软件体系结构
软件体系结构
软件体系结构引言软件体系结构是指在软件系统中,对系统整体结构进行组织和设计的过程。
一个合理的软件体系结构能够帮助开发者降低系统的复杂度,提高系统的可维护性和可扩展性。
本文将介绍软件体系结构的基本概念和常用的体系结构模式,以及如何进行软件体系结构设计。
软件体系结构的基本概念软件体系结构是一个抽象的概念,用于描述软件系统中各个组件之间的关系和交互方式。
它主要由以下几个基本概念组成:1.组件(Component):组件是软件系统中的一个独立的功能单元,可以由一个或多个模块(Module)组成,实现特定的功能。
2.接口(Interface):接口定义了组件之间的通信方式和消息传递方式。
一个组件可以提供多个接口供其他组件使用。
3.关系(Relationship):组件之间的关系可以是依赖关系(Dependency)、关联关系(Association)、聚合关系(Aggregation)和组合关系(Composition)等。
这些关系将多个组件链接起来,形成一个组织结构。
4.架构风格(Architectural Style):架构风格定义了软件系统的整体结构的模式和约束。
常见的架构风格包括层次结构(Layered)、客户端-服务器(Client-Server)、发布-订阅(Publish-Subscribe)等。
常用的软件体系结构模式在进行软件体系结构设计时,可以借鉴一些常用的体系结构模式。
下面介绍几种常见的模式:1.层次结构(Layered):层次结构将软件系统划分为若干层,每一层负责特定的功能。
上层的组件可以调用下层的组件,反之则不行。
这种模式可以降低系统的复杂度和耦合度,提高系统的可维护性。
2.客户端-服务器(Client-Server):客户端-服务器模式将软件系统划分为客户端和服务器两个部分。
客户端负责与用户进行交互,而服务器负责处理客户端的请求并返回结果。
这种模式可以实现系统的分布式部署,提高系统的可伸缩性。
软件体系结构概述
软件体系结构概述软件体系结构是指软件系统的组织方式和结构框架,包括系统的组件、模块、连接方式以及它们之间的关系。
软件体系结构定义了系统的主要构成和交互方式,以及系统的整体特性和行为。
软件体系结构的设计和选择对于系统的可维护性、可扩展性、可靠性和性能等方面都有重要影响。
软件体系结构可以理解为一个软件系统的蓝图或者设计模板,它指导和限制了系统在开发和维护过程中的各个方面,并对系统的演化和重用性提供支持。
常见的软件体系结构包括客户端-服务器体系结构、分层体系结构、面向对象体系结构、面向服务体系结构等。
客户端-服务器体系结构是最常见的软件体系结构之一,它将软件系统划分为客户端和服务器两部分。
客户端负责用户界面和用户交互,服务器负责处理业务逻辑和数据存储。
这种体系结构可以提高系统的可伸缩性和可靠性,同时也增加了系统的复杂性和通信开销。
分层体系结构将软件系统划分为多个层次,每个层次具有特定的功能。
常见的层次包括表示层、业务逻辑层和数据访问层。
表示层负责用户界面的展示和交互,业务逻辑层负责系统的业务逻辑处理,数据访问层负责数据的存储和访问。
分层体系结构可以提高系统的可重用性和可维护性,同时也增加了系统的复杂性和通信开销。
面向对象体系结构利用面向对象的思想和技术进行软件系统的设计和实现。
它将软件系统划分为多个对象,每个对象具有特定的属性和方法,并通过消息传递进行交互。
面向对象体系结构可以提高系统的可重用性和可维护性,同时也增加了系统的复杂性和内存开销。
面向服务体系结构将软件系统划分为多个服务,每个服务具有特定的功能和接口。
这些服务通过网络进行通信和交互,从而实现系统的功能需求。
面向服务体系结构可以提高系统的可扩展性和跨平台性,同时也增加了系统的通信开销和服务管理的复杂性。
除了以上常见的软件体系结构外,还有其他一些特定领域的体系结构,如实时系统体系结构、并行系统体系结构等。
实时系统体系结构适用于对响应时间有严格要求的系统,它需要快速的响应和高可靠性。
软件体系结构的定义
软件体系结构是指软件系统中各个组件之间的组织方式和相互关系的抽象表示。
它描述了一个软件系统的整体结构、组成部分及其相互之间的交互关系、通信方式和约束规则。
软件体系结构定义了系统的基本框架,规定了各个模块之间的功能划分、接口设计和数据流动等,是软件系统设计的基础。
软件体系结构通常包括以下几个方面的内容:
组件:软件系统的组成部分,可以是模块、类、对象等。
每个组件负责实现特定的功能,并通过接口与其他组件进行交互。
接口:定义了组件之间的通信规则和交互方式,包括输入和输出的数据格式、方法调用方式等。
结构:描述了组件之间的组织方式和关系,如层次结构、模块化结构、客户端-服务器结构等。
