统计学基础知识要点
统计学基础知识梳理
![统计学基础知识梳理](https://img.taocdn.com/s3/m/a1173be127fff705cc1755270722192e45365834.png)
一、基础知识及应用
(七)显著水平与单样本假设检验
• 怎么去算55这个值呢?使用如下的公式:
• 上面的公式,其实不是拿来求55的,而是求50或者59对应的z值;
• 然后我们自己定义了一个想要的概率,比如90%,那我们知道一个对应的
z值是-1.65;
• 然后拿50或者59对应的z和-1.65比,就行了;
还健在,也不知道会活多少岁,我们顶多是把过去几年死了的土豪
们拉出来看看各自活了多大;
• 假如我们找过去三年死了的土豪,一共找了200个人,这200个人就
构成了一个样本,我们就可以试着通过研究这200个人的样本特征,
去推断整个土豪群体的平均寿命是否超过了100岁(其实我们只能知
道它是否肯定超过了100岁)
面的公式了:
一、基础知识及应用
(六)总体均值估计与置信水平
• 总体均值估计就是在只有个
别样本的情况下,想知道一
个总体均值位置的一种实用
方法;
• 其原理就是通过一个样本,
可以求得一个样本均值,然
后我们发现当样本数量很大
的候,样本均值会离总体
均值越来越近,因为总体均
值就是样本均值的均值~;
• 把这个样本均值分布转换成
多少。
• 想把一个正态分布转换成标准正态分布,只需要用下面的公式就可
以了:
• 现在有计算机,其实任何正态分布都可以直接求概率,无需转换为z
分布了.
一、基础知识及应用
(五点一)样本均值的概率分布
• 所谓样本均值,就是一个总体,比如p3班所有同学的年龄,我们可
以求出一个年龄的均值来;
• 然后任意找两个同学,可以求出一个均值来,这个均值一般都不等
• 所谓超几何分布,就是每次结果之间互相干扰的一种方法,比如你
统计基础必学知识点
![统计基础必学知识点](https://img.taocdn.com/s3/m/59a5d035178884868762caaedd3383c4ba4cb458.png)
统计基础必学知识点1. 数据的分类:数据可以分为定性数据和定量数据。
定性数据是描述性的,如性别、颜色等;定量数据是可量化的,如年龄、身高等。
2. 数据的度量尺度:数据的度量尺度分为四种类型,分别是名义尺度、顺序尺度、间隔尺度和比例尺度。
名义尺度是无序的分类数据,顺序尺度是具有次序关系的数据,间隔尺度是具有固定间隔的数据,比例尺度是具有固定比例关系的数据。
3. 频数与频率:频数是指某个数值出现的次数,频率是指某个数值出现的次数与总数的比值。
4. 数据的中心趋势度量:数据的中心趋势度量包括平均数、中位数和众数。
平均数是一组数据的总和除以数据个数,中位数是将数据按照大小排列后的中间值,众数是一组数据中出现次数最多的数值。
5. 数据的离散程度度量:数据的离散程度度量包括范围、方差和标准差。
范围是一组数据的最大值与最小值之差,方差是数据与其均值之差的平方和的平均值,标准差是方差的平方根。
6. 直方图和箱线图:直方图是将数据按照一定的区间划分,并统计每个区间内数据的频数或频率,在坐标系上绘制柱状图。
箱线图是通过四分位数和异常值来描绘一组数据的分布情况。
7. 相关系数:相关系数是用来描述两组数据之间的相关性强度和方向的指标。
常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
8. 概率与统计分布:概率是事件发生的可能性,统计分布是对数据的概率分布进行描述的函数。
常见的统计分布包括正态分布、泊松分布、二项分布等。
9. 抽样与统计推断:抽样是从总体中选取一部分样本进行研究,统计推断是通过样本数据对总体进行推断。
常用的统计推断方法包括点估计和区间估计。
10. 假设检验:假设检验是对统计推断的一种方法,通过构建假设、选择显著性水平和计算检验统计量,判断样本数据是否能够拒绝原假设。
常见的假设检验方法有单样本t检验、双样本t检验、方差分析等。
统计学基础知识要点
![统计学基础知识要点](https://img.taocdn.com/s3/m/2ca00cc558f5f61fb7366649.png)
第一章:导论1、什么是统计学?统计方法可以分为哪两大类?统计学是收集、分析、表述和解释数据的科学。
统计方法可分为描述统计方法和推断统计方法。
2、统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照所采用的计量尺度不同,分为分类数据、顺序数据和数值型数据;按照统计数据的收集方法,分为观测的数据和实验的数据;按照被描述的对象与时间的关系,分为截面数据和时间序列数据。
按计量尺度分时:分数数据中各类别之间是平等的并列关系,各类别之间的顺序是可以任意改变的;顺序数据的类别之间是可以比较顺序的;数值型数据其结果表现为具体的数值。
按收集方法分时:观测数据是在没有对事物进行人为控制的条件下等到的;实验数据的在实验中控制实验对象而收集到的数据。
按被描述的对象与时间关系分时:截面数据所描述的是现象在某一时刻的变化情况;时间序列数据所描述的是现象随时间而变化的情况。
3、举例说明总体、样本、参数、统计量、变量这几个概念。
总体是包含研究的全部个体的集合。
比如要检验一批灯泡的使用寿命,这一批灯泡构成的集合就是总体。
样本是从总体中抽取的一部分元素的集合。
比如从一批灯泡中随机抽取100个,这100个灯泡就构成了一个样本。
参数是用来描述总体特征的概括性数字度量。
比如要调查一个地区所有人口的平均年龄,“平均年龄”即为一个参数。
统计量是用来描述样本特征的概括性数字度量。
比如要抽样调查一个地区所有人口的平均年龄,样本中的“平均年龄”即为一个统计量。
变量是说明现象某种特征的概念。
比如商品的销售额是不确定的,这销售额就是变量。
第二章:数据的收集1、调查方案包括哪几个方面的内容?调查目的,是调查所要达到的具体目标。
调查对象和调查单位,是根据调查目的确定的调查研究的总体或调查范围。
调查项目和调查表,要解决的是调查的内容。
2、数据的间接来源(二手数据)主要是公开出版或公开报道的数据;数据的直接来源一是调查或观察,二是实验。
