-1)(x-a),得x-a=2x-2,即x=2-a.∵x为正数,∴2-a>0且2-a≠1,2-a≠a,∴a<2且a≠1.【点睛】本题考查了含参的分式方程求解问题,中等难度,表示出x是解题关键.25.(1)x+=9,x=4或x=5;(2)x+=2n+1,解得:x=n或x=n+1;(3)n的值是12或11.【解析】【分析】(1) 根据已知分式方程的变化规律进而得出第四个方程, 进而求出该方程的解;(2) 利用发现的规律得出分子与后面常数的关系求出即可;(3) 利用已知解题方法得出方程的解.【详解】解:(1)由①x+=1+2得x=1或x=2;由②x+x+=2+3得x=2或x=3;由③x+=3+4得x=3或x=4,则第四个方程为:x+=4+5,即x+=9,由x+=4+5得:x=4或x=5;(2)可得第n个方程为:x+=2n+1,解得:x=n或x=n+1;(3)将原方程变形,(x+2)+=n+(n+1),∴x+2=n或x+2=n+1,∴方程的解是x=n﹣2,或x=n﹣1,当n﹣2=10时,n=12,当n﹣1=10时,n=11,∴n 的值是12或11.【点睛】本题主要考查分式方程的解,注意找对规律并计算正确.26.3m ≥-且0m ≠.【解析】【分析】先根据分式方程的解法求解方程,再根据分式方程解的情况分类讨论求m 的取值,再解不等式组,根据不等式组的解集和分式方程解的关系即可求解.【详解】方程两边同乘()()22x x +-,得()2422x x x m --+=,,解得2x m =--, 当20x +=时,0m -=,0m =,当20x -=时,40m --=,4m =-,故当4m =-或0m =时有240x -=,∴方程的解为2x m =--,其中4m ≠-且0m ≠,解不等式组得解集1x ≤,由题意得21m --≤且22m --≠-,解得3m ≥-且0m ≠,m ∴的取值范围是3m ≥-且0m ≠.【点睛】本题主要考查解含参数的分式方程和解不等式组,解决本题的关键是要熟练掌握解含参数的分式方程.27.a=﹣2或a=6【解析】【分析】先去分母化为整式方程,整理得:(a -2)x +8=0,由于关于x 的方程213242ax x x x +=--+会产生增根,则(x +2)(x -2)=0,解得x =-2或x =2,然后把x =-2或x =2分别代入(a -2)x +8=0,即可求得a 的值.【详解】解:方程两边都乘(x ﹣2)(x +2),得x +2+ax=3(x ﹣2)∵原方程有增根,∴最简公分母(x ﹣2)(x +2)=0,解得x=2或﹣2,x=2时,a=﹣2,当x=﹣2,a=6,当a=﹣2或a=6时,关于x 的方程213242ax x x x +=--+会产生增根. 【点睛】本题考查了分式方程的增根;先把分式方程转化为整式方程,解整式方程,若整式方程的解使分式方程的分母为0,则这个整式方程的解就是分式方程的增根.28.m 的取值范围为m 92<且32m ≠. 【解析】【分析】直接解分式方程,再利用解为正数列不等式,解不等式得出m 的取值范围,进而得出答案. 【详解】方程x m 3m 3x 33x++=--两边同乘以x 3-得 ()x m 3m 3x 3+-=-,9x m 2=-, ∵x >0, ∴9m 2->0, ∴m 92<, ∵x 3≠,∴m 的取值范围为m 92<且3m 2≠. 【点睛】本题考查了分式方程的解以及不等式的解法,正确解分式方程是解题关键. 29.m >1且m≠3【解析】试题分析:先去分母,化为整式方程,求出方程的解,然后根据解为负数以及分母不为0得到关于m 的不等式组,进行求解即可.试题解析:去分母得:m=x 2﹣2x ﹣x 2+1, 解得:x=12m -, 由分式方程解为负数,得到12m -<0,且12m -≠﹣1,解得:m >1且m≠3. 30.57a a <-≠-且 【解析】 分析:首先解分式方程求得方程的解,然后根据方程的解是负数,即可得到一个关于a 的不等式,从而求得a 的范围.详解:方程两边同时乘以(x ﹣2)(x +1)得:(x ﹣1)(x +1)﹣(x ﹣2)2=2x +a ,即:x 2﹣1﹣(x 2﹣4x +4)=2x +a ,则x 2﹣1﹣x 2+4x ﹣4=2x +a ,移项、合并同类项得:2x =5+a ,则x =52a +, 根据题意得:52a +<0,且52a +≠﹣1, 解得:a <﹣5且a ≠﹣7.点睛:本题考查了分式方程的解法以及一元一次不等式的解法,正确解得方程的解是解题的关键.31.m ≠-3且m≠5【解析】试题分析:方程两边都乘以x (x −1)得到整式方程3x −3+6x −x −m =0,求出方程的解,根据010x x ≠-≠,,求出x 的范围,即可得出330,188m m ++≠≠,进而求出m 的取值范围. 试题解析:方程两边都乘以x (x −1)得:3x −3+6x −x −m =0,8x =m +3,38m x +=, ∵要使分式方程有解,∴x ≠0,x −1≠0,∴x ≠0,x ≠1, ∴330,188m m ++≠≠, 解得:m ≠−3且m ≠5,所以,当m ≠−3且m ≠5时,分式方程 ()36011x m x x x x ++-=--有根. 32.k >1且k≠3【解析】试题分析:先求出方程的解,再根据解是正数,从而得出k 的值,再分析当x≠1时,k 的值.试题解析:21111x k x x x x --=--+ 去分母得:(1)(1)(1)x x k x x +--=-x 2+x-k+1=x 2-x ,2x=k-1, x=12k - ∵方程的解是正数, ∴12k ->0, ∴k>1, 当x≠1时,即112k -≠,k≠3, 所以综合可得:k >1且k≠3.33.当k=2.5或﹣2.5时,分式方程有增根.【解析】试题分析:分式方程两边乘以x (x ﹣1)去分母转化为整式方程,由分式方程有增根得到x (x ﹣1)=0,求出x=0或1,将x=0或1代入整式方程即可求出k 的值.试题解析:方程两边同乘以x (x ﹣1)得:6x=x+2k ﹣5(x ﹣1),又∵分式方程有增根,∴x(x ﹣1)=0,解得:x=0或1,当x=1时,代入整式方程得:6×1=1+2k﹣5(1﹣1),解得:k=2.5,当x=0时,代入整式方程得:6×0=0+2k﹣5(0﹣1),解得:k=﹣2.5,则当k=2.5或﹣2.5时,分式方程有增根.34.a的值为12 -.【解析】【分析】把x=1代入方程223axa x=-,得到关于a的方程,解关于a的分式方程,求解方程即可.【详解】把x=1代入方程223 axa x=-,得2213aa=-,解得12a=-,∴a的值为12 -.【点睛】考查分式方程中的参数问题,熟练掌握分式方程的解法,方程的解的定义是解题的关键.。

中考复习——分式方程的增根与无解问题(解析版)

中考复习——分式方程的增根与无解问题(解析版)

