线性电阻电路的一般分析方法
电路原理第三章 电阻电路的一般分析
例3.
I1 7 + 70V –
求支路电流(电路中含有受控源)
a I2 1 I3
解 11 + U _ 2
节点a:–I1–I2+I3=0
7I1–11I2=70-2U 11I2+7I3= 2U
7
+
2U
_ b
增补方程:U=7I3
利用支路电流与受控 电源控制量的关系
得 I1=8/3A; I2=14/3A; I3=22/3A;
6 4
+ 2 + 3 + 4 =0
上述四个方程并不相互独立,可由任意三个推 出另一个,即只有三个是相互独立的。
结论
n个结点的电路, 独立的KCL方程为n-1个。
独立方程对应的节点称为独立节点。
2.KVL的独立方程数 KVL的独立方程数=基本回路数=b-(n-1)
结 论
n个结点、b条支路的电路, 独立的 KCL和KVL方程数为:
例
图示为电路的图,画出三种可能的树及其对应的基 本回路。 1
4
8 3
5
6 7 2
5 8 6 7
4 8 3 6
4 8 2 3
3.2 KCL和KVL的独立方程数
1.KCL的独立方程数
2 1 1 4 3 5 2 3 2 3 4 1 1
i1 i4 i6 0 i1 i2 i3 0 i 2 i5 i 6 0 i3 i4 i5 0
整理得:
(R1+R2) im1 – R2 im2 = us1- uS2 -R2im1 + (R2+R3) im2 = uS2-us3 R11=R1+R2 R22=R2+R3 R11im1+ R12 im2 = us11 R21im1 + R22im2 = uS22
第3章 电阻电路的一般分析
解2. I1 7 + 70V –
a
增补方程:I2=6A 11 由于I2已知,故只列写两个方程。 a:–I1+I3=6 7
I2
1 6A b
I3
避开电流源支路取回路: 1: 7I1+7I3=70
返 回 上 页 下 页
例6.
I1 7
+ 70V –
列写支路电流方程(电路中含有受控源)。 a
I2 1 + 5U _ b 11 2 I3 + 7 U _ 解
返 回
支路、结点、路径、回路和网孔的概念。 (1)连通图 图G的任意两结点间至少有一条路径 时,称图G为连通图。非连通图至少 存在两个分离部分。
(2) 子图
若图G1中所有支路和结点都是图G中 的支路和结点,则称G1是G的子图。
返 回
上 页
下 页
(3)树 (Tree)
T是连通图G的一个子图, 并满足条件:
依据:
KCL、KVL以及元件的VCR。
方法: 根据列方程时所选变量不同,可分为支路电流法、
网孔电流法、回路电流法和结点电压法。
返 回 上 页 下 页
对于线性电阻电路,电路方程是一组线性代数方程。
例1
3
I1 R1 uS1 + –
a I2 I3
R2 + – b 2 独立? R3 求I1、I2和I3?