3、统计调查方式:抽样调查、普查、统计报表等。
统计学基础知识考试重点
![统计学基础知识考试重点](https://img.taocdn.com/s3/m/68a760037375a417866f8fc5.png)
统计学基础知识考试重点第一章统计和数据第二章●统计是用来处理数据的,是关于数据的一门学问。
1、统计学:是用以收集数据、分析数据和由数据得出结论的一组概念、原则和方法。
2、统计分析数据的方法分为:(1)描述统计(2)推断统计3、描述统计:是研究数据搜集、处理和描述的统计学方法。
4、推断统计:是研究如何利用样本数据来推断总体特征的统计学方法。
5、推断统计包括:(1)参数估计(2)假设检验6、定性变量的特点:只反映现象的属性特点,不能说明具体量的大小和差异。
●定性变量包括分类变量和顺序变量。
●只反映现象分类特征的变量称分类变量。
分类变量没有数值特征,所以不能对其数据进行数学运算。
●如果类别具有一定的顺序,这样的变量称为顺序变量。
顺序变量不仅能用来区分客观现象的不同类别,而且还可以表明现象之间的大小、高低、优劣关系。
7、定量变量的特点:可以用数值表示其观察结果,而且这些数值具有明确的数值含义,不仅能分类而且能测量出来具体大小和差异。
●数值型数据(定量数据)作为统计研究的主要资料,其特征在于它们都是以数值的形式出现的,有些数值型数据只可以计算数据之间的绝对差,而有些数值型数据不仅可以计算数据之间的绝对差,还可以计算数据之间的相对差。
其计量精度远远高于定性数据。
在统计学研究中,数值型数据有着最广泛的用途。
8、数据按获取的方法不同分为:(1)观测数据(2)实验数据9、观测数据:是对客观现象进行实地观测所取得的数据,在数据取得的过程中一般没有人为的控制和条件约束。
10、实验数据:一般是在科学实验环境下取得的数据。
11、统计数据资料的来源:(1)通过直接的调查或实验获得的原始数据,这是统计数据的直接来源;(2)别人调查的间接数据,并将这些数据进行加工和汇总后公布的数据,这是数据的间接来源。
12、数据的直接来源:(1)统计调查(2)实验法●通过统计调查得到的数据,一般称为观测数据。
●运用实验法时,实验组和对照组的产生应当是随机的。
统计学基础知识
![统计学基础知识](https://img.taocdn.com/s3/m/c74db58668dc5022aaea998fcc22bcd126ff42bc.png)
1.1 统计学的定义统计学是一门涉及数理统计学、计算机统计学、统计计量学和统计应用研究等多个学科的综合学科。
它既是一门基础学科,又是一门应用学科。
统计学研究的基本目标是分析和描述实际情况,并从中推导出概率规律,以及对现实问题进行科学决策。
1.2 统计学研究的基本方法统计学研究的基本方法包括观察法、实验法、回归分析法、卡方检验等。
二、观察法观察法是统计学研究的常用方法,它的基本步骤是:收集数据、分析数据、绘制图形、推导概率结论。
观察法的终目标是掌握现实社会和自然果的发展规律,以及社会和自然果中某一现象的发生概率三、实验法实验法是统计学研究的重要方法,它的基本步骤是:确定实验目的、设定实验方案、选择实验样本、进行实验、数据分析、结论总结。
实验法的终目标是堂握现实社会和自然界中某一现象的发生概率,以及解决实际问题的可能性。
四、回归分析法回归分析是一种统计学研究方法,它的基本步骤是:观察数据、定义回归模型、拟合回归模型、识别回归模型、检验回归模型、推断回归模型。
回归分析法的终目标是探索影响实际现象发生的原因,以及实际现象的发展趋势。
五、卡方检验卡方检验是统计学研究的重要方法,它的基本步骤是:收集数据、构建假设模型、计算卡方值、比较卡方值、得出结论。
卡方检验的终目标是检验某种假设模型是否满足统计学的要求,以便可以用来推断实际现象。
1、统计学统计学是一门阐明如何去采集、整理、显示、描述、分析数据和由数据得出结论的一系列概念、原理、原则、方法和技术的科学,是一门独立的、实用性很强的通用方法论科学。
2、指标和标志标志是说明总体单位属性或特征的名称。
指标是说明总体综合数量特征和数量关系的数字资料3、总体、样本和单位统计总体是统计所要研究的对象的全体,它是由客观存在的、具有某种共同性质的许多个体所构成的整体。
简称总体。
构成总体的个体则称为总体单位,简称单位。
样本是从总体中抽取的一部分单位4、统计调查统计调查是根据统计研究的目的和要求、采用科学的方法,有组织有计划的搜集统计资料的工作过它是取得统计数据的重要手段程。
统计学理论基础知识(史上最全最完整)
![统计学理论基础知识(史上最全最完整)](https://img.taocdn.com/s3/m/c4030ec9e43a580216fc700abb68a98271feac36.png)
统计学理论基础知识(史上最全最完整)统计学是一门关于收集、分析、解释和展示数据的学科。
它在许多领域中都发挥着重要作用,包括自然科学、社会科学、商业和医学等。
基本概念- 数据:统计学的研究对象,可以是数值、文字或图像等。
- 总体与样本:总体是我们想要研究的所有个体或事物,而样本是从总体中选择的一部分。
- 参数与统计量:参数是总体的数值特征,统计量是样本的数值特征。
- 频数与频率:频数是某个数值出现的次数,频率是频数与样本大小之比。
描述统计学- 中心趋势:用于衡量数据集中的位置,常用的统计量有平均数、中位数和众数。
- 变异程度:用于衡量数据集中的离散程度,常用的统计量有标准差、方差和四分位数。
- 数据分布:用于描述数据集中每个值的频率分布情况,常用的图表有直方图和箱线图。
推断统计学- 参数估计:通过样本统计量对总体参数进行估计,包括点估计和区间估计。
- 假设检验:根据样本数据对总体参数的假设进行推断性统计分析,包括设置原假设和备择假设,并进行显著性检验。
相关分析- 相关系数:用于衡量两个变量之间的关联程度,常用的相关系数有Pearson相关系数和Spearman等级相关系数。
- 回归分析:用于建立变量之间的数学关系,常用的回归分析有线性回归和多元回归。
统计学软件- 常用统计软件:如SPSS、R、Excel等。
- 数据可视化工具:如Tableau、Power BI等。
