SLA和SLS 的区别

合集下载

3D打印机厂家分析SLA光固化3D打印机和SLS粉末烧结3D打印机有什么不同

3D打印机厂家分析SLA光固化3D打印机和SLS粉末烧结3D打印机有什么不同

3D打印机厂家分析SLA光固化3D打印机和SLS粉末烧结3D打印机有什么不同立体光刻-通常称为SLA-是增材制造领域最受欢迎和最普遍的技术之一。

它的工作原理是使用高功率激光来硬化容器中的液态树脂,以产生所需的3D形状。

简而言之,该工艺使用低功率激光和光聚合以逐层方式将光敏液体转化为3D固体塑料。

SLA光固化3D打印机和SLS粉末烧结3D打印机有什么不同。

SLA光固化3D打印机是3D打印中采用的三种主要技术之一,还包括熔融沉积成型(FDM)和选择性激光烧结(SLS)。

它属于树脂3D打印类。

通常与SLA组合的类似技术称为数字光处理(DLP)。

它代表了SLA过程的一种演变,使用投影仪屏幕而不是激光。

选择性激光烧结(SLS)涉及完全不同的方法,但它也涉及使用激光,虽然它也使用激光,但功能更强大。

这是因为光束不是固化物质,而是将粉末加热到将其颗粒融合在一起的程度。

通常与SLS组合的是直接金属激光烧结(DMLS)和选择性激光熔化(SLM),它们特别适用于金属。

普通SLS适用于尼龙等聚合物。

与使用其他技术制造的物体相比,SLS印刷品特别坚固耐用。

此外,由于SLS中不需要支撑,因此打印可能具有复杂的几何形状。

SLS 的细节可能相当高,它通常无法与SLA的精度相比。

SLA光固化3D打印机和SLS粉末烧结3D打印机有什么不同由于其高功率激光器,SLS机器采用了更先进的技术,包括对有害紫外线辐射的特殊屏蔽。

这导致打印机更昂贵,几乎没有桌面或台式选项。

此外,SLS粉末比液体光聚合物更昂贵。

简而言之,如果您需要高机械强度和复杂形状,并且成本不太重要,请使用SLS打印机。

尽管立体光刻是第一个为快速原型开发而开发的工艺,并且是主要3D打印方法中最早的一种,但它仍然是创建具有高精度和耐用性的原型的有吸引力的解决方案。

许多行业和业余爱好者使用这个过程来构建原型和最终产品,并且该技术继续变得更加经济实惠和易于使用。

3D打印主流技术之SLS

3D打印主流技术之SLS

3D打印主流技术之SLS数字模型分层切割与逐层制造是3D 打印工艺的基础,这里往后就不再赘述了。

除此之外,SLS 工艺与SLA 光固化工艺还有相似之处,即都需要借助激光将物质固化为整体。

不同的是,SLS 工艺使用的是红外激光束,材料则由光敏树脂变成了塑料、蜡、陶瓷、金属或其复合物的粉末。

先将一层很薄(亚毫米级)的原料粉未铺在工作台上,接着在电脑控制下的激光束通过3D扫描器以一定的速度和能量密度,按分层面的二维数据扫描。

激光扫描过的粉末就烧结成一定厚度的实体片层,未扫描的地方仍然保持松散的粉末状。

一层扫描完毕,随后对下一层进行扫描。

先根据物体截层厚度升降工作台,铺粉滚筒再次将粉末铺平,然后再开始新一层的扫描。

如此反复,直至扫描完所有层面。

去掉多余粉末,再经过打磨、烘干等适当的后处理,即可获得零件。

目前应用此工艺时,以蜡粉末及塑料粉末作为原料较多,而用金属粉或陶瓷粉进行粘接或烧结的工艺尚未实际应用。

层片叠加制造(Laminated object manufacturing,LOM)在层片叠加制造工艺中,机器会将单面涂有热溶胶的箔材通过热辊加热,热溶胶在加热状态下可产生粘性,所以由纸、陶瓷箔、金属箔等构成的材料就会粘接在一起。

接着,上方的激光器按照CAD 模型分层数据,用激光束将箔材切割成所制零件的内外轮廓。

然后再铺上新的一层箔材,通过热压装置将其与下面已切割层粘合在一起,激光束再次切割。

然后重复这个过程,直至整个零部件打印完成。

不难发现,LOM 工艺还是有传统切削的影子。

只不过它不是用大块原材料进行整体切削,而是将原来的零部件模型分割为多层,然后进行逐层切削。

北京太尔时代最开始研发的3D 打印机也是LOM 工艺的3D 打印机,不过因为采用纸作为原料,用激光切割存在点燃风险,且应用受限,所以太尔时代后来转而主攻FDM 工艺。