1 uS2
独立回路=2,选为网孔。
+ –
R3
i1 il 1 i3 il 2 i2 il 2 il 1
uS2
b
回路1:R1 il1-R2(il2- il1) +uS2-uS1=0 回路2:R2(il2- il1)+ R3 il2 -uS2=0 自电阻 (R1+ R2) il1 -R2 il2 = uS1-uS2
电工电子技术第2章 线性电路分析的基本方法
第2章 线性电阻电路的分析内容:网络方程法:支路电流法、节点电压法、回路电流法。
线性电路定理:替代定理、戴维宁定理、诺顿定理。
2.1 电阻的串联、并联和混联电路分析线性电阻电路的方法很多,但基本依据是KCL 、KVL 及元件的伏安关系()VAR 。
根据这些基本依据可推导出三种不同的分析电路的方法:等效法、方程法、定理法。
本章首先介绍等效变换,然后讨论支路电流法、网孔分析法及节点电位法,最后介绍常用定理,包括叠加定理和齐次定理、戴维南定理和诺顿定理等。
2.1.1 电路等效的一般概念1.等效电路的概念:在分析电路时,可以用简单的等效电路代替结构较复杂的电路,从而简化电路的分析计算,它是电路分析中常用的分析方法。
但值得注意的是,等效电路只是它们对外的作用等效,一般两个电路内部具有不同的结构,工作情况也不相同,因此,等效电路的等效只对外不对内。
2.等效电路的应用:简化电路。
2.1.2 电阻的串联、并联与混联1. 电阻的串联电阻串联的概念:两个或两个以上电阻首尾相联,中间没有分支,各电阻流过同一电流的连接方式,称为电阻的串联。
串联电阻值: 123R R R R =++ 电阻串联时电流相等,各电阻上的电压:1 11122223333RUU IR R UR RRUU IR R UR RRUU IR R UR R⎫===⎪⎪⎪===⎬⎪⎪===⎪⎭2. 电阻的并联电阻的并联概念:两个或两个以上电阻的首尾两端分别连接在两个节点上,每个电阻两端的电压都相同的连接方式,称为电阻的并联并联电阻电流值:123123123111U U UI I I I UR R R R R R⎧⎫=++=++=++⎨⎬⎩⎭并联电阻值:1231111R R R R=++电阻并联电路的等效电阻的倒数等于各个电阻的倒数之和。
电阻并联时电压相等,各电阻上的电流:111122223333GU RII IR R GGU RII IR R GGU RII IR R G⎫===⎪⎪⎪⎪===⎬⎪⎪===⎪⎪⎭3. 电阻的混联既有电阻串联又有电阻并联的电路叫混联电路。
线性电阻网络分析
提高稳定性
选择适当的电阻值
选择适当的电阻值可以减小元件之间的电压和电流差异,从而提高 稳定性。
增加元件容差
元件容差是元件参数的允许误差范围,增加元件容差可以降低元件 参数对电路性能的影响,提高稳定性。
优化网络拓扑
通过优化网络拓扑结构,可以减小元件之间的耦合效应,提高稳定性。
优化元件参数
选择适当的电阻材料
在物联网和智能电网中的应用
物联网
在物联网领域,电阻网络可以应用于传感器网络中,用于监测各种物理量如温度、湿度、压力等,实现远程数据 采集和传输。
智能电网
在智能电网中,电阻网络可以用于实现电能计量、故障检测等功能,提高电网的智能化水平和供电可靠性。同时, 电阻网络也可以用于可再生能源并网发电系统的电能质量监测和调控。
电感元件
表示为纯电感,其电流与电压的相 位差为90度。
02
线性电阻网络的数学模型
电路方程
01
02
03
基尔霍夫电流定律
在电路中,流入节点的电 流等于流出节点的电流。
基尔霍夫电压定律
在电路中,任意两点之间 的电压等于电位降落。
欧姆定律
在电路中,电阻元件两端 的电压与流过它的电流成 正比。
节点电压法
03
线性电阻网络的性能分析
电压与电流的关系
1 2
欧姆定律
在线性电阻网络中,电压和电流成正比关系,即 V=IR,其中 V 是电压,I 是电流,R 是电阻。
串联和并联
在串联电路中,总电压等于各电阻上的电压之和; 在并联电路中,总电流等于各支路电流之和。
3
分压和分流
在串联电路中,电阻越大,其上的电压越高;在 并联电路中,电阻越小,其上的电流越大。
第2章电路分析
(3)根据KVL和VCR对(b-n+1)个独立回路列以支路电流 为变量的方程;
(4)求解各支路电流,进而求出其他所需求的量。
若电路中含有无伴电流源(无电阻与之并联),可设电流源 两端的电压为未知量, 见例2-5。
電子工業出版社
新编电气与电子信息类本科规划教材
例2-5