这份文档提供了统计学的基础知识概述,包括基本概念、描述统计学、推断统计学、相关分析和统计学软件。
它将帮助读者理解统计学的核心概念和方法,为进一步探索统计学打下坚实的基础。
统计学基础知识点总结
![统计学基础知识点总结](https://img.taocdn.com/s3/m/4c4e699148649b6648d7c1c708a1284ac950055c.png)
统计学基础知识点总结统计学是研究数据收集、分析和解释的科学。
它提供了一种用来了解和解释各种数据的方法和工具。
统计学的基础知识点是学习统计学的基础,下面是一些重要的基础知识点总结:1. 数据类型:统计学中的数据可以分为两类:定量数据和定性数据。
定量数据是可以量化的,例如身高、温度等,而定性数据是描述性质和特征的,例如性别、颜色等。
2. 数据收集:数据收集是统计学的基础,它包括设计问卷、调查、实验等方法来收集数据。
收集数据时需要注意样本的代表性,并尽量避免抽样偏差。
3. 描述性统计:描述性统计是用来总结和描述数据的方法。
常用的描述性统计包括计算平均数、中位数、范围和标准差等指标来衡量数据的集中趋势和离散程度。
4. 概率:概率是研究随机事件发生可能性的数学工具。
它可以用来计算事件发生的概率,从而预测未来事件的可能性。
概率可以分为古典概率和条件概率等不同类型。
5. 概率分布:概率分布是描述随机变量的分布规律的数学模型。
常见的概率分布包括均匀分布、正态分布和泊松分布等。
概率分布可以用来计算随机变量的期望、方差等统计指标。
6. 假设检验:假设检验是统计学中用来验证关于总体参数的假设的方法。
通过对样本数据进行统计分析,可以得出关于总体参数是否符合假设的结论。
假设检验包括设定假设、选择检验统计量、计算显著性水平和做出决策等步骤。
7. 相关分析:相关分析是用来研究两个变量之间关系的方法。
它可以通过计算相关系数来衡量两个变量之间的相关性,并判断相关性是否显著。
常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
8. 回归分析:回归分析是研究因果关系的统计方法。
它通过建立数学模型来描述自变量和因变量之间的关系,并可以用来预测因变量的取值。
常见的回归分析包括线性回归和多元回归等。
9. 抽样分布:抽样分布是指统计量在不同样本中的分布情况。
它可以用来计算统计量的置信区间和显著性水平等,从而对总体参数进行推断。
10. 统计软件:统计软件是进行统计分析的工具。
统计学基础知识点
![统计学基础知识点](https://img.taocdn.com/s3/m/32ea5c3b1611cc7931b765ce050876323012746f.png)
统计学基础知识点统计学是一门研究收集、整理、分析和解释数据的学科,它在各个领域都扮演着重要的角色。
无论是在科学研究、商业决策还是社会政策制定中,统计学都提供了有力的工具和方法来帮助我们理解和解释数据。
本文将介绍一些统计学的基础知识点,包括数据类型、数据收集和整理、描述统计和推断统计等。
一、数据类型在统计学中,数据可以分为两种类型:定量数据和定性数据。
定量数据是可以用数字来表示和度量的,例如身高、体重、年龄等。
定性数据则是描述性的,不能用数字来度量,例如性别、颜色、职业等。
了解数据的类型对于选择适当的统计方法非常重要。
二、数据收集和整理数据的收集是统计研究的第一步。
收集数据的方法包括观察、实验和调查等。
观察法是通过观察现象来收集数据,实验法是通过控制变量来观察因果关系,而调查法则是通过问卷调查或访谈来收集数据。
在收集到数据后,我们需要对数据进行整理和清洗。
数据整理包括数据输入、数据编码和数据录入等步骤,确保数据的准确性和一致性。
数据清洗则是处理数据中的异常值、缺失值和离群值等,以保证数据的可靠性和可用性。
三、描述统计描述统计是对数据进行总结和描述的方法。
常用的描述统计方法包括中心趋势度量和离散程度度量。
中心趋势度量包括平均数、中位数和众数等,用于描述数据的集中程度;离散程度度量包括标准差、方差和范围等,用于描述数据的分散程度。
另外,描述统计还可以通过绘制图表来展示数据的分布和关系。
常用的图表包括条形图、饼图、直方图和散点图等,它们能够直观地展示数据的特征和趋势。
四、推断统计推断统计是基于样本数据对总体进行推断的方法。
在统计推断中,我们通过对样本数据的分析来对总体参数进行估计,并对估计结果进行推断。
常用的推断统计方法包括假设检验和置信区间。
假设检验是用来检验某个假设是否成立的统计方法。
在假设检验中,我们先提出一个原假设和一个备择假设,然后利用样本数据进行假设检验,从而得出对原假设的结论。
置信区间是对总体参数的一个范围估计。
统计学基础知识
![统计学基础知识](https://img.taocdn.com/s3/m/fd0b220ed0d233d4b04e6923.png)
一、数据的特征值(一)数据的位置特征值 1)平均值如果从总体中抽取一个样本,得到一批数据x 1,x 2,x 3….x n ,则样本的平均值x 为:n-数据个数; x i -第i 个数据数; ∑-求和。
2)中位数有时,为减少计算,将数据x 1,x 2,x 3….x n 按大小次序排列,用位居于正中的那个数或中间两个数的平均值(当数据为偶数时)表示数据的总体平均水平。
3)中值M 测定值中的最大值x max 与最小值x min 的平均值,用M 表示。
4)众数在用频数分布表示测定值时,频数最多的值即为众数。
若测定值按区间做频数分布时,频数最多的区间代表值(一般取区间中值)也称众数。
(二)数据的离散特征值 1)极差R测定值中的最大值x max 与最小值x min 之差称为极差。
通常R 用于个数n 小于10的情况下,n 大于10时,一般采用标准偏差s 表示。
2)偏差平方和S 各测定值x i 与平均值 之差称为偏差。
各测定值的偏差平方和称为偏差平方和,简称平方和,用S 表示。
无偏方差各个测定值的偏差平方和除以(n-1)后所得的值称为无偏方差(简称方差),用s 2表示:~x _x _x ∑=--=-=n i i x x n n S s12_2)(1112_2_22_1)(...)()(x x x x x x n -+-+-∑=-ni i x x 12_)(S = =标准偏差s2(三)变异系数以上反映数据离散程度的特征值,只反映产品质量的绝对波动大小。