三维印刷工艺(3D printing,3DP)三维印刷,也称三维打印。

维基百科显示,1989年,麻省理工的Emanuel M. Sachs和John S. Haggerty等在美国申请了三维印刷技术的专利,之后Emanuel M. Sachs和John S. Haggerty又多次对该技术进行完善,并最终形成了今天的三维印刷工艺。

3D打印技术

3D打印技术

3D打印机的技术现在市面上已经有十几种不同的3D打印机的技术,其中比较成熟的有UV、SLA、SLS、LOM 和FDM等方法。

我们将在下面介绍4种目前使用比较广泛的技术:SLA技术3D打印机的原理SLA是"Stereo lithography Appearance"的缩写,即立体光固化成型法。

用特定波长与强度的激光聚焦到光固化材料表面,使之由点到线,由线到面顺序凝固,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面。

这样层层叠加构成一个三维实体。

SLA是最早实用化的快速成形技术,采用液态光敏树脂原料,工艺原理如图所示。

其工艺过程是,首先通过CAD设计出三维实体模型,利用离散程序将模型进行切片处理,设计扫描路径,产生的数据将精确控制激光扫描器和升降台的运动;激光光束通过数控装置控制的扫描器,按设计的扫描路径照射到液态光敏树脂表面,使表面特定区域内的一层树脂固化后,当一层加工完毕后,就生成零件的一个截面;然后升降台下降一定距离,固化层上覆盖另一层液态树脂,再进行第二层扫描,第二固化层牢固地粘结在前一固化层上,这样一层层叠加而成三维工件原型。

将原型从树脂中取出后,进行最终固化,再经打光、电镀、喷漆或着色处理即得到要求的产品。

SLA技术主要用于制造多种模具、模型等;还可以在原料中通过加入其它成分,用SLA原型模代替熔模精密铸造中的蜡模。

SLA技术成形速度较快,精度较高,但由于树脂固化过程中产生收缩,不可避免地会产生应力或引起形变。

因此开发收缩小、固化快、强度高的光敏材料是其发展趋势。

SLA技术的优势1.光固化成型法是最早出现的快速原型制造工艺,成熟度高,经过时间的检验。

2.由CAD数字模型直接制成原型,加工速度快,产品生产周期短,无需切削工具与模具。

3.可以加工结构外形复杂或使用传统手段难于成型的原型和模具。

4.使CAD数字模型直观化,降低错误修复的成本。

SLS、SLA、FDM产品性能简要分析

SLS、SLA、FDM产品性能简要分析

工业级SLS、SLA、FDM产品性能简要分析性能SLS(选择性激光烧结)SLA(光固化)FDM(热融溶)外观外观一般,有粉末感比较光滑,无明显痕迹在Z轴有比较规律的纹理力学性能力学性能优异,适合产品的结构验证,可以进行装配验证。

较脆,容易老化,适合外观验证。

在Z轴方向力学性能比较差材料应用材料多样化,理论上有固定熔点,可以制成粉末的材料通过激光都可以加工成型,目前可以应用的材料有10多种,随着材料的不断开发,未来材料会更多。

只能使用光敏材料(因为成型的原理是用紫外激光器,照射光敏树脂,通过光聚合反应成型)材料单一。

只能使用ABS,PLA等低熔点材料。

成型材料粉末液体线材耗材价格450/kg 1800/kg 450/kg 使用成本一般较高一般使用环境常温24小时开空调常温成型精度取决于粉末颗粒大小,铺粉层厚,激光光斑大小,一般在±0.1mm 成型精度在±0.1mm 成型精度较低,产品在成型过程中容易变形是否需要支撑无需设计支撑需要设计支撑,后续需要手工把支撑处理掉,并进行二次固化处理需要设计支撑,需要进行支撑处理工艺工业应用小批量生产,和样品制造样品制造样品制造应用领域工业化生产,研发,偏重结构件工业研发,偏重外观件个人消费RP工艺精度表面质量材料价格材料利用率运行成本生产效率产品应用SLA 好好较贵接近80% 较高一般外观手板的样品验证SLS 好一般一般接近100% 一般高可以直接做终端产品,外观和功能性手板FDM 较差较差便宜接近70% 较低较低样品验证。

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析随着科技的不断进步,3D打印技术已经成为当今的热门话题。

