(完整版)高考物理弹簧模型总结,推荐文档

合集下载

高中物理弹簧模型详解

高中物理弹簧模型详解

高中物理弹簧模型详解弹簧是我们在日常生活中经常接触到的一个物体,而在物理学中,弹簧也是一种非常重要的模型,能够帮助我们更好地理解力学性质。

本文将详细介绍高中物理中弹簧模型的相关知识,包括弹簧的基本概念、弹簧的力学性质以及弹簧在物理学中的应用。

一、弹簧的基本概念弹簧是一种具有自身形状恢复能力的物体,当外力作用在弹簧上时,会产生形变,当外力消失时,弹簧会恢复原来的形状。

弹簧通常是由金属或塑料等材料制成,形状多样,能够用于各种领域。

在物理学中,我们通常将弹簧视为一个理想模型,即认为弹簧具有以下特点:弹性系数恒定、无质量等。

弹簧的弹性系数(弹簧常数)用k表示,是衡量弹簧的硬度和形变能力的重要参数。

二、弹簧的力学性质1. 弹簧的伸长和弹性力当外力作用在弹簧上时,弹簧会发生形变,使长度发生变化,此时称为弹簧的伸长。

根据胡克定律,弹簧伸长的长度与作用力成正比,即F=kx,其中F为外力,k为弹簧的弹性系数,x为伸长的长度。

弹簧的弹性力也叫胡克力,是指弹簧对外力做出的响应,方向与伸长的方向相反。

当外力消失时,弹簧会产生一个恢复力,使形状恢复原状。

2. 弹簧振动在物理学中,弹簧振动是一种重要的现象,可以用简谐振动的原理进行描述。

当弹簧受到外力作用时,会产生振动,频率与质量和弹簧的弹性系数相关。

弹簧振动的频率用f表示,与弹簧的弹性系数k和振动体的质量m有关,可以用以下公式表示:f=1/(2π) * √(k/m)。

三、弹簧在物理学中的应用1. 弹簧振子弹簧振子是物理学中常见的实验器材,由一根弹簧和一个质点组成。

通过对弹簧振子的研究,可以了解振动的基本特性,包括振幅、频率、周期等。

2. 弹簧力学弹簧力学在实际生活中有着广泛的应用,例如弹簧秤、弹簧减震器等。

通过对弹簧力学的研究,可以更好地设计和制造各种弹簧产品,满足不同领域的需求。

3. 彩虹弹簧彩虹弹簧是一种特殊形状的弹簧玩具,通过不同颜色的环形弹簧组成。

彩虹弹簧不仅具有较强的伸缩性能,还有着独特的视觉效果,深受孩子们的喜爱。

弹簧类模型归纳解析

弹簧类模型归纳解析
作 者 单 位 : 苏 省 宝 应 中 学 江
F台= F =
m 由牛 顿 第 二 定 律 得 n g, 一

例 4 如 图 5所 示 , 质
不发生变化 , 弹簧 的 弹 力 瞬 时 不 变 . 例 2 如 图 2所 示 , 量 质
量 = 1 g的 小 物 块 放 在 k

质 量 M 一 4 g 的 足 够 长 k
为 m 的 小 球 用 水 平 弹 簧 系
住 , 用 与 水 平 面 成 3。 的 并 O角 光 滑 木 板 AB托 住 , 球 恰 好 小 处 于平 衡 状 态 . 当木 板 AB突
当 整 个 系 统 处 于平 衡 状 态 时 , 个 系统 受 重 力 和 弹 力 , ( 整 即 m
+ m ) =志 z ’ 2 g 2 l 则 l ( +m2 g k . = 仇1 )/2
大 加 速 度 a . 加 速 度 的 对 称 性 可 知 , 簧 处 于 压 缩 量 最 —g 由 弹
k , z 一m2 l 2 2 有 2 2 g k.

所以△ —z 一z =m1 /2 正 确选 项 是 C 1 2 g k. .
二 、 瞬 时 不变 ” 模 型 “ 类
2 振 幅 的对 称 性 .


此 类 题 目的 特 点 是 一 外 界 条 件 改 变 的 瞬 时 , 簧 的形 变 : 在 弹
图 2
然 向下 撤 离 的瞬 间 , 球 的 加 小
速度为(
A.0
1 N 的 水 平 向 右 恒 力 ( 大 静 摩 擦 力 可 认 为 等 于 滑 动 摩 擦 2 最
力 , 1 m/ ) 求 : g= 0 + .
) .