链接:描述了组件之间的连接方式和数据流动路径,如同步或异步通信、数据传输的方式等。
约束:定义了系统中的规范和限制条件,包括性能要求、安全性要求、可扩展性要求等。
通过定义和设计软件体系结构,可以提高软件系统的可维护性、可扩展性和可重用性,同时降低系统开发和维护的复杂性。
软件体系结构还可以帮助开发团队进行模块化的工作分配,提高开发效率和协作能力。
软件体系结构的概念
软件体系结构的概念
软件体系结构指的是软件系统中各个部分之间的组织方式和相
互关系,并且对于软件系统的整体性能和质量具有重要影响。
软件体系结构可以分为多层次,包括应用程序、操作系统和硬件等多个层次。
软件体系结构具有以下几个方面的概念:
1. 模块化:将软件系统分解为多个模块,每个模块具有明确的
职责和功能,便于管理和维护。
2. 接口定义:模块之间通过明确的接口定义来进行通信和交互,从而实现系统的协作和集成。
3. 分层结构:软件体系结构可以分为多个层次,每个层次负责
不同的功能,便于组织和管理。
4. 过程控制:软件体系结构可以通过定义明确的流程和控制机
制来实现对软件系统开发和维护的有效控制。
5. 性能优化:软件体系结构的设计应该考虑系统的性能和效率,通过合理的设计和优化来提高系统的性能和质量。
软件体系结构的设计需要考虑到多个方面的因素,包括系统需求、硬件环境、软件技术等等,需要综合考虑并进行优化。
一个好的软件体系结构设计可以提高系统的可维护性、可扩展性和可重用性,从而降低开发和维护成本,提高软件系统的质量和效率。
- 1 -。
软件体系结构
1、MVC(模型-视图-控制):针对用户界面 模型:核心数据封装、逻辑和功能的计算,它独立于具体的界面表达和输入/输出操作。 视图:把模型数据等信息以特定形式展示给用户。 控制:处理用户与软件的交互操作。它接受用户的输入,将输入反馈给模型,进而实现对模 型的计算控制,是使模型和视图协调工作的部件。
2、软件重用的定义 软件重用是指在两次或多次不同的软件开发过程中重复使用相同或相近软件元素的过程。 可重用软件元素越大,重用粒度越大。
7、基于事件的隐式调用的定义 基于事件的隐式调用风格的思想是构件不直接调用一个过程,而是触发或广播一个或多个事 件。系统中的其它构件中的过程在一个或多个事件中注册,当一个事件被触发,系统自动调 用在这个事件中注册的所有过程,这样,一个事件的触发就导致了另一个模块中过程的调用。
8、基于事件的隐式调用的优缺点 优点: (1)为软件重用提供了强大的支持。 (2)为系统带来了方便。
end Attendห้องสมุดไป่ตู้e;
16、C2 对体系结构的描述 architecture MeetingScheduler is
conceptual_components Attendee;ImportantAttendee;MeetingInitiator;
connector connector MainConn is message_filter no_filtering; connector AttConn is message_filter no filtering; connector ImportantAttConn is message_filter no filtering;
软件体系结构
软件体系结构软件体系结构是指软件系统中各个组件之间的关系和结构的抽象描述。
它是构建软件系统的基础,对软件系统的设计和开发起着重要的指导作用。
本文将从软件体系结构的定义、目标和应用领域等方面对其进行详细的介绍。
一、软件体系结构的定义软件体系结构是指软件系统中各个组件之间的关系和结构的抽象描述,它包括软件系统的静态结构和动态行为。
静态结构是指软件系统中组件的组织方式和相互之间的关系,动态行为是指软件系统中组件的交互方式和相互之间的通信方式。
二、软件体系结构的目标软件体系结构的目标是实现软件系统的可重用性、可维护性、可扩展性和可伸缩性。
可重用性是指软件系统中的组件能够被多次使用,可维护性是指软件系统中的组件能够被轻松地修改和维护,可扩展性是指软件系统能够根据需求进行功能的扩展,可伸缩性是指软件系统能够根据需求进行性能的扩展。
三、软件体系结构的应用领域软件体系结构广泛应用于各个领域的软件系统开发,特别是大型跨平台和分布式系统的开发。
在金融领域,软件体系结构被应用于交易系统和风险管理系统的开发;在电子商务领域,软件体系结构被应用于在线购物系统和支付系统的开发;在物流领域,软件体系结构被应用于供应链管理系统和运输管理系统的开发。
四、软件体系结构的基本原则软件体系结构的设计应遵循以下基本原则:1. 模块化:将软件系统分为独立的模块,每个模块只负责特定的功能,通过接口进行通信和交互。