3D 打印技术通过将数字文件转化为物理对象,为生产和创新带来了巨大的便利。

目前市面上主流的3D打印技术有多种,其中最常见的技术包括SLA、FDM、SLS等。

本文将对这三个技术进行详细的对比分析。

一、SLA技术1.概念SLA是“光固化成型”,该技术是将纯液态光敏树脂涂覆在建模台上,然后利用UV激光束逐层固化,最后形成物体。

2.特点SLA技术的最大特点就是可以制作非常精细的模型,可以达到0.025mm的高精度,因此广泛应用于珠宝、艺术品、模型制作等领域。

SLA吸收材料的能力也很强,可以在有限的时间内生产大批量的模型。

3.应用SLA技术可以应用于复杂的3D打印模型,从家用电器的零件到医疗器械,都可以使用SLA技术,目前3D打印领域最成熟的技术之一。

二、FDM技术1.概念FDM是较常用的3D打印技术,该技术是通过将熔化的热塑性材料挤出喷嘴,然后通过精确控制的机器臂逐层叠加,最终形成物体。

2.特点FDM技术可以使用广泛的材料,如ABS、PLA、PVA等,因此可以制作出各种不同材质的物体。

此外,FDM技术可以使用废旧材料进行打印,具有环保节能的特征。

FDM技术的价格也比其他技术便宜,因此普及率很高。

3.应用FDM技术主要应用于制作机械零件、人造器官、模型等等。

FDM技术可以制作出高度精确的物体,而且速度快、方便实用,是3D打印领域的常用技术。

三、SLS技术1.概念SLS是“选择性激光烧结”,该技术是利用激光束烧结聚合性形式的粉末,从而在建模台上形成模型。

2.特点SLS技术适用范围广,可以使用多种不同的粉末材料进行打印,如聚酰胺、耐热材料、金属、陶瓷和玻璃等,可以制作非常大的物体。

SLS技术还可以制作出复杂的内部结构和薄壁结构,同时具有较高的强度和耐磨性。

3.应用SLS技术主要应用于制作模型、人工骨骼等各种半成品。

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析3D打印技术的发展已经取得了显著的成就,现在市面上有多种不同的3D打印技术,如SLA(光固化)、FDM(熔融沉积建模)和SLS (选择性激光烧结)等。

这些技术各自具有自己的特点和应用,本文将对它们进行详细的分析和比较。

一、SLA(光固化)技术SLA(Stereo Lithography Apparatus)是一种利用紫外线激光固化光敏树脂来进行3D打印的技术。

在SLA打印中,紫外线激光照射到光敏树脂表面,树脂在紫外线激光的作用下进行固化,一层一层地堆积,从而构建出3D打印模型。

SLA技术的特点:1.高精度:由于SLA技术采用激光光束对光敏树脂进行点对点的固化,因此该技术打印出的模型具有很高的精度和表面光滑度。

2.高速度:SLA技术在固化光敏树脂时只需要进行点对点的激光照射,因此打印速度较快。

3.适用于小批量生产:由于SLA技术具有高精度和高速度的特点,因此适用于小批量生产,尤其是一些需要高精度模型的领域,如医疗、汽车、航空航天等。

4.材料多样性:SLA技术使用的光敏树脂种类繁多,可以根据不同的需求选择不同性能的光敏树脂进行打印,可以满足不同行业的需求。

SLA技术的应用:1.医疗领域:SLA技术可以打印出高精度的医疗模型,用于手术模拟、人体组织重建等领域。

2.工程领域:SLA技术可以打印出高精度的工程模型,用于产品设计、样机制作等领域。

3.艺术领域:SLA技术可以打印出艺术品模型,用于雕塑、装饰等领域。

二、FDM(熔融沉积建模)技术FDM(Fused Deposition Modeling)是一种利用熔化的热塑性材料进行3D打印的技术。

在FDM打印中,熔融的热塑性材料从喷嘴中挤出,通过移动喷嘴进行层层堆积,从而构建出3D打印模型。

FDM技术的特点:1.低成本:FDM技术使用的材料相对较为便宜,因此成本较低。

2.材料多样性:FDM技术使用的热塑性材料种类繁多,可以根据不同的需求选择不同性能的材料进行打印。

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析3D打印技术已经在多个领域取得了广泛应用,例如医疗、航空航天、汽车、工业制造等。

其中,SLA(StereoLithography)技术、FDM (Fused Deposition Modeling)技术、SLS(Selective Laser Sintering)技术是三种常见且应用广泛的技术。