在工程实践中,测量较大的产品,绝对误差一般较大,反之亦然。
因此要考虑相对波动的大小,在统计技术上上式中σ和μ为总体均值和总体标准差,当过程在受控状态下,且样本容差较大时,可用样本标准差s 和样本均值 估计。
_xCa、Cp、Cpk的计算过程准确度指数(Ca值):表示过程特性中心位置的偏移程度,越小越好Ca=(样本平均值-规格中心值)/(规格公差/2)等级A:|Ca|≦12.5% 表示作业员遵守作业规范,并达规格要求等级B :12.5%< |Ca|≦25% 表示必要时尽可能提升至A级等级C:25%< |Ca|≦50% 表示作业员可能看错或未按标准作业,或须修改规格及作业标准。
统计学知识点
![统计学知识点](https://img.taocdn.com/s3/m/a0477719abea998fcc22bcd126fff705cc175c87.png)
统计学知识点统计学是一门研究收集、整理、分析和解释数据的学科。
它在各个领域都扮演着重要的角色,无论是科学研究、商业决策还是政府政策制定,都需要用到统计学的知识。
本文将介绍一些基础的统计学知识点,包括数据类型、概率、统计量和假设检验等。
一、数据类型在统计学中,数据可以分为两种类型:定性数据和定量数据。
1. 定性数据定性数据是用来描述事物特征的数据,通常是以文字形式呈现的。
例如,人们对一部电影的评价可以用“好看”、“一般”和“不喜欢”等词语来描述。
2. 定量数据定量数据是用数量来表示的数据,可以进行数值计算和比较。
例如,一个班级的学生身高可以用具体的厘米数来表示。
二、概率概率是研究随机事件发生可能性的数学分支。
在统计学中,概率与实际观察到的结果之间存在着关系。
常见的概率分布包括正态分布、二项分布和泊松分布等。
1. 正态分布正态分布,也称为高斯分布,是统计学中最重要的概率分布之一。
它的特点是钟形曲线,均值、标准差决定了曲线的位置和形状。
正态分布在自然界中很常见,如身高和体重等。
2. 二项分布二项分布用于描述重复进行独立实验的结果。
每次实验只有两种可能的结果,成功或失败。
例如,抛硬币的结果就符合二项分布。
3. 泊松分布泊松分布用于描述在一个给定的时间跨度内,某事件发生的次数。
例如,某个地区一天内的交通事故数量就可以用泊松分布来描述。
三、统计量统计量是用来从样本数据推断总体特征的数值指标。
常见的统计量包括均值、方差和相关系数等。
1. 均值均值是一组数据的平均值,用于表示数据的集中趋势。
它可以通过将所有数据相加然后除以数据的个数来计算得到。
2. 方差方差是数据离均值的平方差的平均值,用于表示数据的离散程度。
方差越大,数据点越分散。
3. 相关系数相关系数用于衡量两个变量之间的线性相关程度。
它的取值范围在-1到1之间,绝对值越接近1表示两个变量的相关性越强。
四、假设检验假设检验是统计学中用来对总体参数进行推断的方法。
统计学知识点(完整)
![统计学知识点(完整)](https://img.taocdn.com/s3/m/6aaf7194fab069dc5122012a.png)
基本统计方法第一章概论1. 总体(Population):根据研究目的确定的同质对象的全体(集合);样本(Sample):从总体中随机抽取的部分具有代表性的研究对象。
2. 参数(Parameter):反映总体特征的统计指标,如总体均数、标准差等,用希腊字母表示,是固定的常数;统计量(Statistic):反映样本特征的统计指标,如样本均数、标准差等,采用拉丁字字母表示,是在参数附近波动的随机变量。
3. 统计资料分类:定量(计量)资料、定性(计数)资料、等级资料。
第二章计量资料统计描述1. 集中趋势:均数(算术、几何)、中位数、众数2. 离散趋势:极差、四分位间距(QR=P75-P25)、标准差(或方差)、变异系数(CV)3. 正态分布特征:①X轴上方关于X=μ对称的钟形曲线;②X=μ时,f(X)取得最大值;③有两个参数,位置参数μ和形态参数σ;④曲线下面积为1,区间μ±σ的面积为68.27%,区间μ±1.96σ的面积为95.00%,区间μ±2.58σ的面积为99.00%。
4. 医学参考值范围的制定方法:正态近似法:;百分位数法:P2.5-P97.5。
第三章总体均数估计和假设检验1. 抽样误差(Sampling Error):由个体变异产生、随机抽样造成的样本统计量与总体参数的差异。
抽样误差不可避免,产生的根本原因是生物个体的变异性。
2. 均数的标准误(Standard error of Mean, SEM):样本均数的标准差,计算公式:。
反映样本均数间的离散程度,说明抽样误差的大小。
3. 降低抽样误差的途径有:①通过增加样本含量n;②通过设计减少S。
4. t分布特征:①单峰分布,以0为中心,左右对称;②形态取决于自由度ν,ν越小,t值越分散,t分布的峰部越矮而尾部翘得越高;③当ν逼近∞,逼近, t分布逼近u分布,故标准正态分布是t分布的特例。
5. 置信区间(Confidence Interval, CI):按预先给定的概率(1-α)确定的包含总体参数的一个范围,计算公式:或。
统计学基础知识点总结
![统计学基础知识点总结](https://img.taocdn.com/s3/m/7518cb012a160b4e767f5acfa1c7aa00b52a9dc5.png)
统计学基础知识点总结1.数据与变量数据是指收集到的一组数字或符号,而变量是指可以变化的数值。
在统计学中,常用的变量类型有两种:定量变量和定性变量。
定量变量是用数字表示的,如身高、体重等;而定性变量是用非数字表示的,如性别、血型等。
2.数据的描述在统计学中,常用的描述性统计方法有中心趋势度量和离散程度度量。
中心趋势度量包括均值、中位数和众数,用来衡量数据的集中程度;离散程度度量包括极差、方差和标准差,用来衡量数据的分散程度。
3.概率与概率分布概率是指在一定条件下某事件发生的可能性,它是统计学中的重要概念。
概率分布是用来描述随机变量可能取值的分布情况的概率分布函数,常见的概率分布有正态分布、均匀分布、二项分布和泊松分布等。