2. 松耦合:各个模块之间的依赖应尽量降低,避免模块之间的紧密耦合,以提高系统的灵活性和可维护性。
3. 高内聚:模块内部的各个元素之间应紧密关联,功能相关的元素应放在同一个模块中,以提高系统的内聚性。
4. 分层:将软件系统分为多个层次,每个层次负责不同的功能,上层层次通过接口调用下层层次的功能。
5. 可伸缩性:系统的设计应考虑未来的扩展需求,能够根据需求进行功能和性能的扩展。
六、软件体系结构的设计方法软件体系结构的设计方法有很多种,常用的有面向对象的体系结构设计方法、服务导向的体系结构设计方法和领域驱动设计方法。
软件体系结构
软件体系结构随着计算机科学和技术的不断发展,软件开发也越来越重要。
软件体系结构是软件开发中非常关键的一环。
它是指软件系统中各组件之间的关系和交互方式的一种描述方式。
软件体系结构不仅仅是软件系统的设计,还涉及到软件系统的架构、组件、模式等多方面的内容。
软件体系结构的定义软件体系结构是指软件设计时所考虑到的系统结构和组件之间的关系,以及它们之间的交互方式和通信方式。
它是软件系统设计的基础,可以帮助程序员们更好地规划和管理整个项目。
在实际开发过程中,软件体系结构可以将软件系统划分为若干个独立的部分,每个部分可以独立开发,最终组合成一个完整的软件系统。
软件体系结构的重要性软件体系结构在软件开发生命周期的各个阶段都会发挥重要作用。
它可以帮助软件开发者们更清楚地定义系统范围、确定模块之间的关系、减少冲突和风险等。
此外,软件体系结构还可以帮助软件开发者预测系统的变化,让系统更加易维护和扩展。
软件体系结构的种类软件体系结构可以根据不同的标准进行分类。
下面介绍几种常见的分类方式。
1. 根据结构组织按照软件系统的结构组织方式来分类,可以分为:层次体系结构、客户/服务器体系结构、面向对象体系结构等。
层次体系结构将软件系统划分为若干个层次,每个层次尽量保持独立,每个层次只依赖于下一层次,不依赖于上一层次。
这种体系结构的好处是简单易懂,可维护性高。
客户/服务器体系结构是指将软件系统分为服务器端和客户端两部分。
服务器提供各种服务,客户端通过调用服务器端提供的服务来实现自己的功能。
这种体系结构的好处是扩展性好,因为只要增加一台服务器就可以为更多的客户端提供服务。
面向对象体系结构是指将软件系统看成是若干个对象的集合。
每个对象有一些属性和方法,它们之间可以相互调用来完成一些功能。
这种体系结构的好处是维护性好,因为不同对象之间的关系比较简单清晰。
2. 根据数据流方向按照数据流的方向来分类,可以分为:单向体系结构、双向体系结构。
单向体系结构是指软件系统在数据流的传递方向上是单向的,只有一个方向。
软件体系结构
一. 软件体系结构(架构)软件体系结构的定义通常,软件体系结构通常被称为架构,指可以预制和可重构的软件框架结构。
架构尚处在发展期,对于其定义,学术界尚未形成一个统一的意见,而不同角度的视点也会造成软件体系结构的不同理解。
比如,ANSI/IEEE 610.12-1990软件工程标准词汇对于体系结构定义是“体系架构是以构件、构件之间的关系、构件与环境之间的关系为内容的某一系统的基本组织结构以及知道上述内容设计与演化的原理(principle)”;而Garlan & Shaw模型的基本思想是:软件体系结构={构件(component),连接件(connector),约束(constrain)}。
对于软件项目的开发来说,一个清晰的软件体系结构是首要的。
传统的软件开发过程可以划分为从概念到实现的若干个阶段,包括问题定义、需求分析、软件设计、软件实现及软件测试等。
软件体系结构的建立就位于需求分析之后,软件设计之前。
在建立软件体系结构时系统设计师主要从结构的角度对整个系统进行分析,选择恰当的构件(Component)、构件间的相互作用以及它们的约束,最后形成一个系统框架(Framework)以满足用户的需求,为软件设计奠定基础。
软件体系结构风格软件体系结构设计的一个核心问题是能否使用重复的体系结构模式,即能否达到结构级的软件重用。
也就是说,能否在不同的软件体系中,使用同一体系结构。
基于这个目的,学者们开始研究和实践软件体系结构的风格问题。
软件体系结构风格(Software Architecture Style)是描述某一特定应用领域系统组织方式的惯用模式。
它反映了领域中众多系统所有的结构和语义特性,并指导如何将各个模块和子系统有效地组织成一个完整的系统。
对软件体系结构风格的研究和实践促进了对设计的复用,一些经过实践证明的解决方案也可以可靠地用于解决新的问题。
体系结构风格的不变部分使不同的系统可以共享一个实现代码。
软件体系结构名词解释
软件体系结构名词解释
