2017年高考数学复习:两个平面的位置关系_考前复习

合集下载

空间几何中的平面与平面的位置关系

空间几何中的平面与平面的位置关系

空间几何中的平面与平面的位置关系在空间几何中,平面与平面的位置关系是一项重要的研究内容。

平面是一个无限大的二维空间,由无数个点组成,而两个平面之间的位置关系可以分为三种基本情况:平行、相交、重合。

本文将对这三种平面与平面的位置关系逐一进行说明。

一、平行的平面两个平行的平面是指在空间中永远不会相交的两个平面。

平行的平面具有以下特点:1. 平行平面之间的任意两个点之间的距离相等。

2. 平行的平面在空间中永远不会相交,它们之间始终保持一定的距离。

3. 平行平面之间的夹角为零度。

以图示的方式,可以更直观地理解平行平面的位置关系:(插入示意图)二、相交的平面两个相交的平面是指在空间中有一条直线可以同时属于这两个平面。

相交的平面具有以下特点:1. 相交平面之间的夹角不为零度,可以是锐角、直角或钝角。

2. 相交的平面在相交的直线上具有共同的点。

3. 相交的平面之间没有交点。

相交平面的位置关系可以通过以下图示来说明:(插入示意图)三、重合的平面两个重合的平面是指在空间中完全重合的两个平面,它们的所有点都是重合的。

重合的平面具有以下特点:1. 重合平面之间的夹角为零度。

2. 重合的平面在空间中完全重合,它们的每个点都是重合的。

3. 重合的平面在位置上无区别,可以互换位置。

重合平面的位置关系可以通过以下图示来说明:(插入示意图)综上所述,空间几何中的平面与平面的位置关系主要可以分为平行、相交和重合三种情况。

通过对这三种关系的理解,我们可以更好地理解和应用空间几何的知识,为实际问题的求解提供帮助。

高考数学一轮总复习教学课件第八章 平面解析几何第2节 两条直线的位置关系

高考数学一轮总复习教学课件第八章 平面解析几何第2节 两条直线的位置关系


过点(1, ),和 A,B 等距离的直线与 AB 平行,或过 AB 的中点 M,


所以所求直线的方程为 y- = (x-1)或 x=1,即 21x-28y-13=0 或 x=1.

考点三
对称问题
角度一
轴对称
[例3] 已知点A(0,2),直线l1:x-y-1=0,直线l2:x-2y+2=0.点A关于
则a=
2
,b=
-2
.
解析:将P(2,1)分别代入直线l1:x+ay-4=0与l2:bx-y+5=0的方程可
得a=2,b=-2.
5.两条平行线4x+3y-1=0与8x+6y+3=0之间的距离是


.
解 析 : 直 线 4x+3y-1=0 可 化 为 8x+6y-2=0, 直 线 8x+6y-2=0 与 直 线

B.

C.


D.



解析:由题意3(a-1)+1×(-a)=0,解得 a= .故选B.
3.已知点P(3,1)到直线l:x+ay-3=0的距离为
解析:由点到直线的距离公式得
|+-|
+



,则a=

±
=,解得 a=± .
.
4.若直线l 1 :x+ay-4=0与直线l 2 :bx-y+5=0的交点坐标是P(2,1),
斜率等于零.
(3)直线的一般式中有关结论记忆时要利用直线Ax+By+C=0
(A2+B2≠0)的一个法向量v=(A,B),一个方向向量a=(-B,A),并结合

空间点、直线、平面之间的位置关系5题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测

空间点、直线、平面之间的位置关系5题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测

专题32空间点、直线、平面之间的位置关系5题型分类1.基本事实1:过不在一条直线上的三个点,有且只有一个平面.基本事实2:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内.基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.基本事实4:平行于同一条直线的两条直线平行.2.“三个”推论推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.3.空间中直线与直线的位置关系异面直线:不同在任何一个平面内,没有公共点.4.空间中直线与平面、平面与平面的位置关系图形语言符号语言公共点直线与平面相交a ∩α=A 1个平行a ∥α0个在平面内a ⊂α无数个平面与平面平行α∥β0个相交α∩β=l 无数个5.等角定理如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补.6.异面直线所成的角(1)定义:已知两条异面直线a ,b ,经过空间任一点O 分别作直线a ′∥a ,b ′∥b ,我们把直线a ′与b ′所成的角叫做异面直线a 与b 所成的角(或夹角).(2),π2.常用结论1.过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.2.分别在两个平行平面内的直线平行或异面.(一)共面、共线、共点问题的证明(1)共面:先确定一个平面,然后再证其余的线(或点)在这个平面内.(2)共线:先由两点确定一条直线,再证其他各点都在这条直线上.(3)共点:先证其中两条直线交于一点,再证其他直线经过该点(1)E ,F ,G ,H 四点共面;(1)证明E ,F ,G ,H 四点共面;(2)证明GE ,FH ,1BB 相交于一点.1-3.(2024高三·全国·专题练习)如图所示,在正方体(1)求证:1CE D F DA ,,三线交于点(2)在(1)的结论中,G 是D (二)(1)点、直线、平面位置关系的判定,注意构造几何体(长方体、正方体)模型来判断,常借助正方体为模型.(2)求异面直线所成角的方法方法解读平移法将异面直线中的某一条平移,使其与另一条相交,一般采用图中已有的平行线或者作平行线,形成三角形求解补形法在该几何体的某侧补接上同样一个几何体,在这两个几何体中找异面直线相应的位置,形成三角形求解题型2:空间位置关系的判断都相交,则直线A .2GH EF=C .直线EF ,GH 是异面直线2-3.【多选】(2024·湖北荆门A .若l αβ= ,A α∈B .若A ,B ,C 是平面C .若A α∈且B α∈,则直线D .若直线a α⊂,直线2-4.(2024·上海长宁·二模)如图,已知正方体则下列命题中假命题为(A .存在点P ,使得PQ ⊥B .存在点P ,使得//PQ AC .直线PQ 始终与直线CC(1)直线AF 与直线DE 相交;(2)直线CH 与直线DE 平行;(3)直线BG 与直线DE 是异面直线;(4)直线CH 与直线BG 成3-2.(2024高三·全国·课后作业)已知正四面体小为.3-3.(2024高三·河北·学业考试)如图直线1A E 与BF 所成角的大小为3-4.(2024高一下·北京·期末)如图,等腰梯形112BC CD DA AB ====,则直线3-5.(2024高三·全国·对口高考)线段AB 的两端分别在直二面角CD αβ--的两个面αβ、内,且与这两个面都成30︒角,则直线AB 与CD 所成的角等于.(三)空间几何体的切割(截面)问题(1)作截面应遵循的三个原则:①在同一平面上的两点可引直线;②凡是相交的直线都要画出它们的交点;③凡是相交的平面都要画出它们的交线.(2)作交线的方法有如下两种:①利用基本事实3作交线;②利用线面平行及面面平行的性质定理去寻找线面平行及面面平行,然后根据性质作出交线.A .177B .134-2.(2024·河南·模拟预测)在正方体确的个数为()①//MN 平面11AAC C ;②MN①异面直线1D D与AF所成角可以为②当G为中点时,存在点③当E,F为中点时,平面④存在点G,使点C与点则上述结论正确的是(A.①③B.②④4-5.(2024·新疆·二模)已知在直三棱柱BC=,432AC=,如图所示,若过的面积为()(四)等角定理的应用空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.一、单选题-如图所示,则直线PC()1.(2024高三·北京·学业考试)四棱锥P ABCDA.与直线AD平行B.与直线AD相交C .与直线BD 平行D .与直线BD 是异面直线2.(2024·广东)若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是A .l 与1l ,2l 都相交B .l 与1l ,2l 都不相交C .l 至少与1l ,2l 中的一条相交D .l 至多与1l ,2l 中的一条相交3.(2024高一·全国·课后作业)若直线l 在平面α外,则l 与平面α的公共点个数为()A .0B .0或1C .1D .24.(2024·上海·模拟预测)如图,正方体1111ABCD A B C D -中,P Q R S 、、、分别为棱1AB BC BB CD 、、、的中点,连接11A S B D 、,对空间任意两点M N 、,若线段MN 与线段11A S B D 、都不相交,则称M N 、两点可视,下列选项中与点1D 可视的为()A .点PB .点QC .点RD .点B5.(2024高二上·四川乐山·期末)若直线l 与平面α有两个公共点,则l 与α的位置关系是()A .l ⊂αB .//l αC .l 与α相交D .l α∈6.(2024高二上·上海静安·阶段练习)设A B C D 、、、是某长方体四条棱的中点,则直线AB 和直线CD 的位置关系是().A .相交B .平行C .异面D .无法确定7.(2024高三·全国·专题练习)如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线()A.12对B.24对C.36对D.48对8.(2024高三·全国·专题练习)三棱柱各面所在平面将空间分成不同部分的个数为()A.18B.21C.24D.279.(2024高一·全国·课后作业)平面α上有三个不共线点到平面β距离相等,则平面α与平面β的位置关系是()A.相交B.平行C.垂直D.相交或平行10.(2024高一·全国·课前预习)下列命题中正确的是()A.一个平面内三条直线都平行于另一平面,那么这两个平面平行B.如果一个平面内所有直线都平行于另一个平面,那么这两个平面平行C.平行于同一直线的两个平面一定相互平行D.如果一个平面内有几条直线都平行于另一平面,那么这两个平面平行G N M H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或11.(2024高三·全国·专题练习)如图中,,,,GH MN是异面直线的图形有()所在棱的中点,则表示直线,A.①③B.②③C.②④D.②③④12.(2024高三上·内蒙古赤峰·阶段练习)已知直线l和平面α,若lα∥,Pα∈,则过点P且平行于l的直线().A.只有一条,不在平面α内B.只有一条,且在平面α内C.有无数条,一定在平面α内D.有无数条,不一定在平面α内13.(2024高三·全国·专题练习)将图(1)中的等腰直角三角形ABC沿斜边BC的中线AD折起得到空间四面体ABCD,如图(2),则在空间四面体ABCD中,AD与BC的位置关系是()A .相交且垂直B .相交但不垂直C .异面且垂直D .异面但不垂直14.(2024高三上·吉林长春·期末)如图,在底面为正方形的棱台1111ABCD A B C D -中,E 、F 、G 、H 分别为棱1CC ,1BB ,CF ,AF 的中点,对空间任意两点M 、N ,若线段MN 与线段AE 、1BD 都不相交,则称点M 与点N 可视,下列选项中与点D 可视的为()A .1B B .FC .HD .G15.(2024·全国)在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π616.(上海市曹杨中学2023-2024学年高二上学期期中数学试题)如图,在正方体1111ABCD A B C D -中,点P 是线段11A C 上的动点,下列与BP 始终异面的是()A .1DDB .AC C .1AD D .1B C17.(2024·福建福州·三模)在底面半径为1的圆柱1OO 中,过旋转轴1OO 作圆柱的轴截面ABCD ,其中母线AB =2,E 是弧BC 的中点,F 是AB 的中点,则()A .AE =CF ,AC 与EF 是共面直线B .AE CF ≠,AC 与EF 是共面直线C .AE =CF ,AC 与EF 是异面直线D .AE CF ≠,AC 与EF 是异面直线18.(2024高二下·广西桂林·期中)已知直线m ⊂平面α,则“平面α∥平面β”是“m ∥β”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件19.(2024·新疆阿克苏·一模)已知M ,N ,P 是正方体1111ABCD A B C D -的棱AB ,1AA ,1CC 的中点,则平面MNP 截正方体1111ABCD A B C D -所得的截面是()A .三角形B .四边形C .五边形D .六边形20.(2023届上海春季高考练习)如图,P 是正方体1111ABCD A B C D -边11AC 上的动点,下列哪条边与边BP 始终异面()A .1DDB .AC C .1AD D .1B C21.(2024高二上·浙江杭州·期末)已知空间三条直线,,l m n ,若l 与m 异面,且l 与n 异面,则()A .m 与n 异面B .m 与n 相交C .m 与n 平行D .m 与n 异面、相交、平行均有可能22.(2024高三·全国·专题练习)下列命题中正确的个数为()①若ABC ∆在平面α外,它的三条边所在的直线分别交α于P Q R 、、,则P Q R 、、三点共线.②若三条直线a b c 、、互相平行且分别交直线l 于、、A B C 三点,则这四条直线共面;③空间中不共面五个点一定能确定10个平面.A .0B .1C .2D .323.(2024高三·全国·专题练习)下列结论正确的是()A .两个平面α,β有一个公共点A ,就说α,β相交于过A 点的任意一条直线.B .两两相交的三条直线最多可以确定三个平面.C .如果两个平面有三个公共点,则这两个平面重合.D .若直线a 不平行于平面α,且a ⊄α,则α内的所有直线与a 异面.24.(2024高三·全国·专题练习)给出下列说法:①梯形的四个顶点共面;②三条平行直线共面;③有三个公共点的两个平面重合;④三条直线两两相交,可以确定1个或3个平面.其中正确的序号是()A .①B .①④C .②③D .③④25.(2024·上海浦东新·一模)已知直线l 与平面α相交,则下列命题中,正确的个数为()①平面α内的所有直线均与直线l 异面;②平面α内存在与直线l 垂直的直线;③平面α内不存在直线与直线l 平行;④平面α内所有直线均与直线l 相交.A .1B .2C .3D .426.(2024高一·全国·课后作业)直线l 是平面α外的一条直线,下列条件中可推出//l α的是A .l 与α内的一条直线不相交B .l 与α内的两条直线不相交C .l 与αD .l 与α内的任意一条直线不相交27.(2024高三下·上海·阶段练习)如图所示,正三棱柱111ABC A B C -的所有棱长均为1,点P 、M 、N 分别为棱1AA 、AB 、11A B 的中点,点Q 为线段MN 上的动点.当点Q 由点N 出发向点M 运动的过程中,以下结论中正确的是()A .直线1C Q 与直线CP 可能相交B .直线1C Q 与直线CP 始终异面C .直线1C Q 与直线CP 可能垂直D .直线1C Q 与直线BP 不可能垂直28.(2024高三下·上海浦东新·阶段练习)已知正方体1111ABCD A B C D -中,M ,N ,P 分别是棱11A D ,11D C ,AB 的中点,Q 是线段MN 上的动点,则下列直线中,始终与直线PQ 异面的是()A .1AB B .1BC C .1CAD .1DD 29.(2024高一上·全国·专题练习)M ∈l ,N ∈l ,N ∉α,M ∈α,则有A .l ∥αB .l ⊂αC .l 与α相交D .以上都有可能30.(2024高三上·重庆沙坪坝·期中)在棱长为3的正方体1111ABCD A B C D -中,点Р是侧面11ADD A 上的点,且点Р到棱1AA 与到棱AD 的距离均为1,用过点Р且与1BD 垂直的平面去截该正方体,则截面在正方体底面ABCD 的投影多边形的面积是()A .92B .5C .132D .831.(2024高三下·上海闵行·阶段练习)在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为AB ,BC 的中点,对于如下命题:①异面直线1DD 与1B F ②点P 为正方形1111D C B A 内一点,当//DP 平面1B EF 时,DP 的最小值为322;③过点1D ,E ,F 的平面截正方体1111ABCD A B C D -所得的截面周长为1B BEF -的所有顶点都在球O 的表面上时,球O .则正确的命题个数为()A .1B .2C .3D .432.(2024高三·全国·对口高考)如图,正方体1111ABCD A B C D -的棱长为P 在对角线1BD 上,过点P 作垂直于1BD 的平面α,记这样得到的截面多边形(含三角形)的周长为y ,设BP x =,则当[]1,5x ∈时,函数()y f x =的值域为()A .36,66⎡⎤⎣⎦B .6,26⎡⎣C .(6D .(0,36二、多选题33.(2024高一下·辽宁营口·阶段练习)有下列命题:①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.其中正确命题是()A .①B .②C .③D .④34.(2024高一下·江苏苏州·阶段练习)下列命题中错误的是()A .空间三点可以确定一个平面B .三角形一定是平面图形C .若A ,B ,C ,D 既在平面α内,又在平面β内,则平面α和平面β重合D .四条边都相等的四边形是平面图形35.(2024·河北廊坊·模拟预测)我们知道,平面几何中有些正确的结论在空间中不一定成立.下面给出的平面几何中的四个真命题,在空间中仍然成立的有()A .平行于同一条直线的两条直线必平行B .垂直于同一条直线的两条直线必平行C .一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补D .一个角的两边分别垂直于另一个角的两边,那么这两个角相等或互补36.(2024高一下·陕西西安·期中)如图所示,在正方体1111ABCD A B C D -中,M ,N 分别为棱11C D ,1C C 的中点,则下列四个结论正确的是()A .直线AM 与1CC 是相交直线B .直线AM 与BN 是平行直线C .直线BN 与1MB 是异面直线D .直线AM 与1DD 是异面直线37.(2024高一·全国·课后作业)下列结论中正确的是()A .若两个平面有一个公共点,则它们有无数个公共点B .若已知四个点不共面,则其中任意三点不共线C .若点A 既在平面α内,又在平面β内,则α与β相交于b ,且点A 在b 上D .任意两条直线不能确定一个平面38.(2024高三·全国·专题练习)如图,已知正方体1111ABCD A B C D -的棱长为2,设P ,Q 分别为11A B ,1DD 的中点,则过点P ,Q 的平面α截正方体所得截面的形状可能为()A .三角形B .四边形C .五边形D .六边形39.(2024高一下·湖北武汉·期末)当三个平面都平行时,三个平面可将空间分成4个部分,那么三个平面还可将空间分成()部分.A .5B .6C .7D .840.(2024高三下·山东日照·阶段练习)如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E 、F ,且12EF =,则下列结论中正确的是()A .线段11B D 上存在点E 、F 使得//AE BF B .//EF 平面ABCDC .AEF △的面积与BEF △的面积相等D .三棱锥A -BEF 的体积为定值三、填空题41.(2024高三·全国·专题练习)给出下列四个命题:①平面外的一条直线与这个平面最多有一个公共点;②若平面α内的一条直线a 与平面β内的一条直线b 相交,则α与β相交;③若一条直线和两条平行线都相交,则这三条直线共面;④若三条直线两两相交,则这三条直线共面.其中真命题的序号是.42.(2024高一下·全国·课后作业)已知直线MN ⊥平面α于N ,直线NP MN ⊥,则NP 与平面α的关系是.43.(2024高一·全国·课后作业)如图,把下列图形的点、线、面的关系,用集合的语言表述:(1);(2);(3).44.(2024高一下·黑龙江齐齐哈尔·期末)已知空间中两个角α,β,且角α与角β的两边分别平行,若70α=︒,则β=.45.(2024高二下·上海虹口·期末)在空间,如果两个不同平面有一个公共点,那么它们的位置关系为.46.(2024高三下·重庆渝中·阶段练习)空间四边形的对角线互相垂直且相等,顺次连接这个四边形各边中点,所组成的四边形是.47.(2024高二上·上海徐汇·阶段练习)如图,在长方体ABCD -A 1B 1C 1D 1中,(1)直线A 1B 与直线D 1C 的位置关系是;(2)直线A 1B 与直线B 1C 的位置关系是;(3)直线D 1D 与直线D 1C 的位置关系是;(4)直线AB 与直线B 1C 的位置关系是.48.(2024高二上·上海徐汇·阶段练习)设A ∠和B ∠的两边分别平行,若45A ∠=︒,则B ∠的大小为.49.(2024高一·全国·课后作业)“直线l 与平面α没有公共点”是“l α∥”的条件.50.(2024高一下·全国·课后作业)在底面为正六边形的六棱柱中,互相平行的面视为一组,则共有组互相平行的面,与其中一个侧面相交的面共有个.52.(2024高一·全国·单元测试)若直线a 与平面α内无数条直线平行,则a 与α的位置关系是.53.(2024高二上·上海奉贤·阶段练习)如图,将正方体沿交于一顶点的三条棱的中点截去一小块,八个顶“阿基米德多面体”,则异面直线AB 与CD 所成角的大小是四、解答题54.(2024高一·全国·课后作业)已知:l ⊂α,D α∈,∈A l ,B l ∈,C l ∈,D l ∉.求证:直线,,AD BD CD 共面于α.55.(2024高一·全国·课后作业)如图,ABCD 为空间四边形,点E ,F 分别是AB ,BC 的中点,点G ,H 分别在CD ,AD 上,且13DH AD =,13DG CD =.(1)求证:E ,F ,G ,H 四点共面;(2)求证:EH ,FG 必相交且交点在直线BD 上.56.(2024高一下·北京·期末)如图,在正方体1111ABCD A B C D -中,E 是棱1CC 上一点,且1:1:2CE EC =.(1)试画出过1,,D A E 三点的平面截正方体1111ABCD A B C D -所得截面α;(2)证明:平面1D AE 与平面ABCD 相交,并指出它们的交线.57.(2024高一·全国·课后作业)如图所示是一个三棱锥,欲过点P 作一个截面,使得截面与底面平行,该怎样在侧面上画出截线?58.(2024高一·全国·课后作业)59.(2024高一下·全国·课后作业)在直三棱柱ABC -A 1B 1C 1中,E ,F 分别为A 1B 1,B 1C 1的中点.求证:平面ACC 1A 1与平面BEF 相交.60.(2024高一上·安徽亳州·期末)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是AB 和AA 1的中点.求证:(1)E ,C ,D 1,F 四点共面;(2)CE ,D 1F ,DA 三线共点.61.(2024高三·全国·专题练习)如图,在空间四边形ABCD 中,,,,E F G H 分别在,,,AB AD BC CD 上,EG 与FH 交于点P ,求证:,,P A C 三点共线.62.(2024高二·全国·课后作业)如图所示,在正方体1111ABCD A B C D -中,,E F 分别是AB 和1AA 的中点,求证:四边形1FECD 为平面图形.63.(2024高一·全国·专题练习)如图所示,在空间四边形ABCD 中,E ,F 分别为AB ,AD 的中点,G ,H 分别在BC ,CD 上,且::1:2BG GC DH HC ==.求证:(1)E 、F 、G 、H 四点共面;(2)EG 与HF 的交点在直线AC 上.64.(2024高二·上海·专题练习)如图所示,在正方体1111ABCD A B C D -中.画出平面11ACC A 与平面1BC D 及平面1ACD 与平面1BDC 的交线.65.(2024高一·全国·专题练习)如图,直升机上一点P 在地面α上的正射影是点A (即PA ⊥α),从点P 看地平面上一物体B (不同于A ),直线PB 垂直于飞机玻璃窗所在的平面β.求证:平面β必与平面α相交.66.(2024高一·全国·专题练习)如图,已知平面,αβ,且l αβ= ,设在梯形ABCD 中,AD BC ∕∕,且,AB CD αβ⊂⊂.求证:,,AB CD l 共点.67.(2024高一下·河南信阳·期中)如图,在正方体1111ABCD A B C D -中,E ,F 分别是1,AB AA 上的点,且12,2A F FA BE AE ==.(1)证明:1,,,E C D F 四点共面;(2)设1D F CE O ⋂=,证明:A ,O ,D 三点共线.68.(2024高一下·陕西西安·期中)(1)已知直线a b ∥,直线l 与a ,b 都相交,求证:过a ,b ,l 有且只有一个平面;(2)如图,在空间四边形ABCD 中,H ,G 分别是AD ,CD 的中点,E ,F 分别是边AB ,BC 上的点,且13CF AE FB EB ==.求证:直线EH ,BD ,FG 相交于一点.。