4.统计推断统计推断是指根据样本数据对总体特征进行推断的方法,它包括点估计和区间估计两种方法。
点估计是通过样本数据估计总体参数的数值,而区间估计是通过样本数据估计总体参数的范围。
5.假设检验假设检验是统计学中用来检验总体参数假设的方法,它包括参数假设检验和非参数假设检验两种。
参数假设检验是对总体参数的假设进行检验,常用的方法有t检验、F检验等;非参数假设检验是对总体分布形式的假设进行检验,常用的方法有卡方检验、秩和检验等。
6.相关性与回归分析相关性是指两个变量之间的关系程度,常用的相关性指标有Pearson相关系数和Spearman秩相关系数;回归分析是用来分析自变量与因变量之间的关系的方法,常用的回归分析方法有一元线性回归分析和多元线性回归分析。
7.贝叶斯统计学贝叶斯统计学是一种基于贝叶斯定理的统计学方法,它与频率统计学有所不同。
在贝叶斯统计学中,统计推断是基于先验概率和似然函数进行的,而不是基于频率分布进行的。
8.实验设计实验设计是指在统计实验中如何设计实验方案,以达到准确、可靠、有效地进行统计分析的目的。
常用的实验设计方法有完全随机设计、区组设计和受试者设计等。
以上就是统计学基础知识点的总结,通过学习这些知识点,可以帮助人们更好地理解和应用统计学在各种领域中的实际问题。
统计学---知识要点
![统计学---知识要点](https://img.taocdn.com/s3/m/ee2d55f8d05abe23482fb4daa58da0116c171f9c.png)
统计学---知识要点知识结构1. 掌握统计学的几个基本概念(1)总体:所谓总体,是指研究所关注的全部单元组成的集合。
(2)总体单位:即构成总体的每一个单元。
(3)标志:总体单位的特征,分为品质标志和数量标志。
品质标志只能用文字表示,数量标志只能用数字表示。
(4)指标:数量标志汇总之后就成为指标。
指标只能用数字表示,可相加。
(如,我国2009年国民生产总值为3335353亿元)指标分为数量指标和质量指标,数量指标一般用绝对数表示;质量指标一般用相对数或者平均数表示。
质量指标一般以倍数、系数、% 结尾且不带单位。
(5)变量:一般可以分为连续变量和离散变量两种。
连续变量可分割,可用小数表示,如身高、体重、降雨量、土地面积、金额等;离散变量不可分割,不能用小数表示,如职工人数、设备台数等。
2.数据类型P7(1)数据可以分为定性数据和定量数据。
定性数据用文字表示,定量数据用数字表示。
(2)定性数据又可分为定类数据(不能排序)和定序数据(可排序,如满意度数据)(3)实验数据、观察数据;截面数据、历时数据(略)3. 抽样方法P9(1)简单随机抽样(2)分层抽样:分层抽样后的数据可以排列大小,如:优秀、一般、差;老年、中年、青年;100-200元、200-300元、300-400元等。
(3)整群抽样:整群抽样一般以当下划分的标准进行,如地域:广东、广西、河南、山东等;如企业性质:国有企业、中外合资、私人企业等(4)等距抽样(也叫系统抽样)4. 统计学的研究对象为数据。
知识要点一、构建频数分布表(1)定性频数分布表P15-16(2)定量频数分布表,理解等距分组与不等距分组P18-20(3)若某组上限与邻组的下限重合,采用“上限不在本组”原则。
二、组中值(1)组中值=(上限+下限)/ 2(2)缺上限开口组的组中值=下限+ (相邻组的组距/2)缺下限开口组的组中值=上限—(相邻组的组距/2)例题1.在进行组距式分组时,凡遇到某单位的标志值正好等于相邻两组上下限的数值时,一般是()A.将此值归入上限所在组B.将此值归入下限所在组C.将此值归入上限或下限所在组均可D.另行分组选【B】例题2.某连续变量,其末组为“500”以上,又知其邻组的下限为400,则末组的组中值为()A.600B.450C.500D.550选【D】三、集中趋势和离散程度P271.平均数可以用来表示一组数列的集中趋势,包括众数、中位数和均值(算数平均数、调和平均数、几何平均数),其中,众数和中位数是位置平均数。
统计学基础知识
![统计学基础知识](https://img.taocdn.com/s3/m/2e3d1598d05abe23482fb4daa58da0116c171faf.png)
统计学基础知识一、概述统计学是一门研究收集、整理、分析和解释数据的学科。
它在科学研究、决策制定和社会经济发展中发挥着重要的作用。
本文将介绍统计学的基础知识,包括数据类型、数据收集和整理、统计分析方法等内容。
二、数据类型1. 定性数据定性数据是用描述性词语或符号表示的数据,不能进行数学计算。
例如,性别、国籍、喜好等。
在统计分析中,常用频数和比例来描述定性数据。
2. 定量数据定量数据是用数值表示的数据,可以进行数学计算。
例如,身高、体重、温度等。
在统计分析中,可以使用中心趋势和离散程度等统计指标来描述定量数据。
三、数据收集1. 抽样调查抽样调查是从总体中选择一部分样本进行观测和测量,以推断总体的特征。
常见的抽样方法有随机抽样、系统抽样和分层抽样等。
2. 观察法观察法是通过观察和记录来收集数据,常用于实地调查和实验研究中。
观察法可以采用自然观察、人工观察和实验观察等方式。
四、数据整理1. 数据清理数据清理是指对收集到的数据进行检查、删除错误和不完整数据以及处理缺失值的过程。
数据清理可以提高数据的质量和可靠性。
2. 数据编码数据编码是将收集到的原始数据转化为适合计算机处理的形式。
常用的数据编码方法有数值编码、字符编码和二进制编码等。
五、统计分析方法1. 描述统计描述统计是指根据数据的分布特征,从集中趋势、离散程度和分布形状等角度描述和概括数据。
常用的描述统计方法有频数分布、直方图、均值和标准差等。
2. 推断统计推断统计是指使用样本数据对总体进行统计推断,从而得出结论。
常用的推断统计方法有假设检验、置信区间和方差分析等。
六、应用场景统计学广泛应用于各个领域,如市场调研、医学研究、经济决策等。
统计学可以帮助整理并分析数据,为决策提供科学依据。
七、总结统计学是一门重要的学科,掌握基础知识对于正确理解和应用统计分析方法至关重要。