软件体系结构:系统的基本组织结构,包括系统构成要素,这些构成要素相互之间以及运⾏环境之间的关系,还包括系统设计及演化时应遵循的原则。
优点:软件相关⼈员之间进⾏交流的⼿段;是⼀种⾼层次的设计复⽤⼿段;是早起关键设计决策的体现。
4+1视图:从5个不同的视⾓包括包括逻辑视图,进程视图,物理视图,开发视图与场景视图来描述软件体系结构。
逻辑视图:主要⽀持系统的功能需求,即系统提供给最终⽤户的服务。
开发视图:也称模块视图,主要侧重于软件模块的组织和管理。
进程视图:侧重于系统的运⾏特性,主要关注⼀些⾮功能性的需求。
物理视图:主要考虑如何把软件映射到硬件上,它通常要考虑到系统性能、规模、可靠性等。
解决系统拓扑结构、系统安装、通讯等问题。
场景视图:场景可以看作是那些重要系统活动的抽象,它使四个视图有机联系起来,从某种意义上说场景是最重要的需求抽象。
软件体系结构风格:是对软件体系结构的分类,,每⼀种软件体系设计风格都代表⼀类软件都结构组织模式,是对实践中重复使⽤的架构设计的总结。
体系结构风格有:。
软件体系结构
软件体系结构软件体系结构是软件系统的一种高级结构,它涉及到软件系统的主要构成部分以及这些部分之间的相互作用。
它提供了一个框架,用于指导系统的设计和开发,以确保系统能够满足其需求。
软件体系结构由三个主要元素组成:构件、连接件和约束。
1.构件:这是软件体系结构的基础元素,包括处理构件、数据构件和连接构件。
处理构件负责执行数据的操作或计算,数据构件是操作或计算所处理的信息,而连接构件则负责将这些不同的部分组合在一起。
2.连接件:连接件是负责将体系结构的不同部分组合连接起来的元素。
它们定义了构件之间的交互方式和关系,包括数据流、控制流和消息传递等。
3.约束:约束是软件体系结构中的规则和限制,它们定义了系统的行为和属性。
约束可以包括性能要求、可靠性要求、可维护性要求等。
此外,软件体系结构还涉及到一些重要的问题,如全局组织和全局控制结构、通信、同步与数据存取的协议、设计构件的功能定义、物理分布与合成、设计方案的选择、评估与实现等。
这些问题都是软件体系结构在设计和开发过程中需要考虑的重要因素。
Kruchten提出了软件体系结构的四个角度,这些角度从不同方面对系统进行描述:1.概念角度:描述系统的主要构件及它们之间的关系。
2.模块角度:包含功能分解与层次结构,描述了系统的静态结构。
3.运行角度:描述了一个系统的动态结构,包括系统的行为、交互和并发性等方面。
4.代码角度:描述了各种代码和库函数在开发环境中的组织,涉及到系统的实现细节。
总的来说,软件体系结构是软件系统的核心组成部分,它为软件的设计和开发提供了一个高层次的结构和指导。
通过对软件体系结构的设计和分析,可以更好地理解系统的需求和功能,提高系统的质量和可维护性。
软件体系结构
软件体系结构
软件体系结构(Software architecture,软件架构)为软件系统提供了一个结构、行为和属性的高级抽象,由构成系统的元素的描述、这些元素的相互作用、指导元素集成的模式以及这些模式的约束组成。
软件体系结构不仅指定了系统的组织结构和拓扑结构,并且显示了系统需求和构成系统的元素之间的对应关系,提供了一些设计决策的基本原理。
对于软件项目的开发来说,一个清晰的软件体系结构是首要的。
传统的软件开发过程可以划分为从概念直到实现的若干个阶段,包括问题定义、需求分析、软件设计、软件实现及软件测试等。
软件体系结构的建立应位于需求分析之后,软件设计之前。
但在传统的软件工程方法中,需求和设计之间存在一条很难逾越的鸿沟,从而很难有效地将需求转换为相应的设计。
而软件体系结构就是试图在软件需求与软件设计之间架起一座桥梁,着重解决软件系统的结构和需求向实现平坦地过渡的问题。
软件体系结构是项目干系人进行交流的手段,明确了对系统实现的约束条件,决定了开发和维护组织的组织结构,制约着系统的质量属性。
软件体系结构使推理和控制更改更简单,有助于循序渐进的原型设计,可以作为培训的基础。
软件体系结构是可传递和可复用的模型,通过研究软件体系结构可能预测软件的质量。
软件工程中的软件体系结构
软件工程中的软件体系结构软件体系结构是软件工程中的一个重要概念,用于描述和组织软件系统的架构和结构。
在软件工程领域,软件体系结构是实现软件功能和满足软件质量要求的基础。
本文将介绍软件体系结构的定义、重要性和常见的体系结构模式。
一、软件体系结构的定义软件体系结构是软件系统的总体结构和组织方式,用于描述系统各个组成部分之间的关系、交互和功能。
它包括系统中的各个模块(或组件)以及它们之间的接口和依赖关系。
软件体系结构还定义了系统的整体框架、分层结构、数据流和控制流。
软件体系结构的目标是将复杂的软件系统分解成可管理的模块,提高系统的可维护性、可扩展性和可重用性。