高考数学(理科)一轮复习:单元八 立体几何 8.3 空间点、直线、平面之间的位置关系

高考数学(理科)一轮复习:单元八 立体几何 8.3 空间点、直线、平面之间的位置关系

正确;命题④中没有说清三个点是否共线,∴④不正确.
2
解析
关闭
答案
第八章
考点1 考点2 考点3
8.3
空间点、直线、平面之间的位置关系
关键能力
必备知识
-11-
考点 1
平面的基本性质及应用
例1
(1)如图所示,四边形ABEF和ABCD都是直角梯形,∠BAD= 1 1 ∠FAB=90°,BC= 2AD,BE= FA ,G,H分别为FA,FD的中点. 2 ①四边形BCHG的形状是 ; ②点C,D,E,F,G中,能共面的四点是 . (2)在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点 O,AC与BD交于点M,则点O与直线C1M的关系是 . 答案: (1)①平行四边形 ②C,D,E,F
关闭
只有B1C1与EF在同一平面内,是相交的.选项A,B,C中直线与EF都是异面 直线,故选D.
关闭
D
解析 答案
第八章
知识梳理 考点自测
8.3
空间点、直线、平面之间的位置关系
关键能力
必备知识
-8-
1
2
3
4
5
3.已知a,b是异面直线,直线c平行于直线a,则c与b ( A.一定是异面直线 B.一定是相交直线 C.不可能是平行直线 D.不可能是相交直线
)
关闭
由已知得,直线c与b可能为异面直线,也可能为相交直线,但不可能为平行 直线,若b∥c,则a∥b,与已知a,b为异面直线相矛盾.
关闭
C
解析 答案
第八章
知识梳理 考点自测
8.3
空间点、直线、平面之间的位置关系
关键能力
必备知识
-9-
1

高三数学一轮复习精品教案2:空间点、直线、平面之间的位置关系教学设计

高三数学一轮复习精品教案2:空间点、直线、平面之间的位置关系教学设计

第三节 空间点、直线、平面之间的位置关系考纲传真1.理解空间直线,平面位置关系的定义,并了解可以作为推理依据的公理和定理. 2.能运用公理,定理和已获得的结论证明一些空间图形的位置关系的简单命题.1.平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内. 公理2:过不共线的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间点、直线、平面之间的位置关系直线与直线直线与平面平面与平面平行 关系图形 语言符号 语言 a ∥ba ∥αα∥β相交 关系图形 语言符号 语言 a ∩b =Aa ∩α=Aα∩β=l 独有关系 图形 语言符号 语言a ,b 是异面直线a ⊂α3.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫做异面直线a 与b 所成的角.(2)范围:(0,π2』.4.平行公理平行于同一条直线的两条直线平行. 5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.1.(人教A 版教材习题改编)下列命题正确的个数为( )①梯形可以确定一个平面;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A .0B .1C .2D .3『解析』 ②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确.『答案』 C2.已知a 、b 是异面直线,直线c ∥直线a ,那么c 与b ( ) A .一定是异面直线 B .一定是相交直线 C .不可能是平行直线 D .不可能是相交直线『解析』 若c ∥b ,∵c ∥a ,∴a ∥b ,与a ,b 异面矛盾. ∴c ,b 不可能是平行直线. 『答案』 C3.平行六面体ABCD —A 1B 1C 1D 1中,既与AB 共面也与CC 1共面的棱的条数为( ) A .3 B .4 C .5 D .6『解析』 与AB 平行,CC 1相交的直线是CD 、C 1D 1;与CC 1平行、AB 相交的直线是BB 1,AA 1;与AB 、CC 1都相交的直线是BC ,故选C.『答案』 C4.(2013·宁波模拟)若直线l 不平行于平面α,且l ⊄α,则( ) A .α内的所有直线与l 异面 B .α内不存在与l 平行的直线 C .α内存在唯一的直线与l 平行 D .α内的直线与l 都相交『解析』 由题意知,直线l 与平面α相交,则直线l 与平面α内的直线只有相交和异面两种位置关系,因而只有选项B 是正确的.『答案』 B图7-3-15.(2012·四川高考)如图7-3-1,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱CD 、CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是________.『解析』 如图,取CN 的中点K ,连接MK ,则MK 为△CDN 的中位线,所以MK ∥DN .所以∠A 1MK 为异面直线A 1M 与DN 所成的角.连接A 1C 1,AM .设正方体棱长为4,则A 1K =(42)2+32=41,MK =12DN =1242+22=5,A 1M =42+42+22=6,∴A 1M 2+MK 2=A 1K 2,∴∠A 1MK =90°. 『答案』 90°平面的基本性质图7-3-2如图7-3-2所示,四边形ABEF 和ABCD 都是梯形,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? 『思路点拨』 (1)证明GH 綊BC 即可. (2)法一 证明D 点在EF 、CH 确定的平面内.法二 延长FE 、DC 分别与AB 交于M ,M ′,可证M 与M ′重合,从而FE 与DC 相交证得四点共面.『尝试解答』 (1)由已知FG =GA ,FH =HD , 得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 是平行四边形. (2)法一 由BE 綊12AF ,G 为F A 中点知BE 綊GF , ∴四边形BEFG 为平行四边形, ∴EF ∥BG . 由(1)知BG ∥CH , ∴EF ∥CH , ∴EF 与CH 共面.又D ∈FH ,∴C 、D 、F 、E 四点共面.法二 如图所示,延长FE ,DC 分别与AB 交于点M ,M ′, ∵BE 綊12AF ,∴B 为MA 中点, ∵BC 綊12AD ,∴B 为M ′A 中点,∴M 与M ′重合,即FE 与DC 交于点M (M ′), ∴C 、D 、F 、E 四点共面.,1.解答本题的关键是平行四边形、中位线性质的应用.2.证明共面问题的依据是公理2及其推论,包括线共面,点共面两种情况,常用方法有:(1)直接法:证明直线平行或相交,从而证明线共面.(2)纳入平面法:先确定一个平面,再证明有关点、线在此平面内.(3)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α、β重合.图7-3-3已知:空间四边形ABCD (如图7-3-3所示),E 、F 分别是AB 、AD 的中点,G 、H 分别是BC 、CD 上的点,且CG =13BC ,CH =13DC .求证:(1)E 、F 、G 、H 四点共面;(2)三直线FH 、EG 、AC 共点.『证明』 (1)连接EF 、GH , ∵E 、F 分别是AB 、AD 的中点, ∴EF ∥BD .又∵CG =13BC ,CH =13DC ,∴GH ∥BD , ∴EF ∥GH ,∴E 、F 、G 、H 四点共面.(2)易知FH 与直线AC 不平行,但共面, ∴设FH ∩AC =M ,∴M ∈平面EFHG ,M ∈平面ABC . 又∵平面EFHG ∩平面ABC =EG , ∴M ∈EG ,∴FH 、EG 、AC 共点.空间两条直线的位置关系图7-3-4(1)如图7-3-4,在正方体ABCD —A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列判断错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与A 1B 1平行(2)在图中,G 、N 、M 、H 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH 、MN 是异面直线的图形有________.(填上所有正确答案的序号)图7-3-5『思路点拨』(1)连接B1C,则点M是B1C的中点,根据三角形的中位线,证明MN ∥B1D1.(2)先判断直线GH、MN是否共面,若不共面再利用异面直线的判定定理判定.『尝试解答』(1)连接B1C,B1D1,则点M是B1C的中点,MN是△B1CD1的中位线,∴MN∥B1D1,∵CC1⊥B1D1,AC⊥B1D1,BD∥B1D1,∴MN⊥CC1,MN⊥AC,MN∥BD.又∵A1B1与B1D1相交,∴MN与A1B1不平行,故选D.(2)图①中,直线GH∥MN;图②中,G、H、N三点共面,但M∉面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G、M、N共面,但H∉面GMN,因此GH与MN异面.所以图②、④中GH与MN异面.『答案』(1)D(2)②④,1.判定空间两条直线是异面直线的方法(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点B的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.2.对于线线垂直,往往利用线面垂直的定义,由线面垂直得到线线垂直.3.画出图形进行判断,可化抽象为直观.图7-3-6如图7-3-6所示,正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论:①直线AM 与CC 1是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与MB 1是异面直线; ④直线MN 与AC 所成的角为60°.其中正确的结论为________(注:把你认为正确的结论序号都填上).『解析』 由图可知AM 与CC 1是异面直线,AM 与BN 是异面直线,BN 与MB 1为异面直线.因为D 1C ∥MN ,所以直线MN 与AC 所成的角就是D 1C 与AC 所成的角,且角为60°.『答案』 ③④异面直线所成的角图7-3-7(2012·上海高考改编题)如图7-3-7,在三棱锥P —ABC 中,P A ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,P A =2.求:(1)三棱锥P —ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.『思路点拨』 (1)直接根据锥体的体积公式求解.(2)取PB 的中点,利用三角形的中位线平移BC 得到异面直线所成的角.(或其补角) 『尝试解答』 (1)S △ABC =12×2×23=23,三棱锥P ­ABC 的体积为 V =13S △ABC ·P A =13×23×2=433.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =22+22-22×2×2=34.,1.求异面直线所成的角常用方法是平移法,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移. 2.求异面直线所成的角的三步曲为:即“一作、二证、三求”.其中空间选点任意,但要灵活,经常选择“端点、中点、等分点”,通过作三角形的中位线,平行四边形等进行平移,作出异面直线所成角,转化为解三角形问题,进而求解.3.异面直线所成的角范围是(0,π2』.直三棱柱ABC —A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°『解析』 分别取AB 、AA 1、A 1C 1的中点D 、E 、F ,则BA 1∥DE ,AC 1∥EF . 所以异面直线BA 1与AC 1所成的角为∠DEF (或其补角), 设AB =AC =AA 1=2,则DE =EF =2,DF =6,由余弦定理得,∠DEF =120°. 『答案』 C两种方法异面直线的判定方法:(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线.(2)反证法:证明两直线不可能平行、相交或证明两直线不可能共面,从而可得两直线异面.三个作用1.公理1的作用:(1)检验平面;(2)判断直线在平面内;(3)由直线在平面内判断直线上的点在平面内;(4)由直线的直刻画平面的平.2.公理2的作用:公理2及其推论给出了确定一个平面或判断“直线共面”的方法.3.公理3的作用:(1)判定两平面相交;(2)作两平面相交的交线;(3)证明多点共线.空间点、直线、平面的位置关系是立体几何的理论基础,高考常设置选择题或填空题,考查直线、平面位置关系的判断和异面直线所成的角的求法.在判断线、面位置关系时,有时可以借助常见的几何体做出判断.思想方法之十三借助正方体判定线面位置关系(2012·四川高考)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行『解析』如图,正方体ABCD—A1B1C1D1中,A1D与D1A和平面ABCD所成的角都是45°,但A1D与D1A不平行,故A错;在平面ABB1A1内,直线A1B1上有无数个点到平面ABCD的距离相等,但平面ABB1A1与平面ABCD不平行,故B错;平面ADD1A1与平面DCC1D1和平面ABCD都垂直,但两个平面相交,故D错,从而C正确.『答案』C易错提示:(1)盲目和平面内平行线的判定定理类比,从而误选A.(2)不会利用正方体作出判断,考虑问题不全面,从而误选B或D.防范措施:(1)对公理、定理的条件与结论要真正搞清楚,以便做到准确应用,类比得到的结论不一定正确,要想应用,必须证明.(2)点、线、面之间的位置关系可借助长方体为模型,以长方体为主线直观感知并认识空间点、线、面的位置关系,准确判定线线平行、线线垂直、线面平行、线面垂直、面面平行、面面垂直.1.(2013·济南模拟)l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1⊥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面『解析』如图长方体ABCD—A1B1C1D1中,AB⊥AD,CD⊥AD但有AB∥CD,因此A不正确;又AB∥DC∥A1B1,但三线不共面,因此C不正确;又从A出发的三条棱不共面,所以D不正确;因此B正确,且由线线平行和垂直的定义易知B正确.『答案』B2.(2012·大纲全国卷)已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么异面直线AE与D1F所成角的余弦值为________.『解析』连接DF,则AE∥DF,∴∠D1FD即为异面直线AE与D1F所成的角.设正方体棱长为a , 则D 1D =a ,DF =52a ,D 1F =52a , ∴cos ∠D 1FD =(52a )2+(52a )2-a 22·52a ·52a =35. 『答案』 35。