中考复习——分式方程的增根与无解问题一、选择题1、关于x的分式方程71x-+3=1mx-有增根,则增根为().A. x=1B. x=-1C. x=3D. x=-3答案:A解答:方程两边都乘(x-1),得7+3(x-1)=m,∵原方程有增根,∴最简公分母x-1=0,解得x=1,当x=1时,m=7,这是可能的,符合题意.2、若关于x的分式方程23x-+3x mx+-=1有增根,则m的值为().A. 3B. 0C. -1D. -3答案:C解答:方程两边都乘(x-3),得2-(x+m)=x-3,∵原方程有增根,∴最简公分母x-3=0,解得x=3,当x=3时,m=-1,选C.3、关于x的分式方程322mx x---=1有增根,则m的值().A. m=2B. m=1C. m=3D. m=-3答案:D解答:去分母得:m+3=x-2,由分式方程有增根,得到x-2=0,即x=2,把x=2代入整式方程得:m+3=0,解得:m=-3.选D.4、若关于x 的分式方程24x m x +-+2xx -=1有增根,则m 的值是( ). A. m =2或m =6 B. m =2C. m =6D. m =-2或m =-6答案:A解答:∵关于x 的分式方程24x m x +-+2xx -=1有增根, ∴x =±2是方程x +m -x (x +2)=4-x 2的根, 当x =2时,2+m -2(2+2)=4-4, 解得:m =6,当x =-2时,-2+m =4-4, 解得:m =2. 选A.5、关于x 的分式方程71x x -+5=211m x --有增根,则m 的值为( ).A. 1B. 3C. 4D. 5答案:C解答:方程两边都乘(x -1), 得7x +5(x -1)=2m -1, ∵原方程有增根, ∴最简公分母x -1=0, 解得x =1,当x =1时,7=2m -1, 解得m =4, 所以m 的值为4. 6、若关于x 的方程31x -=1-1k x-无解,则k 的值为( ).A. 3B. 1C. 0D. -1答案:A解答:方程两边都乘x -1, 得:3=x -1+k , ∵原方程有增根,∴最简公分母x-1=0,解得x=1,当x=1时,k=3.故k的值为3.选A.7、关于x的方程321xx-+=2+1mx+无解,则m的值为().A. -5B. -8C. -2D. 5答案:A解答:去分母得:3x-2=2x+2+m,由分式方程无解,得到x+1=0,即x=-1,代入整式方程得:-5=-2+2+m,解得:m=-5,选A.8、关于x的方程12xx--=2mx-+2无解,则m的值是().A. -1B. 0C. 1D. 2答案:C解答:去分母得x-1=m+2(x-2),解得x=3-m,当x=2时分母为0,方程无解,即3-m=2,m=1时方程无解.选C.9、若关于x的方程32233x mxx x-----=-1无解,则m的值为().A. 1B. 3C. 1或53D.53答案:C解答:两边同时乘x-3,得3-2x+mx-2=-x+3,∴(m-1)x=2.①当m=1时,0=2矛盾,∴无解.②当m ≠1时,x =21m -, ∴方程无解. ∴方程有增根, ∴x =3,即21m -=3, ∴m =53.综上所述m =1或53. 选C. 10、若分式232x a x x --+12x -=2x无解,则实数a 的取值为( ).A. 0或2B. 4C. 8D. 4或8答案:D 解答:解方程:232x a x x --+12x -=2x,去分母,得3x -a +x =2(x -2), 去括号,得3x -a +x =2x -4, 移项,得3x +x -2x =-4+a , 合并同类项,得2x =-4+a , 系数化为1,得x =42a -, 又∵原分式方程无解, ∴42a -=0或2, ∴a =4或8. 选D.11、若关于x 的方程12x =3k x +无解,则k 的值为( ).A. 0或12B. -1C. -2D. -3答案:A解答:去分母得:x +3=2kx , ∴(2k -1)x =3,当k =12时,(2k -1)x =3无解,即原方程无解. 由分式方程无解,得到2x (x +3)=0, 解得:x =0或x =-3.把x =0代入整式方程得:3=0,无解. 把x =-3代入整式方程得:-6k =0,解得k =0. 综上所述,k 的值为0或12. 选A. 二、填空题 12、若关于x 的方程32x x --=2mx-有增根,则m =______. 答案:1解答:方程两边都乘(x -2),得x -3=-m , ∵方程有增根,∴最简公分母x -2=0,即增根是x =2, 把x =2代入整式方程,得m =1. 故答案为:1. 13、关于x 的方程23x x m--=0有增根.则m =______. 答案:9 解答:要使方程23x x m--=0有增根,则x =3使x 2-m =0, 得m =9. 14、分式方程233m x x---=1有增根,则m =______. 答案:-2解答:去分母得:m +2=x -3,由分式方程有增根,得到x -3=0,即x =3, 把x =3代入整式方程得:m +2=0, 解得m =-2. 故答案为:-2.15、若关于x 的分式方程31x a x x---=1无解,则a =______. 答案:1或-2解答:去分母得x 2-ax -3x +3=x 2-x ,(a +2)x =3, ①去分母后的整式方程无解,∴a +2=0,a =-2; ②解为增根,舍去,∴x =1,a =1, x =0,不符合题意. 16、若关于x 的分式方程3x x --2=3mx -有增根,则m 的值为______. 答案:3解答:方程两边都乘x -3, 得x -2(x -3)=m . ∵原方程有增根, ∴最简公分母x -3=0, 解得x =3, 当x =3时,m =3. 故m 的值是3. 17、若关于x 的方程22x -+2x m x+-=2有增根,则m 的值是______. 答案:0解答:方程两边都乘以(x -2), 得2-x -m =2(x -2), ∵分式方程有增根, ∴x -2=0, 解得x =2, ∴2-2-m =2(2-2), 解得m =0.18、已知关于x 的分式方程21x ax +-=1无解,则a 的值为______. 答案:-2 解答:21x ax +-=1 方程两边同乘以x -1,得移项及合并同类项,得 x =-1-a ,∵关于x 的分式方程21x ax +-=1无解, ∴x -1=0,得x =1, ∴-1-a =1,得a =-2. 故答案为:-2. 19、关于x 的分式方程2m x -+2xx-=2无解,则实数m 的值为______. 答案:2解答:去分母得:m -x =2x -2, 把x =2,代入得:m -2=22-2, 解得:m =2.20、如果关于x 的分式方程25x x --=5mx-无解,m 的值为______. 答案:-3解答:将原分式方程整理为整式方程:x =2-m , ∵分式方程无解,∴分式方程有增根x =5, ∴m =-3.21、关于x 的分式方程2142m x x --+=0无解,则m =______. 答案:0或-4解答:方程去分母得:m -(x -2)=0,解得:x =2+m ,∴当x =2时分母为0,方程无解,即2+m =2,∴m =0时方程无解.当x =-2时分母为0,方程无解,即2+m =-2,∴m =-4时方程无解.综上所述,m 的值是0或-4. 22、若分式方程2111x mx x x +-+-=11x x +-无解,则m 的值是______. 答案:-3或-5或-1解答:方程去分母得:x (x -1)-(mx +1)=(x +1)(x +1), 解得:x (3+m )+2=0,当x =0时整式方程无解,即m =-3, ∴当x =1时分母为0,方程无解,∴当x =-1时分母为0,方程无解, 即m =-1.故答案为:-3或-5或-1. 23、若关于x 的分式方程52a x -+=2xx++3无解,那么a 的值为______. 答案:7 解答:52a x -+=2xx++3, 去分母得:5-a =x +3(x +2), 将x =-2代入上式得:5-a =-2, 所以a =7. 故答案为:7.24、若关于x 的分式方程32xx --1=32m x +-有增根,则m 的值为______.答案:3解答:方程两边都乘(x -2),得3x -x +2=m +3, ∵原方程有增根,∴最简公分母x -2=0,解得x =2,把x =2代入3x -x +2=m +3,得3×2-2+2=m +3,解得m =3. 25、关于x 的方程3mx x -=33x -无解,则m 的值是______. 答案:1或0解答:去分母得mx =3,∵x =3时,最简公分母x -3=0,此时整式方程的解是原方程的增根, ∴当x =3时,原方程无解,此时3m =3,解得m =1, 当m =0时,整式方程无解. ∴m 的值为1或0时,方程无解. 故答案为:1或0. 三、解答题26、若关于x 的分式方程31x a x x---=1无解,求a 的值. 答案:a =1或a =-2.解答:去分母得:x(x-a)-3(x-1)=x(x-1),去括号得:x2-ax-3x+3=x2-x,移项合并得:(a+2)x=3,(1)把x=0代入(a+2)x=3,∴a无解,当x=1代入(a+2)x=3,解得a=1,(2)(a+2)x=3,当a+2=0时,0×x=3,x无解,即a=-2时,整式方程无解,综上所述,当a=1或a=-2时,原方程无解,故答案为:a=1或a=-2.27、当a为何值时,关于x的方程ax=()21xx x+-无解?答案:1或-2解答:方程两边同乘x(x-1)得:a(x-1)=x+2,整理得:(a-1)x=2+a(i)当a-1=0,即a=1时,原方程无解;(ii)当a-1≠0,原方程有增根x=0或1,当x=0时,2+a=0,即a=-2;当x=1时,a-1=2+a,无解,即当a=1或-2时原方程无解.28、已知关于x的分式方程21x-+()()12mxx x-+=12x+.(1)已知m=4,求方程的解.(2)若该分式方程无解,试求m的值.答案:(1)x=-1.(2)m的值可能为-1、1.5或-6.解答:(1)方程两边同时乘以(x+2)(x-1),去分母并整理得5x=-5,解得x=-1,经检验,x =-1是原方程的解.(2)方程两边同时乘以(x +2)(x -1), 去分母并整理得(m +1)x =-5, ∵原分式方程无解,∴m +1=0或(x +2)(x -1)=0, 当m +1=0时,m =-1; 当(x +2)(x -1)=0时, 解得:x =-2或x =1, 当x =-2时,m =1.5; 当x =1时,m =-6;所以m 的值可能为-1、1.5或-6. 29、已知关于x 的分式方程1xx --1=()()12m x x -+ (1)m 为何值时,这个方程的解为x =2? (2)m 为何值时,这个方程有增根? 答案:(1)m =4.(2)m =3.解答:(1)分式方程去分母得:x (x +2)-(x -1)(x -2)=m , 将x =2代入得:8-4=m ,即m =4.(2)分式方程去分母得:x (x +2)-(x -1)(x -2)=m , 将x =1代入得:m =3;将x =-2代入得:m =0(舍去). 则m =3.30、已知关于x 的方程111m xx x ----=0无解,方程x 2+kx +6=0的一个根是m . (1)求m 和k 的值.(2)求方程x 2+kx +6=0的另一个根.答案:(1)m =2,k =-5.(2)方程的另一个根为3. 解答:(1)∵关于x 的方程111m xx x ----=0无解, ∴x -1=0, 解得x =1,方程去分母得:m -1-x =0,把x=1代入m-1-x=0得:m=2.把m=2代入方程x2+kx+6=0得:4+2k+6=0,解得:k=-5.(2)方程x2-5x+6=0,(x-2)(x-3)=0,∴x1=2,x2=3,∴方程的另一个根为3.。

