2021年浅谈高强度钢材在工程结构中的应用研究进展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈高强度钢材在工程结构中的应用研究进展
高强度结构钢(简称高强钢)是指采用微合金化及热机械轧制技术生产出的具有高强度(屈服强度大于等于 460,MPa)、良好延性、韧性以及加工性能的结构钢材[1].区别于普通强度钢材,由于高强度钢材的屈服平台长度较短、屈强比较高而无法达到抗震规范的要求,其变形能力的验证更加重要。随着高强钢在工程结构领域的逐渐推广应用,有必要对高强度钢材钢结构的承载力、延性和抗震性能进行系统的研究。
本文旨在总结高强度钢材在工程结构中的应用现状与研究进展,进而说明相应需要深入研究的问题。
高强钢在发达国家已得到初步推广,取得了良好的效果,其中应用最多的领域是桥梁工程。德国的1Viaduct Bridge 中均采用了S460 高强度钢材(屈服强度为 460,MPa 的钢材,简称 S460 高强钢)。为减小桥墩尺寸,满足外观要求,德国的Nesenbachtalbruke 桥中受压构件采用了 S690 高强钢;为有效降低自重,便于战时快速运输与安装,瑞典的 48 号军用快速桥采用了 S1100 超高强钢。
高强钢的应用不仅减小了钢板的厚度进而减轻结构自重,同时也减小了焊缝的尺寸从而减少焊接工作量、提高焊缝质量。因此,在一定程度上缩短了施工工期,同时延长了桥梁的使用寿命。
高强钢已经在一些建筑结构中成功运用。这些工程大多采用了460~690,MPa 等级钢材,个别工程还使用了 780,MPa 等级钢材。如日本横滨 LandmarkTower 大厦,其工字形截面柱采用 600,MPa 钢材;德国柏林的 Sony Centre 大楼的屋顶桁架采用 S460 和S690 钢材;澳大利亚悉尼的 Star City 在地下室柱子和其内部 Lyric 剧院的 2 个桁架结构中采用 650,MPa和 690,MPa 等级的钢材;悉尼的 Latitude 大厦在转换层中采用 690,MPa 高强度钢板;美国休斯顿 ReliantStadium 体育馆的屋顶桁架结构采用 450,MPa 高强度钢材。高强钢在我国也已成功运用于建筑工程。如国家体育场鸟巢的关键部位采用了 700,t Q460 等级钢材;国家游泳中心水立方结构采用了 2,600,t Q420钢;央视新台址主楼结构采用了
2,674.19,t Q460 钢等。此外,值得一提的是,G550 高强钢在澳大利钢结构住宅方面也有了初步的应用[2].输电塔、海洋平台、压力容器、油气输送管道、船舶制造与汽车制造等领域是高强钢的潜在市场。日本和美国的铁塔设计标准都已经给出了较高等级的可选钢材。《日本架空送电规程》[3]中焊接结构钢的屈服强度最高为460,MPa,铁塔用高拉力型钢的屈服强度达到 520,MPa;《美国输电铁塔设计导则》[4]中的钢材强度已达到 686,MPa;高强钢在我国输电
线路领域中的运用起步较晚,我国《架空送电线路杆塔结构设计规定》[5]中的最高强度等级目前只有390,MPa.但 xx 年,Q460 角钢在平顶山 - 洛南500,kV 线路的输电塔中得以应用。结果表明,高强钢的使用可以有效降低输电塔的自重,节省材料可达10%,,从而降低整体造价达 8%,之多[6].
虽然高强钢已开始在一些国家和地区得到推广和使用,但其普及仍受到诸多因素的限制。首先,由于相关的研究工作还有待深入,其结构设计方法还相对滞后。欧洲钢结构规范仅在原有普通钢材钢结构设计规范中,增加了针对 S460-700 的补充条款;美国的荷载抗力系数设计规范(极限应力设计法 LRFD)中虽提出了最高为
A514(强度标准值 690,MPa)的几种高强度结构钢材的荷载抗力系数,但两者均仅套用普通钢材钢结构的设计方法和计算公式,并未建立在充足研究数据的基础上。同时,由于生产高强钢采用了新的加工工艺,其力学性能及连接的受力性能等均随之变化,而现行设计方法未能充分考虑这些变化。我国的钢结构设计规范更是缺少针对 460,MPa以上等级钢材的设计条文,缺少高强钢的抗力分项系数和强度设计值指标,因此,无法指导和规范工程设计[7].其次,相对于强度的大幅增长,高强钢的弹性模量并没有明显增长,而使用此类钢材伴随的焊缝造价增加、钢材延性降低等问题又尚未得到合理解决。
高强钢在工程结构中的应用研究,目前主要集中在材料性质和节点性能两个方面。国内外针对高强度钢结构力学性能的研究成果还主要集中于静力、分布研究和受压构件的整体稳定、局部稳定及滞回性能研究中。
节点是结构中构件相互交汇连接的区域,是结构特别关键的部位。对于高强钢结构节点而言,一方面,因为钢材屈服平台长度较短、屈强比较高而无法达到抗震规范的要求,其变形能力的验算更加重要。另一方面,由于缺少一定数量的研究,难以对节点实际变形和转动能力进行估计,因此,高强钢结构节点的力学性能仍是亟需解决的一个关键问题。在建筑工程中量大面广的结构是框架结构,其典型的节点主要为梁柱连接节点,通常有焊接连接和螺栓连接两种基本类型。由于梁柱螺栓连接大多借助端板连接,故此类节点又称为端板连接节点。以下主要介绍端板连接节点的研究情况。
2.1 节点试验研究
端板连接节点的试验主要以抗弯试验为主,对端板的理论研究主要采用 T-stub 理论。Coelho 等在文献[8]中证实,在端板厚度不超过一定限值的情况下,节点的转动主要于节点的受拉区,该受拉区可以简化为一个 T-stub 模型,如图 1 所示。根据节点塑性铰出现位置不同,在轴拉力作用下的 T 型件破坏模式可分为翼缘产生塑
性铰、联合破坏和螺栓拉坏3 种。研究表明[9-12],欧洲规范能够较为准确地预测节点的承载力,但高估了其初始转动刚度,对转动能力的估算也偏于保守。研究还表明,端板厚度对节点初始刚度的影响比柱翼缘的厚度更加显着,其中,端板厚度越大,节点的初始抗弯能力和刚度就越大,而其转动能力却随之减小。反之,随着端板厚度的减少,节点的转动能力也随之增加。大体上,薄端板通常能够满足塑性转动 30,mrad 的要求。
高强钢端板具有足够的局部延性来保证荷载的应力重分布,甚至当螺栓并未按最佳方式布置时,仍然具有充分的延性[13-14].其工作机理为:首先,只有一个螺栓承担所有的荷载;当其他螺栓激活后,即应力重分布后,所有螺栓共同承担荷载。通过螺栓孔的椭圆化率来判定钢材的局部延性可以发现,构件在试验中表现出了极大的塑性变形。试验结果表明,由纯剪造成的螺孔伸长并不是构件的最终极限状态,通过限制平均承载应力大小的方式来限制形变的欧洲规范偏于保守。实际上,高强钢螺栓节点在弹塑性阶段的荷载-位移曲线表明,螺孔的容许伸长率可以达到d0/6(d0为螺孔直径设计值)。在弹性曲线的最后阶段,其极限承载力也只减少了 20%,,因此,相应的规范限值还需进一步修正。
对抗剪连接构件的试验表明[15-17],即使高强钢的极限强度与屈服强度的比值较小,甚至对 S1100 钢而言,小至 1.05,其对构件局