高考数学一轮复习两个平面的位置关系知识点

高考数学一轮复习两个平面的位置关系知识点

高考数学一轮复习两个平面的位置关系知识点两个平面的位置关系只有两种。

以下是查字典数学网整理的两个平面的位置关系知识点,请考生学习。

两个平面的位置关系:(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。

a、平行两个平面平行的判定定理:假如一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:假如两个平行平面同时和第三个平面相交,那么交线平行。

b、相交二面角(1)半平面:平面内的一条直线把那个平面分成两个部分,其中每一个部分叫做半平面。

(2)二面角:从一条直线动身的两个半平面所组成的图形叫做二面角。

二面角的取值范畴为[0,180](3)二面角的棱:这一条直线叫做二面角的棱。

(4)二面角的面:这两个半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

esp.两平面垂直两平面垂直的定义:两平面相交,假如所成的角是直二面角,就说这两个平面互相垂直。

记为两平面垂直的判定定理:假如一个平面通过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:假如两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,确实是训练幼儿的观看能力,扩大幼儿的认知范畴,让幼儿在观看事物、观看生活、观看自然的活动中,积存词汇、明白得词义、进展语言。

在运用观看法组织活动时,我着眼观看于观看对象的选择,着力于观看过程的指导,着重于幼儿观看能力和语言表达能力的提高。

Attention:死记硬背是一种传统的教学方式,在我国有悠久的历史。

但随着素养教育的开展,死记硬背被作为一种僵化的、阻碍学生能力进展的教学方式,慢慢为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。

数学 平面位置关系

数学 平面位置关系

§6.3平面与平面之间的位置关系一、疑难知识导析1.两个平面的位置关系关系的判定关键看有没有公共点.2.面面平行也是推导线面平行的重要手段;还要注意平行与垂直的相互联系,如:如果两个平面都垂直于同一条直线,则这两个平面平行;如果两条直线都垂直于一个平面,则这两条直线平行等.在证明平行时注意线线平行、线面平行及面面平行的判定定理和性质定理的反复运用. 3.对于命题“三个平面两两相交,有三条交线,则这三条交线互相平行或者相交于同一点.”要会证明.4.在证明垂直时注意线线垂直、线面垂直及面面垂直的判定定理和性质定理的反复运用. 5.注意二面角的范围是,找二面角的平面角时要注意与棱的垂直直线,这往往是二面角的平面角的关键所在.求二面角的大小还有公式,用的时候要进行交代.在二面角棱没有给出的情况下求二面角大小方法一:补充棱;方法二:利用“如果”;方法三:公式等,求二面角中解三角形时注意垂直(直角)、数据在不同的面上转换. 二、经典例题导讲[例1]一直线与直二面角的两个面所成的角分别为α,β,则α+β满足( ).A.α+β<900B.α+β≤900C.α+β>900D.α+β≥900正解:B.[例2].如图,△ABC 是简易遮阳棚,A ,B 是南北方向上两个定点,正东方向射出的太阳光线与地面成40°角,为了使遮阴影面ABD 面积最大,遮阳棚ABC 与地面所成的角应为( ). A .90° B .60° C .50° D .45° 正解:C[例3]已知正三棱柱ABC-A 1B 1C 1底面边长是10,高是12,过底面一边AB ,作与底面ABC 成角的截面面积是_____. 正解:[例4]点是边长为4的正方形的中心,点,分别是,的中点.沿对角线把正方形折成直二面角D -AC -B . (1)求的大小; (2)求二面角的大小..正解:(1)如图,过点E 作EG⊥AC,垂足为G ,过点F 作FH ⊥AC ,垂足为H ,则,.],0[πSS /cos =θγγβγαβα⊥⊥⊥⋂l l ,则,且=,S S /cos =θ060O ABCD E F AD BC AC ABCD EOF ∠E OF A --EG FH ==GH =因为二面角D -AC -B 为直二面角,又在中,,..(2)过点G 作GM 垂直于FO 的延长线于点M ,连EM .∵二面角D -AC -B 为直二面角,∴平面DAC ⊥平面BAC ,交线为AC ,又∵EG⊥AC,∴EG ⊥平面BAC .∵GM ⊥OF ,由三垂线定理,得EM ⊥OF .∴就是二面角的平面角. 在Rt EGM 中,,,,∴.∴. 所以,二面角的大小为[例5]如图,平面α∥平面β∥平面γ,且β在α、γ之间,若α和β的距离是5,β和γ的距离是3,直线和α、β、γ分别交于A 、B 、C ,AC =12,则AB = ,BC = . 解:作′⊥α,∵ α∥β∥γ,∴ ′与β、γ也垂直,′与α、β、γ分别交于A 1、B 1、C 1.因此,A 1B 1是α与β平面间的距离,B 1C 1是β与γ平 面间的距离,A 1C 1是α与γ之间的距离. ∴ A 1B 1=5,B 1C 1=3,A 1C 1=8,又知AC =12AB= , ,BC=.答:AB= ,BC = .[例6] 如图,线段PQ 分别交两个平行平面α、β于A 、B 两22222cos90EF GH EG FH EG FH ∴=++-⋅222012.=++-=EOF ∆2OE OF ==2221cos 22OE OF EF EOF OE OF +-∴∠===-⋅120EOF ∴∠=EMG ∠E OF A --∆90EGM ∠=EG =112GM OE ==tan EGEMG GM∠==EMG ∠=E OF A --l l l l ,1111C A B A ACAB =∴2158125=⨯1111C B B A BCAB =2953215=⨯21529点,线段PD 分别交α、β于C 、D 两点,线段QF 分别交α、β于F 、E 两点,若PA =9,AB =12,BQ =12,△ACF 的面积为72,求△BDE 的面积. 解:∵平面QAF ∩α=AF ,平面QAF ∩β=BE 又∵α∥β,∴ AF ∥BE同理可证:AC ∥BD.∴∠FAC 与∠EBD 相等成互补由FA ∥BE ,得:BE :AF =QB :QA =12:24=1:2,∴BE=由BD ∥AC ,得:AC :BD =PA :PB =9:21=3:7,∴BD=又∵△ACF 的面积为72,即=72S = =, 答:△BDE 的面积为84平方单位.[例7]如图,B 为ACD 所在平面外一点,M 、N 、G 分别为ABC 、ABD 、BCD的重心.(1)求证:平面MNG ∥平面ACD (2)求S :S解:(1)连结BM 、BN 、BG 并延长交AC 、AD 、CD 分别于P 、F 、H∵ M 、N 、G 分别为△ABC 、△ABD 、△BCD 的重心, 则有:连结PF 、FH 、PH 有MN ∥PF 又PF 平面ACD ∴ MN ∥平面ACD同理:MG ∥平面ACD ,MG ∩MN =M ∴ 平面MNG ∥平面ACD.(2)由(1)可知:∴MG=,又PH= ∴MG=,AF 21AC 37FAC AC AF ∠⋅⋅sin 21DBE ∆FAC AC AF EBD BD BE ∠⋅⋅⋅⋅=⋅⋅sin sin 372121218472sin 672167=⨯=∠⋅⋅⋅FAC AC AF ∆∆∆∆MNG ∆ADC ∆2===GHBG NFBN MPBM⊂32==BHBG PHMGPH 32AD 21AD 31同理:NG= , ∴ △MNG ∽△ACD ,其相似比为1:3 ∴S :S = 1:9[例8]如图,平面EFGH 分别平行于CD 、AB ,E 、F 、G 、H 分别在BD 、BC 、AC 、AD 上,且CD =a ,AB =b ,CD⊥AB. (1)求证:EFGH 是矩形.(2)求当点E 在什么位置时,EFGH 的面积最大.(1)证明:∵CD∥面EFGH,而面EFGH∩面BCD =EF.∴CD∥EF 同理HG∥CD.∴EF∥HG同理HE∥GF.∴四边形EFGH 为平行四边形 由CD∥EF,HE∥AB∴∠HEF 为CD 和AB 所成的角或其补角,又∵CD⊥AB.∴HE⊥EF.∴四边形EFGH 为矩形.(2)解:由(1)可知在△BCD 中EF∥CD,其中DE =m ,EB =n ∴由HE∥AB ∴又∵四边形EFGH 为矩形 ∴S 矩形EFGH =HE·EF=·b·a =ab ∵m+n≥2,∴(m +n )2≥4mn ∴≤,当且仅当m =n 时取等号,即E 为BD 的中点时, S 矩形EFGH =ab≤ab ,矩形EFGH 的面积最大为ab.点评:求最值时经常转化为函数求最值、不等式求最值、导数求最值、线性规划求最值等. 四、典型习题导练1. 山坡面α与水平面成30°的角,坡面上有一条公路AB 与坡角线BC 成45°的角,沿公路向上去1公里时,路基升高_____米.2. 过正方形ABCD 的顶点A 作线段PA⊥平面ABCD ,且PA=AB ,则平面ABP 与平面CDP 所成二面角(小于或等于90°)的度数是_____.CD MN AC 3131,=MNG ∆ADC ∆a n m nEF DB BE CD EF +=∴=,b nm mHE DB DE AB HE +==,n m m +n m n+2)(n m m n +mn 2)(n m m n +412)(n m m n +41∴413. 在60°二面角的棱上,有两个点A 、B ,AC 、BD 分别是在这个二面角的两个面内垂直于AB 的线段.已知:AB =4cm ,AC=6cm ,BD =8cm ,求CD 长.4.如图,过S 引三条长度相等但不共面的线段SA 、SB 、SC , 且∠ASB=∠ASC=60°,∠BSC=90°. 求证:平面ABC⊥平面BSC.5. 已知:如图,SA⊥平面ABC ,AB⊥BC,DE 垂直平分SC ,且分别交AC 、SC 于D 、E ,又SA=AB ,SB=BC ,求二面角E -BD -C 的度数.§6.4空间角和距离一、知识导学1.掌握两条异面直线所成的角、直线与平面所成的角及二面角,掌握上述三类空间角的作法及运算.2.掌握给出公垂线的两条异面直线的距离、点到直线(或平面)的距离、直线与平面的距离及两平行平面间距离的求法. 二、疑难知识导析1.求空间角的大小时,一般将其转化为平面上的角来求,具体地将其转化为某三角形的一个内角.2.求二面角大小时,关键是找二面角的平面角,可充分利用定义法或垂面法等. 3.空间距离的计算一般将其转化为两点间的距离.求点到平面距离时,可先找出点在平面内的射影(可用两个平面垂直的性质),也可用等体积转换法求之.另外要注意垂直的作用.球心到截面圆心的距离由勾股定理得4.球面上两点间的距离是指经过这两点的球的大圆的劣弧的长,关键在于画出经过两点的大圆以及小圆.5.要注意距离和角在空间求值中的相互作用,以及在求面积和体积中的作用. 三、经典例题导讲[例1] 平面外有两点A,B ,它们与平面的距离分别为a,b ,线段AB 上有一点P ,且AP:PB=m:n ,则点P 到平面的距离为_________________. 正解:.22r R d -=ααα|na mb mb nam n m n+-++或|[例2]与空间四边形ABCD 四个顶点距离相等的平面共有______个. 正解:7个.[例3]一个盛满水的三棱锥形容器,不久发现三条侧棱上各有一个小洞D 、E 、F ,且知SD :DA=SE :EB=CF :FS=2:1,若仍用这个容器盛水,则最多可盛原来水的( ) A.B. C. D. 正解:D.当平面EFD 处于水平位置时,容器盛水最多最多可盛原来水得1-[例4]斜三棱柱ABC-A 1B 1C 1的底面是边长为a 的正三角形,侧棱长等于b ,一条侧棱AA 1与底面相邻两边AB 、AC 都成450角,求这个三棱柱的侧面积.正解:过点B 作BM ⊥AA 1于M ,连结CM ,在△ABM 和△ACM 中,∵AB=AC ,∠MAB=∠MAC=450,MA 为公共边,∴△ABM ≌△ACM ,∴∠AMC=∠AMB=900,∴AA 1⊥面BHC ,即平面BMC 为直截面,又BM=CM=ABsin450=a ,∴BMC 周长为2x a+a=(1+)a ,且棱长为b ,∴S 侧=(1+)ab [例5]已知CA ⊥平面α,垂足为A ;AB α,BD ⊥AB ,且BD 与α成30°角;AC=BD=b ,AB=a.求C ,D 两点间的距离.解 : 本题应分两种情况讨论:(1)如下左图.C ,D 在α同侧:过D 作DF ⊥α,垂足为F.连BF ,则于是.根据三垂线定理BD ⊥AB 得BF ⊥AB.在Rt △ABF 中,AF=过D 作DE AC 于E ,则DE=AF ,AE=DF=.所以EC=AC-AE= b-=.故29232719313027232121sin 31sin 313131h ASB SB SA h DSE SE SD h S h S V V SAB SDE SABC SDE F ⋅∠⋅⋅⋅⋅∠⋅⋅⋅=⋅⋅=∴∆∆--27431323221=⋅⋅=⋅⋅=h h SB SE SA SD 2723274=222222,30=∠DBF 221bBD DF ==24322b a BF AB +=+⊥2b 2b2bCD=(2)如上右图.C ,D 在α两侧时:同法可求得CD=点 评: 本题是通过把已知量与未知量归结到一个直角三角形中,应用勾股定理来求解.[例6] (06年湖北卷)如图,在棱长为1的正方体中,是侧棱上的一点,.(1)试确定,使得直线与平面所成角的正切值为;(2)在线段上是否存在一个定点,使得对任意的,在平面上的射影垂直于. 并证明你的结论.解:解法一(1)连AC ,设AC 与BD 相交于点O,AP 与平面相交于点,,连结OG ,因为PC ∥平面,平面∩平面APC =OG,故OG ∥PC ,所以,OG =PC =. 又AO ⊥BD,AO ⊥BB1,所以AO ⊥平面, 故∠AGO 是AP 与平面所成的角.在Rt △AOG 中,tan AGO =,即m =.所以,当m =时,直线AP 与平面所成的角的正切值为(2)可以推测,点Q 应当是A I C I 的中点O 1,因为22243222222)(b a b a AF EC DE ECb +=++=+=+223b a +1111D C B A ABCD -p 1CC m CP =m AP 11B BDD 2311C A Q m Q D 11APD AP 11BDD B 11BDD B 11BDD B 212m11BDD B 11BDD B ∠23222==m GOOA313111BDD BD1O1⊥A1C1, 且D1O1⊥A1A ,所以D1O1⊥平面ACC1A1,又AP平面ACC1A1,故D1O1⊥AP.那么根据三垂线定理知,D1O1在平面APD1的射影与AP垂直。

高考数学大一轮复习配套课时训练:第七篇 立体几何 第3节 空间点、直线、平面的位置关系(含答案)

高考数学大一轮复习配套课时训练:第七篇 立体几何 第3节 空间点、直线、平面的位置关系(含答案)