高考弹簧知识点总结

高考弹簧知识点总结

高考弹簧知识点总结弹簧是力学中的重要概念,广泛应用于各个领域。

在高考物理考试中,弹簧是一个常见的知识点。

本文将对高考物理中与弹簧相关的知识点进行总结和归纳,以帮助同学们更好地备考。

1. 弹簧的基本概念弹簧是一种螺旋形的弹性物体,具有弹性变形的能力。

它常用于存储和释放能量,是许多机械装置和弹性系统的基础组成部分。

2. 弹簧的弹性力学公式弹簧的弹性力学公式描述了弹簧的弹性行为。

在一定条件下,弹簧的弹力与其弹性变形成正比。

根据胡克定律,弹簧的弹性力学公式可以表示为:F = k * x,其中 F 是弹簧的弹力,k 是弹簧的弹性系数,x 是弹簧的弹性变形。

3. 弹性系数与弹簧的刚度弹性系数 k 反映了弹簧的刚度,也就是弹簧对单位变形所提供的弹力大小。

弹性系数越大,弹簧的刚度越大,提供的弹力也就越大。

4. 弹簧的标准化弹簧的标准化是为了方便生产和使用。

根据具体的弹簧形状和应用领域,弹簧有不同的标准化分类和规范,如拉簧、压簧、扭簧等。

5. 弹簧的能量存储和释放弹簧具有储存和释放能量的能力。

当弹簧发生弹性变形时,会将外界施加的力转化为弹性势能存储起来;当外界力取消或改变时,弹簧会释放储存的弹性势能,恢复到原始状态。

6. 能量守恒与弹簧振动在弹簧振动的过程中,机械能守恒定律得到了应用。

弹簧振动过程中,弹簧的弹性势能和动能不断转化,而其总和保持不变。

7. 弹簧系统的共振弹簧系统在某一特定频率下发生共振现象。

当外界频率与弹簧系统的固有频率相匹配时,弹簧会达到最大振幅,共振现象发生。

共振现象在各个领域都有应用,如乐器、机械、电子等。

8. 弹簧的阻尼与振动衰减弹簧系统在振动过程中会受到外界阻尼力的影响,从而引起振动衰减。

阻尼可以分为无阻尼、欠阻尼和过阻尼三种情况。

不同的阻尼方式对弹簧振动产生不同的影响。

9. 弹簧的应用弹簧广泛应用于各个领域,如机械工程、建筑工程、汽车工业等。

弹簧在这些领域中的应用包括减震、支撑、密封、传动等。

高中物理关于弹簧的8种模型

高中物理关于弹簧的8种模型

高中物理关于弹簧的8种模型
以下是关于弹簧的8种模型
1. 弹性线性模型(Hooke定律模型):弹簧的拉伸或压缩与弹力成正比。

2. 欧拉-伯努利悬链模型:将一条悬挂在两端支持点上的弹簧视为一个由无数小段组成的悬链,使该整体发生弹性形变。

3. 线圈弹簧模型:将弹簧看作一系列具有弹性的杆件相互连接而成的线圈。

4. 非线性弹簧模型(实验模型):弹簧长度非常短,增加弹簧的弹性,以进一步研究其弹性质量。

5. 结构弹簧模型:弹簧长度较长,由此建立的结构弹簧可以帮助研究建筑物和桥梁的耐力。

6. 重力弹簧模型:弹簧被用来模拟重力的作用。

7. 超弹性弹簧模型:这种弹簧的弹性大于普通弹簧,它被广泛应用于高精度测量、机器人学和其他高科技领域。

8. 线性簧模型:弹簧的材质、线径等是固定的,根据弹簧的特性建立模型,计算其应力、应变等力学参数。

高中物理关于弹簧的8种模型

高中物理关于弹簧的8种模型

高中物理关于弹簧的8种模型:
1.简单弹簧模型:最基本的模型,将弹簧看作一个线性弹性体,满足胡克定律,即弹
簧力与变形量成正比。

2.质点弹簧模型:在简单弹簧模型的基础上,考虑到弹簧两端连接的物体的质量,将
其视为质点,分析弹簧振动、调和运动等问题。

3.弹簧振子模型:将弹簧与一定质量的物体(如小球)组合起来,形成一个简谐振动
系统,研究其振动频率、周期等特性。

4.弹簧串联模型:多个弹簧按照串联方式连接,研究整个系统的弹性特性和变形量的
分布情况。

5.弹簧并联模型:多个弹簧按照并联方式连接,研究整个系统的弹性特性和总的弹簧