本文介绍了统计学中的基础知识,包括数据类型、数据收集和整理、统计分析方法等内容。
通过学习和运用统计学,我们可以更好地理解和解释数据,为科学研究和社会发展提供支持。
统计学基础知识要点
![统计学基础知识要点](https://img.taocdn.com/s3/m/38917ef15acfa1c7ab00cc68.png)
统计学基础知识要点第一章:引言1,什么是统计?统计方法可以分为哪两类?统计学是收集、分析、表达和解释数据的科学。
统计方法可分为描述性统计平方值根据收集方法,观察数据是在没有人为控制的情况下获得的。
通过控制实验对象收集的数据。
根据所描述的对象和一个地区所有人口的平均年龄,“平均年龄”是一个参数。
统计是用于描述样本特征的一般数字度量例如,应该调查一个地区所有人口的平均年抽样方法和推断统计方法。
2.统计数据可以分为哪些类型?不同类型数据的特征是什么?根据不同的测量尺度分为分类数据、顺序数据和数值数据。
根据统计数据的收集方法,分为观测数据和实验数据。
根据所描述的对象与时间的关系,将其分为区间数据和时间序列数据。
根据测量尺度,分时:在分数数据中,不同类别之间有一个相等的并列,不同类别之间的顺序可以任意改变;序列数据可以在类别之间进行比较。
数值数据结果表明,具体数字是分时的:截面数据描述了某一时刻现象的变化;时间序列数据描述了现象随时间的变化。
3,举例说明人口、样本、参数、统计和变量的概念。
群体是一个集合,包括所有被研究的个体。
例如,如果你想检查一批灯泡的使用寿命,那这组灯泡就是整体。
样本是从群体中提取的一些元素的集合。
例如,从一批灯泡中随机选择100个灯泡,这100个灯泡形成一个样本参数是用于描述总体特征的通用数值度量。
例如,为了调查256岁以上岁的人,样本中的“平均年龄”是一个统计数字。
变量是说明现象某些特征的概念。
例如,商品的销售额是不确定的,它是变量。
第2章:数据收集1。
调查计划包括哪些方面?调查的目的是实现调查的具体目标。
调查对象和单位是根据调查目的确定的总体或调查范围。
调查项目和问卷是解决调查内容的。
2年,间接数据来源(次要数据)主要是公开发表或公开报道的数据;数据的直接来源是调查或观察和实验3.统计调查方法:抽样调查、普查、统计报表等。
抽样调查是从调查对象的人群中随机选取一部分单间房间之间的空隙。
统计学基础知识考点概述
![统计学基础知识考点概述](https://img.taocdn.com/s3/m/f22d8780d4bbfd0a79563c1ec5da50e2534dd17f.png)
统计学基础知识考点概述统计学是一门研究数据收集、分析和解释的学科,它在各个领域都有着广泛的应用。
无论是商业决策、医学研究还是社会科学调查,统计学都扮演着重要的角色。
在统计学的学习中,掌握一些基础知识是至关重要的。
本文将概述一些统计学基础知识的考点。
一、数据类型在统计学中,数据可以分为两种类型:定量数据和定性数据。
定量数据是可以用数字表示的,如身高、体重等。
而定性数据则是描述性的,如性别、颜色等。
了解数据类型对于选择合适的统计方法和分析工具非常重要。
二、数据收集数据收集是统计学中的第一步。
常见的数据收集方法包括实地调查、问卷调查、实验等。
在数据收集过程中,要注意样本的选择和样本量的确定。
样本的选择应该具有代表性,能够反映总体的特征。
样本量的确定需要根据研究目的和可行性进行权衡。
三、描述统计描述统计是对数据进行整理、总结和展示的过程。
常见的描述统计方法包括频数分布、平均数、中位数、标准差等。
频数分布可以帮助我们了解数据的分布情况,平均数可以反映数据的集中趋势,标准差则衡量数据的离散程度。
四、概率与概率分布概率是统计学中的重要概念,它描述了一个事件发生的可能性。
概率可以用数字表示,范围从0到1。
概率分布是概率的分布情况,常见的概率分布包括正态分布、泊松分布、二项分布等。
了解不同的概率分布可以帮助我们理解和分析实际问题。
五、参数估计与假设检验参数估计是通过样本数据来估计总体参数的过程。
常见的参数估计方法包括点估计和区间估计。
点估计给出了一个参数的单个值的估计,而区间估计则给出了一个参数的范围估计。
假设检验是用来检验一个关于总体参数的假设是否成立的方法。
假设检验可以帮助我们做出统计推断和决策。
六、回归分析与方差分析回归分析是研究变量之间关系的方法。
它可以用来预测一个变量对其他变量的影响。
常见的回归分析方法包括线性回归和多元回归。
方差分析是用来比较两个或多个总体均值是否存在显著差异的方法。
它可以帮助我们确定因素对总体均值的影响。
统计基础的知识点总结
![统计基础的知识点总结](https://img.taocdn.com/s3/m/33c06fa04bfe04a1b0717fd5360cba1aa8118c88.png)
统计基础的知识点总结统计学是一门研究数据收集、分析、解释和展示的科学。
它是各种学科中的重要基础,如经济学、医学、社会学、心理学等。
统计学广泛应用于各种领域,从商业到政府,从科学研究到医学诊断。
本文将对统计学的基础知识点进行总结,包括数据类型、数据收集、描述统计、概率、推断统计等内容。
一、数据类型1. 根据变量的性质,数据可以分为定量数据和定性数据。
定量数据是用数字表示,并且可以进行各种数学运算,如年龄、身高、成绩等;定性数据是用描述性词语表示的,如性别、颜色、好坏等。
2. 根据数据的测量尺度,数据可以分为名义数据、序数数据、区间数据和比率数据。
名义数据是表示对象不同之处的,仅表明事物的种类,如性别、颜色等;序数数据是数据的排列顺序有意义的,如学历、职位等;区间数据表示数据之间的间隔是有意义的,但没有零点,如温度;比率数据是有意义的零点,可以进行比较的,如比率、百分数等。
二、数据收集1. 数据的收集方式主要包括调查、实验和观察。
调查是采用问卷、访谈等方式获取信息;实验是通过控制变量来观察和测量影响结果的因素;观察是直接观察对象的状态和行为来获取数据。
2. 数据的收集过程中需要考虑样本的选择、样本量的确定、数据的准确性和可靠性等因素。
三、描述统计描述统计是研究数据分布的综合统计分析方法,主要包括中心趋势和离散程度两个方面。
1. 中心趋势主要包括均值、中位数和众数。