本文将对这三种技术的特点和应用进行对比分析,以便更好地了解它们的优劣。

1. SLA技术SLA技术是一种利用光固化树脂的三维打印技术,通过使用紫外线激光照射在光敏树脂表面,将树脂固化成固体物体。

SLA技术的特点有:-高精度:由于激光精确照射在树脂表面,SLA技术可以实现非常高的精度和表面光滑度。

-材料多样性:SLA技术可以使用不同材质的光敏树脂,可以实现多种功能性的零件制造。

-成型速度较慢:由于要使用激光逐层固化树脂,SLA技术的成型速度相对较慢。

SLA技术的应用范围非常广泛,主要包括医疗领域中的生物医学模型制造、工业设计中的样机打印、珠宝设计中的模具制作等领域。

2. FDM技术FDM技术是一种利用熔融式塑料丝进行层层堆积的三维打印技术,通过加热喷嘴将塑料丝熔化后挤出,通过控制喷嘴的运动路径实现物体的制造。

FDM技术的特点包括:-较低的成本:相比其他技术,FDM技术的设备和材料成本相对较低。

-制造速度快:FDM技术可以实现较快的成型速度,适用于批量定制生产。

-材料种类丰富:FDM技术可以使用多种不同材质的塑料丝,可以满足不同领域的需求。

FDM技术的应用范围包括汽车领域的零部件制造、航空航天领域的样机验证、工业制造中的快速定制等领域。

3. SLS技术SLS技术是一种利用激光烧结粉末材料进行层层堆积的三维打印技术,通过使用激光将粉末材料局部烧结固化,形成物体的过程。

SLS技术的特点有:-可制造复杂结构:SLS技术可以实现复杂结构的制造,适用于精细零件制作。

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析3D打印技术的快速发展已经改变了传统制造业的格局,各种不同的3D打印技术应运而生,在这些技术中,SLA、FDM和SLS是应用最为广泛的,各自具有自身独特的特点和应用。

本文将对这三种技术进行比较分析,以便读者能更好地了解它们的优缺点以及应用领域。

1. SLA(光固化3D打印技术)SLA是一种通过光敏树脂材料的光固化来实现零件制造的技术。

在SLA打印中,光固化树脂通过激光光束或UV光固化灯照射,将液体材料逐层固化成固体结构,从而实现3D打印。

特点:- SLA打印精度高,可打印出细小的细节和曲线;-制造的零件密度高,尺寸精确,表面光滑;-材料种类多,可选用透明、硬质和柔软材料等;-适用于制造模型、原型、珠宝等精细零件。

应用:-工程原型制作;-珠宝、手表等奢侈品设计与制造;-医疗行业的模型、器械等制造。

2. FDM(熔融沉积建模技术)FDM是一种利用熔融塑料丝材料层层积累而成的3D打印技术。

在FDM打印中,热塑性聚合物材料通过喷嘴加热熔化后,由机器按照程序设计的路径进行沉积成型。

特点:- FDM打印速度快,制造成本低;-可选材料种类多,包括ABS、PLA、PETG等;-零件结构强度高,适用于功能性部件制造;-可批量生产,适用于器械、工业设计等领域。

应用:-工业制造中的功能基础部件;-制造耐热、耐腐蚀功能零件;-教育领域的原型制作。

3. SLS(选择性激光烧结技术)SLS是一种通过激光照射可熔性粉末材料层层烧结而形成零件的3D打印技术。

在SLS打印中,通过激光照射将粉末材料烧结成型,无需支撑结构,制造出的零件具有良好的强度和表面质量。

特点:- SLS打印具有很高的制造自由度,支撑结构可避免;-零件强度高,可承受较大的载荷;-可使用多种工程级材料,如尼龙、PA12等;-适合于小批量或定制化零件制造。

应用:-汽车、航空航天等领域的功能零部件制造;-医疗领域的人造假体、手术模型等制造;-艺术创作和设计制造。

几种3D打印技术

几种3D打印技术

几种3D打印技术1、SLA(Stereo lithography Appearance,立体光固化成型技术)用特定波长与强度的激光聚焦到光固化材料表面,使之由点到线,由线到面顺序凝固,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面。

这样层层叠加构成一个三维实体。

SLA是最早实用化的快速成形技术,原材料是液态光敏树脂。

其工作原理是:将液态光敏树脂放入加工槽中,开始时工作台的高度与液面相差一个截面层的厚度,经过聚焦的激光按横截面的轮廓对光敏树脂表面进行扫描,被扫描到的光敏树脂会逐渐固化,这样就可以产生了与横截面轮廓相同的固态的树脂工件。

此时,工作台会下降一个截面层的高度,固化了的树脂工件就会被在加工槽中周围没有被激光照射过的还处于液态的光敏树脂所淹没,激光再开始按照下一层横截面的轮廓来进行扫描,新固化的树脂会粘在下面一层上,经过如此循环往复,整个工件加工过程就完成了。

然后将完成的工件再经打光、电镀、喷漆或着色处理即得到要求的产品。

工作原理图如下:优势:1.光固化成型法是最早出现的快速原型制造工艺,成熟度高;2.由CAD数字模型直接制成原型,加工速度快,产品生产周期短,无需切削工具与模具;3.可以加工结构外形复杂或使用传统手段难于成型的原型和模具;4.使CAD数字模型直观化,降低错误修复的成本;5.为实验提供试样,可以对计算机仿真计算的结果进行验证与校核;6.可联机操作,可远程控制,利于生产的自动化;劣势:1.SLA系统造价高昂,使用和维护成本过高。