(完整版)分式方程的增根与无解详解

(完整版)分式方程的增根与无解详解

分式方程的增根与无解讲解例1 解方程2344222+=---x x x x . ① 解:方程两边都乘以(x+2)(x-2),得2(x+2)-4x=3(x-2).②解这个方程,得x=2.经检验:当x=2时,原方程无意义,所以x=2是原方程的增根.所以原方程无解.例2 解方程22321++-=+-xx x x . 解:去分母后化为x -1=3-x +2(2+x ).整理得0x =8.因为此方程无解,所以原分式方程无解.例3(2007湖北荆门)若方程32x x --=2m x-无解,则m=——————. 解:原方程可化为32x x --=-2m x -. 方程两边都乘以x -2,得x -3=-m .解这个方程,得x=3-m .因为原方程无解,所以这个解应是原方程的增根.即x=2,所以2=3-m ,解得m=1.故当m=1时,原方程无解.例4当a 为何值时,关于x 的方程223242ax x x x +=--+①会产生增根? 解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2)整理得(a -1)x =-10 ②若原分式方程有增根,则x =2或-2是方程②的根.把x =2或-2代入方程②中,解得,a =-4或6.若将此题“会产生增根”改为“无解”,即:当a 为何值时,关于x 的方程223242ax x x x +=--+①无解? 此时还要考虑转化后的整式方程(a -1)x =-10本身无解的情况,解法如下:解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2)整理得(a -1)x =-10 ②若原方程无解,则有两种情形:(1)当a -1=0(即a =1)时,方程②为0x =-10,此方程无解,所以原方程无解。

(2)如果方程②的解恰好是原分式方程的增根,那么原分式方程无解.原方程若有增根,增根为x =2或-2,把x =2或-2代入方程②中,求出a =-4或6.综上所述,a =1或a =一4或a =6时,原分式方程无解.例5:(2005扬州中考题)若方程)1)(1(6-+x x -1-x m =1有增根,则它的增根是( ) A 、0 B 、1 C 、-1 D 、1或-1分析:使方程的最简公分母 (x+1)(x-1)=0则x=-1或x=1,但不能忽略增根除满足最简公分母为零,还必须是所化整式方程的根。

初中数学分式方程的增根、无解问题选择题培优训练6(附答案详解)

初中数学分式方程的增根、无解问题选择题培优训练6(附答案详解)
34.若数a使得关于x的不等式组 ,有且仅有四个整数解,且使关于y的分式方程 =1有整数解,则所有满足条件的整数a的值之和是( )
A.3B.2C.﹣2D.﹣3
35.若关于x的分式方程 有增根,则m的值为( )
A.﹣1或﹣2B.﹣1或2C.1或2D.0或﹣2
36.若方程 有增根,则增根可能为( )
A.0B.2C.0或2D.1
17.关于 的分式方程 的解是正数,则字母 的取值范围是().
A. B. C. D.
18.若数 使关于 的分式方程 的解为正数,且使关于 的不等式组 的解集为 ,则符合条件的所有整数 的和为( )
A.10B.12C.14D.16
19.若数a使关于x的分式方程 的解为正数,且使关于y的不等式组 的解集为y<﹣2,则符合条件的所有整数a的和为( )
A.4B.3C.2D.1
14.若关于 的分式方程 的根是正数,则实数 的取值范围是().
A. ,且 B. ,且
C. ,且 D. ,且
15.若关于 的分式方程 的根是正数,则实数 的取值范围().
A.且 B. 且
C. 且 D. 且
16.已知关于x的方程 的解是正数,那么m的取值范围为()
A.m>-6且m≠2B.m<6C.m>-6且m≠-4D.m<6且m≠-2
初中数学分式方程的增根、无解问题选择题培优训练6(附答案详解)
1.若关于 的方程 的解为 ,则 等于()
A. B.2C. D.-2
2.若a使得关于x的分式方程 有正整数解。且函数y=ax −2x−3与y=2x−1的图象有交点,则满足条件的所有整数a的个数为( )
A.1B.2C.3D.4
3.若分式方程 +3= 有增根,则a的值是( )