如图所示的电路中,已知:R1 =1 ,R2 =2 ,Us1 =5 V, Is3 =1 A。用支路电流法求各支路电流。 解:对结点①列KCL方程,有
树枝数=(n-1),连枝数=(b-n + 1)
電子工業出版社
新编电气与电子信息类本科规划教材
单连枝回路或基本回路:由一个连枝与相应的树枝构成的回路。
基本回路数 = 连枝数 = b-n+1 3.割集
满足下列两个条件的支路的集合。
① 移去该集合中的所有支路,图G将分成两个部分; ② 当少移去其中任一支路时,图G仍是连通的。
新编电气与电子信息类本科规划教材
图G的一条路径:从图G的某一结点出发,沿着 一些支路移动,从而到达另一结点(或回到原 出发点),这样的一系列支路。 连通图:任意两个结点之间至少存在一条路径。
電子工業出版社
新编电气与电子信息类本科规划教材
树和基本回路
树的定义:①包含图G中的全部结点和部分支路; ②树T是连通的,且不包含回路。
R12 R31 R1 R12 R23 R31 R23 R12 R2 R12 R23 R31 R31R23 R3 R12 R23 R32
当Y连接中3个电阻相等,即R1 = R2 = R3 = RY时,
R△= R12 = R23 = R31 = 3RY
i1 = im1,i2 = im1 -im2,i3 = im2
第6讲 第三章 电阻电路的一般分析(一)
2. 独立方程的列写
1.从电路的n个结点பைடு நூலகம்任意选择n-1个结点列写KCL方程 2.选择基本回路列写b-(n-1)个KVL方程
n=4 b=6
当一条支路仅含电流源而不存 在与之并联的电阻时,无法将 支路电压以支路电流表示
元件VCR
KCL
求解
KVL
3. 支路电流方程的列写步骤
• 标定各支路电流(电压)的参考方向; • 从电路的n个结点中任意选择n-1个结点列写KCL方程 • 选择基本回路,结合元件的特性方程列写b-(n-1)个KVL方程 求解上述方程,得到b个支路电流; • 进一步计算支路电压和进行其它分析 需要注意的是: 支路电流法列写的是 KCL和KVL方程,所以方程列写 方便、直观,但方程数较多,宜于利用计算机求解。人工 计算时,适用于支路数不多的电路。 若将支路的电流用支路电压表示,然后带入KCL方程,连 同支路电压的KVL方程,可以得到以支路电压为变量的b个方程 ——支路电压法
第六讲 电阻电路的一般分析 (一)
• 知识点:
1. 电路的图 2. KCL和KVL的独立方程数 3. 支路电流法、网孔电流法
• 教学目标:
1. 了解电路分析中一些常用的名词 2. 掌握KCL和KVL的独立方程数及其在电路求解中的应用 3. 理解支路电流法、网孔电流法进行电路分析的一般思路
1
电路的图
-I1-I2+I3=0 7I1-11I2+35I3=70 11I2-28I3=0
支路电流法特点: • 支路电流法是最基本的方法,在方程数目不多的情况下可以 使用,由于支路电流法需要同时列写KCL和KVL方程,方程 数较多,且规律性不强,手工求解比较繁琐,也不便于计算 机编程求解。
网孔电流法
线性电路的分析方法解析
线性电路的分析方法解析线性电路是由被动元件(如电阻、电容、电感等)和有源元件(如电源、放大器等)组成的一种电路。
线性电路主要通过应用基本电路定律和电路分析方法来分析和解决电路问题。
以下是常见的线性电路分析方法:1.基本电路定律:线性电路分析的基础是基本电路定律,包括欧姆定律(电流与电压成正比关系)、基尔霍夫电压定律(环路电压之和为0)和基尔霍夫电流定律(节点电流之和为0)。
通过这些定律可以建立电路的等式,进一步解决电路问题。
2.等效电路:将复杂的线性电路简化为等效电路是简化分析的常见方法。
等效电路可以用简单的电路元件(如电阻、电流源等)来代替原始电路,但仍然保持电路特性不变。
常见的等效电路包括电阻串联、并联、电流源串联和电压源并联等。
3.节点电压法:节点电压法是一种常用的线性电路分析方法。
它通过将电路中的节点连接到地(或任意选定基准点)上,使用基尔霍夫电流定律分析各节点的电压。
通过列写节点电压方程,可以解得节点的电压值,进而计算电路中的电流和功率等参数。
4.微分方程法:微分方程法是分析线性电路的另一种常见方法。
通过对电路中的元件进行建模,可以得到元件之间的基本关系式,进而得到描述电路行为的微分方程。
通过求解微分方程可以得到电路中的电流和电压等参数。
5.模拟计算:模拟计算是一种常用的线性电路分析方法。