第3节空间点、直线、平面的位置关系课时训练练题感提知能【选题明细表】A组一、选择题1.若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的( A )(A)充分非必要条件 (B)必要非充分条件(C)充分必要条件(D)既非充分又非必要条件解析:两直线异面⇒两直线没有公共点,反之不然,所以“两直线异面”是“这两直线没有公共点”的充分不必要条件,故选A.2.有以下命题:①若平面α与平面β相交,则它们只有有限个公共点;②经过一条直线和这条直线外的一点,有且只有一个平面;③经过两条相交直线有且只有一个平面;④两两相交且不共点的三条直线确定一个平面.其中,真命题的个数是( B )(A)4 (B)3 (C)2 (D)1解析:将四个命题一一验证知,只有①不正确,故选B.3.以下四个命题中,正确命题的个数是( B )①不共面的四点中,其中任意三点不共线;②若点A、B、C、D共面,点A、B、C、E共面,则A、B、C、D、E共面;③若直线a、b共面,直线a、c共面,则直线b、c共面;④依次首尾相接的四条线段必共面(A)0 (B)1 (C)2 (D)3解析:①中,假设存在三点共线,则这四点必共面,与题设矛盾,故①正确;②中,若A、B、C三点共线,则A、B、C、D、E有可能不共面,故②错误;③中,如图所示正方体的棱中,a、b共面,a、c共面,而b、c异面,故③错误;④中,空间四边形的四条线段不共面,故④错误,故选B.4.若两条直线和一个平面相交成等角,则这两条直线的位置关系是( D )(A)平行(B)异面(C)相交(D)平行、异面或相交解析:经验证,当平行、异面或相交时,均有两条直线和一个平面相交成等角的情况出现,故选D.5.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是( C )(A)直线AC(B)直线AB(C)直线CD(D)直线BC解析:∵D∈l,l⊂β,∴D∈β,又∵D∈AB,AB⊂平面ABC,∴D∈平面ABC,即D在平面ABC与平面β的交线上,又∵C∈平面ABC,C∈β,∴C在平面β与平面ABC的交线上.从而有平面ABC∩平面β=CD.故选C.6.已知A、B是两个不同的点,m、n是两条不重合的直线,α、β是两个不重合的平面,则①m⊂α,A∈m⇒A∈α;②m∩n=A,A∈α,B∈m⇒B ∈α;③m⊂α,n⊂β,m∥n⇒α∥β;④m⊂α,m⊥β⇒α⊥β.其中真命题为( C )(A)①③(B)②③(C)①④(D)②④解析:根据平面的性质,可知①正确,②中不能确定B∈α,③中α与β可能平行、也可能相交,④中根据面面垂直判定定理可知正确,故①④为真命题.故选C.7.(2013唐山统考)四棱锥P ABCD的所有侧棱长都为,底面ABCD是边长为2的正方形,则CD与PA所成角的余弦值为( B )(A) (B)(C)(D)解析: 如图在四棱锥P ABCD中,CD与PA所成的角即是AB与PA所成的角,即∠PAB,取AB中点M,连接PM.在Rt△PAM中,PA=,AM=1,所以cos∠PAB==.故选B.二、填空题8.下列命题中不正确的是.(填序号)①没有公共点的两条直线是异面直线;②分别和两条异面直线都相交的两直线异面;③一条直线和两条异面直线中的一条平行,则它和另一条直线不可能平行;④一条直线和两条异面直线都相交,则它们可以确定两个平面.解析:没有公共点的两直线平行或异面,故①错;如果与两异面直线中一条交于一点,则两直线相交,故命题②错;命题③:若c∥b,又c∥a,则a∥b,这与a,b异面矛盾,故c、b不可能平行,③正确;命题④正确,若c与两异面直线a,b都相交,由公理2可知,a,c可确定一个平面,b,c也可确定一个平面,这样a,b,c共确定两个平面.答案:①②9.对于空间三条直线,有下列四个条件:①三条直线两两相交且不共点;②三条直线两两平行;③三条直线共点;④有两条直线平行,第三条直线和这两条直线都相交.其中使三条直线共面的充分条件有.解析:易知①中的三条直线一定共面;三棱柱三侧棱两两平行,但不共面,故②错;三棱锥三侧棱交于一点,但不共面,故③错;④中两条直线平行可确定一个平面,第三条直线和这两条直线相交于两点,则第三条直线也在这个平面内,故三条直线共面.答案:①④10.下列如图所示的是正方体和正四面体,P、Q、R、S分别是所在棱的中点,则四个点共面的图形是.(填上图形的序号)解析: 图①中,由于PS∥QR,所以P、Q、R、S四点共面;图②中,如图,容易知道,PMQNRS为六边形,所以图②中四点共面;图③中,易证PQ RS,所以图③中四点共面;图④中,Q点所在棱与平面PRS平行,因此四点不共面.综上可知,四点共面的图形有①②③.答案:①②③11. 如图所示,在三棱锥A BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则当AC,BD满足条件时,四边形EFGH为菱形,当AC,BD满足条件时,四边形EFGH是正方形.解析:易知EH∥BD∥FG,且EH=BD=FG,同理EF∥AC∥HG,且EF=AC=HG,显然四边形EFGH为平行四边形.要使平行四边形EFGH为菱形需满足EF=EH,即AC=BD;要使四边形EFGH为正方形需AC⊥BD.答案:AC=BD AC⊥BD三、解答题12. 如图所示,在四面体ABCD中作截面PQR,若PQ、CB的延长线交于点M,RQ、DB的延长线交于点N,RP、DC的延长线交于点K,求证:M、N、K三点共线. 证明:∵M∈PQ,直线PQ⊂平面PQR,M∈BC,直线BC⊂平面BCD,∴M是平面PQR与平面BCD的一个公共点,即M在平面PQR与平面BCD的交线上.同理可证N、K也在平面PQR与平面BCD的交线上.又如果两个平面有一个公共点,那么它们有且只有一条过该点的公共直线,所以M、N、K三点共线.13.点A是△BCD所在平面外的一点,E、F分别是BC、AD的中点.(1)求证:直线EF与BD是异面直线;(2)若AC⊥BD,AC=BD,求EF与BD所成的角.(1)证明:假设EF与BD不是异面直线,则EF与BD共面,从而DF与BE共面,即AD与BC共面,所以A、B、C、D在同一平面内,这与A是△BCD所在平面外的一点相矛盾.故直线EF与BD是异面直线.(2)解:如图所示,取CD的中点G,连接EG、FG,则EG∥BD,FG∥AC,所以相交直线EF与EG所成的角即为异面直线EF与BD所成的角. 又由FG∥AC,AC⊥BD,AC=BD知△EGF为等腰直角三角形,则∠FEG=45°,即异面直线EF与BD所成的角为45°.B组14.将正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,E是CD 的中点,则异面直线AE与BC所成角的正切值为( A )(A) (B)(C)2 (D)解析:如图所示正方形ABCD及折叠后图形,取BD中点O,连接OE、AO,则OE∥BC,则∠AEO就是异面直线BC与AE所成的角(或其补角), 设正方形边长为2,则OE=1,AO=,由平面ABD⊥平面CBD,平面ABD∩平面CBD=BD,AO⊥DB,知AO⊥平面BDC,则AO⊥EO.在Rt△AOE中,tan∠AEO==.故选A.15. 如图所示,ABCD A1B1C1D1是长方体,AA1=a,∠BAB1=∠B1A1C1=30°,则AB与A1C1所成的角为,AA1与B1C所成的角为.解析:∵AB∥A1B1,∴∠B1A1C1是AB与A1C1所成的角,∴AB与A1C1所成的角为30°.∵AA1∥BB1,∴∠BB1C是AA1与B1C所成的角,由已知条件可以得出BB1=a,AB1=A1C1=2a,AB=a,∴B1C1=BC=a,∴四边形BB1C1C是正方形,∴∠BB1C=45°.答案:30°45°16. 如图所示 ,在四面体ABCD中,E、G分别为BC、AB的中点,F在CD上,H在AD上,且有DF∶FC=DH∶HA=2∶3.求证:EF、GH、BD交于一点.证明:连接GE,FH.因为E、G分别为BC、AB的中点,所以GE∥AC,且GE=AC,又因为DF∶FC=DH∶HA=2∶3,所以FH∥AC,且FH=AC.所以FH∥GE,且GE≠FH.所以E、F、H、G四点共面,且四边形EFHG是一个梯形.设GH和EF交于一点O.因为O在平面ABD内,又在平面BCD内,所以O在这两个平面的交线上.因为这两个平面的交线是BD,且交线只有这一条, 所以点O在直线BD上.这就证明了GH和EF的交点也在BD上,所以EF、GH、BD交于一点.。

高考数学二轮复习 第一部分 专题篇 专题四 立体几何 第二讲 空间点、线、面位置关系的判断课时作业

高考数学二轮复习 第一部分 专题篇 专题四 立体几何 第二讲 空间点、线、面位置关系的判断课时作业

2017届高考数学二轮复习第一部分专题篇专题四立体几何第二讲空间点、线、面位置关系的判断课时作业理1.(2016·正定摸底)已知直线a与平面α,β,α∥β,a⊂α,点B∈β,则在β内过点B的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一一条与a平行的直线解析:设直线a和点B所确定的平面为γ,则α∩γ=a,记β∩γ=b,∵α∥β,∴a ∥b,故存在唯一一条直线b与a平行.答案:D2.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:①若m∥l,且m⊥α,则l⊥α;②若m∥l,且m∥α,则l∥α;③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.其中正确命题的个数是( )A.1 B.2C.3 D.4解析:易知①正确;②错误,l与α的具体关系不能确定;③错误,以墙角为例即可说明;④正确,可以以三棱柱为例证明,故选B.答案:B3.如图所示,O为正方体ABCD­A1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是( )A.A1D B.AA1C.A1D1D.A1C1解析:由题意知,A1C1⊥平面DD1B1B,又OB1⊂面DD1B1B,所以A1C1⊥OB1,故选D.答案:D4.(2016·某某模拟)设m、n为两条不同的直线,α、β为两个不同的平面,给出下列命题:①若m⊥α,m⊥β,则α∥β;②若m∥α,m∥β,则α∥β;③若m∥α,n∥α,则m∥n;④若m⊥α,n⊥α,则m∥n.上述命题中,所有真命题的序号是( )A.①④B.②③C.①③D.②④解析:由线面垂直的性质定理知①④正确;平行于同一条直线的两个平面可能相交,也可能平行,故②错;平行于同一平面的两条直线可能平行,也可能相交或异面,故③错.选A. 答案:A5.如图,在三棱锥P­ABC中,不能证明AP⊥BC的条件是( )A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBC解析:A中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC,又BC⊂平面PBC,所以AP⊥BC,故A正确;C中,因为平面BPC⊥平面APC,BC⊥PC,所以BC⊥平面APC,AP⊂平面APC,所以AP⊥BC,故C正确;D中,由A知D正确;B中条件不能判断出AP⊥BC,故选B.答案:B6.如图,L,M,N分别为正方体对应棱的中点,则平面LMN与平面PQR的位置关系是( ) A.垂直B.相交不垂直C .平行D .重合 解析:如图,分别取另三条棱的中点A ,B ,C 将平面LMN 延展为平面正六边形AMBNCL ,因为PQ ∥AL ,PR ∥AM ,且PQ 与PR 相交,AL与AM 相交,所以平面PQR ∥平面AMBNCL ,即平面LMN ∥平面PQR .答案:C7.一个面截空间四边形的四边得到四个交点,如果该空间四边形的两条对角线与这个截面平行,那么此四个交点围成的四边形是________.解析:如图,由题意得AC ∥平面EFGH ,BD ∥平面EFGH .∵AC ⊂平面ABC ,平面ABC ∩平面EFGH =EF ,∴AC ∥EF ,同理AC ∥GH ,所以EF ∥GH .同理,EH ∥FG ,所以四边形EFGH 为平行四边形.答案:平行四边形8.(2016·某某模拟)如图,在正方体ABCD ­A 1B 1C 1D 1中,P 为棱DC 的中点,则D 1P 与BC 1所在直线所成角的余弦值等于________.解析:连接AD 1,AP (图略),则∠AD 1P 就是所求角,设AB =2,则AP =D 1P =5,AD 1=22,∴cos ∠AD 1P =12AD 1D 1P =105. 答案:1059.如图,在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,点E ,F 分别是棱BC ,CC 1的中点,P 是侧面BCC 1B 1内一点,若A 1P ∥平面AEF ,则线段A 1P 长度的取值X 围是________.解析:取B 1C 1中点M ,则A 1M ∥AE ;取BB 1中点N ,则MN ∥EF (图略),∴平面A 1MN ∥平面AEF .若A 1P ∥平面AEF ,只需P ∈MN ,则P 位于MN 中点时,A 1P 最短;当P 位于M 或N 时,A 1P 最长.不难求得A 1P 的取值X 围为⎣⎢⎡⎦⎥⎤324,52. 答案:⎣⎢⎡⎦⎥⎤324,52 10.(2016·某某模拟)如图,在四面体ABCD 中,平面BAD ⊥平面CAD ,∠BAD =90°.M ,N ,Q 分别为棱AD ,BD ,AC 的中点.(1)求证:CD ∥平面MNQ ;(2)求证:平面MNQ ⊥平面CAD .证明:(1)因为M ,Q 分别为棱AD ,AC 的中点,所以MQ ∥CD ,又CD ⊄平面MNQ ,MQ ⊂平面MNQ ,故CD ∥平面MNQ .(2)因为M ,N 分别为棱AD ,BD 的中点,所以MN ∥AB ,又∠BAD =90°,故MN ⊥AD .因为平面BAD ⊥平面CAD ,平面BAD ∩平面CAD =AD ,且MN ⊂平面ABD ,所以MN ⊥平面CAD ,又MN ⊂平面MNQ ,所以平面MNQ ⊥平面CAD .11.(2016·某某五校联考)如图,四棱锥P ­ABCD 中,底面ABCD 是菱形,PA =PD ,∠BAD =60°,E 是AD 的中点,点Q 在侧棱PC 上.(1)求证:AD ⊥平面PBE ;(2)若Q 是PC 的中点,求证:PA ∥平面BDQ ;(3)若V P ­BCDE =2V Q ­ABCD ,试求CP CQ的值.解析:(1)证明:由E 是AD 的中点,PA =PD 可得AD ⊥PE .又底面ABCD 是菱形,∠BAD =60°,所以AB =BD ,又因为E 是AD 的中点,所以AD ⊥BE ,又PE ∩BE =E ,所以AD ⊥平面PBE .(2)证明:连接AC (图略),交BD 于点O ,连接OQ .因为O 是AC 的中点, Q 是PC 的中点,所以OQ ∥PA ,又PA ⊄平面BDQ ,OQ ⊂平面BDQ ,(3)设四棱锥P ­BCDE ,Q ­ABCD 的高分别为h 1,h 2.所以V P ­BCDE =13S 四边形BCDE h 1, V Q ­ABCD =13S 四边形ABCD h 2.又因为V P ­BCDE =2V Q ­ABCD ,且S 四边形BCDE =34S 四边形ABCD ,所以CP CQ =h 1h 2=83. 12.(2016·某某模拟)一个正方体的平面展开图及该正方体直观图的示意图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N .(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由);(2)证明:直线MN ∥平面BDH ;(3)过点M ,N ,H 的平面将正方体分割为两部分,求这两部分的体积比.解析:(1)点F ,G ,H 的位置如图所示.(2)证明:连接BD ,设O 为BD 的中点,连接OM ,OH ,AC ,BH ,MN .∵M ,N 分别是BC ,GH 的中点,∴OM ∥CD ,且OM =12CD ,NH ∥CD ,且NH =12CD , ∴OM ∥NH ,OM =NH ,则四边形MNHO 是平行四边形,∴MN ∥OH ,又∵MN ⊄平面BDH ,OH ⊂平面BDH ,(3)由(2)知,OM∥NH,OM=NH,连接GM,MH,过点M,N,H的平面就是平面GMH,它将正方体分割为两个同高的棱柱,高都是GH,底面分别是四边形BMGF和三角形MGC,体积比等于底面积之比,即3∶1.。