常数。

6.弹簧平衡模型:将弹簧与其他物体相连接,使其处于平衡状态,通过分析受力平衡
条件,求解物体的位移和力的大小。

7.弹簧阻尼模型:考虑弹簧振动过程中存在的阻尼现象,引入阻尼系数,分析阻尼对
振动特性的影响。

8.非线性弹簧模型:考虑到弹簧在较大变形下不再满足胡克定律,采用非线性弹簧模
型进行分析,如非线性胡克定律、比例限制等。

高考物理弹簧模型

高考物理弹簧模型

高考物理弹簧模型1.高考物理弹簧弹力的计算弹簧弹力的大小可以由胡克定律来计算,即弹簧发生形变时,在弹性限度内,弹力的大小与弹簧伸长(或缩短)的长度成正比,数学表达式为,其中是一个比例系数,叫弹簧的劲度系数.弹簧的弹力不是一个恒定的力,而是一个变力,其大小随着弹簧形变量的变化而变化,同时还与弹簧的劲度系数有关。

2.高考物理弹簧弹力的特点(1)弹簧弹力的大小与弹簧的形变量有关,当弹簧的劲度系数保持不变时,弹簧的形变量,弹簧的形变量发生变化,弹簧的弹力相应地发生变化;形变量不变,弹力也力也就保持不变,由于弹簧的形变不能发生突变,故弹簧的弹力也不能瞬间发生变化,这与绳子的受力情况不同。

(2)当轻弹簧受到外力的作用时,无论弹簧是处于平衡状态还是处于加速运动状态,弹簧各个部分所受的力的大小是相同的。

(3)弹簧弹力的方向与弹簧的形变有关,在拉伸和压缩两种情况下,弹力的方向相反.在分析弹簧弹力的方向时,一定要全面考虑,如果题目没有说明是哪种形变,那么就需要考虑两种情况。

(4)根据胡克定律可知,弹力的大小与形变量成正比,方向与形变的方向相反,可以将胡克定律的表达式写成F=kx,即弹簧弹力是一个线性回复力,故在弹力的作用下,物体会做简谐运动。

3.高考物理弹性势能与弹力的功弹簧能够存储弹性势能,其大小为Ep=kx2/2,在高中阶段不需要掌握该公式,但要知道形变量越大,弹性势能就越大,在形变量相同的情况下,弹性势能是相等的;一般情况下,通常利用能量守恒定律来求弹簧的弹性势能,由于弹簧弹力是一个变力,弹力的功就是变力的功,可以用平均力来求功,也可以通过功能关系和能量守恒定律来求解。

4.高考物理常见的弹簧类问题(l)弹簧的平衡与非平衡问题;(2)弹簧的瞬时性问题;(3)弹簧的碰撞问题;(4)弹簧的简谐运动问题;(5)弹簧的功能关系问题;(6)弹簧的临界问题;(7)弹簧的极值问题;(8)弹簧的动量守恒和能量守恒问题;(9)弹簧的综合性问题.5.高考物理处理弹簧模型的策略(l)判断弹簧与连接体的位置,分析物体的受力情况;(2)判断弹簧原长的位置,现长的位置,以确定弹簧是哪种形变以及形变量的大小;(3)分析弹簧弹力的变化情况,弹箦弹力不能发生突变,以此来分析计算物体的运动状态;(4)根据相应的物理规律列方程求解,例如,物体处于平衡时,运用平衡条件和胡克定律求解。

高考物理学霸复习讲义动量-第五部分 弹簧模型

高考物理学霸复习讲义动量-第五部分  弹簧模型

1.注意弹簧弹力特点及运动过程,弹簧弹力不能瞬间变化。

2.弹簧连接两种形式:连接或不连接。

连接:可以表现为拉力和压力,从被压缩状态到恢复到原长时物体和弹簧不分离,弹簧的弹力从压力变为拉力。

不连接:只表现为压力,弹簧恢复到原长后物体和弹簧分离,物体不再受弹簧的弹力作用。

3.动量和能量问题:动量守恒、机械能守恒,动能和弹性势能之间转化,等效于弹性碰撞。

弹簧被压缩到最短或被拉伸到最长时,与弹簧相连的物体共速,此时弹簧具有最大的弹性势能,系统的总动能最小;弹簧恢复到原长时,弹簧的弹性势能为零,系统具有最大动能。

弹簧直接连接的两物体间的作用【典例1】质量分别为3m和m的两个物体,用一根细线相连,中间夹着一个被压缩的轻质弹簧,整个系统原来在光滑水平地面上以速度v0向右匀速运动,如图所示。