通过使用模拟计算软件,将电路图输入并设置元件参数和初始条件,软件可以自动计算电路中的电流、电压和功率等参数,并绘制相应的波形图。
模拟计算可以方便地分析复杂的线性电路,并可以进行参数的优化和灵敏度分析。
6.相量法:对于交流电路,相量法是一种便捷的分析方法。
相量法将交流电压和电流看作有大小和相位的量,通过将它们用复数表示来进行分析。
通过相量法可以方便地计算交流电路中的电路参数,如电流、电压、功率等。
7.频域分析:频域分析是分析交流电路的另一种常用方法。
频域分析通过将电路中的电压和电流信号进行傅里叶变换,将它们从时域转换为频域。
电阻电路分析的基本方法
第二章 电阻电路分析的基本方法本章以直流电路为研究对象,讨论电路的几种普遍的分析、计算方法。
包括等效变换、支路电流法、结点电位法、叠加原理和戴维南定理等。
这些方法可统称为网络方程法;它是以电路元件的伏安关系和基尔霍夫定律为基础的,选择适当的未知变量,建立一组独立的网络方程,并求解方程组;最后得出所需要的支路电流或支路电压或其他变量。
这些电阻电路的分析计算方法只要稍加扩展,即可用于交流电路的分析计算,所以本章是分析、计算电路的基础。
§2-1 等效电阻和等效二端网络通常,工程中所接触的电路形状复杂如网,故电路又称为网络。
(a)(b)图2-1 二端网络如果电路只有一个输入端口或输出端口,则这个电路称为单口网络或二端网络。
若二端网络内部含有电源,则称为有源二端网络。
若内部不含电源,则称为无源二端网络。
如图2-1(a )所示为一个有源二端网络,a 、b 为此网络的输出端点。
图2-1(b )所示为一个无源二端网络。
无源二端网络是由电阻元件组成的。
在它内部,电阻的连接可能很复杂,但对外部电路来说,可以用一个等效电阻来代替它。
这个电阻就称为这一无源二端网络的等效电阻。
这里,“等效”是对外部电路来说。
如图2-1(b )中虚线框内的四个电阻,可以用一个等效电阻来代替它们,只要端口上的U 、I 不变,则对虚线以外的电路来说是等效的,因为它不影响虚线以外的任何电路。
但对虚线框内部,也就是说对无源二端网络内部并不等效。
电路原是四个电阻组成,现只有一个电阻,电路的结构、参数完全不同,不可能等效。
所以说,等效是一个相对的概念。
一、电阻的串联与分压(一)串联电阻的等效化简所谓串联就是两个或多个元件首尾相联接流过同一电流。
如图2-2(a )所示为两个电阻R 1、R 2串联,可以用等效电阻R 代替它们,如图2-2(b )所示,只要R 满足如下关系即可:R = R 1+R 2 (2-1)若由n 个电阻串联,则其等效电阻为R = R 1 + R 2 + … + R n =∑=ni iR1(2-2)上式表明,串联电阻的等效电阻值总是大于其中任一个电阻阻值的。
电路分析 第二章 电阻汇总
仅属于一个回路,该回路电流即IS 。
3、具有受控源情况
处理方法:对含有受控电源支路的电路,可先把受控源 看作独立电源按上述方法列方程,再将控制量用回路 电流表示。
29
2.4 节点法
节点电压法:以节点电压为未知变量列写电路方程分析电路的方法。
第二章 电阻电路分析
2.1 图与电路方程 2.2 2b法和支路法 2.3 回路法和网孔法 2.4 节点法 2.5 齐次定理和叠加定理 2.6 替代定理 2.7 等效电源定理
(2-1)
线性电路的一般分析方法 • 普遍性:对任何线性电路都适用。 • 系统性:计算方法有规律可循。
方法的基础
• 电路的连接关系—KCL,KVL定律。 • 元件的电压、电流关系特性。 复杂电路的一般分析法就是根据KCL、KVL及元 件电压和电流关系列方程、解方程。根据列方程时所 选变量的不同可分为支路电流法、回路电流法和结点 电压法。
例 2.2 - 1如图2.2 - 2的电路,求各支路电流。 解: 选节点a为独立节
点, 可列出KCL 方程为:
-i1+ i2 + i3 =0
选网孔为独立回路,如图所 示。 可列出KVL方程为:
3 i1 + i2 =9 - i2 +2 i3 =-2.5 i1 联立三个方程可解得i1 =2A, i2 =3 A, i3 =-1 A。
(2-20)
小结 (1)支路电流法的一般步骤:
①标定各支路电流(电压)的参考方向; ②选定(n–1)个结点,列写其KCL方程; ③选定b–n+1个独立回路,指定回路绕行方
线性电阻电路的一般分析方法-A
受控源是电路中一种特殊的元件,其电压或电流受其他元件的控制。通
过应用叠加定理,可以将受控源转化为独立源,从而简化电路分析和计
算。
THANKS.