它是软件开发过程中的一个关键决策,能够影响到系统的性能、安全性和可靠性。
二、软件体系结构的重要性1. 提高软件开发效率:软件体系结构将系统分解成各个模块,使开发团队能够并行开发、测试和集成各个模块,从而提高开发效率。
2. 促进软件重用:通过定义模块和接口,软件体系结构能够促进软件的重用,减少开发时间和成本。
3. 支持系统演化:软件系统需要不断演化,软件体系结构能够提供系统框架和接口,使系统能够方便地进行修改和扩展。
4. 提高系统的可维护性:良好的软件体系结构能够降低系统维护的难度,使开发人员能够快速定位和修复问题。
三、常见的软件体系结构模式1. 分层体系结构:将系统分成若干层层叠加的模块,每一层只和相邻的层进行交互。
这种模式可以提高系统的灵活性和可维护性,但同时也增加了系统的复杂度。
2. 客户-服务器体系结构:将系统分成客户端和服务器端,客户端发送请求给服务器端,服务器端提供相应的服务并返回结果。
这种模式适用于分布式系统和网络应用开发。
3. 主从体系结构:将系统分成一个主节点和多个从节点,主节点负责协调和管理从节点的工作。
这种模式适用于负载均衡和并行计算等场景。
4. 流水线体系结构:将系统分成多个阶段,每个阶段负责完成一部分工作并将结果传递给下一个阶段。
软件体系结构汇总
软件体系结构汇总软件体系结构是指在软件开发过程中,通过分析和设计将软件系统拆分成不同的模块,确定各个模块之间的关系和通信方式的过程。
软件体系结构的设计对于软件系统的可维护性、可扩展性等方面有着至关重要的影响。
本文将对几种常见的软件体系结构进行汇总介绍。
1. 分层体系结构(Layered Architecture)分层体系结构是将软件系统划分为若干层,每一层都具有特定的功能和对上下层的依赖关系。
常见的分层包括用户界面层、业务逻辑层、数据访问层等。
分层体系结构的优点是模块化、可维护性和可重用性较好,不同层之间的耦合度较低,但也存在性能问题和复杂度较高的缺点。
2. 客户端-服务器体系结构(Client-Server Architecture)客户端-服务器体系结构将软件系统划分为客户端和服务器两部分,客户端负责与用户交互,服务器负责处理和存储数据。
客户端-服务器体系结构的优点是系统的可伸缩性和灵活性较好,但也存在服务器压力过大、网络延迟等问题。
3. MVC体系结构(Model-View-Controller Architecture)MVC体系结构将软件系统划分为模型、视图和控制器三个部分,模型负责业务逻辑和数据存储,视图负责用户界面显示,控制器负责协调模型和视图之间的交互。
MVC体系结构的优点是模块化和分工明确,可以提高系统的可维护性和可扩展性。
4. Pipe and Filter体系结构Pipe and Filter体系结构将软件系统划分为一系列的处理器(Filter)和数据通道(Pipe),每个处理器负责执行一些特定的功能,通过数据通道进行输入和输出。
Pipe and Filter体系结构的优点是模块化和可重用性较好,但也存在处理器之间的依赖性和性能问题。
5. Blackboard体系结构Blackboard体系结构将软件系统划分为一个共享数据结构(Blackboard)和一组独立的处理器(Knowledge Sources),数据结构用于共享问题描述和部分解决方案,处理器根据问题描述和解决方案进行并行计算和协作。
解释软件体系结构的概念
解释软件体系结构的概念
软件体系结构是指一个软件系统的整体结构,包括系统的组成部分、
它们之间的关系以及它们的行为。
它描述了一个软件系统的高层次抽象,为开发人员提供了指导和规范,有助于实现系统的可靠性、可维
护性和可扩展性。
软件体系结构通常由以下四个方面组成:
1. 组件:组成软件系统的独立模块或单元,如用户界面、数据库管理、业务逻辑等。
2. 连接器:用于连接组件之间的接口或协议,包括数据传输、调用方
法等。
3. 配置:描述了组件和连接器之间的物理安排和部署方式,如分布式
部署、集中式部署等。
4. 限制条件:对软件系统进行限制或约束,以确保满足特定需求或标准,如安全性、性能等。
在软件开发过程中,设计人员应该根据需求和目标选择合适的体系结
构,并将其分解为更小的子问题进行设计和实现。
这样可以降低开发难度和风险,并且提高整个项目的质量。
总之,软件体系结构是一个重要而复杂的概念,在软件开发中扮演着至关重要的角色。
它可以帮助开发人员更好地组织和管理软件系统,从而实现高效、可靠、可维护和可扩展的软件系统。
软件体系结构-描述语言说明