2.SLA系统是要对液体进行操作的精密设备,对工作环境要求苛刻;3.成型件多为树脂类,强度,刚度,耐热性有限,不利于长时间保存;4.软件系统操作复杂,入门困难;使用的文件格式不为广大设计人员熟悉;5.由于树脂固化过程中产生收缩,不可避免地会产生应力或引起形变;前景:立体光固化成型法的的发展趋势是高速化,节能环保与微型化。

不断提高的加工精度使之有最先可能在生物,医药,微电子等领域大有作为。

3D打印技术的种类

3D打印技术的种类

3D打印技术的种类3D打印技术是一种现代化的制造技术,由于它在材料、形状、尺寸和快速生产等方面的优势,越来越受到人们的关注。

3D打印技术有许多不同的类型,以适应各种不同的制造需求。

1.熔融沉积(FDM)熔融沉积(FDM)是最常见的3D打印技术之一。

它使用塑料材料,将其加热至熔点状态,并通过喷嘴注射到3D打印机的构建平台上,以形成物体。

FDM技术不仅快速并且容易使用,还可用于打印复杂的3D模型。

2.光固化(SLA)光固化(SLA)是一种精细的3D打印技术,其使用光敏树脂材料。

通过使用激光或紫外线在树脂上进行扫描,可以固化形状并在构建台上打印3D实物。

SLA技术在制造超细精度的单一零件方面非常有用。

3.选择性激光烧结(SLS)选择性激光烧结(SLS)是一种使用粉末材料的3D打印技术。

它将辊筒中的材料粉末加热到熔点状态。

然后,使用激光将粉末烧结在构建台上,以形成3D模型。

SLS技术非常适合打印复杂的模型和零件,特别是在现场制造需要重量和强度的部件时非常有用。

4.电子束熔化(EBM)电子束熔化(EBM)是一种使用多孔粉末材料的3D打印技术。

这种技术使用电子束加热粉末,使其融化在构建平台上。

EBM技术可用于制造金属零件以及其他需要高强度和坚固的产品。

多光束激光熔化(MBD)是一种非常快速的3D打印技术,可在短时间内生产大量复杂的对象。

它使用多个激光束来同时扫描构建平台,并将光敏树脂材料固化成3D实物。

MBD技术非常适合在快速生产和生产中使用。

6.投影微型立体成形(PμSL)投影微型立体成形(PμSL)是一种精细的3D打印技术,其使用高分辨率的光学系统,将光束投射到树脂上,以形成3D模型。

PμSL技术非常适用于打印复杂的小零件和细节。

这些3D打印技术是绝佳的选择,以适应不同的制造需求,从小型零件到大型建筑等等。

它们将在未来继续发展,并为制造业带来新的创新和进行性的进步。

快速成型:SLA、LOM、SLS、3DP、FDM

快速成型:SLA、LOM、SLS、3DP、FDM

快速成型:SLA、LOM、SLS、3DP、FDM快速成型技术根据成型方法可分为两类:基于激光及其他光源的成型技术Laser Technology,例如:光固化成型SLA、分层实体制造LOM、选域激光粉末烧结SLS、形状沉积成型SDM 等;基于喷射的成型技术Jetting Technoloy,例如:熔融沉积成型FDM、三维印刷3DP、多相喷射沉积MJD光造型工艺SLASLA,Stereolithogrphy Apparatus工艺,也称光造型或立体光刻,由Charles Hul 于 1984 年获美国专利。

SLA 技术是基于液态光敏树脂的光聚合原理工作的。

这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。

SLA工作原理SLA工作原理:液槽中盛满液态光固化树脂激光束在偏转镜作用下,能在液态表而上扫描,扫描的轨迹及光线的有无均由计算机控制,光点打到的地方,液体就固化。

成型开始时,工作平台在液面下一个确定的深度.聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。

当一层扫描完成后.未被照射的地方仍是液态树脂。

然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新周化的一层牢周地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。

SLA 方法是目前快速成型技术领域中研究得最多的方法.也是技术上最为成熟的方法。

S LA 工艺成型的零件精度较高,加工精度一般可达到 0.1 mm ,原材料利用率近 100 %。

但这种方法也有白身的局限性,比如需要支撑、树脂收缩导致精度下降、光固化树脂有一定的毒性等。

叠层实体制造工艺LOMLOM,Laminated Object Manufacturing,LOM工艺称叠层实体制造或分层实体制造,由美国Helisys公司的Michael Feygin于1986 年研制成功。

SLS和SLA两种快速成型的对比

SLS和SLA两种快速成型的对比

SLS和SLA两种快速成型的对比
激光快速成型在制作手板模型的应用上,主要有两种加工方式,分别为SLS(激光选区烧结法)快速成型系统和SLA(光固化成型法)快速成型系统两种方式。