备战高考数学复习考点知识与题型讲解52---空间点、直线、平面之间的位置关系

备战高考数学复习考点知识与题型讲解52---空间点、直线、平面之间的位置关系

备战高考数学复习考点知识与题型讲解第52讲空间点、直线、平面之间的位置关系考向预测核心素养考查与点、线、面位置关系有关的命题真假判断和求解异面直线所成的角,题型主要以选择题和填空题的形式出现,解题要求有较强的直观想象和逻辑推理等核心素养,主要为中低档题.直观想象、逻辑推理、数学抽象、数学运算一、知识梳理1.平面(1)四个基本事实基本事实1:过不在一条直线上的三个点,有且只有一个平面.基本事实2:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内.基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.基本事实4:平行于同一条直线的两条直线平行.(2)“三个”推论推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2.空间中直线与直线的位置关系(1)位置关系{共面直线{相交直线平行直线异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的角叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎥⎤0,π2.[注意]两直线垂直有两种情况——异面垂直和相交垂直.(3)空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间中直线、平面的位置关系位置关系符号直线和平面直线在平面内a ⊂α 直线在平面外直线与平面相交 a ∩α=A 直线与平面平行 a ∥α 平面和平面两平面平行 α∥β 两平面相交α∩β=l常用结论 1.异面直线的判定过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线. 2.几个唯一性结论(1)过直线外一点有且只有一条直线与已知直线平行; (2)过直线外一点有且只有一个平面与已知直线垂直; (3)过平面外一点有且只有一条直线与已知平面垂直. 二、教材衍化1.(多选)(人A 必修第二册P 128练习T 2改编)下列命题是假命题的是( ) A .空间任意三个点确定一个平面 B .一个点和一条直线确定一个平面 C .两两相交的三条直线确定一个平面 D .两两平行的三条直线确定三个平面 答案:ABCD 2.(多选)(人A必修第二册P132习题8.4T9改编)如图是一个正方体的展开图,如果将它还原为正方体,则下列说法正确的是( )A.AB与CD是异面直线B.GH与CD相交C.EF∥CDD.EF与AB异面解析:选ABC.把展开图还原成正方体,如图所示.还原后点G与C重合,点B与F重合,由图可知ABC正确,EF与AB相交,故D错误,选ABC.3.(人A必修第二册P132习题8.4T5改编)三个平面最多能把空间分为________部分,最少能把空间分成________部分.解析:三个平面可将空间分成4,6,7,8部分,所以三个平面最少可将空间分成4部分,最多分成8部分.答案:8 4一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若P∈α∩β且l是α,β的交线,则P∈l.( )(2)若直线a∩b=A,则直线a与b能够确定一个平面.( )(3)若A∈l,B∈l且A∈α,B∈α,则l⊂α.( )(4)分别在两个平面内的两条直线是异面直线.( )答案:(1)√(2)√(3)√(4)×二、易错纠偏1.(多选)(线面关系概念不清致误)若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是( )A.b⊂α B.b∥αC.b与α相交 D.以上都不对答案:ABC2.(对于直线与直线的位置关系考虑不全面致误)若a∥α,b∥β,α∥β,则a,b的位置关系是( )A.平行 B.异面C.相交 D.平行或异面或相交解析:选D.如图①②③所示,a,b的关系分别是平行、异面、相交.3.(异面直线所成的角概念理解不清致误)如图所示,在正方体ABCD­A1B1C1D1中,E,F 分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为( )A.30° B.45°C.60° D.90°解析:选C.连接B1D1,D1C(图略),则B1D1∥EF,故∠D1B1C或其补角为所求的角.又B 1D1=B1C=D1C,所以∠D1B1C=60°.考点一基本事实的应用(综合研析) 复习指导:理解四个基本事实的作用.(2022·上海市南洋模范中学月考)已知正方体ABCD­A1B1C1D1中,BD1与平面ACB1交于点P,设BD与AC相交于点O.求证:O.P∈直线B1【证明】因为BD1⊂平面BDD1B1,且BD1与平面ACB1交于点P,所以点P是平面BDD1B1与平面ACB1的公共点,因为平面BDD1B1∩平面ACB1=B1O,所以P∈直线B1O.共面、共线、共点问题的证明(1)证明共面的方法:①先确定一个平面,然后再证其余的线(或点)在这个平面内.②证两平面重合.(2)证明共线的方法:①先由两点确定一条直线,再证其他各点都在这条直线上.②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.|跟踪训练|1.(多选)如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点共面的图是( )解析:选ABC.对于A,PS∥QR,故P,Q,R,S四点共面;同理,B,C图中四点也共面;D中四点不共面.2.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是( )A.直线AC B.直线ABC.直线CD D.直线BC解析:选C.由题意知,D∈l,l⊂β,所以D∈β,又因为D∈AB,所以D∈平面ABC,所以点D在平面ABC与平面β的交线上.又因为C∈平面ABC,C∈β,所以点C在平面β与平面ABC的交线上,所以平面ABC∩平面β=CD.考点二空间位置关系的判断(自主练透)复习指导:认识和理解空间点、线、面的位置关系.1.若平面α和直线a,b满足a∩α=A,b⊂α,则a与b的位置关系是( ) A.相交 B.平行C.异面 D.相交或异面解析:选D.若A∈b,则a与b相交,若A∉b,则a与b异面,故选D.2.如图,在正方体ABCD­A1B1C1D1中,E,F分别为BC,BB1的中点,则下列直线中与直线EF相交的是( )A.直线AA1 B.直线A1B1C.直线A1D1 D.直线B1C1解析:选 D.根据异面直线的概念可知直线AA1,A1B1,A1D1都和直线EF为异面直线.因为直线B1C1和EF在同一平面内,且这两条直线不平行,所以直线B1C1和直线EF 相交.3.(多选)(链接常用结论1)(2022·广州六校联考)如图,在正方体ABCD­A1B1C1D1中,M,N,P分别是C1D1,BC,A1D1的中点,下列结论正确的是( )A.AP与CM是异面直线B.AP,CM,DD1相交于一点C.MN∥BD1D.MN∥平面BB1D1D解析:选BD.连接MP,AC(图略),因为MP∥AC,MP≠AC,所以AP与CM是相交直线,又面A1ADD1∩面C1CDD1=DD1,所以AP,CM,DD1相交于一点,则A不正确,B正确.令AC∩BD=O,连接OD1,ON.因为M,N分别是C1D1,BC的中点,所以ON∥D1M∥CD,ON=D1M=12 CD,则四边形MNOD1为平行四边形,所以MN∥OD1,因为MN⊄平面BD1D,OD1⊂平面BD1D,所以MN∥平面BD1D,C不正确,D正确.4.已知a,b是两条直线,α,β是两个平面,则下列说法中正确的序号为________.①若a平行于α内的无数条直线,则a∥α;②若α∥β,a⊂α,b⊂β,则a与b是异面直线;③若α∥β,a⊂α,则a∥β;④若α∩β=b,a⊂α,则a与β一定相交.解析:①忽略了a在α内这一情况,故①错误;②直线a与b没有交点,所以直线a与b可能异面也可能平行,故②错误;③直线a与平面β没有公共点,所以a∥β,故③正确;④直线a与平面β可能相交也可能平行,故④错误.答案:③点、线、面位置关系的判定(1)点、线、面位置关系的判定,注意构造几何体(长方体、正方体)模型来判断,常借助正方体模型,以正方体为主线直观感知并认识空间点、线、面的位置关系.(2)两条直线异面的判定:反证法或利用异面直线的判定定理.考点三 异面直线所成的角(综合研析)复习指导:求异面直线所成的角关键是转化为平面角,常利用平移法解决.(1)(2021·高考全国卷乙)在正方体ABCD ­A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( )A.π2B.π3 C .π4D.π6(2)(2022·衡水检测)如图,在圆锥SO 中,AB ,CD 为底面圆的两条直径,AB ∩CD =O ,且AB ⊥CD ,SO =OB =3,SE =14SB ,则异面直线SC 与OE 所成角的正切值为( )A.222B.53C.1316D.113【解析】(1)如图,连接C 1P ,因为ABCD ­A 1B 1C 1D 1是正方体,且P 为B 1D 1的中点,所以C 1P ⊥B 1D 1,又C 1P ⊥BB 1,BB 1∩B 1D 1=B 1,BB 1,B 1D 1⊂平面B 1BP ,所以C 1P ⊥平面B 1BP .又BP ⊂平面B 1BP ,所以C 1P ⊥BP .连接BC 1,则AD 1∥BC 1,所以∠PBC 1为直线PB 与AD 1所成的角.设正方体ABCD ­A 1B 1C 1D 1的棱长为2,则在直角三角形C 1PB 中,C 1P =12B 1D 1=2,BC 1=22,sin ∠PBC 1=PC 1BC 1=12,所以∠PBC 1=π6,故选D.(2)如图,过点S 作SF ∥OE ,交AB 于点F ,连接CF ,则∠CSF (或其补角)为异面直线SC 与OE 所成的角.因为SE =14SB ,所以SE =13BE .又OB =3,所以OF =13OB =1.因为SO ⊥OC ,SO =OC =3,所以SC =3 2. 因为SO ⊥OF ,所以SF = SO 2+OF 2=10. 因为OC ⊥OF ,所以CF =10. 所以在等腰三角形SCF 中,tan ∠CSF =()102-⎝⎛⎭⎪⎫3222322=113.【答案】 (1)D (2)D平移法求异面直线所成角的步骤|跟踪训练|(2022·西安质检)将正方形ABCD沿对角线AC折起,并使得平面ABC垂直于平面ACD,则直线AB与CD所成的角为( )A.90° B.60°C.45°D.30°解析:选B.如图,取AC,BD,AD的中点,分别为O,M,N,连接ON,OM,MN,则ON∥CD,MN∥AB,且ON=12CD,MN=12AB,所以∠ONM或其补角即为所求的角.因为平面ABC垂直于平面ACD,平面ABC∩平面ACD=AC,BO⊥AC,AC⊂平面ACD,所以BO⊥平面ACD,因为DO⊂平面ACD,所以BO⊥OD.设正方形边长为2,则OB=OD=2,所以BD=2,则OM=12BD=1.所以ON=MN=OM=1.所以△OMN是等边三角形,∠ONM=60°.所以直线AB与CD所成的角为60°.故选B.[A 基础达标]1.(2022·遂宁市射洪中学月考)下列命题中正确的是( )A.经过三点确定一个平面B.经过两条平行直线确定一个平面C.经过一条直线和一个点确定一个平面D.四边形确定一个平面解析:选B.对于选项A:经过不共线的三点确定一个平面,故选项A错误,对于选项B:两条平行直线唯一确定一个平面,故选项B正确,对于选项C:经过一条直线和直线外一个点确定一个平面,故选项C错误,对于选项D:因为空间四边形不在一个平面内,故选项D错误.故选B.2.已知α,β,γ是平面,a,b,c是直线,α∩β=a,β∩γ=b,γ∩α=c,若a∩b=P,则( )A.P∈c B.P∉cC.c∩a=∅ D.c∩β=∅解析:选A.因为α∩β=a,β∩γ=b,所以a⊂α,b⊂γ,由a∩b=P,可得P∈a且P∈b,所以P∈α且P∈γ,因为γ∩α=c,所以P∈c,故选项A正确,选项B不正确;因为P∈c,P∈a,所以c,a有公共点P,故选项C不正确;因为P∈b,b⊂β,所以P∈β,因为P∈c,所以c与β有公共点P,故选项D不正确;故选A.3.在三棱锥A­BCD的边AB,BC,CD,DA上分别取E,F,G,H四点,若EF∩HG=P,则点P( )A.一定在直线BD上B.一定在直线AC上C.在直线AC或BD上D.不在直线AC上,也不在直线BD上解析:选B.如图,因为EF⊂平面ABC,HG⊂平面ACD,EF∩HG=P,所以P∈平面ABC,P∈平面ACD.又平面ABC∩平面ACD=AC,所以P∈AC.故选B.4.(2020·高考浙江卷)已知空间中不过同一点的三条直线l,m,n.“l,m,n共面”是“l,m,n两两相交”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选B.由m,n,l在同一平面内,可能有m,n,l两两平行,所以m,n,l可能没有公共点,所以不能推出m,n,l两两相交.由m,n,l两两相交且m,n,l不经过同一点,可设l∩m=A,l∩n=B,m∩n=C,且A∉n,所以点A和直线n确定平面α,而B,C∈n,所以B,C∈α,所以l,m⊂α,所以m,n,l在同一平面内,故选B.5.(多选)如图,点E,F,G,H分别是正方体ABCD­A1B1C1D1中棱AA1,AB,BC,C1D1的中点,则( )A.GH=2EFB.GH≠2EFC.直线EF,GH是异面直线D.直线EF,GH是相交直线解析:选BD.如图,取棱CC1的中点N,A1D1的中点M,连接EM,MH,HN,NG,FG,AC,A 1C1,在正方体ABCD­A1B1C1D1中,因为MH∥A1C1∥AC∥FG,所以M,H,F,G四点共面,同理可得E,M,G,N四点共面,E,F,H,N四点共面,所以E,M,H,N,G,F六点共面,均在平面EFGNHM内,因为EF∥HN,HN∩HG=H,HN,HG,EF⊂平面EFGNHM,所以EF与GH是相交直线.由正方体的结构特征及中位线定理可得EF=HN=NG=FG =EM=MH,所以3EF=GH,即GH≠2EF.故选BD.6.已知在棱长为a的正方体ABCD­A′B′C′D′中,M,N分别为CD,AD的中点,则MN与A′C′的位置关系是________.解析:如图,由题意可知MN∥AC.又因为AC∥A′C′,所以MN∥A′C′.答案:平行7.如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,则异面直线AP与BD所成的角为________.解析:如图,将原图补成正方体ABCD ­QGHP ,连接AG ,GP ,则GP ∥BD ,所以∠APG 或其补角为异面直线AP 与BD 所成的角,在△AGP 中,AG =GP =AP , 所以∠APG =π3. 答案:π38.如图,在正方体ABCD ­A 1B 1C 1D 1中,O 为正方形ABCD 的中心,H 为直线B 1D 与平面ACD 1的交点.求证:D 1,H ,O 三点共线.证明:如图,连接BD ,B 1D 1,则BD ∩AC =O , 因为BB 1綉DD 1,所以四边形BB 1D 1D 为平行四边形, 又H ∈B 1D ,B 1D ⊂平面BB 1D 1D ,则H∈平面BB1D1D,因为平面ACD1∩平面BB1D1D=OD1,所以H∈OD1.即D1,H,O三点共线.9.如图,已知在空间四边形ABCD中,AD=BC,M,N分别为AB,CD的中点,且直线BC 与MN所成的角为30°,求BC与AD所成的角.解:如图,连接BD,并取其中点E,连接EN,EM,则EN∥BC,ME∥AD,故∠ENM(或其补角)为BC与MN所成的角,∠MEN(或其补角)为BC与AD所成的角.由AD=BC,知ME=EN,所以∠EMN=∠ENM=30°,所以∠MEN=180°-30°-30°=120°,即BC与AD所成的角为60°.[B 综合应用]10.(多选)如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则直线GH,MN是异面直线的图形有( )解析:选BD.A中GH∥MN;B中,G,H,N三点共面,但M∉平面GMN,因此GH,MN 是异面直线;C中连接GM,GM∥HN且GM≠HN,所以直线GH与MN必相交;D中,G,M,N 三点共面,但H∉平面GMN,因此GH,MN是异面直线.11.(多选)(2022·潍坊模拟)已知平面α∩平面β=直线l,点A,C∈平面α,点B,D∈平面β,且A,B,C,D∉l,点M,N分别是线段AB,CD的中点,则下列说法错误的是( )A .当CD =2AB 时,M ,N 不可能重合B .M ,N 可能重合,但此时直线AC 与l 不可能相交 C .当直线AB ,CD 相交,且AC ∥l 时,BD 可与l 相交 D .当直线AB ,CD 异面时,MN 可能与l 平行解析:选ACD.A 选项,当CD =2AB 时,若A ,B ,C ,D 四点共面且AC ∥BD 时,M ,N 两点能重合,可知A 错误;B 选项,若M ,N 重合,则AC ∥BD ,则AC ∥平面β,故AC ∥l ,此时直线AC 与直线l 不可能相交,可知B 正确;C 选项,当AB 与CD 相交,且AC ∥l 时,直线BD 与l 平行,可知C 错误;D 选项,当AB 与CD 是异面直线时,MN 不可能与l 平行,可知D 错误.故选ACD.12.(多选) (2022·潍坊质检)如图,已知二面角A ­BD ­C 的大小为π3,G ,H 分别是BC ,CD 的中点,E ,F 分别在AD ,AB 上,AE AD =AF AB =13,且AC ⊥平面BCD ,则以下说法正确的是( )A .E ,F ,G ,H 四点共面B .FG ∥平面ADCC .若直线FG ,HE 交于点P ,则P ,A ,C 三点共线D .若△ABD 的面积为6,则△BCD 的面积为3解析:选ACD.由AE AD =AF AB =13知EF ∥BD .又GH ∥BD ,所以EF ∥GH , 因此E ,F ,G ,H 共面,A 项正确; 假设FG ∥平面ADC 成立, 因为平面ABC ∩平面DAC =AC ,所以FG ∥AC ,又G 是BC 的中点,所以F 是AB 的中点,与AF AB =13矛盾,B 项不正确;因为FG⊂平面ABC,P∈FG,所以P∈平面ABC,同理P∈平面ADC,因为平面ABC∩平面ADC=AC,所以P∈AC,所以P,A,C三点共线,因此C正确;易知S△BCD=cos π3·S△ABD=12×6=3,D正确.13.如图是正方体的平面展开图,在这个正方体中:①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN是异面直线.以上结论中,正确结论是________.(填序号)解析:由平面展开图可得原正方体如图所示:由图可得,BM,ED为异面直线,CN与BE不是异面直线,DM,BN是异面直线,故①②错误,④正确.连接AN,AC,DM,BN,BE,则△ANC为等边三角形,而BM∥AN,故∠ANC或其补角为CN与BM所成的角,因为∠ANC=60°,故CN与BM所成的角为60°,故③正确.综上,正确命题的序号为③④.答案:③④[C 素养提升]14.平面α过正方体ABCD­A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为( )A.32B.22C.33D.13解析:选A.如图所示,设平面CB1D1∩平面ABCD=m1,因为α∥平面CB1D1,则m1∥m,又因为平面ABCD∥平面A1B1C1D1,平面CB1D1∩平面A1B1C1D1=B1D1,所以B1D1∥m1,所以B1D1∥m,同理可得CD1∥n.故m,n所成角的大小与B1D1,CD1所成角的大小相等,即∠CD1B1的大小.又因为B1C=B1D1=CD1(均为面对角线),所以∠CD1B1=π3,得sin∠CD1B1=32,故选A.15.在四棱锥O­ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.(1)求四棱锥O­ABCD的体积;(2)求异面直线OC与MD所成角的正切值.解:(1)由已知可求得正方形ABCD的面积S=4,所以四棱锥O­ABCD的体积V=13×4×2=83.(2)如图,连接AC ,设线段AC 的中点为E ,连接ME ,DE ,又M 为OA 中点,所以ME ∥OC ,则∠EMD (或其补角)为异面直线OC 与MD 所成的角,由已知可得DE =2,EM =3,MD =5,因为()22+()32=()52,即DE 2+EM 2=MD 2, 所以△DEM 为直角三角形,且∠DEM =90°,所以tan ∠EMD =DE EM =23=63.所以异面直线OC 与MD 所成角的正切值为63.。

高考总复习一轮数学精品课件 第9章 平面解析几何 第2节 两条直线的位置关系

高考总复习一轮数学精品课件 第9章 平面解析几何 第2节 两条直线的位置关系

D. 2+1
a=-1+ 2或 a=-1- 2.
∵a>0,∴a=-1+ 2.
(3)直线3x-4y-4=0与直线6x-8y-3=0之间的距离为( C )
1
A.
5
2解析 直线 3x-4y-4=0 即 6x-8y-8=0,显然与另一条直线平行,
则所求距离为
|-8-(-3)|
62 +82
=
(3)点(x,y)关于直线x=a的对称点为(2a-x,y),关于直线y=b的对称点为
(x,2b-y).
(4)点(x,y)关于点(a,b)的对称点为(2a-x,2b-y).
(5)点(x,y)关于直线x+y=k的对称点为(k-y,k-x),关于直线x-y=k的对称点为
(k+y,x-k).
2.三种直线系方程
3.直线外一点与直线上的点的距离的最小值就是点到直线的距离.(
)
题组二 回源教材
4.(人教A版选择性必修第一册2.3.4节练习第1题改编)已知两条平行直线l1:
2 5
2x+y-1=0,l2:2x+y+1=0,则l1与l2之间的距离是__________.
5
解析 利用两平行线间的距离公式得 l1 与 l2 之间的距离 d=
条直线的斜率为0时,l1⊥l2
l1⊥l2⇔__________
k1k2=-1
若 A1,A2,B1,B2,C1,C2 均不为 0,
1
1
1
则 l1 与 l2 重合⇔ = =
2
2
2
l1∥l2⇔__________,且
A1B2-A2B1=0 B1C2-B2C1≠0(或 A1C2-A2C1≠0)

高考数学二轮复习考点知识讲解与提升练习27 空间点、直线、平面之间的位置关系

高考数学二轮复习考点知识讲解与提升练习27 空间点、直线、平面之间的位置关系

sin
∠C1BO
=
C1O BC1
=
1 2
∠C1BO = 30°
C
直线 BC1 与平面 ABCD 所成的角为 ∠C1BC = 45° ,故选项 D 正确.综上,答案选 . ABD
2 / 41
(1)证明点或线共面:
①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②
而 EF ⊥ 平面 BDD1,又因为 EF ⊂ 平面 BDD1,所以平面 B1EF ⊥ 平面 BDD1,所以 A 选项正确;
对于 B 选项:因为平面 A1BD ∩ 平面 BDD1= BD ,由上述过程易知平面 B1EF ⊥ 平面 A1BD 不成立;
对于 C 选项:由题意知直线 AA1 与直线 B1E 必相交,故平面 B1EF// 平面 A1AC 有公共点,从而 C 选
高考数学二轮复习考点知识讲解与提升练习 考点知识 27 空间点、直线、平面之间的位置关系
(1. 2022 年甲卷理 7 文 9)在长方体 ABCD − A1B1C1D1 中,已知 B1D 与平面 ABCD 和平面 AA1B1B 所成
的角均为30° ,则
. . 与平面 所成的角为 A AB = 2AD B AB
cosθ=
。 cosθ1·cosθ2
③向量法求异面直线所成的角
1.公理 2 的三个推论 推论 1:经过一条直线和这条直线外一点有且只有一个平面;
3 / 41
推论 2:经过两条相交直线有且只有一个平面; 推论 3:经过两条平行直线有且只有一个平面. 2.异面直线判定的一个定理 过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.
A1C

l
,即

新高考数学总复习利用空间向量研究直线平面的位置关系课件讲义练习题

新高考数学总复习利用空间向量研究直线平面的位置关系课件讲义练习题
4 4 2
.
设D(0,y,0),由AC⊥CD,得·=0,
2 3
,则D
3
即y=
0,
2 3
,0
3
1
2
,所以= − ,
3
,0
6
.
1 31
1 1 3
3
又因为=( , , ),所以·=- × + × =0,
4 4 2
2 4 6
4
所以⊥,即AE⊥CD.
返回 29
[例3]如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,
角度2 面面垂直
[例4]如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线
段AD上.已知BC=8,PO=4,AO=3,OD=2.
(1)证明:AP⊥BC;
返回 33
【证明】(1)如图所示,以O为坐标原点,分别以射线OD,OP为y轴、z轴的正半轴建
立空间直角坐标系Oxyz.
解题技法
利用空间向量证明线面、面面平行的方法
(1)证明线面平行的常用方法:
①证明直线的方向向量与平面内的两个不共线的向量共面;
②证明直线的方向向量与平面内的一个向量平行;
③证明直线的方向向量与平面的法向量垂直.
(2)证明面面平行常用的方法:
①利用上述方法证明平面内的两个不共线向量都平行于另一个平面;
则O(0,0,0),A(0,-3,0),B(4,2,0),C(-4,2,0),P(0,0,4),
所以=(0,3,4),=(-8,0,0).
所以·=(0,3,4)·(-8,0,0)=0,
所以⊥,即AP⊥BC.
返回 34
[例4]如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线