◎ Rational起草了可重用的软件资产规格说明,专门讨论了 体系结构描述的规格说明,提出了一套易于重用的体系结构 描述规范。该建议草案已经提交OMG。 ◎ Rational建议基于RUP(Rational Unified Process)、 采用UML模型描述软件的体系结构,认为体系结构描述的关 键是定义视点、视图以及建模元素之间的映射关系。
29
第四章 软件体系结构描述 4.4 典型软件体系结构描述语言
◇ C2对构件接口的描述
component_message_interface ::= top_domain_interface bottom_domain_interface
体系结构配置提供信息来确定构件是否正确连接、 接口是否匹配、连接件构成的通信是否正确,并说明实 现要求行为的组合语义。
22
第四章 软件体系结构描述 4.4 典型软件体系结构描述语言
◇ Unicon
◎ Unicon的主要目的在于支持对体系结构的描述,对 构件交互模式进行定位和编码,并对需要不同交互模式 的构件的打包加以区别。主要目的:
◎ 请求消息只能向上层传送而通知消息只能向下层传送。
◎ 通知消息的传递只对应于构件内部的操作,而和接收消息 的构件的需求无关。
◎ C2对构件和连接件的实现语言、实现构件的线程控制、构 件的部署以及连接件使用的通讯协议等都不加限制。
28
第四章 软件体系结构描述
◇Hale Waihona Puke C2对构件的描述4.4 典型软件体系结构描述语言
第四章 软件体系结构描述
◇ 描述方法的种类
4.1 软件体系结构描述方法
◎ 图形表达工具 ◎ 模块内连接语言 ◎ 基于软构件的系统描述语言 ◎ 软件体系结构描述语言
软件体系结构与设计模式
软件体系结构与设计模式软件体系结构是指软件系统各个组件之间的关系和相互作用方式的规范。
设计模式则是一套解决软件设计问题的经验总结和最佳实践。
本文将介绍软件体系结构和设计模式的概念、特点以及在软件开发中的应用。
一、软件体系结构的概念与特点软件体系结构是软件系统的基本框架,规定了系统各个组件之间的关系和相互作用方式。
它包括系统的整体结构、组件的划分和接口的定义等。
软件体系结构的概念有以下几个特点:1. 模块化:将系统划分为相互独立的模块,每个模块都有明确定义的功能和接口。
2. 层次化:将系统划分为不同的层次,每个层次负责不同的功能和任务。
3. 分布式:将系统组件部署在不同的计算节点上,实现分布式计算和资源共享。
4. 可扩展性:能够方便地添加、修改和删除系统组件,以适应不同的需求和变化。
5. 可重用性:通过模块化和规范化的设计,实现组件的复用和共享。
二、常见的软件体系结构模式在软件体系结构中,常见的模式有分层模式、客户-服务器模式、主从模式、发布-订阅模式等。
1. 分层模式:将系统划分为多个层次,每个层次负责不同的功能和任务。
上层接口只与下一层接口进行交互,实现了模块之间的解耦和复用。
2. 客户-服务器模式:将系统划分为客户端和服务器端,客户端发送请求,服务器端提供服务并返回结果。
实现了任务的分布和协作。
3. 主从模式:主节点负责协调和管理各个从节点的工作,从节点负责执行具体的任务并向主节点汇报。
实现了任务的分配和并行处理。
4. 发布-订阅模式:发布者发布消息,订阅者接收并处理消息。
实现了组件之间的松耦合和消息的异步处理。
三、设计模式的概念与分类设计模式是针对特定问题的解决方案,是一种在软件设计中常用的思维方式和方法。
常见的设计模式有创建型模式、结构型模式和行为型模式。
1. 创建型模式:用于创建对象的模式,包括工厂方法模式、抽象工厂模式、单例模式、建造者模式和原型模式等。
2. 结构型模式:用于组织类和对象的模式,包括适配器模式、装饰器模式、代理模式、外观模式和桥接模式等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
践者提供设计体系结构更好的方法,以便设计人员相互交流,并可以使 用支持体系结构描述语言的工具来分析案例。 这些内容将在第5 章介绍。 第二类是体系结构领域知识的总结性研究。这一领域关心的是工程 师通过软件实践总结而来各种体系结构原则和模式的分类和阐释。 第三类是针对特定领域的框架 [SEI90,Tra94] 的研究。这类研究产生 了针对一类特殊软件的体系结构框架,比如,航空电子控制系统、移动 机器人、用户界面。这类研究一旦成功,这样的框架便可以被毫不费力 实例化来生产这一领域新的产品。这部分内容将在第 7 章介绍。 第四类是软件体系结构形式化支持的研究。随着新的符号的产生, 以及人们对体系结构设计实践的理解逐步深入,需要用一种严格的形式 化方法刻画软件体系结构及其相关性质。这些内容将在第 5 章介绍。
8