叠加定理的步骤
1. 将复杂电路分解为若干个独 立源和电阻元件的简单电路。
2. 分别计算各个独立源单独作 用于电路时产生的电流或电压
。
3. 将各个电流或电压值进行代 数相加,得到总电流或电压。
4. 根据总电流或电压和电阻值 ,计算出任意支路的电流或电 压。
叠加定理的应用实例
01
1. 计算复杂电路的总电阻
网孔分析法的步骤
确定网孔
根据电路图,将电路分解 为若干个网孔,每个网孔 由一个或多个支路组成。
设定电流变量
在每个网孔中设定一个 电流变量,并标明电流
的方向。
列写方程
解方程
根据基尔霍夫定律(KCL) 和欧姆定律,列出每个网孔
的电压和电流方程。
求解列出的方程组,得 到各网孔的电流和电压。
网孔分析法的应用实例
线性电阻电路的分析
05
方法-叠加定理
叠加定理的原理
叠加定理是线性电路的基本性质,它表明在多个独立源共同作用的线性电阻电路 中,任一支路的电流或电压等于各个独立源单独作用于电路时在该支路产生的电 流或电压的代数和。
叠加定理只适用于线性电阻电路,对于非线性元件或含有非线性元件的电路,叠 加定理不成立。
线性电阻电路的一般分 析方法-a
目录
• 线性电阻电路的基本概念 • 欧姆定律与基尔霍夫定律 • 线性电阻电路的分析方法-节点分析法 • 线性电阻电路的分析方法-网孔分析法 • 线性电阻电路的分析方法-叠加定理
线性电阻电路的基本
01
第三章--电阻电路的一般分析
i1 R1 ① R3 i3
i2
us+1
-
imu1sR2+2
im2
+ us3
-
-
(1)标出网孔电流的参考方向;
②
(2)以各自的网孔电流方向为绕行方向,
列KVL方程; 注意:im1和im2都流过R2!