分式方程的增根与无解问题专题练习(解析版)

分式方程的增根与无解问题专题练习(解析版)

分式方程的增根与无解问题专题练习一、分式方程的增根问题 1、关于x 的分式方程522x mx x -=++有增根,则m 的值为( ).A. 0B. -5C. -2D. -7答案:D解答:原分式方程去分母得:x -5=m , ∵方程有增根, ∴x +2=0即x =-2, ∴m =-2-5=-7. 选D.2、关于x 的方程1xx --1=()()21a x x +-有增根,那么a =( ).A. -2B. 0C. 1D. 3答案:D解答:去分母得:x (x +2)-(x +2)(x -1)=a , 由分式方程有增根,得到x +2=0或x -1=0, 解得:x =-2或x =1,把x =-2代入整式方程得:a =0,经检验不合题意,舍去; 把x =1代入整式方程得:a =3, 选D3、已知关于x 的方程22x mx +-=3有增根,则m 的值为______. 答案:-4 解答:∵22x mx +-=3, ∴2x +m =3x -6, ∴x =m +6. 又∵有增根, ∴m +6=2, ∴m =-4.4、若分式方程2111x m x x ----=1有增根,则m 的值是______. 答案:3 解答:2111x m x x ----=1, 同乘以x -1得: 2x -(m -1)=x -1, 2x -x =-1+m -1, x =m -2.∵该分式方程存在增根,即x -1=0,x =1, ∴m -2=1, ∴m =3.5、已知关于x 的分式方程1x mx +-=2有增根,则m 的值为______. 答案:-1解答:原方式可化为2(x -1)=m +x . 当原分式方程有增根时,x =1. 将x =1代入得m +1=0. 解得m =-1. 6、已知关于x 的方程311x kx x ----=2有增根,则增根为______,k 的值为______. 答案:1;-2解答:原方程去分母,整理,得k =-x -1. ∵原方程有增根,而原方程的最简公分母为x -1. ∴由x -1=0可知原方程的增根为x =1. 当x =1时,k =-1-1=-2.因此,原方程的增根为1,k 的值为-2. 故答案为:1;-2. 7、若关于x 的分式方程12x x ++=2mx -有增根,则增根为______. 答案:2或-2解答:∵原方程有增根, ∴最简公分母(x +2)(x -2)=0,解得x=-2或2.故答案为2或-2.8、已知方程21 4x-+2=2kx-有增根,则k=______.答案:1 4解答:原方程去分母,得1+2(x2-4)=k(x+2)①,∵原方程有增根,∴x+2=0或x-2=0,∴x=-2或2.把x=-2代入①,得,方程无解.把x=2代入①,得,1+2×(22-4)=k(2+2),解得k=14.故答案为14.9、若关于x的方程21x x -+25kx x-+=211kx--有增根,则k的值为______.答案:3,6或9解答:去分母,得:x+1+(k-5)(x-1)=(k-1)x ①若x=1为增根,则:1+1+0=k-1,k=3,②若x=-1为增根,则:-1+1-2(k-5)=-(k-1),得:k=9,③若x=0为增根,则:0+1-(k-5)=0,k=6,综上,k的值为3,6或9.10、若关于x 的分式方程2611mx x ---=1有增根,则增根是______. 答案:x =1解答:去分母,得:6-m (x +1)=x 2-1, 移项,得:7-m (x +1)=x 2, 当x =-1时,原方程无解, 则x =1为原方程的增根. 11、关于x 的分式方程12mx x +-=-1有增根,求m 的值. 答案:-12. 解答:方程两边都乘(x -2),得mx +1=-(x -2), ∵原方程有增根, ∴最简公分母x -2=0, 解得x =2,当x =2时,2m +1=-(2-2),解得m =-12. 12、若关于x 的方程33x -+29ax x -=43x +有增根,求a 的值.答案:a =-6或a =8.解答:化为整式方程得:3(x +3)+ax =4(x -3), 整理得ax =x -21,再将x =3,x =-3分别代入ax =x -21中,得a =-6或a =8. 二、分式方程的无解问题 13、关于x 的方程321x x -+=2+1mx +无解,则m 的值为( ).A. -5B. -8C. -2D. 5答案:A解答:去分母得:3x -2=2x +2+m , 由分式方程无解,得到x +1=0, 即x =-1,代入整式方程得:-5=-2+2+m , 解得:m =-5, 选A.14、若分式方程31xx+=1mx++2无解,则m=().A. -3B. -2C. -1D. 0答案:A解答:31xx+=1mx++2,3x=m+2x+2,x=m+2,∵x=-1是原方程的增根,原方程无解,∴m+2=-1,∴m=-3.选A.15、关于x的分式方程23m xx+--1=2x无解,则m的值为().A. -1.5B. 1C. -1.5或2D. -0.5或-1.5答案:D解答:23m xx+--1=2x,方程两边都乘以x(x-3),得:x(x+2m)-x(x-3)=2(x-3),整理,得:(2m+1)x=-6,x=-621 m+,∵原分式方程无解,∴2m+1=0或-621m+=3或-621m+=0.解得:x=-0.5或x=-1.5,选D.16、关于x的方程12xx--=1mx-+1无解,则m的值是().A. 0B. 0或1C. 1D. 2答案:B解答:解分式方程12xx--=1mx-+1,整理得(x-1})2}=m(x-2)+(x-1)(x-2),(1-m )x =1-2m ,当m =1时,整式方程无解; 当m ≠1时,x =121mm--. ∵当x =1或x =2时,x 为原方程的増根, 当x =1时,解得m =0; 当x =2时,方程121mm--=2无解. ∴当m =0或1时,原方程无解, 选B.17、若关于x 的方程323x x --+23mxx+-=-1无解,则m 的值为( ).A. 3B. -3C. -53或-1 D. 0答案:C解答:去分母得:3-2x -2-mx =-x +3整理为:( )(1+m )x =-2 该整式方程无解时,原分式方程无解,此时m =-1该整式方程有解,此解恰好是原分式方程的增根,此时m =-53. 18、若分式方程31a x --=2无解,则a =______. 答案:3 解答:31a x --=2, 解得:a =2x +1, ∵x =1时,方程无解, ∴a =2×1+1=3. 19、若方程52m x --+1=12x -无解,则m =______. 答案:4 解答:52m x --=12x --1. 52m x --=()122x x ---.52m x --=32x x --.5-m =3-x . x =-2+m .当x =2时,方程无解. ∴-2+m =2. ∴m =4.20、若关于x 的方程3m x -+2=43xx --无解,则m 的值为______. 答案:1 解答:3m x -+2=43xx -- m +2(x -3)=4-x m +2x -6=4-x 3x =10-m∵方程无解,可知x =3. ∴9=10-m , ∴m =1.21、若关于x 的分式方程1x k x +-=4x+1无解,则k 的值是______. 答案:3或-1解答:化整式方程得:x 2+kx =4x -4+x 2-x , 化简得:(k -3)x =-4.当k -3=0时,整式方程无解,即k =3时,分式方程无解. 当k -3≠0时,整式方程的解x =43k-为分式方程增根1时, 即k =-1时分式方程无解, ∴k =3或-1.22、若关于x 的分式方程23kx x -+532x-=4无解,则k 的值为______. 答案:8或103解答:去分母,得:kx -5=4(2x -3), kx -5=8x -12, kx -8x =-7,当k =8时,原方程无解,当k ≠8时,x =78k --, ∵无解, ∴2x -3=0,∴x =32, ∴78k --=32, ∴k =103,综上,k 的值为8或103. 23、关于x 的方程2ax x -=42x -+1无解,求a 的值.答案:a =1或2.解答:方程去分母得:ax =4+x -2, 解得:(a -1)x =2,∴当a -1=0即a =1时,整式方程无解,分式方程无解, 当a ≠1时,x =21a -, x =2时分母为0,方程无解, 即21a -=2,a =2时方程无解, 综上,当a =1或2时,原分式方程无解. 24、已知关于x 的分式方程2211a a x x x x---++=0无解,求a 的值. 答案:a =12,0,-1时,原方程无解. 解答:方程两边同时乘x (x +1),得: ax -(2a -x -1)=0, 整理得(a +1)x =2a -1,当a =-1时,整式方程无解,原分式方程无解; 当整式方程的解是原分式方程的增根时, 将x =0或x =-1代入整式方程,解得a =12或a =0. 综上所述,a =-1,12或0.。