设计或实现中一种特殊的重复出现的问题。例如,Bridge 模式,它为解 决抽象部分和实现部分独立变化的问题提供了一种通用结构。因此,设 计模式更强调直接复用的程序结构。 3. 应用框架(Application Framework) 应用框架是整个或部分系统的可重用设计,表现为一组抽象构件的 集合以及构件实例间交互的方法。可以说,一个框架是一个可复用的设 计构件,它规定了应用的体系结构,阐明了整个设计、协作构件之间的 依赖关系、责任分配和控制流程,表现为一组抽象类以及其实例之间协 作的方法,它为构件复用提供了上下文 (Context) 关系。在很多情况下, 框架通常以构件库的形式出现,但构件库只是框架的一个重要部分。框 架的关键还在于框架内对象间的交互模式和控制流模式 [2]。 设计模式是对在某种环境中反复出现的问题以及解决该问题的方 案的描述,它比框架更抽象;框架可以用代码表示,也能直接执行或复 用,而对模式而言只有实例才能用代码表示;设计模式是比框架更小的 元素,一个框架中往往含有一个或多个设计模式,框架总是针对某一特 定应用领域,但同一模式却可适用于各种不同的应用。体系结构风格描 述了软件系统的整体组织结构,它独立于实际问题。而设计模式和应用 框架更加面向具体问题。 体系结构风格、设计模式和应用框架的概念是从不同的目的和出发 点讨论软件体系结构,它们之间的概念经常互相借鉴和引用。
第
绪 论
1
章
软件体系结构对于软件工程师来说是一门重要的新兴学科。但是它 并不是作为软件系统新的关注点而以一种简单的、清楚的、完善的方式 形成的。软件工程师需要一种更好的视角来理解软件,并试图找到一种 新方法来构建更复杂的大型软件系统,这时,软件体系结构这门学科才 从软件设计中抽象出来,逐渐自然演化形成。 在这一个章节中,我们将阐述什么是软件体系结构以及软件体系 结构研究的内容和范畴。在这个基础上我们将勾画出软件体系结构的 现状。
5
明,这些元素本身被抽象成体系结构的子系统,或是被传统的编程语言 实现。
软件设计层次
系统设计是在多个层次上进行。每一层要恰当地处理不同的设计关 注点,所以精确地划分层次非常有用。在每个层次上我们都能找到:原 始的和被组装的构件;非原始构件或系统的组装规则;为系统提供语义 的行为规则(BN71,New82,New90 )。这些在不同的层次上是不同的, 所以在每个的层次上使用不同的符号,设计问题,分析技术。这样,每 一层可以分别独立的设计。但是,并不是说层次之间是完全独立的,层 次之间是有关联的,因为每一层的元素都要与低一级层次的结构相对 应,并要通过低一级的层次来实现其功能。 计算机的硬件系统层次结构对于我们来说已经很熟悉,软件同样有 其设计层次。我们能够确定至少三个层次: (1)体系结构级:这个级别的设计问题包括系统性能与构件之间的 整体联系。这个级别的构成元素是模块,模块通过各种方式互 连;通过操作算子将子系统组装成一个系统。 (2)代码级:这个级别的设计问题包括算法和数据结构;其构成元 素是编程语言原语,比如数值、字符、指针以及控制线程。基 本的操作算子是算法和程序设计语言提供的数据操作原语。组 装机制包括记录、数组、过程。 (3)执行级:这个级别的设计问题包括存储器的映射、数据格式配 置、 堆栈和寄存器的分配。 其构成元素是硬件所支持的位模式。 使用机器代码来描述操作和组装。
6
1.2
1.2.1
软件体系结构研究的内容和范畴
体系结构研究领域
优秀的体系结构通常是一个软件系统取得成功的决定性因素。虽然 很多体系结构范例(比如管道线,分层系统,客户机 -服务器组织等等) 非常有用,但是对这些范例却没有形成一致的理解,而是以习惯的方式 理解它们,并且对它们的使用也没有一致的方式。结果,软件系统设计 者很难在系统体系结构中找到通用的东西,不能在多个设计方案中做出 合理的选择,也不能将通用的范例应用于某一具体领域,或者将他们的 设计经验传授给其他设计者。 当前,软件体系结构已经成为软件工程实践者和研究者的一个重要 的研究领域。很多领域的研究工作使得关于软件体系结构的许多问题正 在被解决,这些领域包括模块接口语言,特定领域的软件体系结构,软 件的重用,软件组织结构模式的规范化编纂,体系结构描述语言,体系 结构设计形式化的支持和体系结构设计环境。 虽然目前这一领域相当活跃,但是许多研究工作只是在一些小的机 构中进行,这些研究工作并没有与其他工作相互协调和配合。目前,两 个机构[GPT95,Gar95a] 将很多对软件体系结构感兴趣的研究者和实践者 组织起来,讨论软件体系结构理论和实践的现状。这些机构的目标是对 实践现状、目前的研究发展工作的分类以及这一新兴领域重大挑战等问 题建立的一个共同的理解。根据这些研究机构广泛的兴趣可以将当前软 件体系结构分为4 个研究领域: 第 一 类 是 通 过 提 供 一 种 新 的 体 系 结 构 描 述 语 言 ( Architectural Description Language )解决体系结构描述问题。这种语言的目标是向实