SLS和SLA快速成型之间的区别和相同点分析:
两者原理都是非常相似的。

前者所用的材质是粉末状的物质,而后者所采用的一种液态形状的光敏树脂,所以前者比后者的优点在于,凡是可以溶解的所有粉末状的物质,都是可以用来制造原型或者模型的,所制造出来的产品都是可以用作产品的首样测试和结构组装件的。

所以SLS可以利用的材质非常广泛,比如说尼龙材质,比如说PC材质,比如说其他的腊粉,甚至有些五金的材质都是可以做到的。

通过以上方式加工出来的产品,精度都是相差比较大,但是因为SLS可以烧结很多的材质,甚至有些冷门的陶瓷层都能做到,所以说SLS工艺更加具有广泛的应用性,在行业的应用范围大,吸引力强。

精致的工艺品适合用SLA快速成型,大型的产品则选择就选择SLS激光粉末烧结成型了更为适合。

华曙高科小编温馨提示:结合两者的优缺点,为自己的产品增加成功的几率,以及降低公司的预算成本,选择更适合自己的技术!
本文由SLS快速成型湖南华曙高科()小编整理并编辑!。

几种常见快速成型工艺优缺点比较

几种常见快速成型工艺优缺点比较

几种常见快速成型工艺优缺点比较常见的快速成型工艺包括:激光烧结法(Selective Laser Sintering,SLS)、光固化法(Stereolithography,SLA)、喷墨打印法(Inkjet Printing)、电子束熔化法(Electron Beam Melting,EBM)、热熔沉积法(Fused Deposition Modeling,FDM)等。

下面将逐一比较这些方法的优缺点。

激光烧结法(SLS)是使用激光器将可塑性粉末烧结成所需形状的方法。

其优点包括:1.适用范围广:SLS可以用于各种材料,包括塑料、金属、陶瓷等。

因此,它适用于不同领域的应用,例如制造汽车零件、医疗器械等。

2.生产速度快:SLS可以在短时间内完成复杂形状的成型,节省了生产时间。

3.无需支撑结构:由于激光烧结的方式,SLS制造的零件不需要支撑结构,因此可以制造更为复杂的形状。

但SLS也存在一些缺点:1.成本较高:SLS设备的价格相对较高,且材料也相对较贵,导致成本较高。

2.表面质量较差:SLS制造的零件表面质量一般较差,需要进行后处理才能得到满意的结果。

光固化法(SLA)是使用紫外线激光器将液态光敏物质逐层固化成所需形状的方法。

其优点包括:1.高精度:SLA制造的零件具有较高的精度和细节展现能力。

2.可用材料多样:SLA可以使用不同种类的光敏物质进行成型,例如树脂、陶瓷等。

3.成本相对较低:SLA设备的价格相对较低,且材料成本也较低。

然而,SLA也存在一些缺点:1.制造速度较慢:由于光敏物质需要逐层固化,SLA制造的速度较慢。

2.零件强度较低:SLA制造的零件强度一般较低,不适用于承受大负荷的情况。

喷墨打印法(Inkjet Printing)是使用喷墨头将液态材料逐层喷射成所需形状的方法。

其优点包括:1.制造速度快:喷墨打印法可以较快地完成成型过程。

2.低成本:喷墨打印设备相对成本较低,材料成本也较低。

常见3D打印技术FDM、SLS、SLA原理及优缺点分析

常见3D打印技术FDM、SLS、SLA原理及优缺点分析

常见3D打印技术FDM、SLS、SLA原理及优缺点分析FDM熔融层积成型技术FDM熔融层积成型技术是将丝状的热熔性材料加热融化,同时三维喷头在计算机的控制下,根据截面轮廓信息,将材料选择性地涂敷在工作台上,快速冷却后形成一层截面。

一层成型完成后,机器工作台下降一个高度(即分层厚度)再成型下一层,直至形成整个实体造型。

FDM技术的优点:1)操作环境干净、安全,材料无毒,可以在办公室、家庭环境下进行,没有产生毒气和化学污染的危险。

2)无需激光器等贵重元器件,因此价格便宜。

3)原材料为卷轴丝形式,节省空间,易于搬运和替换。

4)材料利用率高,可备选材料很多,价格也相对便宜。

FDM技术的缺点:1)成形后表面粗糙,需后续抛光处理。

最高精度只能为0.1mm。

2)速度较慢,因为喷头做机械运动。

3)需要材料作为支撑结构。

SLS打印技术SLS打印技术采用铺粉将一层粉末材料平铺在已成型零件的上表面,并加热至恰好低于该粉末烧结点的某一温度,控制系统控制激光束按照该层的截面轮廓在粉层上扫描,使粉末的温度升到熔化点,进行烧结并与下面已成型的部分实现粘结。