均值是所有数据的平均值,具有良好的代表性;中位数是将数据按大小排序后位于中间的数值;众数是数据集中出现频率最高的值。
2. 离散程度主要包括极差、方差和标准差。
极差是最大值与最小值之差;方差是各个数据与均值的差的平方和的平均值;标准差是方差的平方根,用来度量数据的波动程度。
四、概率概率是统计学中的一个重要概念,用来描述事物发生的可能性。
概率的计算方法主要包括古典概率、几何概率和条件概率。
1. 古典概率是指事件发生的概率等于有利事件的数量除以样本空间的数量,即P(A) =n(A)/n(S)。
统计学基础必学知识点
![统计学基础必学知识点](https://img.taocdn.com/s3/m/756ec198b04e852458fb770bf78a6529657d3558.png)
统计学基础必学知识点1. 数据的类型:数据可以分为定量数据和定性数据。
定量数据是以数字形式表示的数据,可以进行运算和统计分析,例如身高、体重等;定性数据是以非数字形式表示的数据,通常是描述性的,例如性别、颜色等。
2. 数据的分布:数据的分布描述了数据的值在取值上的分布情况。
常见的数据分布有正态分布、均匀分布、偏态分布等。
3. 描述统计学:描述统计学是研究如何使用统计方法来描述和总结数据的学科。
常用的描述性统计方法包括测量中心趋势的平均数、中位数、众数,以及测量数据分散程度的标准差、方差等。
4. 统计推断:统计推断是研究如何利用样本数据对总体进行推断的学科。
常用的统计推断方法包括参数估计和假设检验。
参数估计是利用样本数据估计总体参数的值,例如利用样本均值估计总体均值;假设检验是对总体参数假设进行推断的方法,例如检验总体均值是否等于某个特定值。
5. 概率:概率是描述事件发生可能性的数值,介于0和1之间。
概率论是研究随机现象的数学理论。
常用的概率计算方法包括计数法、频率法、几何法等。
6. 抽样方法:抽样是从总体中选择部分个体进行观察和分析的方法。
常用的抽样方法包括随机抽样、系统抽样、整群抽样等。
7. 参数和统计量:参数是指总体的某种特征值,例如总体均值、总体方差等;统计量是根据样本数据计算得到的总体参数的估计值,例如样本均值、样本方差等。
8. 假设检验:假设检验是通过比较样本数据与给定假设之间的差异来判断假设是否成立的方法。
常用的假设检验方法有正态总体均值的检验、两个总体均值的检验、总体方差的检验等。
9. 相关分析:相关分析是研究两个或多个变量之间关系的方法。
常用的相关分析方法包括皮尔逊相关系数、斯皮尔曼相关系数等。
10. 回归分析:回归分析是研究变量之间关系的方法,可以用于预测和解释变量之间的关联关系。
常用的回归分析方法包括简单线性回归分析、多元线性回归等。
以上是统计学基础中的一些必学知识点,通过学习和掌握这些知识点,可以帮助我们理解和分析数据,从而做出科学的统计推断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章:导论1、什么就是统计学?统计方法可以分为哪两大类?统计学就是收集、分析、表述与解释数据的科学。
统计方法可分为描述统计方法与推断统计方法。
2、统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照所采用的计量尺度不同,分为分类数据、顺序数据与数值型数据;按照统计数据的收集方法,分为观测的数据与实验的数据;按照被描述的对象与时间的关系,分为截面数据与时间序列数据。
按计量尺度分时:分数数据中各类别之间就是平等的并列关系,各类别之间的顺序就是可以任意改变的;顺序数据的类别之间就是可以比较顺序的;数值型数据其结果表现为具体的数值。
按收集方法分时:观测数据就是在没有对事物进行人为控制的条件下等到的;实验数据的在实验中控制实验对象而收集到的数据。
按被描述的对象与时间关系分时:截面数据所描述的就是现象在某一时刻的变化情况;时间序列数据所描述的就是现象随时间而变化的情况。
3、举例说明总体、样本、参数、统计量、变量这几个概念。
总体就是包含研究的全部个体的集合。
比如要检验一批灯泡的使用寿命,这一批灯泡构成的集合就就是总体。
样本就是从总体中抽取的一部分元素的集合。
比如从一批灯泡中随机抽取100个,这100个灯泡就构成了一个样本。
参数就是用来描述总体特征的概括性数字度量。
比如要调查一个地区所有人口的平均年龄,“平均年龄”即为一个参数。
统计量就是用来描述样本特征的概括性数字度量。
比如要抽样调查一个地区所有人口的平均年龄,样本中的“平均年龄”即为一个统计量。
变量就是说明现象某种特征的概念。
比如商品的销售额就是不确定的,这销售额就就是变量。
第二章:数据的收集1、调查方案包括哪几个方面的内容?调查目的,就是调查所要达到的具体目标。
调查对象与调查单位,就是根据调查目的确定的调查研究的总体或调查范围。
调查项目与调查表,要解决的就是调查的内容。
2、数据的间接来源(二手数据)主要就是公开出版或公开报道的数据;数据的直接来源一就是调查或观察,二就是实验。
3、统计调查方式:抽样调查、普查、统计报表等。
抽样调查就是从调查对象的总体中随机抽取一部分单位作为样本进行调查,并根据样本调查结果来推断总体数量特征的一种数据收集方法。
特点:经济性,时效性强,适应面广,准确性高。
普查就是为某一特定目的而专门组织一次性全面调查。
我国进行的普查主要有人中普查、工业普查、农业普查等。
统计报表就是按照国家有关法规的规定,自上而下地统一布置、自下而上地逐级提供基本统计数据的一种调查方式。
除此之外,还有重点调查与典型调查。
4、统计数据的误差通常就是指统计数据与客观现实之间的差距,误差的主要类型有抽样误差与非抽样误差两类。
抽样误差主要就是指在样本数据进行推断时所产生的随机误差(无法消除);非抽样误差就是人为因素造成的(理论上可以消除)5、统计数据的质量评价标准:精度,即最低的抽样误差或随机误差;准确性,即最小的非抽样误差或偏差;关联性,即满足用户决策、管理与研究的需要;及时性,即在最短的时间里取得并公布数据;一致性,即保持时间序列的可比性;最低成本,即在满足以上标准的前提下,以最经济的方式取得数据。
6、数据的收集方法分为询问调查与观察实验。