分式方程的增根、正根、负根、无解问题专题训练

分式方程的增根、正根、负根、无解问题专题训练

分式方程的增根、正根、负根、无解问题专题训练一、选择题1.关于x的方程有增根,那么a的值为()A.1B.﹣4C.﹣1或﹣4D.1或42.关于x的分式方程+=3有增根,则实数m的值是()A.2B.﹣1C.3D.43.若关于x的方程﹣=0有增根,则m的值为()A.﹣5B.0C.1D.24.方程﹣3=有增根,则m的值为()A.B.±3C.﹣3D.35.若关于x的分式方程﹣=1有增根,则增根为()A.1B.0C.1和0D.不确定6.若关于x的分式方程+=1有增根,则m的值是()A.m=6B.m=2C.m=2或m=6D.m=2或m=−6 7.已知关于x的分式方程﹣=1有增根,则k=()A.﹣3B.1C.2D.3二.填空题8.若关于x的分式方程有增根,则a的值为.9.关于x的方程=1有增根,则a的值是.10.关于x的方程有增根,则增根是;且k的值是.11.若关于x的分式方程有增根x=1,则k的值为.12.已知关于x的分式方程+2=﹣有增根,则这个增根的值是.13.若方程+=2有增根x=﹣1,则k=.14.一们同学在解关于x的分式方程的过程中产生了增根,则可以推断a的值为.三、解答题15.(1)方程=3﹣有增根,则m的值为.(2)若关于x的方程+2=有增根,试求k的值.16.若分式方程有增根x=﹣1,求k的值.17.已知关于x的分式方程.(1)若分式方程有增根,求m的值;(2)若分式方程的解是正数,求m的取值范围.18.关于x的分式方程:.(1)当m=3时,求此时方程的根;(2)若这个关于x的分式方程会产生增根,试求m的值.(3)若关于x的分式方程的增根为x=3,求a的值.19.若关于y的不等式组无解,且关于x的分式方程的解为负数,则所有满足条件的整数a的值之和是多少?20.若关于x的一元一次不等式组的解集为x>1,且关于y的分式方程的解是正整数,则所有满足条件的整数a的值之和是多少?。

解方分式方程及增根问题专项训练(30题)(学生版)

解方分式方程及增根问题专项训练(30题)(学生版)

解方分式方程及增根问题专项训练(30题)一、解答题1.解分式方程:2−x x−3+13−x=12.解方程:2x2−1+1=x x−1.3.解分式方程:x x−3−2=4x−34.解方程:1x−1=2x.5.解答下面两题:(1)解方程:x−3x−2+52−x=3(2)化简:(x−3x x+1)÷x−2x2+2x+1 6.x2−2x+3+6x+182−x2=−17.解分式方程:x x−1−31−x=8.解方程:52x+4−12−x=x2x2−4−19.解方程:2x2x−5−22x+5=1.10.解方程:x x−5=22x−10−1 11.解方程:6x−3−2x+184x−12=1.12.解方程:x+2x−2−16x2−4=1x+2.14.解分式方程:x x−3﹣1=18x2−9.15.解分式方程:2−x x−3+4=13−x.16.解方程:3+x x−4+1=14−x.18.解方程:2x−2+3=1−x2−x.19.解方程:102x−1+51−2x=2 20.解分式方程x+1x+2+x+6x+7=x+2x+3+x+5x+621.若关于x的方程m x2−9+2x+3=1x−3有增根,则增根是多少?并求方程产生增根时m的值.22.m为何值时,关于x的方程2x−2+mx x2−4=3x+2会产生增根?23.当m为何值时,关于x的方程2x-3x-2=m+4x-2会产生增根?24.当a为何值时,关于x的方程2x−2+ax x2−4=3x+2会产生增根?25.计算:当m为何值时,关于x的方程2x+1+51−x=m x2−1会产生增根?26.若关于x的方程2x−1+51−x=m x2−1有增根,求增根和m的值.27.当k为何值时,分式方程6x−1=x+2k x(x−1)−5x有增根?28.试问:当k为何值时,方程x x−2−2x x+2=x+k x2−4有增根?29.当m为何值时,解方程2x−2+mx x2−4=0会产生增根?30.当a为何值时,关于x的方程x x+3=2+a x+3会产生增根?。