高考数学复习考点知识与题型专题讲解47---空间点、直线、平面之间的位置关系

高考数学复习考点知识与题型专题讲解47---空间点、直线、平面之间的位置关系

高考数学复习考点知识与题型专题讲解7.2空间点、直线、平面之间的位置关系考试要求1.理解空间直线、平面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线互相平行. 2.空间中直线与直线的位置关系 (1)位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行直线相交直线异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角). ②范围:⎝⎛⎦⎤0,π2. 3.空间中直线与平面的位置关系直线与平面的位置关系有:直线在平面内、直线与平面相交、直线与平面平行三种情况. 4.空间中平面与平面的位置关系平面与平面的位置关系有平行、相交两种情况.5.等角定理如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补.微思考1.分别在两个不同平面内的两条直线为异面直线吗?提示不一定,因为异面直线不同在任何一个平面内.分别在两个不同平面内的两条直线可能平行或相交或异面.2.平面外的一条直线上有两个点到平面的距离相等,则直线与平面的位置关系如何?提示平行或相交.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)有三个公共点的两个平面必重合.(×)(2)三条两两相交的直线确定一个平面.(×)(3)若A∈l,B∈l,且A∈α,B∈α,则l⊂α.(√)(4)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,记作α∩β=a.(√)题组二教材改编2.如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为()A.30°B.45°C.60°D.90°答案C解析连接B1D1,D1C(图略),则B1D1∥EF,故∠D1B1C即为所求的角.又B1D1=B1C=D1C,∴△B1D1C为等边三角形,∴∠D1B1C=60°.3.如果直线a⊂平面α,直线b⊂平面β.且α∥β,则a与b()A.共面B.平行C.是异面直线D.可能平行,也可能是异面直线答案D解析α∥β,说明a与b无公共点,∴a与b可能平行也可能是异面直线.4.两两平行的三条直线可确定________个平面.答案1或3解析若三条直线在同一平面内,则确定1个平面.若三条直线不共面,则确定3个平面.题组三易错自纠5.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是()A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α答案D解析由题意知,b与α的位置关系可能是b∥α,b与α相交或b⊂α.6.下列关于异面直线的说法正确的是________.(填序号)①若a⊂α,b⊂β,则a与b是异面直线;②若a与b异面,b与c异面,则a与c异面;③若a,b不同在平面α内,则a与b异面;④若a,b不同在任何一个平面内,则a与b异面.答案④解析①a⊂α,b⊂β,则a与b可能平行,异面或相交.②a与b异面,b与c异面,则a与c平行、相交或异面.③a,b不同在α内,则a与b异面或平行.④由异面直线的定义可知正确.题型一平面基本性质的应用例1如图所示,已知在正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D,B,F,E四点共面;(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.证明(1)∵EF是△D1B1C1的中位线,∴EF∥B1D1.在正方体AC1中,B1D1∥BD,∴EF∥BD.∴EF,BD确定一个平面,即D,B,F,E四点共面.(2)在正方体AC1中,设平面A1ACC1为α,平面BDEF为β.∵Q∈A1C1,∴Q∈α.又Q∈EF,∴Q∈β,则Q是α与β的公共点,同理,P是α与β的公共点,∴α∩β=PQ.又A1C∩β=R,∴R∈A1C.∴R∈α,且R∈β,则R∈PQ,故P,Q,R三点共线.思维升华共面、共线、共点问题的证明(1)证明共面的方法:先确定一个平面,然后再证其余的线(或点)在这个平面内.(2)证明共线的方法:先由两点确定一条直线,再证其他各点都在这条直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.跟踪训练1如图,在空间四边形ABCD中,E,F分别是AB和BC上的点,G,H分别是CD和AD 上的点.若EH与FG相交于点K.求证:EH,BD,FG三条直线相交于同一点.证明因为K∈EH,EH⊂平面ABD,所以K∈平面ABD,同理K∈平面CBD,而平面ABD∩平面CBD =BD,因此K∈BD,所以EH,BD,FG三条直线相交于同一点.题型二判断空间两直线的位置关系例2 (1)α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是()A.垂直B.相交C.异面D.平行答案D解析依题意,m∩α=A,n⊂α,∴m与n可能异面、相交(垂直是相交的特例),一定不平行.(2)已知在长方体ABCD-A1B1C1D1中,M,N分别是长方形A1B1C1D1与长方形BCC1B1的中心,则下列说法正确的是()A.直线MN与直线A1B是异面直线B.直线MN与直线DD1相交C.直线MN与直线AC1是异面直线D.直线MN与直线A1C平行答案C解析如图,因为M,N分别是长方形A1B1C1D1与长方形BCC1B1的中心,所以M,N分别是A1C1,BC1的中点,所以直线MN与直线A1B平行,所以A错误;因为直线MN经过平面BB1D1D内一点M,且点M不在直线DD1上,所以直线MN与直线DD1是异面直线,所以B错误;因为直线MN经过平面ABC1内一点N,且点N不在直线AC1上,所以直线MN与直线AC1是异面直线,所以C正确;因为直线MN经过平面A1CC1内一点M,且点M不在直线A1C上,所以直线MN与直线A1C是异面直线,所以D错误.思维升华(1)点、线、面位置关系的判定,注意构造几何体(长方体、正方体)模型来判断,常借助正方体为模型,以正方体为主线直观感知并认识空间点、线、面的位置关系.(2)对异面直线的判定常用到以下结论:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.跟踪训练2 (1)空间中有三条线段AB,BC,CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是()A.平行B.异面C.相交或平行D.平行或异面或相交均有可能答案D解析根据条件作出示意图,容易得到以下三种情况均有可能,如图可知AB,CD有相交,平行,异面三种情况.(2)如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________.(注:把你认为正确的结论序号都填上)答案③④解析因为点A在平面CDD1C1外,点M在平面CDD1C1内,直线CC1在平面CDD1C1内,CC1不过点M ,所以AM 与CC 1是异面直线,故①错;取DD 1中点E ,连接AE (图略),则BN ∥AE ,但AE 与AM 相交,故②错;因为B 1与BN 都在平面BCC 1B 1内,M 在平面BCC 1B 1外,BN 不过点B 1,所以BN 与MB 1是异面直线,故③正确;同理④正确,故填③④. 题型三求两条异面直线所成的角例3 (2020·青岛模拟)如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为()A.15B.25C.35D.45 答案D解析连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,由AB =1,AA 1=2,易得A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=A 1B 2+BC 21-A 1C 212×A 1B ×BC 1=45,即异面直线A 1B与AD 1所成角的余弦值为45.思维升华用平移法求异面直线所成的角的三个步骤(1)一作:根据定义作平行线,作出异面直线所成的角. (2)二证:证明作出的角是异面直线所成的角. (3)三求:解三角形,求出所作的角.跟踪训练3(2018·全国Ⅱ)在长方体ABCDA 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为() A.15B.56C.55D.22 答案C解析如图,连接BD 1,交DB 1于O ,取AB 的中点M ,连接DM ,OM .易知O 为BD 1的中点,所以AD 1∥OM ,则∠MOD 为异面直线AD 1与DB 1所成角或其补角.因为在长方体ABCDA 1B 1C 1D 1中,AB =BC =1,AA 1=3,AD 1=AD 2+DD 21=2, DM =AD 2+⎝⎛⎭⎫12AB 2=52, DB 1=AB 2+AD 2+BB 21= 5.所以OM =12AD 1=1,OD =12DB 1=52,于是在△DMO 中,由余弦定理,得cos ∠MOD =12+⎝⎛⎭⎫522-⎝⎛⎭⎫5222×1×52=55,即异面直线AD 1与DB 1所成角的余弦值为55. 课时精练1.(2020·上海市松江区模拟)给出以下四个命题: ①依次首尾相接的四条线段必共面;②过不在同一条直线上的三点,有且只有一个平面;③空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等; ④垂直于同一直线的两条直线必平行. 其中正确命题的个数是() A .0B .1C .2D .3 答案B解析①中,空间四边形的四条线段不共面,故①错误.②中,由公理2知道,过不在同一条直线上的三点,有且只有一个平面,故②正确.③中,由空间角的等角定理知,空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故③错误.④中,空间中,垂直于同一直线的两条直线可相交,可平行,可异面,故④错误.2.已知平面α,β,γ两两垂直,直线a ,b ,c 满足:a ⊂α,b ⊂β,c ⊂γ,则直线a ,b ,c 不可能满足以下哪种关系()A .两两垂直B .两两平行C.两两相交D.两两异面答案B解析设α∩β=l,且l与a,b均不重合,假设a∥b∥c,由a∥b可得a∥β,b∥α,又α∩β=l,可知a∥l,b∥l,又a∥b∥c,可得c∥l,因为α,β,γ两两互相垂直,可知l与γ相交,即l与c相交或异面.若l与a或b重合,同理可得l与c相交或异面,可知假设错误,由此可知三条直线不能两两平行.3.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是()A.直线ACB.直线ABC.直线CDD.直线BC答案C解析由题意知,D∈l,l⊂β,所以D∈β,又因为D∈AB,所以D∈平面ABC,所以点D在平面ABC与平面β的交线上.又因为C∈平面ABC,C∈β,所以点C在平面β与平面ABC的交线上,所以平面ABC∩平面β=CD.4.在如图所示的正四棱柱ABCDA1B1C1D1中,E,F分别是棱B1B,AD的中点,则直线BF与平面AD1E 的位置关系是()A.平行B.相交但不垂直C.垂直D.异面答案A解析如图,取AD1的中点O,连接OE,OF,则OF∥BE,OF=BE,∴四边形BFOE是平行四边形,∴BF∥OE,∵BF⊄平面AD1E,OE⊂平面AD1E,∴BF∥平面AD1E.5.(多选)(2020·全国Ⅱ改编)下列四个命题中是真命题的为() A.两两相交且不过同一点的三条直线必在同一平面内B.过空间中任意三点有且仅有一个平面C.若空间两条直线不相交,则这两条直线平行D.若直线l⊂平面α,直线m⊥平面α,则m⊥l答案AD解析对于A,可设l1与l2相交,这两条直线确定的平面为α;若l3与l1相交,则交点A在平面α内,同理,l3与l2的交点B也在平面α内,所以,AB⊂α,即l3⊂α,A为真命题;对于B,若三点共线,则过这三个点的平面有无数个,故B为假命题;对于C,两条直线有可能平行也有可能异面,故C为假命题;对于D,若直线m⊥平面α,则m垂直于平面α内所有直线,因为直线l⊂平面α,所以直线m⊥直线l,D为真命题.6.(多选)如图所示,在正方体ABCD-A1B1C1D1中,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()A.A,M,O三点共线B.A,M,O,A1共面C.A,M,C,O共面D.B,B1,O,M共面答案ABC解析∵M∈A1C,A1C⊂平面A1ACC1,∴M∈平面A1ACC1,又∵M∈平面AB1D1,∴M在平面AB1D1与平面A1ACC1的交线AO上,即A,M,O三点共线,∴A,M,O,A1共面且A,M,C,O共面,∵平面BB1D1D∩平面AB1D1=B1D1,∴M在平面BB1D1D外,即B,B1,O,M不共面,故选A,B,C.7.如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则直线GH,MN是异面直线的图形有________.(填序号)答案②④解析①中GH∥MN;②中,G,H,N三点共面,但M∉平面GHN,因此GH,MN是异面直线;③中连接GM,GM∥HN且GM≠HN,所以直线GH与MN必相交;④中,G,M,N三点共面,但H∉平面GMN,因此GH,MN是异面直线.8.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.答案 2解析取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成的角即为异面直线AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点,所以C1D垂直于圆柱下底面,所以C1D⊥AD.因为圆柱的轴截面ABB1A1是正方形,所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为 2.9.(2020·西安模拟)如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.答案②③④解析还原成正四面体ADEF,其中H与N重合,A,B,C三点重合.易知GH与EF异面,BD与MN异面.又△GMH为等边三角形,∴GH与MN成60°角,易证DE⊥AF,MN∥AF,∴MN⊥DE.因此正确的序号是②③④.10.已知下列说法:①若两个平面α∥β,a ⊂α,b ⊂β,则a ∥b ;②若两个平面α∥β,a ⊂α,b ⊂β,则a 与b 是异面直线; ③若两个平面α∥β,a ⊂α,b ⊂β,则a 与b 一定不相交; ④若两个平面α∥β,a ⊂α,b ⊂β,则a 与b 平行或异面; ⑤若两个平面α∩β=b ,a ⊂α,则a 与β一定相交. 其中正确的序号是________(将你认为正确的序号都填上). 答案③④解析①错.a 与b 也可能异面. ②错.a 与b 也可能平行.③对.∵α∥β,∴α与β无公共点, 又∵a ⊂α,b ⊂β,∴a 与b 无公共点. ④对.由已知及③知,a 与b 无公共点, 那么a ∥b 或a 与b 异面. ⑤错.a 与β也可能平行.11.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与四边形ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC ∥AD 且BC =12AD ,BE ∥AF 且BE =12AF ,G ,H 分别为F A ,FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C ,D ,F ,E 四点是否共面?为什么? (1)证明由已知FG =GA ,FH =HD ,可得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC .∴四边形BCHG 为平行四边形. (2)解∵BE 綊12AF ,G 是F A 的中点,∴BE 綊FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG . 由(1)知BG 綊CH ,∴EF ∥CH , ∴EF 与CH 共面.又D ∈FH ,∴C ,D ,F ,E 四点共面.12.已知空间四边形ABCD 的对角线AC =20,BD =19,异面直线AC 与BD 所成角的余弦值为1819,点P ,Q ,M ,N 分别是AB ,BC ,CD ,DA 的中点.(1)求证:四边形PQMN 是平行四边形; (2)求四边形PQMN 的面积.(1)证明因为P ,Q 分别是AB ,BC 的中点, 所以PQ ∥AC ,且PQ =12AC ,同理MN ∥AC ,且MN =12AC ,所以PQ ∥MN ,PQ =MN , 所以四边形PQMN 是平行四边形. (2)解因为P ,N 分别是AB ,AD 的中点,所以PN ∥BD ,PN =12BD =192,又因为PQ ∥AC ,所以PQ 与PN 所成的角就是异面直线AC ,BD 所成的角,所以sin ∠QPN =1-cos 2∠QPN =1-⎝⎛⎭⎫18192=3719,所以四边形PQMN 的面积为S =PQ ·PN ·sin ∠QPN =10×192×3719=537.13.(2019·全国Ⅲ)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则()A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线 答案B解析如图,取CD 的中点O ,连接ON ,EO ,因为△ECD 为正三角形,所以EO ⊥CD ,又平面ECD ⊥平面ABCD ,平面ECD ∩平面ABCD =CD ,所以EO ⊥平面ABCD .设正方形ABCD 的边长为2,则EO =3,ON =1,所以EN 2=EO 2+ON 2=4,得EN =2.过M 作CD 的垂线,垂足为P ,连接BP ,则MP =32,CP =32,所以BM 2=MP 2+BP 2=⎝⎛⎭⎫322+⎝⎛⎭⎫322+22=7,得BM =7,所以BM ≠EN .连接BD ,BE,因为四边形ABCD为正方形,所以N为BD的中点,即EN,MB均在平面BDE内,所以直线BM,EN是相交直线.14.已知球O是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A-BCD的外接球,BC=3,AB=23,点E在线段BD上,且BD=3BE,过点E作球O的截面,则所得的截面中面积最小的截面圆的面积是________.答案2π解析如图,设△BDC的中心为O1,球O的半径为R,连接AO1,O1D,OD,O1E,OE,=3,则O1D=3sin60°×23AO1=AD2-DO21=3,在Rt△OO1D中,R2=3+(3-R)2,解得R=2,∵BD=3BE,DE=2,在△DEO1中,O1E=3+4-2×3×2cos30°=1,∴OE=O1E2+OO21=2,过点E作球O的截面,当截面与OE垂直时,截面圆的面积最小,此时截面圆的半径为22-(2)2=2,面积为2π.15.已知正方体ABCD -A 1B 1C 1D 1的棱长为32,E ,F 分别为BC ,CD 的中点,P 是线段A 1B 上的动点,C 1P 与平面D 1EF 的交点Q 的轨迹长为()A .3B.13C .4D .3 2答案B解析如图所示,连接EF ,A 1B ,连接A 1C 1,B 1D 1交于点M ,连接B 1E ,BC 1交于点N ,由EF ∥B 1D 1,即E ,F ,B 1,D 1共面,由P 是线段A 1B 上的动点,当P 重合于A 1或B 时,C 1A 1,C 1B 与平面D 1EF 的交点分别为M ,N ,即Q 的轨迹为MN ,由棱长为32,得C 1M =12A 1C 1=3, 则BC 1=6, 又BEB 1C 1=BN NC 1=12, 则NC 1=23BC 1=4, 由A 1B =BC 1=A 1C 1,得∠A 1C 1B =60°,则MN =MC 21+NC 21-2MC 1·NC 1·cos ∠A 1C 1B =9+16-2×3×4×12=13. 16.如图1,在边长为4的正三角形ABC 中,D ,F 分别为AB ,AC 的中点,E 为AD 的中点.将△BCD 与△AEF 分别沿CD ,EF 同侧折起,使得二面角A -EF -D 与二面角B -CD -E 的大小都等于90°,得到如图2所示的多面体.(1)在多面体中,求证:A ,B ,D ,E 四点共面;(2)求多面体的体积.(1)证明因为二面角A -EF -D 的大小等于90°,所以平面AEF ⊥平面DEFC ,又AE ⊥EF ,AE ⊂平面AEF ,平面AEF ∩平面DEFC =EF ,所以AE ⊥平面DEFC ,同理,可得BD ⊥平面DEFC ,所以AE ∥BD ,故A ,B ,D ,E 四点共面.(2)解因为AE ⊥平面DEFC ,BD ⊥平面DEFC ,EF ∥CD ,AE ∥BD ,DE ⊥CD ,所以AE 是四棱锥A -CDEF 的高,点A 到平面BCD 的距离等于点E 到平面BCD 的距离, 又AE =DE =1,CD =23,EF =3,BD =2,所以V =V A -CDEF +V A -BCD =13S 梯形CDEF ·AE +13S △BCD ·DE =736.。

高考数学复习知识点讲解教案第41讲 空间点、直线、平面之间的位置关系

高考数学复习知识点讲解教案第41讲 空间点、直线、平面之间的位置关系
所以, ,,在中,,可得,故 的最大值为 .故选C.
教师备用习题
【备选理由】例1是判断点共面与点共线的问题;例2是正方体中线线、线面位置关系的综合问题;例3是解决线段比例不同时如何作出截面并解决相应有关问题.
第41讲 空间点、直线、平面之间的位置关系
课前基础巩固
课堂考点探究
作业手册
教师备用习题
高考数学复习知识点讲解教案
1.借助长方体,在直观认识空间点、直线、平面的位置关系的基础上,抽象出空间点、直线、平面的位置关系的定义.2.了解4个基本事实和1个定理.
◆ 知识聚焦 ◆
1.基本事实基本事实1:过___________________的三个点,有且只有一个平面.基本事实2:如果一条直线上的_________在一个平面内,那么这条直线在这个平面内.基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.基本事实4:平行于同一条直线的两条直线_______.
[解析] 延长,,交于点,连接,交于点 ,连接,如图所示,在正方体 中,平面平面, 平面 平面,平面 平面 ,, 四边形为平面 截正方体所得的截面图形.又 , 四边形是等腰梯形,
过作,垂足为, , ,, , 四边形 的面积 . 故选C.
[总结反思]
(1)作截面应遵循的三个原则:①在同一平面上的两点可引直线;②凡是相交的直线都要画出它们的交点;③凡是相交的平面都要画出它们的交线.(2)作交线的方法有如下两种:①利用基本事实3作交线;②利用线面平行的性质定理及面面平行的性质定理去寻找线面平行及面面平行关系,然后根据性质定理作出交线.
设正方形的边长为,由题意可得 为直角三角形,则.记的中点为,连接,,则 为直角三角形,则,故.综上所述, ,且直线, 是相交直线.