7、统计调查方案包括哪些内容?调查目的即调查所要达到的具体目标;调查对象与调查单位,调查对象就是根据调查目的确定的调查研究的总体或调查范围,调查单位就是构成调查对象中的每一个单位;调查项目与调查表,就就是调查的具体内容;其它问题,即明确调查所采用的方式与方法、调查时间及调查组织与实施细则。
第三章:数据整理与展示1、对于通过调查取得的原始数据,应主要从完整性与准确性两个方面去审核。
2、对分类数据与顺序数据主要就是做分类整理,对数值型数据则主要就是做分组整理。
3、数据分组的步骤:确定组数、组距,最后制成频数分布表统计分组时“上组限不在内”,相邻两组组限间断,上限值采用小数点。
组中值=(下限值+上限值)/24、频数:落在各类别中的数据个数;频数分布指把各个类别及落在其中的相应频数全部列出,并用表格形式表现出来;比例:某一类别数据占全部数据的比值;百分比:将对比的基数作为100而计算的比值;比率:不同类别数值的比值;分类数据的图示包括条形图与饼图。
5、直方图与条形图的差别:条形图就是用条形的长度表示各类别频数的多少,宽度则就是固定的,直方图就是用面积表示各组频数的多少,矩形的高度表示每一组的频数或频率,宽度则表示各组的组距,因此其高度与宽度均有意义。
其次,直方图的各矩形通常就是连续排列,而条形图则就是分开排列。
最后,条形图主要用于展示分类数据,而直方图则主要用于展示数值型数据。
第四章:数据分布特征的测度1、一组数据的分布特征可以从哪几个方面进行测度?一就是分布的集中趋势反映各数据向其中心值靠拢或聚集的程度;二就是分布的离散程度,反映各数据据远离其中心值的趋势;三就是分布的形状,反映数据分布偏斜程度与峰度。
2、简述众数、中位数与均值的特点与应用场合及关系。
众数就是一组数据分布的峰值,不受极端值的影响,缺点就是具有不唯一性。
众数主要作为分类数据的集中趋势测度值。
中位数就是一组数据中间位置上的代表值,不受数据极端值的影响。
中位数以及其她分位数主要适合于作为顺序数据的集中趋势测度值。
均值就是就数值型数据计算的,具有优良的数学性质,缺点就是易受数据极端值的影响。
均值主要适合于作为数值型数据的集中趋势测度值。
关系:如果数据的分布就是对称的,众数、中位数与均值必定相等,即Mo=Me=xbar;如果数据就是左偏分布,说明数据存在极小值,三者之间的关系表现为:xbar <Me <Mo;如果数据就是右偏公布,说明数据存在极大值,必然拉动均值向极大值一方靠,则Mo <Me <xbar(图)3、为什么要计算离散系数?第一,极差、平均差、方差与标准差等都就是反映数据分散程度的绝对值,其数值的大小取决于原变量值本身水平高低的影响。
第二,它们与原变量值的计量单位相同,采用不同计量单位计量的变量值,其离散程度的测度值也就不同。
因此,为消除变量值水平高低与计量单位不同对离散程度的测度值的影响,需要计算离散系数。
4、均值就是集中趋势的最主要测度值,它主要适用于数值型数据,而不适用于分类数据与顺序数据。
5、四分位差主要用于测度顺序数据的离散程度,数值型数据也可以计算四分位差,但不适合于分类数据。
6、方差就是各变量值与其均值离差平方的平均数。
方差的平方根就是标准差。
方差、标准差计算公式(分组数据、未分组数据两种,自己写)样本方差与标准差计算公式(同上)7、对于分类数据,主要用异众比率来测度其离散程度;对于顺序数据,主要用四分位差来测度其离散程度;对于数值型数据,主要用方差或标准差来测度其离散程度。
8、经验法则:68%-1;95%-2;99%-3第五章:抽样与参数估计1、常用的概率抽样方法主要有:简单随机抽样,分层抽样,系统抽样,整群抽样2、置信水平(P115)第七章:相关与回归分析1、解释相关关系的含义,并说明其特点。
相关关系就是变量与变量之间存在的不确定的数量关系。
特点就是:一个变量的取值不能由另一个变量唯一确定,当变量x 取某个值时,变量y 的取值可能有几个。
2、简述相关系数的取值及其意义,并说明相关程度的几种情况。
相关系数-1≤r ≤1 。
若0≤r ≤1 ,表明x 与y 之间存在正线性相关关系;若-1≤r <0 ,表明x 与y 之间存在负线性相关关系;若r =1,表明x 与y 之间为完全正线性相关关系;若r =-1 ,表明x 与y 之间为完全负线性相关关系。
|r |≥0、8时,可视为高度相关;0、5≤|r |<0、8时,可视为中度相关;0、3≤|r |<0、5时,视为低度相关;当|r |<0、3时,说明两个变量之间的相关程度极弱。
3、解释回归模型、回归方程、估计的回归方程的含义回归模型就是描述因变量y 如何依赖于自变量x 与误差项的方程。
回归方程就是描述因变量y 的期望值如何依赖于自变量x 的方程。
估计的回归方程就是利用最小二乘法,根据样本数据求出的回归方程的估计。
4、简述参数最小二乘估计的基本原理。
x y 10ˆˆˆββ+= 这一公式的x 与y 的n 对观察值,用于描述其关系的直线有多条,用距离观测点最近的一条直线,用它来表示x 与y 之间的关系与实际数据的误差比其它任何直线都小。
根据这一思想确定直线中未知常数0ˆβ与1ˆβ的方法称为最小二乘法,即:最小=--=-∑∑==n i i i n i i x yy y 121012)ˆˆ()ˆ(ββ5、简述判定系数的含义与作用回归平方与占总平方与的比例,称为判定系数。
它测度了回归直线对观测数据的拟合程度,它反映了在因变量y 的总变量差中由于x 与y 之间的线性关系所解释的比例。
第八章:时间序列分析与预测1、利用增长率分析时间序列时应注意哪些问题?首先,当时间序列中的观察值出现0或负数时,不宜计算增长率;其次,在有些情况下,不能单纯就增长率论增长率,要注意增长率与绝对水平的结合分析。
第九章:指数1、什么就是指数?它有哪些性质?反映复杂现象在不同场合下综合变动的一种特殊相对数,称为指数。
性质:相对性;综合性;平均性;动态与静态兼有的特性。
2、指数有哪些类型?根据对比场合不同,分为动态指数与静态指数;根据指数研究对象的范围不同,分为个体指数与总指数。
;根据编制方法的不同,总指数分为综合指数与平均指数;根据指数反映的性质不同,分为质量指数、数量指数;根据比较时所采用的基期不同,分为定基指数与环比指数;根据计算采用权数与否,分为简单指数与加权指数。