一层完成后,工作台下降一层厚度,铺料辊在上面铺上一层均匀密实粉末,进行新一层截面的烧结,直至完成整个模型。

SLS技术的优点:1)可用多种材料。

其可用材料包括高分子、金属、陶瓷、石膏、尼龙等多种粉末材料。

2)制造工艺简单。

由于可用材料比较多,该工艺按材料的不同可以直接生产复杂形状的原型、型腔模三维构建或部件及工具。

3)高精度。

一般能够达到工件整体范围内(0.05-2.5)mm的公差。

4)无需支撑结构。

叠层过程出现的悬空层可直接由未烧结的粉末来支撑。

5)材料利用率高。

由于不需要支撑,无需添加底座,为常见几种3D打印技术中材料利用率最高的,且价格相对便宜。

SLS技术的缺点:1)表面粗糙。

由于原材料是粉状的,原型建造是由材料粉层经过加热熔化实现逐层粘结的,因此,原型表面严格讲是粉粒状的,因而表面质量不高。

SLA,LOM,SLS,FDM,3DP技术的主要特点和比较

SLA,LOM,SLS,FDM,3DP技术的主要特点和比较

一、SLA,LOM,SLS,FDM,3DP技术的主要特点和比较;在快速成型领域里主要的技术包括:SLA、LOM、SLS 、LOM及3DP等工艺技术,而这几种工艺又各有千秋,接下来就看一下这几种工艺的优缺点及比较:1、SLA光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺,简称SLA,是最早出现的一种快速成型技术。

在树脂槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。

成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的树脂薄片。

然后,工作台下降一层薄片的高度,以固化的树脂薄片就被一层新的液态树脂所覆盖,以便进行第二层激光扫描固化,新固化的一层牢粘结在前一层上,如此重复不已,直到整个产品成型完毕。

最后升降台升出液体树脂表面,取出工件,进行清洗、去处支撑、二次固化以及表面光洁处理等。

光敏树脂选择性固化快速成型技术适合于制作中小形工件,能直接得到树脂或类似工程塑料的产品.主要用于概念模型的原型制作,或用来做简单装配检验和工艺规划。

光固化成型(SLA)优点如下:(1)尺寸精度高.SLA原型的尺寸精度可以达到±0.1mm。

(2)表面质量好.虽然在每层固化时侧面及曲面可能出现台阶,但上表面仍可以得到玻璃状的效果。

(3)可以制作结构十分复杂的模型。

(4)可以直接制作面向熔模精密铸造的具有中空结构的消失型.SLA的缺点:(1)尺寸的稳定性差.成型过程中伴随着物理和化学变化,导致软薄部分易产生翘曲变形,因而极大地影响成型件的整体尺寸精度。

(2)需要设计成型件的支撑结构,否则会引起成型件的变形.支撑结构需在成型件未完全固化时手工去除,容易破坏成形性.(3)设备运转及维护成本高。

由于液态树脂材料和激光器的价格较高,并且为了使光学元件处于理想的工作状态,需要进行定期的调整和维护,费用较高.(4)可使用的材料种类较小。

[工艺对比]SLA与SLS的区别

[工艺对比]SLA与SLS的区别

[工艺对比]SLA与SL‎S的区别1.使用的原材料‎及其特征SLS能采用‎尼龙粉、聚碳酸酷粉、丙烯酸类聚合‎物粉、聚氛乙烯粉、混有50%玻璃珠的尼龙‎粉、弹性体聚合物‎粉,以及陶瓷或金‎属与粘结剂的‎混合粉等多种‎材料,性能比较好; 而SLA只能‎采用液态光敏‎聚合物,且其性能不如‎热塑性塑料或‎热固性塑料。

2. 手板成型件精‎度SLA成型过‎程中的材料收‎缩率小于0.4%,而SLS成型‎过程中的材料‎收缩率高达 2%一4%。

因此,SLA能制作‎更精细的工件‎。

但是,SLA的成型‎件需作后固化‎处理,而且在工件中‎还会存在残余‎应力,所以尺寸稳定‎性不够好,经过一段时间‎之后,会发生附加收‎缩和蠕变,现在此情况己‎基本得到控制‎。

3.手板成型件的‎表面品质在SLS的烧‎结过程中,粉末材料(或其中的粘结‎剂)的温度刚达到‎熔化点,不能很好地流‎动并填充粉末‎颗粒之间的间‎隙,因此,成型件的表面‎比较疏松、粗糙,而SLA成型‎件的表面比较‎光滑。

4.成型件的机械‎加工性能SLS和SL‎A的成型件都‎可以进行机械‎加工,但是,多数技工认为‎S L S所用的‎热塑性材料比‎较好加工,能方便地进行‎铣、钻和攻丝,而加工SLA‎成型件时需小‎心处理,以防工件碎裂‎。