分式方程50题 参考答案与试题解析

分式方程50题  参考答案与试题解析

分式方程50题参考答案与试题解析一.解答题(共50小题)1.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:(x+1)2﹣4=x2﹣1,整理得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:(x﹣2)2=(x+2)2+16,整理得:x2﹣4x+4=x2+4x+4+16,解得:x=﹣2,经检验x=﹣2是增根,分式方程无解.2.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3(x﹣1)=2x,去括号得:3x﹣3=2x,解得:x=3,经检验x=3是分式方程的解;(2)去分母得:(x﹣2)2﹣x2+4=16,整理得:x2﹣4x+4﹣x2+4=16,解得:x=﹣2,经检验x=﹣2是增根,分式方程无解.3.【分析】(1)方程两边同乘2(4+x),得关于x的一元一次方程,解方程可求解x值,最后验根即可;(2)方程两边同乘x2﹣1,得关于x的一元一次方程,解方程可求解x值,最后验根即可.【解答】解:(1)方程两边同乘2(4+x),得2(3﹣x)=4+x,解得x=,当x=时,2(4+x)≠0,∴x=是原方程的解.(2)方程两边同乘x2﹣1,得x﹣1+2=0解得x=﹣1,当x=﹣1时,x2﹣1=0,∴x=﹣1是方程的增根,∴原方程无解.4.【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程整理得:﹣=1﹣,方程两边同乘以(x+3)(x﹣3)得:x+3﹣8x=x2﹣9﹣x(x+3),解这个方程得:x=3,经检验,x=3是原方程的增根,所以原方程无解.5.【分析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,约分即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=•=•=;(2)分式方程整理得:=1+,去分母得:x=2x﹣1+2,解得:x=﹣1,检验:当x=﹣1时,2x﹣1≠0,则分式方程的解为x=﹣1.6.【分析】两方式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3(x+1)=2(x﹣2),去括号得:3x+3=2x﹣4,解得:x=﹣7,经检验x=﹣7是分式方程的解;(2)去分母得:x2+2x+1=x2﹣1+4,解得:x=1,经检验x=1是增根,分式方程无解.7.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2(x+2)=3(3x﹣1),去括号得:2x+4=9x﹣3,移项合并得:﹣7x=﹣7,解得:x=1,经检验x=1是分式方程的解.8.【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:原方程可化为:﹣=1,去分母,得3x﹣6=x﹣2,解得:x=2,经检验:x=2是原方程的增根,所以原方程无解.9.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+3=2x,解得:x=3,检验:把x=3代入得:x(x+3)=18≠0,则分式方程的解为x=3.10.【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程整理得:+=4,去分母得:x+4+2=4x﹣12,移项合并得:﹣3x=﹣18,解得:x=6,经检验x=6是分式方程的解.11.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:5x+7﹣2(x+5)=x2+4x﹣5,整理得:x2+x﹣2=0,即(x﹣1)(x+2)=0,解得:x=1或x=﹣2,经检验x=1是增根,则分式方程的解为x=﹣2.12.【分析】根据解分式方程的解法步骤求解即可.【解答】解:去分母得,(x+1)(x﹣2)﹣(x+2)(x﹣2)=3(x+2)去括号得,x2﹣x﹣2﹣x2+4=3x+6移项得,x2﹣x﹣x2﹣3x=6+2﹣4合并同类项得,﹣4x=4系数化为1得,x=﹣1经检验,x=﹣1是原方程的解,所以原方程的解为x=﹣1.13.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:最简公分母为(x﹣2)2,去分母得:x(x﹣2)﹣(x﹣2)2=4,整理得:x2﹣2x﹣x2+4x﹣4=4,解得:x=4,检验:把x=4代入得:(x﹣2)2=4≠0,∴分式方程的解为x=4.14.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到m的值,经检验即可得到方程的解.【解答】解:去分母得:5﹣m=m﹣2﹣3,移项合并得:2m=10,解得:m=5,检验:把m=5代入得:m﹣2=5﹣2=3≠0,∴分式方程的解为m=5.15.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:3+x2﹣9=x(x+3),解得:x=﹣2,检验:当x=﹣2时,x2﹣9≠0,∴原方程的解为x=﹣2.16.【分析】方程两边都乘以x﹣1得出3x+2=5,求出方程的解,再进行检验即可.【解答】解:方程两边都乘以x﹣1得:3x+2=5,解得:x=1,检验:当x=1时,x﹣1=0,所以x=1不是原方程的解,即原方程无解.17.【分析】方程两边都乘以x(x﹣1)得出x﹣8+3x=0,求出方程的解,再进行检验即可.【解答】解:方程两边都乘以x(x﹣1)得:x﹣8+3x=0,解得:x=2,检验:当x=2时,x(x﹣1)≠0,所以x=2是原方程的解,即原方程的解是:x=2.18.【分析】(1)方程两边都乘以x(x+1)得出5x+2=3x,求出方程的解,再进行检验即可;(2)方程两边都乘以2(x﹣1)得出2x=3﹣4(x﹣1),求出方程的解,再进行检验即可.【解答】解:(1)方程两边都乘以x(x+1)得:5x+2=3x,解得:x=﹣1,检验:当x=﹣1时,x(x+1)=0,所以x=﹣1是增根,即原方程无解;(2)方程两边都乘以2(x﹣1)得:2x=3﹣4(x﹣1),解得:x=,检验:当x=时,2(x﹣1)≠0,所以x=是原方程的解,即原方程的解是:x=.19.【分析】方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:=+1,方程两边都乘(x﹣1)(x+1),得x(x+1)=4+(x﹣1)(x+1),解得x=3,检验:当x=3时,(x﹣1)(x+1)=8≠0.故x=3是原方程的解.20.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程两边同乘x(x﹣1)得:9(x﹣1)=8x,解得:x=9,经检验x=9是分式方程的解;(2)方程两边同乘x﹣2得:x﹣1﹣3(x﹣2)=1,解得:x=2,经检验x=2是增根,分式方程无解.21.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程﹣=1,去分母得:x2﹣4x+4﹣3x=x2﹣2x,解得:x=,经检验x=是分式方程的解.22.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)分式方程整理得:﹣=1,去分母得:1﹣2=x﹣2,解得:x=1,经检验x=1是分式方程的解;(2)去分母得:x2+x﹣x2+1=3,解得:x=2,经检验x=2是分式方程的解.23.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)=,去分母得:x﹣3=2x,解得:x=﹣3,经检验x=﹣3是分式方程的解;(2)方程整理得:﹣1=﹣,去分母得:x﹣2x+1=﹣3,解得:x=4,经检验x=4是分式方程的解.24.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x+3)(x﹣1)﹣x2+9=2,整理得:x2+2x﹣3﹣x2+9=2,即2x=﹣4,解得:x=﹣2,经检验x=﹣2是分式方程的解.25.【分析】(1)方程组整理后,利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程组整理得:,①×2+②得:11x=22,解得:x=2,把x=2代入①得:y=3,则方程组的解为;(2)去分母得:3x+3﹣4x=x﹣1,解得:x=2,经检验x=2是分式方程的解.26.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)+=0,去分母得:x﹣2+x+3=0,解得:x=﹣,经检验x=﹣是分式方程的解;(2)﹣=1,去分母得:(x+1)2﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.27.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),①×2+②得:5x=10,解得:x=2,把x=2代入①得:y=1,则方程组的解为;(2)分式方程整理得:﹣2=﹣,去分母得:3x﹣2(x﹣3)=﹣3,去括号得:3x﹣2x+6=﹣3,解得:x=﹣9,经检验x=﹣9是分式方程的解.28.【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程整理得:+1=﹣,去分母得:2x﹣4+4x﹣2=﹣3,移项合并得:6x=3,解得:x=,经检验x=是增根,分式方程无解.29.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到y的值,经检验即可得到分式方程的解.【解答】解:(1),①+②得:3x=9,解得:x=3,把x=3代入①得:y=0,则方程组的解为;(2)分式方程=+1,去分母得:3=1+y﹣2,解得:y=4,经检验y=4是分式方程的解.30.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)=,去分母得:3x=2x﹣2,解得:x=﹣2,经检验x=﹣2是分式方程的解;(2)方程组整理得:,①+②得:6y=6,解得:y=1,把y=1代入①得:x=3,则方程组的解为.31.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),①+②得:4x=12,解得:x=3,把x=3代入②得:y=1,则方程组的解为;(2)分式方程整理得:﹣=1,去分母得:4﹣3=x﹣2,解得:x=3,经检验x=3是分式方程的解.32.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),②×2﹣①得:7y=7,解得:y=1,把y=1代入②得:x=2,则方程组的解为;(2)分式方程整理得:﹣=﹣5,去分母得:﹣3=x﹣5(x﹣1),去括号得:﹣3=x﹣5x+5,移项合并得:4x=8,解得:x=2.33.【分析】(1)根据加减消元法解方程即可求解;(2)方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:(1).②﹣①×2得:7x=﹣14,解得:y=﹣2,把y=﹣2代入①得:x=2.故方程组的解为;(2)+2=,方程两边都乘(x﹣2)得1﹣x+2(x﹣2)=﹣1,解得x=2,检验:当x=2时,x﹣2=0,是增根.故原方程无解.34.【分析】(1)利用加减消元法解方程组;(2)方程两边乘以(x+1)(x﹣1)得到整式方程,然后解整式方程后进行检验确定原方程的解.【解答】解:(1),②﹣①得4x=28,解得x=7,把x=7代入①得7﹣3y=﹣8,解得y=5,所以方程组的解为;(2)去分母得﹣2=2(x﹣1)﹣(x+1),解得x=1,经检验:原方程的解为x=1.35.【分析】(1)方程两边都乘最简公分母,可以把分式方程转化为整式方程求解;(2)根据加减消元法解方程即可求解.【解答】解:(1)=1+,方程两边都乘(x﹣2)得x=x﹣2+x+1,解得x=1,检验:当x=1时,x﹣2≠0.故x=1是原方程的解;(2),①+②×5得:17x=17,解得:x=1,把x=1代入②得:y=﹣5.故方程组的解为.36.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程+1=,去分母得:2+1+x=4x,解得:x=1,经检验x=1是分式方程的解.37.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程整理得:﹣1=,去分母得:(x﹣2)2﹣(x2﹣4)=12,整理得:x2﹣4x+4﹣x2+4=12,移项合并得:﹣4x=4,解得:x=﹣1,检验:把x=﹣1代入得:(x+2)(x﹣2)≠0,∴分式方程的解为x=﹣1.38.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程整理得:﹣=1,去分母得:(x+2)2﹣20=x2﹣4,整理得:x2+4x+4﹣20=x2﹣4,移项合并得:4x=12,解得:x=3,检验:把x=3代入得:(x+2)(x﹣2)≠0,则分式方程的解为x=3.39.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),①+②得:6x=18,解得:x=3,①﹣②得:4y=8,解得:y=2,则方程组的解为;(2)分式方程整理得:﹣2=,去分母得:x﹣2(x﹣3)=3,去括号得:x﹣2x+6=3,移项合并得:﹣x=﹣3,解得:x=3,检验:把x=3代入得:x﹣3=0,∴x=3是增根,则分式方程无解.40.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程整理得:﹣=1,去分母得:x﹣2﹣4x+8=x2﹣4,即x2+3x﹣10=0,分解因式得:(x﹣2)(x+5)=0,解得:x=2或x=﹣5,经检验x=2是增根,则分式方程的解为x=﹣5.41.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+1=4(x﹣2),解得:x=3,检验:把x=3代入得:(x﹣2)(x+1)≠0,∴x=3是原方程的解.42.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4﹣(x+2)=0,解得:x=2,经检验x=2是增根,分式方程无解.43.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣2(x+3)=x﹣3,去括号得:3﹣2x﹣6=x﹣3,移项合并得:﹣3x=0,解得:x=0,经检验x=0是分式方程的解.44.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3x﹣6﹣2x=0,解得:x=6,经检验x=6是分式方程的解;(2)去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.45.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同时乘以(x+3)(x﹣3)得(x﹣3)+2(x+3)=12,去括号得:x﹣3+2x+6=12,移项得:x+2x=12+3﹣6,合并得:3x=9,解得:x=3,检验:把x=3代入(x+3)(x﹣3)=0,∴x=3是增根,原方程无解.46.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2+4x+4﹣3x2=2x2+4x,整理得:4x2=4,即x2=1,解得:x=1或x=﹣1,经检验x=1和x=﹣1都为分式方程的解.47.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2x=3x﹣6,解得:x=6,经检验x=6是分式方程的解;(2)去分母得:x2+2x+1﹣4=x2﹣x,解得:x=1,经检验x=1是增根,则原方程无解.48.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2=2x﹣1﹣3,解得:x=3,经检验x=3是分式方程的解;(2)去分母得:x﹣3﹣2=1,解得:x=6,经检验x=6是分式方程的解.49.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程两边同乘(3+x)(3﹣x),得9(3﹣x)=6(3+x),解这个方程,得x=,检验:当x=时,(3+x)(3﹣x)≠0,则x=是原方程的解;(2)方程两边同乘(x+1)(x﹣1),得4+x2﹣1=(x﹣1)2,解这个方程,得x=﹣1,检验:当x=﹣1时,(x+1)(x﹣1)=0,x=﹣1是增根,则原方程无解.50.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x+3=5x,解得:x=,经检验x=是分式方程的根;(2)去分母得:3﹣x+1=x﹣4,解得:x=4,经检验x=4是增根,方程无解.。