孔1: R1 im1+R2 im1-R2im2 = us1 -us2 孔2:-R2 im1+R2 im2 +R3 im2 = us2-us3
3
③
4
5
④6
4个方程相加结果为0,不是相互独立的。
把任意3个方程相加起来,必得另一个方程。
相差一个符号,原因是各电流在结点① ② ③若
是流入(出),则在结点④就是流出(入) 。
2019年9月13日星期
9
五
上述4个方程中,任意3个是独立的。
对具有n个结点的电路,独立的KCL方程为任意 的(n-1)个 。 与独立方程对应的结点叫做独立结点。
现在介绍有关 “图论”的初步知识, 目的是研究电路的连 接性质,并讨论电路 方程的独立性问题。
因为KCL和KVL与元件的性质无关, 所以讨论电路方程的独立性问题时,可以用一
个简单的线段来表示电路元件。
2019年9月13日星期
3
五
用线段代替元件,称支路。 线段的端点称结点 。
这样得到的几何结构图称为 图形,或“图(Graph)”。
二、 KVL的独立方程数 与KVL的独立方程对应的回路称独立回路。
因此,要列出KVL的独立方程组,首先要找出与之 对应的独立回路组。
有时,寻找独立回路组不是一件容易的事。利用 “树”的概念会有助于寻找一个图的独立回路组。
电阻电路的一般分析法
高阶电路的分析涉及到多个动态 元件之间的相互作用,需要综合
考虑电路的时域和频域特性。
05
非线性电阻电路的分析
非线性电阻元件的特性
1 2 3
电压-电流特性
非线性电阻元件的电压和电流之间的关系是非线 性的,线性电阻元件的电阻值随温度变化而变化,通 常表现出正温度系数(PTC)或负温度系数 (NTC)特性。
04
线性电阻电路的分析
一阶线性电阻电路
一阶线性电阻电路是指电路中 只包含一个动态元件(如电阻
、电容或电感)的电路。
一阶线性电阻电路的分析方法 主要包括时域分析和频域分析
。
时域分析是通过建立和求解一 阶常微分方程来研究电路的瞬 态响应。
频域分析是通过傅里叶变换将 时域函数转换为频域函数,从 而分析电路的频率响应。
时间特性
某些非线性电阻元件的电阻值会随着时间的推移 而发生变化,例如由于化学反应或机械变形引起 的电阻变化。
非线性电阻电路的分析方法
解析法
通过数学公式推导电路元件的电压、电流和功率等参数,适用于 简单电路。
图解法
通过绘制电路图并使用欧姆定律、基尔霍夫定律等基本电路定理 进行分析,适用于复杂电路。
计算机辅助分析法
局限性
计算机辅助分析依赖于精确的模型和参数,对于复杂电路或非线性元件的分析可能存在误差;对于实 际电路的布局和布线等因素,计算机辅助分析可能无法完全模拟;对于一些特定应用领域,如生物医 学工程或量子计算等,现有的计算机辅助分析工具可能不适用。
THANKS FOR WATCHING
感谢您的观看
电阻元件的种类
01
02
03
固定电阻器
阻值固定的电阻器,常用 的有碳膜电阻、金属膜电 阻等。
几种线性电阻电路分析方法的比较
1. 2 叠加原理和等效电源定理 叠加原理是分析线性电路时普遍适用的基本原 理。使用叠加原理时 ,要把原电路分成几个分电路 , 先求出各分电路的电压或电流 , 然后求代数和得出 原电路的总电压或总电流。方法要点 : 首先标定原 电路各支路电流、 电压的参考方向 ; 将电路分解为各
图 1
理想电源单独作用的分电路 , 标出各分电路中电流 (电压 )的参考 方向 ; 求解分电路中各支 路电流 (电 压 ) ; 最后叠加求解出原电路的电流 (电压 )响应 - 求 各分电路对应支路电流 (电压 ) 代数和 , 凡分电路电 流 (电压 ) 参考方向与原电路电流 (电压 ) 参考方向 一致者取正号 , 反之取负号 , 但保留分电流本身的符 号。 图 1电路用叠 加原理求 解 , 由于原电路中有两 个独立电源 , 所以可把原电路用 2 个简单电路叠加 表示 。 当电流源单独作用时 , 电压源 短接。如图 3 所 示电路 。
SEVERAL K IND O F RES ISTANC E C IRC UIT ANALYS IS M ETHOD COM PAR ISO N
L I Fen - rong, GUO Yong, Z HANG W ei
(Co lleg e of M echan ica l a nd E lectrica l E ng ineering, Inn erM ong olia Ag ricu ltu re U n ivers ity H uh hot 010018, Ch in a) Ab stra ct: This artic le through uses the re sistance e lectric circuit commonly u sed seve ra l ana lysism ethods to the identica l e lec tric cir2 cuit to ca rry on the ana lysis solution and does a contrast re sea rch to these analysisme thods . Thought that ca rries on the different me thod according to the c ircuit structure charac teristic the choice . Key wor ds: C ircuit; the m ethods of branch curren t; supe r position