1.1
什么是软件体系结构
随着软件系统的规模和复杂性不断增加,系统的全局结构的设计和 规划变得比算法的选择以及数据结构的设计更加重要。这种全局结构的 设计和规划问题包括全局组织结构;全局控制结构;通信和同步以及数
2
据存取的协议;规定设计元素的功能;设计元素的组合;物理分布;规 模和性能;演化的维度;设计方案的选择等。这些就是软件体系结构所 要讨论的问题。 抽象地说,软件体系结构包括构成系统的设计元素的描述,设计元 素的交互, 设计元素组合的模式, 以及在这些模式中的约束。 一般来说, 一个具体的系统由构件的集合以及它们之间的关系组成。这样的系统又 有可能成为一个更大的系统的组成元素。 人们已经普遍认识到:为系统设计一个合适的体系结构是系统取得 长远的成功的关键因素,但是当前描述体系结构的实践一直是非形式化 的。一般根据长期形成的非形式化的习惯方式来描述体系结构。通常, 体系结构用方框连线图来抽象的表示,并在一旁用文字加以注释,来解 释符号的含义,或者说明构件的选择以及它们之间交互的一些原理。举 例来说,软件体系结构的典型描述如下: “Camelot 基于客户机−服务器模式,它使用远程方法调用来实现应 用程序和服务器之间通信”[S+87]。 “抽象分层和系统分解为客户端提供了统一的系统接口,这样就使 Helix 能够适应客户端设备的多样性。这种体系结构推荐应用系统采用 客户机−服务器模式” [FO85]。 “我们已经选择了一种分布式的,面向对象的解决方案来管理信息 资源”[Line87]。 “将规范的顺序的编译器改造成并发的编译器的最直接的方式是采 用管线,并使各个编译阶段在多个处理器上执行。一个更有效的方式是 把源代码分成许多部分,在各个编译阶段被并发地处理这些部分[通过 多编译处理器],最后再将目标代码重组成一个完整的单一的程序” [Ses88] 。
1.2.2
风格、设计模式、框架
1. 体系结构风格(Architecture Styles) 体系结构风格是描述特定系统组织方式的惯用范例,强调组织模式 和惯用范例。组织模式即静态表述的样例,惯用范例则是反映众多系统 共有的结构和语义。通常,体系结构风格独立于实际问题,强调了软件 系统中通用的组织结构,比如管道线,分层系统,客户机 -服务器等等。 体系结构风格以这些组织结构定义了一类系统族。第 2 章将对体系结构 风格作详细的介绍。 2. 设计模式(Design Pattern) 设计模式是软件问题高效和成熟的设计模板,模板包含了固有问题 的解决方案。设计模式可以看成规范了的小粒度的结构成分,并且独立 于编程语言或编程范例。设计模式的应用对软件系统的基础结构没有什 么影响,但可能对子系统的组织结构有较大影响 [1] 。每个模式处理系统
4
在软件体系结构这个主题上,目前有相当多(将会更多)的工作要 做,包括:模块连接语言,满足特殊领域需要的系统模板和框架,构件 集成机制的形式化模型。令人遗憾的是,目前没有统一的专业术语来描 述这一领域的通用元素。 我们目前还没有一个能被广泛接受的体系结构范例的分类法, 更不用说一个成熟的软件体系结构理论。但是,目前我们能够明显 地确定出许多体系结构描述的基本元素。另外,我们已经能够确定 一系列的体系结构模式或者风格,这些模式或风格形成了软件架构 师的基本技能(这些模式或风格已经在上述引用中阐述,它们也是 第 2 章的主题)。 软件系统的体系结构定义系统由计算构件和构件之间的相互作用 组成。构件可以是客户机和服务器、数据库、过滤器或者是在一个分层 系统中的层。构件之间的相互作用在这个设计层次上可以是简单和相似 的,比如过程调用,共享变量的访问。但是它们也可以是复杂和语义丰 富的,比如说客户机−服务器协议(client-server protocols ),数据库存 取协议 (database-accessing protocols ) , 异步事件多点传送 (asynchronous event multicast),和管道数据流(piped streams)等。 除了指定系统的结构和拓扑关系,体系结构还指出了系统需求和已 构建系统的元素之间的对应关系,这样能为设计方案的选择提供基本原 则。在体系结构的层次上,相关的系统级别的问题包括了容量,吞吐量, 一致性,构件的兼容性等。 更一般的说,体系结构模型阐明了构件以及相互关系之间的结构和 语义上的不同。这些体系结构模型能够被组合起来定义更大的系统。理 想情况下,体系结构描述中每个独立的元素被独立地定义,这样它们可 以在不同的环境中被重用。体系结构为这些独立的元素建立了规格说