高考数学复习空间点、直线、平面之间的位置关系

高考数学复习空间点、直线、平面之间的位置关系

第2讲 空间点、直线、平面之间的位置关系最新考纲考向预测借助长方体,在直观认识空间点、直线、平面的位置关系的基础上,抽象出空间点、直线、平面的位置关系的定义,了解公理1~4及其相关定理.命题趋势主要考查与点、线、面位置关系有关的命题真假判断和求解异面直线所成的角,主要以选择题和填空题的形式出现,主要为中低档题.核心素养 直观想象、逻辑推理1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行. 2.空间直线的位置关系 (1)位置关系的分类⎩⎨⎧共面直线⎩⎨⎧平行相交异面直线:不同在任何一个平面内 (2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝ ⎛⎥⎤0,π2.(3)等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间中直线与平面、平面与平面的位置关系(1)空间中直线和平面的位置关系位置关系图形表示符号表示公共点直线a在平面α内a⊂α有无数个公共点直线在平面外直线a与平面α平行a∥α没有公共点直线a与平面α斜交a∩α=A有且只有一个公共点直线a与平面α垂直a⊥α(2)空间中两个平面的位置关系位置关系图形表示符号表示公共点两平面平行α∥β没有公共点两平面相交斜交α∩β=l有一条公共直线垂直α⊥β且α∩β=a常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面;推论2:经过两条相交直线有且只有一个平面;推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.常见误区1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线即不平行,也不相交.2.在判断直线与平面的位置关系时最易忽视“线在平面内”.1.判断正误(正确的打“√”,错误的打“×”)(1)若P∈α∩β且l是α,β的交线,则P∈l.()(2)三点A,B,C确定一个平面.()(3)若直线a∩b=A,则直线a与b能够确定一个平面.()(4)若A∈l,B∈l且A∈α,B∈α,则l⊂α.()(5)分别在两个平面内的两条直线是异面直线.()答案:(1)√(2)×(3)√(4)√(5)×2.(多选)α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系可能是()A.垂直B.相交C.异面D.平行解析:选ABC.依题意,m∩α=A,n⊂α,所以m与n可能异面、相交(垂直是相交的特例),一定不平行.3.若∠AOB=∠A1O1B1,且OA∥O1A1,OA与O1A1的方向相同,则下列结论中正确的是()A.OB∥O1B1且方向相同B.OB∥O1B1C.OB与O1B1不平行D.OB与O1B1不一定平行解析:选 D.两角相等,角的一边平行且方向相同,另一边不一定平行,故选D.4.(易错题)如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD 的中点,则异面直线B1C与EF所成角的大小为________.解析:连接B1D1,D1C,则B1D1∥EF,故∠D1B1C为所求角,又B1D1=B1C =D1C,所以∠D1B1C=60°.答案:60°5.如图,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA 的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.解析:(1)因为四边形EFGH为菱形,所以EF=EH,故AC=BD.(2)因为四边形EFGH为正方形,所以EF=EH且EF⊥EH,因为EF綊12AC,EH綊12BD,所以AC=BD且AC⊥BD.答案:(1)AC=BD(2)AC=BD且AC⊥BD平面的基本性质如图所示,在正方体ABCD-A1B1C1D中,E,F分别是AB和AA1的中点,求证:E,C,D1,F四点共面.【证明】如图所示,连接CD1,EF,A1B,因为E,F分别是AB和AA1的中点,所以EF∥A1B且EF=12A1B.又因为A1D1綊BC,所以四边形A1BCD1是平行四边形,所以A1B∥CD1,所以EF∥CD1,所以EF与CD1确定一个平面α,所以E,F,C,D1∈α,即E,C,D1,F四点共面.【引申探究】(变问法)若本例条件不变,如何证明“CE,D1F,DA交于一点”?证明:如图,由本例知EF∥CD1,且EF=12CD1,所以四边形CD1FE是梯形,所以CE与D1F必相交,设交点为P,则P∈CE且P∈D1F,又CE⊂平面ABCD,且D1F⊂平面A1ADD1,所以P∈平面ABCD,且P∈平面A1ADD1.又平面ABCD∩平面A1ADD1=AD,所以P∈AD,所以CE,D1F,DA三线交于一点.共面、共线、共点问题的证明方法(1)证明点或线共面:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.(2)证明点共线:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定的直线上.(3)证明线共点:先证其中两条直线交于一点,再证其他直线经过该点. [提醒] 点共线、线共点等都是应用公理3,证明点为两平面的公共点,即证明点在交线上.1.(多选)如图,在长方体ABCD -A 1B 1C 1D 1中,O 是DB 的中点,直线A 1C 交平面C 1BD 于点M ,则下列结论正确的是( )A .C 1,M ,O 三点共线B .C 1,M ,O ,C 四点共面 C .C 1,O ,A 1,M 四点共面D .D 1,D ,O ,M 四点共面解析:选ABC.连接A 1C 1,AC ,则AC ∩BD =O ,又A 1C ∩平面C 1BD =M ,所以三点C 1,M ,O 在平面C 1BD 与平面ACC 1A 1的交线上,所以C 1,M ,O 三点共线,所以选项A ,B ,C 均正确,选项D 错误.2.如图,空间四边形ABCD 中,E ,F 分别是AB ,AD 的中点,G ,H 分别在BC ,CD 上,且BG ∶GC =DH ∶HC =1∶2.(1)求证:E ,F ,G ,H 四点共面;(2)设EG 与FH 交于点P ,求证:P ,A ,C 三点共线.证明:(1)因为E ,F 分别为AB ,AD 的中点,所以EF ∥BD .在△BCD 中,BG GC =DH HC =12,所以GH ∥BD ,所以EF ∥GH ,所以E ,F ,G ,H 四点共面.(2)因为EG ∩FH =P ,P ∈EG ,EG ⊂平面ABC ,所以P∈平面ABC.同理P∈平面ADC .所以P为平面ABC与平面ADC的公共点,又平面ABC∩平面ADC=AC,所以P∈AC,所以P,A,C三点共线.空间两直线的位置关系(2019·高考全国卷Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【解析】如图,取CD的中点F,连接EF,EB,BD,FN,因为△CDE 是正三角形,所以EF⊥CD.设CD=2,则EF= 3.因为点N是正方形ABCD的中心,所以BD=22,NF=1,BC⊥CD.因为平面ECD⊥平面ABCD,所以EF⊥平面ABCD,BC⊥平面ECD,所以EF⊥NF,BC⊥EC,所以在Rt△EFN中,EN=2,在Rt△BCE中,EB=22,所以在等腰三角形BDE中,BM=7,所以BM≠EN.易知BM,EN是相交直线.故选B.【答案】 B1.已知a,b是异面直线,A,B是a上的两点,C,D是b上的两点,M,N分别是线段AC,BD的中点,则MN和a的位置关系是()A.异面B.平行C.相交D.以上均有可能解析:选A.若MN与AB平行或相交,则MN与AB共面,设该平面为α.因为C∈直线AM,D∈直线BN,所以C∈α,D∈α,所以b⊂α.又因为A∈α,B ∈α,所以a⊂α.这与a,b异面矛盾.故选A.2.(多选)如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C 的中点,下列说法正确的有()A.直线AM与CC1是相交直线B.直线AM与BN是平行直线C.直线BN与MB1是异面直线D.直线AM与DD1是异面直线解析:选CD.因为点A在平面CDD1C1外,点M在平面CDD1C1内,直线CC1在平面CDD1C1内,CC1不过点M,所以AM与CC1是异面直线,故A错;取DD1的中点E,连接AE(图略),则BN∥AE,但AE与AM相交,故B错;因为B1与BN都在平面BCC1B1内,M在平面BCC1B1外,BN不过点B1,所以BN 与MB1是异面直线,故C正确;同理D正确,故选CD.异面直线所成的角(1)如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB 的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.(2)四面体ABCD中,E,F分别是AB,CD的中点.若BD,AC所成的角为60°,且BD=AC=1,则EF的长为________.【解析】(1)取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成的角即为异面直线AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点,所以C1D垂直于圆柱下底面,所以C1D⊥AD.因为圆柱的轴截面ABB1A1是正方形,所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为 2.(2)如图,取BC的中点O,连接OE,OF,因为OE∥AC,OF∥BD,所以OE与OF所成的锐角(或直角)即为AC与BD所成的角,而AC,BD所成角为60°,所以∠EOF =60°或∠EOF =120°.当∠EOF =60°时,EF =OE =OF =12.当∠EOF =120°时,取EF 的中点M ,则OM ⊥EF , EF =2EM =2×34=32. 【答案】 (1)2 (2)12或32平移法求异面直线所成角的步骤具体步骤如下:1.直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°解析:选C.如图,可补成一个正方体,所以AC 1∥BD 1.所以BA 1与AC 1所成的角为∠A 1BD 1.又易知△A1BD1为正三角形.所以∠A1BD1=60°.即BA1与AC1所成的角为60°.2.(2021·济南市学习质量评估)如图,在正方形ABCD中,点E,F分别为BC,AD的中点,将四边形CDFE沿EF翻折,使得平面CDFE⊥平面ABEF,则异面直线BD与CF所成角的余弦值为________.解析:如图,连接DE交FC于点O,取BE的中点G,连接OG,CG,则OG∥BD且OG=12BD,所以∠COG为异面直线BD与CF所成的角或其补角.设正方形ABCD的边长为2,则CE=BE=1,CF=DE=CD2+CE2=5,所以CO=12CF=52.易得BE⊥平面CDFE,所以BE⊥DE,所以BD=DE2+BE2=6,所以OG=12BD=62.易知CE⊥平面ABEF,所以CE⊥BE,又GE=12BE=12,所以CG=CE2+GE2=52.在△COG中,由余弦定理得,cos∠COG=OC2+OG2-CG22OC·OG=⎝⎛⎭⎪⎫522+⎝⎛⎭⎪⎫622-⎝⎛⎭⎪⎫5222×52×62=3010,所以异面直线BD与CF所成角的余弦值为30 10.答案:3010[A级基础练]1.已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面解析:选D.依题意,直线b和c的位置关系可能是相交、平行或异面.故选D.2.(多选)下列命题正确的是()A.梯形一定是平面图形B.若两条直线和第三条直线所成的角相等,则这两条直线平行C.两两相交的三条直线最多可以确定三个平面D.若两个平面有三个公共点,则这两个平面重合解析:选AC.对于A,由于两条平行直线确定一个平面,所以梯形可以确定一个平面,故A正确;对于B,两条直线和第三条直线所成的角相等,则这两条直线平行或异面或相交,故B错误;对于C,两两相交的三条直线最多可以确定三个平面,故C正确;对于D,若两个平面有三个公共点,则这两个平面相交或重合,故D错误.3.(2021·安徽蚌埠第二中学期中)在四面体ABCD中,点E,F,G,H分别在直线AD,AB,CD,BC上,若直线EF和GH相交,则它们的交点一定() A.在直线DB上B.在直线AB上C.在直线CB上D.都不对解析:选A.直线EF和GH相交,设其交点为M.因为EF⊂平面ABD,HG ⊂平面CBD,所以M∈平面ABD且M∈平面CBD.因为平面ABD∩平面BCD=BD,所以M∈BD,所以EF与HG的交点在直线BD上.故选A.4.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是()A.直线AC B.直线ABC.直线CD D.直线BC解析:选C.由题意知,D∈l,l⊂β,所以D∈β,又因为D∈AB,所以D∈平面ABC,所以点D在平面ABC与平面β的交线上.又因为C∈平面ABC,C∈β,所以点C在平面β与平面ABC的交线上,所以平面ABC∩平面β=CD.5.如图,在三棱柱ABC-A1B1C1中,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是()A.CC1与B1E是异面直线B.C1C与AE共面C.AE与B1C1是异面直线D.AE与B1C1所成的角为60°解析:选C.由于CC1与B1E都在平面C1B1BC内,故C1C与B1E是共面的,所以A错误;由于C1C在平面C1B1BC内,而AE与平面C1B1BC相交于E点,点E不在C1C上,故C1C与AE是异面直线,B错误;同理AE与B1C1是异面直线,C正确;而AE与B1C1所成的角就是AE与BC所成的角,E为BC中点,△ABC为正三角形,所以AE⊥BC,D错误.6.已知棱长为a的正方体ABCD-A′B′C′D′中,M,N分别为CD,AD的中点,则MN与A′C′的位置关系是________.解析:如图,由题意可知MN∥AC.又因为AC ∥A ′C ′,所以MN ∥A ′C ′.答案:平行7.(2020·高考全国卷Ⅰ)如图,在三棱锥P -ABC 的平面展开图中,AC =1,AB =AD =3,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =________.解析:依题意得,AE =AD =3,在△AEC 中,AC =1,∠CAE =30°,由余弦定理得EC 2=AE 2+AC 2-2AE ·AC cos ∠EAC =3+1-23cos 30°=1,所以EC =1,所以CF =EC =1.又BC =AC 2+AB 2=1+3=2,BF =BD =AD 2+AB 2=6,所以在△BCF 中,由余弦定理得cos ∠FCB =BC 2+CF 2-BF 22BC ×CF =22+12-(6)22×2×1=-14. 答案:-148.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,则异面直线AP 与BD 所成的角为________.解析:如图,将原图补成正方体ABCD -QGHP ,连接AG ,GP ,则GP ∥BD ,所以∠APG 为异面直线AP 与BD 所成的角,在△AGP 中,AG =GP =AP ,所以∠APG =π3.答案:π39.如图,在棱长为a的正方体ABCD-A1B1C1D1中,M,N分别是AA1,D1C1的中点,过D,M,N三点的平面与正方体的下底面相交于直线l.(1)画出l的位置;(2)设l∩A1B1=P,求PB1的长.解:(1)如图,延长DM与D1A1交于点O,连接NO,则直线NO即为直线l.(2)因为l∩A1B1=P,则易知直线NO与A1B1的交点即为P.所以A1M∥DD1,且M,N分别是AA1,D1C1的中点,所以A1也为D1O的中点.由图可知A1PD1N=OA1OD1=12,所以A1P=a4,从而可知PB1=3a4.10.如图所示,A是△BCD所在平面外的一点,E,F分别是BC,AD的中点.(1)求证:直线EF与BD是异面直线;(2)若AC⊥BD,AC=BD,求EF与BD所成的角.解:(1)证明:假设EF与BD不是异面直线,则EF与BD共面,从而DF 与BE共面,即AD与BC共面,所以A,B,C,D在同一平面内,这与A是△BCD 所在平面外的一点相矛盾.故直线EF与BD是异面直线.(2)取CD的中点G,连接EG,FG,则AC∥FG,EG∥BD,所以相交直线EF与EG所成的角,即为异面直线EF与BD所成的角.又因为AC⊥BD,则FG⊥EG.在Rt△EGF中,由EG=FG=12AC,求得∠FEG=45°,即异面直线EF与BD所成的角为45°.[B级综合练]11.已知直线l⊄平面α,直线m⊂平面α,给出下面四个结论:①若l与m 不垂直,则l与α一定不垂直;②若l与m所成的角为30°,则l与α所成的角也为30°;③l∥m是l∥α的必要不充分条件;④若l与α相交,则l与m一定是异面直线.其中正确结论的个数为()A.1B.2C.3D.4解析:选A.对于①,当l与m不垂直时,假设l⊥α,那么由l⊥α一定能得到l⊥m,这与已知条件矛盾,因此l与α一定不垂直,故①正确;对于②,易知l与m所成的角为30°时,l与α所成的角不一定为30°,故②不正确;对于③,l∥m可以推出l∥α,但是l∥α不能推出l∥m,因此l∥m是l∥α的充分不必要条件,故③不正确;对于④,若l与α相交,则l与m相交或异面,故④不正确.故正确结论的个数为1,选A.12.如图,在正方体ABCD-A′B′C′D′中,平面α垂直于对角线AC′,且平面α截得正方体的六个表面得到截面六边形,记此截面六边形的面积为S,周长为l,则()A.S为定值,l不为定值B.S不为定值,l为定值C.S与l均为定值D.S与l均不为定值解析:选B.设平面α截得正方体的六个表面得到截面六边形ω,ω与正方体的棱的交点分别为I,J,N,M,L,K(如图).将正方体切去两个正三棱锥A­A′BD和C′­B′CD′,得到一个几何体V,则V的上、下底面B′CD′与A′BD互相平行,每个侧面都是等腰直角三角形,截面六边形ω的每一条边分别与V的底面上的每一条边平行.设正方体的棱长为a ,A ′K A ′B ′=γ,则IK =γB ′D ′=2aγ,KL =(1-γ)A ′B =2a (1-γ),故IK +KL =2aγ+2a (1-γ)=2a .同理可证LM +MN =NJ +IJ =2a ,故六边形ω周长为32a ,即周长为定值.当I ,J ,N ,M ,L ,K 都在对应棱的中点时,ω是正六边形.其面积S =6×12×⎝ ⎛⎭⎪⎫22a 2×32=334a 2,△A ′BD 的面积为12×(2a )2×32=32a 2,当ω无限趋近于△A ′BD 时,ω的面积无限趋近于32a 2,故ω的面积一定会发生变化,不为定值.故选B.13.如图,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC 綊12AD ,BE 綊12F A ,G ,H 分别为F A ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?解:(1)证明:由已知FG =GA ,FH =HD 可得GH 綊12AD .又BC 綊12AD ,所以GH 綊BC .所以四边形BCHG 为平行四边形.(2)C ,D ,F ,E 四点共面,理由如下:由BE 綊12AF ,G 为F A 的中点知,BE 綊FG ,所以四边形BEFG 为平行四边形,所以EF ∥BG .由(1)知BG ∥CH ,所以EF ∥CH ,所以EF 与CH 共面,又D ∈FH ,所以C ,D ,F ,E 四点共面.14.如图,E ,F ,G ,H 分别是空间四边形ABCD 各边上的点,且AE ∶EB =AH ∶HD =m ,CF ∶FB =CG ∶GD =n .(1)证明:E,F,G,H四点共面;(2)m,n满足什么条件时,四边形EFGH是平行四边形?(3)在(2)的条件下,若AC⊥BD,试证明:EG=FH.解:(1)证明:因为AE∶EB=AH∶HD,所以EH∥BD.又CF∶FB=CG∶GD,所以FG∥BD.所以EH∥FG.所以E,F,G,H四点共面.(2)当m=n时,四边形EFGH为平行四边形,理由如下:当EH∥FG,且EH=FG时,四边形EFGH为平行四边形.因为EHBD=AEAE+EB=mm+1,所以EH=mm+1BD.同理可得FG=nn+1BD,由EH=FG,得m=n.故当m=n时,四边形EFGH为平行四边形.(3)证明:当m=n时,AE∶EB=CF∶FB,所以EF∥AC,又EH∥BD,所以∠FEH是AC与BD所成的角(或其补角),因为AC⊥BD,所以∠FEH=90°,从而平行四边形EFGH为矩形,所以EG=FH.[C级创新练]15.平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()A.32 B.22 C.33 D.13解析:选A.如图所示,设平面CB1D1∩平面ABCD=m1,因为α∥平面CB1D1,则m1∥m,又因为平面ABCD∥平面A1B1C1D1,平面CB1D1∩平面A1B1C1D1=B1D1,所以B 1D 1∥m 1,所以B 1D 1∥m ,同理可得CD 1∥n .故m ,n 所成角的大小与B 1D 1,CD 1所成角的大小相等,即∠CD 1B 1的大小. 又因为B 1C =B 1D 1=CD 1(均为面对角线),所以∠CD 1B 1=π3, 得sin ∠CD 1B 1=32,故选A.16.(2020·新高考卷Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.解析:如图,连接B 1D 1,易知△B 1C 1D 1为正三角形,所以B 1D 1=C 1D 1=2.分别取B 1C 1,BB 1,CC 1的中点M ,G ,H ,连接D 1M ,D 1G ,D 1H ,则易得D 1G =D 1H =22+12=5,D 1M ⊥B 1C 1,且D 1M = 3.由题意知G ,H 分别是BB 1,CC 1与球面的交点.在侧面BCC 1B 1内任取一点P ,使MP =2,连接D 1P ,则D 1P = D 1M 2+MP 2=(3)2+(2)2=5,连接MG ,MH ,易得MG =MH =2,故可知以M 为圆心,2为半径的圆弧GH 为球面与侧面BCC 1B 1的交线.由∠B 1MG =∠C 1MH =45°知∠GMH =90°,所以GH ︵的长为14×2π×2=2π2.答案:2π2第2讲 空间点、直线、平面之间的位置关系 最新考纲考向预测 借助长方体,在直观认识空间点、直线、平面的位置关系的基础上,抽象出空间点、直线、平面的位置关系的定义,了解公理1~4及其相关定理. 命题趋势 主要考查与点、线、面位置关系有关的命题真假判断和求解异面直线所成的角,主要以选择题和填空题的形式出现,主要为中低档题. 核心素养 直观想象、逻辑推理1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.2.空间直线的位置关系(1)位置关系的分类⎩⎨⎧共面直线⎩⎨⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎥⎤0,π2. (3)等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间中直线与平面、平面与平面的位置关系(1)空间中直线和平面的位置关系位置关系图形表示符号表示公共点直线a在平面α内a⊂α有无数个公共点直线在平面外直线a与平面α平行a∥α没有公共点直线a与平面α斜交a∩α=A有且只有一个公共点直线a与平面α垂直a⊥α(2)空间中两个平面的位置关系位置关系图形表示符号表示公共点两平面平行α∥β没有公共点两平面相交斜交α∩β=l有一条公共直线垂直α⊥β且α∩β=a常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面;推论2:经过两条相交直线有且只有一个平面;推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.常见误区1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线即不平行,也不相交.2.在判断直线与平面的位置关系时最易忽视“线在平面内”.1.判断正误(正确的打“√”,错误的打“×”)(1)若P∈α∩β且l是α,β的交线,则P∈l.()(2)三点A,B,C确定一个平面.()(3)若直线a∩b=A,则直线a与b能够确定一个平面.()(4)若A∈l,B∈l且A∈α,B∈α,则l⊂α.()(5)分别在两个平面内的两条直线是异面直线.()答案:(1)√(2)×(3)√(4)√(5)×2.(多选)α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系可能是()A.垂直B.相交C.异面D.平行解析:选ABC.依题意,m∩α=A,n⊂α,所以m与n可能异面、相交(垂直是相交的特例),一定不平行.3.若∠AOB=∠A1O1B1,且OA∥O1A1,OA与O1A1的方向相同,则下列结论中正确的是()A.OB∥O1B1且方向相同B.OB∥O1B1C.OB与O1B1不平行D.OB与O1B1不一定平行解析:选 D.两角相等,角的一边平行且方向相同,另一边不一定平行,故选D.4.(易错题)如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD 的中点,则异面直线B1C与EF所成角的大小为________.解析:连接B1D1,D1C,则B1D1∥EF,故∠D1B1C为所求角,又B1D1=B1C =D1C,所以∠D1B1C=60°.答案:60°5.如图,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA 的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.解析:(1)因为四边形EFGH为菱形,所以EF=EH,故AC=BD.(2)因为四边形EFGH为正方形,所以EF=EH且EF⊥EH,因为EF綊12AC,EH綊12BD,所以AC=BD且AC⊥BD.答案:(1)AC=BD(2)AC=BD且AC⊥BD平面的基本性质如图所示,在正方体ABCD-A1B1C1D中,E,F分别是AB和AA1的中点,求证:E,C,D1,F四点共面.【证明】如图所示,连接CD1,EF,A1B,因为E,F分别是AB和AA1的中点,所以EF∥A1B且EF=12A1B.又因为A1D1綊BC,所以四边形A1BCD1是平行四边形,所以A1B∥CD1,所以EF∥CD1,所以EF与CD1确定一个平面α,所以E,F,C,D1∈α,即E,C,D1,F四点共面.【引申探究】(变问法)若本例条件不变,如何证明“CE,D1F,DA交于一点”?证明:如图,由本例知EF∥CD1,且EF=12CD1,所以四边形CD1FE是梯形,所以CE与D1F必相交,设交点为P,则P∈CE且P∈D1F,又CE⊂平面ABCD,且D1F⊂平面A1ADD1,所以P∈平面ABCD,且P∈平面A1ADD1.又平面ABCD∩平面A1ADD1=AD,所以P∈AD,所以CE,D1F,DA三线交于一点.共面、共线、共点问题的证明方法(1)证明点或线共面:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.(2)证明点共线:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定的直线上.(3)证明线共点:先证其中两条直线交于一点,再证其他直线经过该点. [提醒] 点共线、线共点等都是应用公理3,证明点为两平面的公共点,即证明点在交线上.1.(多选)如图,在长方体ABCD -A 1B 1C 1D 1中,O 是DB 的中点,直线A 1C 交平面C 1BD 于点M ,则下列结论正确的是( )A .C 1,M ,O 三点共线B .C 1,M ,O ,C 四点共面 C .C 1,O ,A 1,M 四点共面D .D 1,D ,O ,M 四点共面解析:选ABC.连接A 1C 1,AC ,则AC ∩BD =O ,又A 1C ∩平面C 1BD =M ,所以三点C 1,M ,O 在平面C 1BD 与平面ACC 1A 1的交线上,所以C 1,M ,O 三点共线,所以选项A ,B ,C 均正确,选项D 错误.2.如图,空间四边形ABCD 中,E ,F 分别是AB ,AD 的中点,G ,H 分别在BC ,CD 上,且BG ∶GC =DH ∶HC =1∶2.(1)求证:E ,F ,G ,H 四点共面;(2)设EG 与FH 交于点P ,求证:P ,A ,C 三点共线.证明:(1)因为E ,F 分别为AB ,AD 的中点,所以EF ∥BD .在△BCD 中,BG GC =DH HC =12,所以GH ∥BD ,所以EF ∥GH ,所以E ,F ,G ,H 四点共面.(2)因为EG ∩FH =P ,P ∈EG ,EG ⊂平面ABC ,所以P∈平面ABC.同理P∈平面ADC .所以P为平面ABC与平面ADC的公共点,又平面ABC∩平面ADC=AC,所以P∈AC,所以P,A,C三点共线.空间两直线的位置关系(2019·高考全国卷Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【解析】如图,取CD的中点F,连接EF,EB,BD,FN,因为△CDE 是正三角形,所以EF⊥CD.设CD=2,则EF= 3.因为点N是正方形ABCD的中心,所以BD=22,NF=1,BC⊥CD.因为平面ECD⊥平面ABCD,所以EF⊥平面ABCD,BC⊥平面ECD,所以EF⊥NF,BC⊥EC,所以在Rt△EFN中,EN=2,在Rt△BCE中,EB=22,所以在等腰三角形BDE中,BM=7,所以BM≠EN.易知BM,EN是相交直线.故选B.【答案】 B1.已知a,b是异面直线,A,B是a上的两点,C,D是b上的两点,M,N分别是线段AC,BD的中点,则MN和a的位置关系是()A.异面B.平行C.相交D.以上均有可能解析:选A.若MN与AB平行或相交,则MN与AB共面,设该平面为α.因为C∈直线AM,D∈直线BN,所以C∈α,D∈α,所以b⊂α.又因为A∈α,B ∈α,所以a⊂α.这与a,b异面矛盾.故选A.2.(多选)如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C 的中点,下列说法正确的有()A.直线AM与CC1是相交直线B.直线AM与BN是平行直线C.直线BN与MB1是异面直线D.直线AM与DD1是异面直线解析:选CD.因为点A在平面CDD1C1外,点M在平面CDD1C1内,直线CC1在平面CDD1C1内,CC1不过点M,所以AM与CC1是异面直线,故A错;取DD1的中点E,连接AE(图略),则BN∥AE,但AE与AM相交,故B错;因为B1与BN都在平面BCC1B1内,M在平面BCC1B1外,BN不过点B1,所以BN 与MB1是异面直线,故C正确;同理D正确,故选CD.异面直线所成的角(1)如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB 的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.(2)四面体ABCD中,E,F分别是AB,CD的中点.若BD,AC所成的角为60°,且BD=AC=1,则EF的长为________.【解析】(1)取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成的角即为异面直线AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点,所以C1D垂直于圆柱下底面,所以C1D⊥AD.因为圆柱的轴截面ABB1A1是正方形,所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为 2.(2)如图,取BC的中点O,连接OE,OF,因为OE∥AC,OF∥BD,所以OE与OF所成的锐角(或直角)即为AC与BD所成的角,而AC,BD所成角为60°,所以∠EOF =60°或∠EOF =120°.当∠EOF =60°时,EF =OE =OF =12.当∠EOF =120°时,取EF 的中点M ,则OM ⊥EF , EF =2EM =2×34=32. 【答案】 (1)2 (2)12或32平移法求异面直线所成角的步骤具体步骤如下:1.直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°解析:选C.如图,可补成一个正方体,所以AC 1∥BD 1.所以BA 1与AC 1所成的角为∠A 1BD 1.又易知△A1BD1为正三角形.所以∠A1BD1=60°.即BA1与AC1所成的角为60°.2.(2021·济南市学习质量评估)如图,在正方形ABCD中,点E,F分别为BC,AD的中点,将四边形CDFE沿EF翻折,使得平面CDFE⊥平面ABEF,则异面直线BD与CF所成角的余弦值为________.解析:如图,连接DE交FC于点O,取BE的中点G,连接OG,CG,则OG∥BD且OG=12BD,所以∠COG为异面直线BD与CF所成的角或其补角.设正方形ABCD的边长为2,则CE=BE=1,CF=DE=CD2+CE2=5,所以CO=12CF=52.易得BE⊥平面CDFE,所以BE⊥DE,所以BD=DE2+BE2=6,所以OG=12BD=62.易知CE⊥平面ABEF,所以CE⊥BE,又GE=12BE=12,所以CG=CE2+GE2=52.在△COG中,由余弦定理得,cos∠COG=OC2+OG2-CG22OC·OG=⎝⎛⎭⎪⎫522+⎝⎛⎭⎪⎫622-⎝⎛⎭⎪⎫5222×52×62=3010,。