第3章 线性电阻电路的一般分析方法
设回路电流Ia、 Ib和 IC,参考方向如图所示。
(1) 将VCVS看作独立源建立方程;
4Ia-3Ib=2
-3Ia+6Ib-Ic=-3U2
①
-Ib+3Ic=3U2
(2) 找出控制量和回路电流关系。
U2=3(Ib-Ia)
②
将②代入①,得
4Ia -3Ib = 2 -12Ia+15Ib-Ic = 0 9Ia -10Ib+3Ic= 0
回路法的一般步骤:
(1) 选定l=b-(n-1)个独立回路,标明回路电流及方向; (2) 对l个独立回路,以回路电流为未知量,列写
其KVL方程; (3) 求解上述方程,得到l个回路电流; (4) 求各支路电流(用回路电流表示);
网孔电流法(mesh-current method) 对平面电路(planar circuit),若以网孔为独立回 路,
iS3
un1 1 i3
R3
un2 2
iS1
i1
i2
i5
R1 iS2
R2 i4 R4
R5
0 G11=G1+G2+G3+G4 —节点1的自电导,等于接在节点1上所
有支路的电导之和。
G22=G3+G4+G5 — 节点2的自电导,等于接在节点2上所有 支路的电导之和。
G12= G21 =-(G3+G4) — 节点1与节点2之间的互电导,等于 接在节点1与节点2之间的所有支路的 电导之和,并冠以负号。
整理得
(R1+ R2) il1-R2il2=uS1-uS2
- R2il1+ (R2 +R3) il2 =uS2
(3)解上述方程,求出各回路电流,进一步求各支路 电压、电流。
电工学(第七版)上册秦曾煌第二章
(3)由计算可知,本例中理想电压源与理想电流源 都是电源,发出的功率分别是:
PU1 = U1IU1 = 10×6 = 60W
PIS = UISIS = 10×2 = 20W 各个电阻所消耗的功率分别是:
PR = RI 2 = 1×62 = 36W
PR1
=
R1
I
2 R1
=
1×(-4)2
=
16W
PR2 = R2 IS2 = 2 ×22 = 8W
PR3
=
R3
I
R
2 3
=
5 ×22
=
20W
两者平衡:
(60 + 20) W = (36 + 16 + 8 + 20)W
80W = 80W
P49 2.3.4 P75 2.3.6-7
章目录 上一页 下一页 返回 退出
2.4 支路电流法
(b) I U 20V 2 mA R 10kΩ
跳转
2.1.3 电阻混连电路的计算
例1:计算图示电路中a、b间的等效电阻Rab。
8
8 a
4
4
7
6 3
b 8
10 10
(a)
(b)
解: (a) Rab 8 // 8 6 // 3 6
(b) Rab 4 // 4 10 //10// 7 3.5
支路电流法:以支路电流为未知量、应用基尔霍夫
定律(KCL、KVL)列方程组求解。
I1
a
I2
R1
R2
E1
I3 R3
3
E2
1
2
对上图电路
b
支路数:b =3 结点数:n = 2 回路数 = 3 单孔回路(网孔) = 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 支路电流法(Branch Current Method )
n 个节点、b 个支路的电路:支路电流:b 个支路电压:b 个需2b 个独立的电路方程例:R 1R 2
R 3
R 4
R 5
+
–i 3
i 4i 1i 5
i 6
23
4
b =6n =4
独立方程数应为2b=12个。
支路电流法:以各支路电流为未知量列写电路方程分析电
路的方法。
3.2 回路电流法(Loop Current Method)
基本思想:假想每个回路中有一个回路电流。
各支路电流可用回路电流线性组合表示。
回路电流对每个相关节点均流进一次,流出一次,所以
自动满足。
回路电流法只需对独立回路列写KVL 方程。
i 3
u S2
R 2R 3
b
a
+–
i 2i l 1i l 2
b =3,n =2。
独立回路为l =b -(n -1)=2。
选图示的两个独立回路,回路电流分别为i l 1、i l 2。
支路电流i 1=i l 1,i 2= i l 2-i l 1,i 3=i l 2。
3. 3 节点电压法(Node Voltage Method)
基本思想:
是否有一种方法使KVL自动满足,从而就不必列写KVL 方程,减少联立方程的个数?
KVL说明了电位的单值性。
如果选节点电压为未知量则KVL自动满足,可只列写KCL方程。