(完整版)分式方程的增根与无解

(完整版)分式方程的增根与无解

分式方程的增根与无解甲:增根是什么?乙:增根是解分式方程时,把分式方程转化为整式方程这一变形中,由于去分母扩大了未知数的取值范围而产生的未知数的值.比如例1、解方程:。

①为了去分母,方程两边乘以,得②由②解得。

甲:原方程的解是.乙:可是当时,原方程两边的值相等吗?甲:这我可没注意,检验一下不就知道了。

哟!当时,原方程有的项的分母为0,没有意义,是不是方程变形过程中搞错啦?乙:求解过程完全正确,没有任何的差错。

甲:那为什么会出现这种情况呢?乙:因为原来方程①中未知数x的取值范围是且,而去分母化为整式方程②后,未知数x的取值范围扩大为全体实数。

这样,从方程②解出的未知数的值就有可能不是方程①的解。

甲:如此说来,从方程①变形为方程②,这种变形并不能保证两个方程的解相同,那么,如何知道从整式方程②解出的未知数的值是或不是原方程①的解呢?乙:很简单,两个字:检验。

可以把方程②解出的未知数的值一一代入去分母时方程两边所乘的那个公分母,看是否使公分母等于0,如果公分母为0,则说明这个值是增根,否则就是原方程的解。

甲:那么,这个题中就是增根了,可原方程的解又是什么呢?乙:原方程无解。

甲:啊?!为什么会无解呢?乙:无解时,方程本身就是个矛盾等式,不论未知数取何值,都不能使方程两边的值相等,如上题中,不论x取何值,都不能使方程①两边的值相等,因此原方程无解,又如对于方程,不论x取何值也不能使它成立,因此,这个方程也无解.甲:是不是有增根的分式方程就是无解的,而无解的分式方程就一定有增根呢?乙:不是!有增根的分式方程不一定无解,无解的分式方程也不一定有增根,你看:例2、解方程,去分母后化为,解得或,此时,是增根,但原方程并不是无解,而是有一个解,而方程,去分母后化为,原方程虽然无解,但原方程也没有增根。

乙:增根不是原分式方程的解,但它是去分母后所得的整式方程的解,利用这种关系可以解决分式方程的有关问题,你看:例3、已知关于x的方程有增根,求k的值.首先把原方程去分母,化为。

习题:分式方程及增根、无解(含答案)

习题:分式方程及增根、无解(含答案)

当堂检测1. 解方程1 1 x 3 答案: x2 是增根原方程无解。

x2 2 x2. 关于 x 的方程 a1 1 2x 有增根,则 a =------- 答案: 7 x 4 4 x 3. 解关于 x 的方程m 1下列说法正确的是( C ) 5 xA. 方程的解为 x m 5B.当 m 5 时,方程的解为正数C.当 m 5 时,方程的解为负数D. 无法确定4.若分式方程 x a a 无解,则 a 的值为 ----------- 答案: 1 或 -1 x 15. 若分式方程 m x =1有增根,则 m 的值为 ------------- 答案: -1 1 x 1 m6.分式方程 x 2 x 有增根,则增根为------------ 答案: 2 或 -11 7. 关于 x 的方程 x1 2 1 k 有增根,则 k 的值为 ----------- 答案: 1 x ax 28. 若分式方程 a 无解,则 a 的值是 ---------- 答案: 0am x或 - 1 9.若分式方程 2m 0 无解 ,则 m 的取值是 ------ 答案: -1 x1 210. m(x 1) 5若关于 x 的方程 2x 1 m 3 无解,则 m 的值为------- 答案: 6, 10 11. 若关于 x 的方程 x m 3 1无解,求 m 的值为 ------- 答案: x 1 x12.解方程 1 x 1 6 x 答案 x 62-x 2 3x 2 12 713.解方程 2 4 0x-1 x 2 114. 解方程 2x 2 12x 5 2x 515. 解方程x 2 3 2x 2 13x 3 x 2 916. 关于 x 的方程 x 1 m 2有增根,则 m 的值 ----- 答案: m=2 或 -2x 3 2x 617.当 a 为何值时,关于 x a3x 的分式方程 1 1无解。