高考数学复习:利用空间向量证明空间中的位置关系

高考数学复习:利用空间向量证明空间中的位置关系


.若存在,求出AE的长;若不存在,请说明理由.
6
【解析】(1)四边形ADD1A1为正方形,连接AD1,A1D∩AD1
=F,则F是AD1的中点,又因为点E为AB的中点,连接EF,则
EF为△ABD1的中位线,所以EF∥BD1.
又因为BD1⊄平面A1DE,EF⊂平面A1DE,
所以BD1∥平面A1DE.
MN∥平面BB1C1C.
2.以下四组向量是平面α,β 的法向量,则能判断
α,β平行的是
(
)
①a=(1,2,1),b=(1,-2,3);
②a=(8,4,-6),b=(4,2,-3);
③a=(0,1,-1),b=(0,-3,3);
④a=(-3,2,0),b=(4,-3,3).
A.①②
B.②③
C.②④
D.①③
2 ,
a
3
2 1
2 2
所以M(a, a, a),N( a, a,a).
3 3
3 3
a 2
0, a).
所以 MN=(- ,
3 3
又C1(0,0,0),D1(0,a,0),所以 C1D1 =(0,a,0).
所以 MN·C1D1 =0.所以 MN⊥C1D1 .
因为C1D1是平面BB1C1C的法向量,且MN⊄平面BB1C1C,所以
【解析】选B.因为在②中a=2b,所以a∥b,所以α∥β,
③-3a=b,所以α∥β,而①④a不平行于b,所以α不平
行于β,所以只有②③能判断α,β平行.
3.在直三棱柱ABC-A1B1C1中,BA⊥CA, A1A=BA=CA,点M,N
分别是AC,AB的中点,过点C作平面α,使得α∥A1M,
α∥B1N,若α∩B1C1=P,则 C1P 的值为

高考数学复习:两个平面的位置关系

高考数学复习:两个平面的位置关系

高考数学复习:两个平面的位置关系(6)直二面角:平面角是直角的二面角叫做直二面角。

esp.两平面垂直两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。

记为⊥两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

Attention:二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)多面体棱柱棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

棱柱的性质(1)侧棱都相等,侧面是平行四边形(2)两个底面与平行于底面的截面是全等的多边形(3)过不相邻的两条侧棱的截面(对角面)是平行四边形棱锥棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥棱锥的性质:(1)侧棱交于一点。

侧面都是三角形(2)平行于底面的截面与底面是相似的多边形。

且其面积比等于截得的棱锥的高与远棱锥高的比的平方正棱锥正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。

各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3)多个特殊的直角三角形esp:a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。

且顶点在底面的射影为底面三角形的垂心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年高考数学复习:两个平面的位置关系_考前复习
必修知识点:两个平面的位置关系
(1)两个平面互相平行的定义:空间两平面没有公共点
(2)两个平面的位置关系:
两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。

a、平行
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

b、相交
二面角
(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

二面角的取值范围为[0°,180°]
(3)二面角的棱:这一条直线叫做二面角的棱。

(4)二面角的面:这两个半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

esp.两平面垂直
两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。

记为⊥
两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

Attention:
二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)
多面体
棱柱
棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

棱柱的性质
(1)侧棱都相等,侧面是平行四边形
(2)两个底面与平行于底面的截面是全等的多边形
(3)过不相邻的两条侧棱的截面(对角面)是平行四边形
棱锥
棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥
棱锥的性质:
(1)侧棱交于一点。

侧面都是三角形
(2)平行于底面的截面与底面是相似的多边形。

且其面积比等于截得的棱锥的高与远棱锥高的比的平方
正棱锥
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。

各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3)多个特殊的直角三角形
esp:
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。

且顶点在底面的射影为底面三角形的垂心。

相关文档
最新文档