后来细线断裂,质量为m的物体离开弹簧时的速度变为2v0。

求:(1)质量为3m的物体最终的速度;(2)弹簧在这个过程中做的总功。

【答案】(1)32v(2)232mv【解析】(1)设3m的物体离开弹簧时的速度为v1,由动量守恒定律得:()1323vmvmvmm⋅+⨯=+所以132vv=(2)由能量守恒定律得:()()222p100111323222E m v m v m m v=⋅⨯+⋅-⋅+所以弹性势能:2p023E mv=多过程、多物体问题【典例2】质量为M和0m的滑块用轻弹簧连接,以恒定的速度v沿光滑水平面运动,与位于正对面的质量为m的静止滑块发生碰撞,如图所示,碰撞时间极短,在此过程中,下列情况可能发生的是第五部分弹簧模型A .M 、0m 、m 速度均发生变化,分别为123v v v 、、,而且满足()01023+M m v Mv m v mv =++B .0m 的速度不变,M 和m 的速度变为1v 和2v ,而且满足12Mv Mv mv =+C .0m 的速度不变,M 和m 的速度都变为'v ,且满足()+'Mv M m v =D .M 、0m 、m 速度均发生变化,M 、0m 速度都变为1v ,m 的速度变为2v ,且满足()()012++M m v M m v mv =+【答案】BC【解析】碰撞的瞬间M 和m 组成的系统动量守恒,0m 的速度在瞬间不变,以M 的初速度方向为正方向,若碰后M 和m 的速度变1v 和2v ,由动量守恒定律得:12Mv Mv mv =+;若碰后M 和m 速度相同,由动量守恒定律得:()Mv M m v =+',故BC 正确。