答案 :-2 或 1x x。

中考数学专题练习分式方程的增根(含解析)

中考数学专题练习分式方程的增根(含解析)

2019中考数学专题练习-分式方程的增根(含解析)一、单选题1.下列关于分式方程增根的说法正确的是()A. 使所有的分母的值都为零的解是增根B. 分式方程的解为零就是增根C. 使分子的值为零的解就是增根D. 使最简公分母的值为零的解是增根2.解关于x的方程产生增根,则常数的值等于()A. -1B. -2C. 1D. 23.关于x的方程﹣=0有增根,则m的值是()A. 2B. -2C. 1D. -14.若关于x的分式方程有增根,则k的值是()A. -1B. -2C. 2D. 15.若关于x的分式方程−m=无解,则m的值为()A. m=3B. m=C. m=1D. m=1或6.解关于x的方程=产生增根,则常数m的值等于()A. -1B. -2C. 1D. 27.如果关于x的方程无解,则m等于()A. 3B. 4C. -3D. 58.分式方程+1=有增根,则m的值为()A. 0和2B. 1C. 2D. 09.解关于x的分式方程时不会产生增根,则m的取值是()A. m≠1B. m≠﹣1C. m≠0D. m≠±110.若解分式方程产生增根,则m的值是()A. 或B. 或2C. 1或2D. 1或11.若关于x的分式方程+ =1有增根,则m的值是()A. m=0或m=3B. m=3C. m=0D. m=﹣112.下列说法中正确的说法有()(1)解分式方程一定会产生增根;(2)方程=0的根为x=2;(3)x+ =1+是分式方程.A. 0个B. 1个C. 2个D. 3个13.若关于x的方程有增根,求a的值()A. 0B. -1C. 1D. -2二、填空题14.若关于x的分式方程= ﹣有增根,则k的值为________15.如果﹣3是分式方程的增根,则a=________.16.关于x的分式方程- =0无解,则m=________.17.关于x的方程+1= 有增根,则m的值为________.18.若分式方程有增根,则这个增根是________19.若关于x方程= +1无解,则a的值为________.20.若方程有增根,则它的增根是________,m=________;三、解答题21.当m为何值时,解方程会产生增根?22.计算:当m为何值时,关于x的方程+ = 会产生增根?答案解析部分一、单选题1.下列关于分式方程增根的说法正确的是()A. 使所有的分母的值都为零的解是增根B. 分式方程的解为零就是增根C. 使分子的值为零的解就是增根D. 使最简公分母的值为零的解是增根【答案】D【考点】分式方程的增根【解析】【解答】解:分式方程的增根是使最简公分母的值为零的解.故答案为:D.【分析】本题考查了分式方程的增根,使最简公分母的值为零的解是增根.2.解关于x的方程产生增根,则常数的值等于()A. -1B. -2C. 1D. 2【答案】B【考点】分式方程的增根【解析】【解答】解:方程两边同乘x-1,得x-3=m,因为方程有增根,所以x=1,把x=1代入x-3=m,所以m=-2;故选B.【分析】因为增根是在分式方程转化为整式方程的过程中产生的,分式方程的增根,不是分式方程的根,而是该分式方程化成的整式方程的根,所以涉及分式方程的增根问题的解题步骤通常为:①去分母,化分式方程为整式方程;②将增根代入整式方程中,求出方程中字母系数的值.3.关于x的方程﹣=0有增根,则m的值是()A. 2B. -2C. 1D. -1【答案】A【考点】分式方程的增根【解析】【解答】解:方程两边都乘(x﹣1),得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故选A.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x﹣1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.4.若关于x的分式方程有增根,则k的值是()A. -1B. -2C. 2D. 1【答案】D【考点】分式方程的增根【解析】【解答】解:方程两边都乘(x﹣5),得x﹣6+x﹣5=﹣k,∵原方程有增根,∴最简公分母(x﹣5)=0,解得x=5,当x=5时,k=1.故选:D.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣5)=0,得到x=5,然后代入化为整式方程的方程算出k的值.5.若关于x的分式方程−m=无解,则m的值为()A. m=3B. m=C. m=1D. m=1或【答案】D【考点】分式方程的增根【解析】【分析】方程两边都乘以(x-3)得到x-m(x-3)=2m,整理得(1-m)x+m=0,由于关于x的分式方程−m=无解,则x-3=0,解得x=3,然后把x=3代入(1-m)x+m=0可求出m的值.【解答】去分母得x-m(x-3)=2m,整理得(1-m)x+m=0,当1-m=0,即m=1时,(1-m)x+m=0无解,∵关于x的分式方程−m=无解,∴x-3=0,解得x=3,∴(1-m)×3+m=0,∴m=.故选D.【点评】本题考查了分式方程的解先把分式方程化为整式方程,解整式方程,若整式方程的解使分式方程左右两边成立,那么这个解就是分式方程的解;若整式方程的解使分式方程左右两边不成立,那么这个解就是分式方程的增根.6.解关于x的方程=产生增根,则常数m的值等于()A. -1B. -2C. 1D. 2 【答案】B【考点】分式方程的增根【解析】解;方程两边都乘(x-1),得x-3=m,∵方程有增根,∴最简公分母x-1=0,即增根是x=1,把x=1代入整式方程,得m=-2.故选:B.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.本题的增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7.如果关于x的方程无解,则m等于()A. 3B. 4C. -3D. 5【答案】A【考点】分式方程的增根【解析】【分析】关于x的方程无解,即分式方程去掉分母化为整式方程,整式方程的解就是方程的增根,即x=5,据此即可求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当堂检测
1. 解方程
11322x x x
-=---答案:2x =是增根原方程无解。

2. 关于x 的方程12144a x x x
-+=--有增根,则a =-------答案:7 3. 解关于x 的方程15
m x =-下列说法正确的是(C ) A.方程的解为5x m =+ B.当5m >-时,方程的解为正数
C.当5m <-时,方程的解为负数
D.无法确定
4.若分式方程1
x a a x +=-无解,则a 的值为-----------答案:1或-1 5. 若分式方程=11
m x x +-有增根,则m 的值为-------------答案:-1 6.分式方程121
m x x =-+有增根,则增根为------------答案:2或-1 7. 关于x 的方程1122
k x x +=--有增根,则k 的值为-----------答案:1 8. 若分式方程x a a a
+=无解,则a 的值是----------答案:0 9.若分式方程201m x m x ++=-无解,则m 的取值是------答案:-1或1-2
10. 若关于x 的方程(1)5321
m x m x +-=-+无解,则m 的值为-------答案:6,10 11. 若关于x 的方程311x m x x
--=-无解,求m 的值为-------答案: 12.解方程21162-x 2312x x x -=---答案67
x =- 13.解方程2240x-11
x -=- 14. 解方程2212525x x x -=-+ 15. 解方程222213339
x x x x --=-+- 16. 关于x 的方程2
1326
x m x x -=--有增根,则m 的值-----答案:m=2或-2 17.当a 为何值时,关于x 的分式方程311x a x x --=-无解。

答案:-2或1。

相关文档
最新文档