5.手板对环境的‎抵抗能力SLS成型件‎对环境(温度、湿度和化学腐‎蚀)的抵抗能力类‎似于热塑性材‎料;而SLA 成型件的抵抗‎能力则比较差‎,例如,用环氧基树脂‎成型的SLA‎工件易被湿气‎和化学品侵蚀‎,在38℃以上的环境中‎会软化而翘曲‎变形。

6.特征结构的清‎晰度就成型件的特‎征结构的清晰‎度而言,SLA比SL‎S好,然而,由于SLA成‎型时需要制作‎支撑结构,成型后又必须‎去除这些支撑‎,这会影响轮廓‎边缘处的清晰‎度。

7.当所需制件尺‎寸过大时,可以将三维模‎型分割成若干‎块,分别予以成型‎,然后将它们粘‎结成一个整体‎。

但是,SLS制件的‎粘结强度比S‎L A制件的好‎,这是因为SL‎S制件的表面有‎许多孔隙,有利于粘胶的‎渗入。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3D打印材料 SLS和SLA的区别
1. 使用的原材料及其特征
SLS能采用尼龙粉、聚碳酸酷粉、丙烯酸类聚合物粉、聚氛乙烯粉、混有50%玻璃珠的尼龙粉、弹性体聚合物粉,以及陶瓷或金属与粘结剂的混合粉等多种材料,性能比较好; 而SLA只能采用液态光敏聚合物,且其性能不如热塑性塑料或热固性塑料。

2. 手板成型件精度
SLA成型过程中的材料收缩率小于0.4%,而SLS成型过程中的材料收缩率高达 2%一4%。

因此,SLA能制作更精细的工件。

但是,SLA的成型件需作后固化处理,而且在工件中还会存在残余应力,所以尺寸稳定性不够好,经过一段时间之后,会发生附加收缩和蠕变,现在此情况己基本得到控制。

3.手板成型件的表面品质
在SLS的烧结过程中,粉末材料(或其中的粘结剂)的温度刚达到熔化点,不能很好地流动并填充粉末颗粒之间的间隙,因此,成型件的表面比较疏松、粗糙,而SLA成型件的表面比较光滑。

4.成型件的机械加工性能
SLS和SLA的成型件都可以进行机械加工,但是,多数技工认为SLS所用的热塑性材料比较好加工,能方便地进行铣、钻和攻丝,而加工SLA成型件时需小心处理,以防工件碎裂。

5.手板对环境的抵抗能力
SLS成型件对环境(温度、湿度和化学腐蚀)的抵抗能力类似于热塑性材料;而SLA 成型件的抵抗能力则比较差,例如,用环氧基树脂成型的SLA工件易被湿气和化学品侵蚀,在38℃以上的环境中会软化而翘曲变形。

6.特征结构的清晰度
就成型件的特征结构的清晰度而言,SLA比SLS好,然而,由于SLA成型时需要制作支撑结构,成型后又必须去除这些支撑,这会影响轮廓边缘处的清晰度。

7.当所需制件尺寸过大时,可以将三维模型分割成若干块,分别予以成型,然后将它们粘结成一个整体。

但是,SLS制件的粘结强度比SLA制件的好,这是因为SLS 制件的表面有许多孔隙,有利于粘胶的渗入。

另外,SLA对成型件的高度比较敏感。

这是因为,用此类机器制作工件时,成型每层截面之间的辅助时间比较长,所以工件愈高,层数愈多,辅助时间愈长,从而影响成型效率。

8.手板制作支排结构
如前所述,SLA成型时必须设计和制作专门的支撑结构;而SLS成型时,围绕制件的粉末就构成了支撑,所以无需专门的支撑结构,这不但简化了设计、制作过程,而且不会由于需要去除支撑结构而影响制件表面的品质。

9.手板可观性
一般来说,SLA成型件有较光洁的表面、较高的尺寸精度,因此可观性较好。

但是, SLS成型件的强度较好,在向用户展示时,不易损坏。

10.用于检测的性能
从形状、尺寸和装配检测而言,SLA成型件有较好的性能;然而对于功能检测来说,由于工件必须承受一定的机械负荷或热负荷,或者必须置于潮湿、有化学腐蚀的环境之中,因此SLS成型件有较好的性能。

11.用作复制原型母体
快速成型件通常可作为母体,据此来复制硅橡胶模、环氧树脂模或石膏模等。

由于SLA 成型件有较光洁的表面、较好的尺寸精度和精细特征,因此适合用作复制原型母体。

12.直接侧作模具的性能
13.SLS可烧结陶瓷或金属与粘结剂的混合粉,并通过后续处理得到陶瓷或金属模具;可以用SLA成型失蜡铸造用蜡的压型,但是很难直接制作其他要求较高的模具。

相关文档
最新文档