高三物理一轮复习资料【弹簧模型】

高三物理一轮复习资料【弹簧模型】

高三物理一轮复习资料【弹簧模型】1.弹簧模型的问题特点弹簧模型是高考中常见的物理模型之一,该模型涉及共点力的平衡、牛顿运动定律、动能定理、机械能守恒定律以及能量守恒定律等知识.运动过程中,从力的角度看,弹簧上的弹力是变力,从能量的角度看,弹簧是储能元件.因此,借助弹簧模型,可以很好地考查考生的分析综合能力.在高考试题中,弹簧(主要是轻质弹簧)模型主要涉及四个方面的问题:静力学中的弹簧问题、动力学中的弹簧问题、与能量转化和与动量有关的弹簧问题.2.弹簧模型的解题策略(1)力学特征:轻质弹簧不计质量,并且因软质弹簧的形变发生改变需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹簧的弹力不突变.(2)过程分析:弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,首先要注意弹力的大小和方向与形变相对应,从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来综合分析物体的运动状态.(3)功能关系:在求弹簧的弹力做功时,因该变力随形变量而线性变化,可以先求平均力,再用功的定义进行计算,也可根据动能定理和功能关系求解.同时要注意弹力做功等于弹性势能增量的负值,因此在求弹力的功或弹性势能的改变时,一般从能量的转化与守恒的角度来求解.(4)临界分析:弹簧一端有关联物、另一端固定时,当弹簧伸长到最长或压缩到最短时,物体速度有极值,弹簧的弹性势能最大,此时也是物体速度方向发生改变的时刻;若关联物与接触面间光滑,当弹簧恢复原长时,物体速度最大,弹性势能为零;若关联物与接触面间粗糙,物体速度最大时弹力与摩擦力平衡,此时弹簧并没有恢复原长,弹性势能也不为零.3.弹簧模型的主要问题(1)与弹簧关联物体受力变化前后的加速度问题.(2)与弹簧关联两个相互接触的物体分离的临界问题.(3)与弹簧关联物体的碰撞问题.(4)与热力学、振动、电磁学综合的弹簧问题.视角1:弹簧模型中的平衡问题1.如图所示,质量为m 1的物体A 压在放于地面上的竖直轻弹簧L 1(劲度系数为k 1)上,上端与轻弹簧L 2(劲度系数为k 2)相连,轻弹簧L 2上端与质量为m 2的物体B 相连,物体B 通过轻绳跨过光滑的定滑轮与轻质小桶P 相连,A 、B 均静止.现缓慢地向小桶P 内加入细沙,当弹簧L 1恰好恢复原长时(小桶一直未落地),求:(1)小桶P 内所加入细沙的质量;(2)小桶在此过程中下降的距离.解析:(1)当L 1恢复原长时,对A 、B 整体分析,绳子的拉力为F =(m 1+m 2)g ,即小桶中细沙的质量为m 1+m 2.(2)开始时,对A 、B 整体受力分析得k 1x 1=(m 1+m 2)g ,式中x 1为弹簧L 1的压缩量,则x 1=(m 1+m 2)g k 1 对B 受力分析得k 2x 2=m 2g ,式中x 2为弹簧L 2的压缩量,则x 2=m 2g k 2当L 1恢复原长时,对A 受力分析得k 2x 2′=m 1g ,式中x 2′为弹簧L 2的伸长量,则x 2′=m 1g k 2在整个过程中,小桶下降的距离h =x 1+x 2+x 2′=(m 1+m 2)g ⎝⎛⎭⎫1k 1+1k 2. 答案:(1)m 1+m 2 (2)(m 1+m 2)g ⎝⎛⎭⎫1k 1+1k 2视角2:弹簧模型中的瞬时问题2.细绳拴一个质量为m 的小球,小球将左端固定在墙上的轻弹簧压缩了距离x (小球与弹簧不连接),小球静止时弹簧在水平位置,细绳与竖直方向的夹角为53°,小球距地面的高度为h ,如图所示.下列说法中正确的是( )A .细绳烧断后,小球做平抛运动B .细绳烧断后,小球落地的速度等于2ghC .剪断弹簧瞬间,细绳的拉力为53mg D .细绳烧断瞬间,小球的加速度大小为53g 解析:D 将细绳烧断后,小球受到重力和弹簧弹力的共同作用,合力方向斜向右下方,并不是只有重力的作用,所以小球不是做平抛运动,故A 错误;小球只做自由落体运动时,根据v 2=2gh 得落地速度是v =2gh ,而现在除重力外还有弹簧的弹力对小球做功,所以小球落地时的速度一定大于2gh ,故B 错误;小球静止时,对小球进行受力分析如图所示,由平衡条件得,细绳的拉力大小T =mg cos 53°=53mg ,弹簧弹力的大小F =mg tan 53°=43mg ,剪断弹簧瞬间,细绳的拉力发生突变,不再为T =53mg ,故C 错误;细绳烧断瞬间,弹簧的弹力不变,则小球所受的合力与细绳烧断前细绳中的拉力大小相等、方向相反,此时F 合=T ,可知此瞬间小球的加速度大小a =F 合m =53g ,故D 正确.3.A 、B 两球质量相同,静止在倾角为30°的斜面上.两球之间拴接有轻弹簧.A 球与挡板接触,B 球通过细线与斜面顶端相连,细线绷紧,系统处于静止状态.则撤去挡板瞬间( )A .弹簧弹力一定变大B .细线拉力一定变大C .A 球一定处于失重状态D .B 球一定处于平衡状态解析:D 开始时,弹簧可能处于压缩状态,则撤去挡板瞬间,小球A 向下运动,弹簧伸长,弹力变小,则绳的拉力增大,选项A 错误;若开始时弹簧处于伸长状态,且挡板的弹力为零,则撤去挡板瞬间,A 球仍静止,不是处于失重状态,选项B 、C 错误;B 球被细线拉住,一定处于平衡状态,选项D 正确.视角3:弹簧模型中的动力学和能量问题4.如图所示,有一倾角为θ=37°的粗糙硬杆,其上套一底端固定且劲度系数为k =10 N/m 的轻弹簧,弹簧自然伸长时上端在Q 点,弹簧与杆间摩擦忽略不计.一个质量为m =5 kg 的小球套在此硬杆上,从P 点由静止开始滑下,经过t =2 s 后,P 与弹簧自由端Q 相碰,PQ 间的距离L =4 m ,弹簧的弹性势能与其形变量x 的关系为E p =12kx 2.已知sin 37°=0.6,cos 37°=0.8,重力加速度g 取10 m/s 2.求: (1)小球与硬杆之间的动摩擦因数μ;(2)小球向下运动过程中速度最大时弹簧的弹性势能.解析:小球做匀加速直线运动,根据运动学公式和牛顿第二定律即可求出动摩擦因数;当小球加速度为零时,速度最大,根据平衡条件求出压缩量,再根据E p =12kx 2求出速度最大时弹簧的弹性势能.(1)小球由静止做匀加速直线运动,则有:L =12at 2, 解得:a =2 m/s 2.根据牛顿第二定律得:mg sin 37°-μmg cos 37°=ma解得:μ=0.5.(2)当小球加速度为零时,速度最大即有:mg sin 37°=μmg cos 37°+kx解得:x =1 m所以弹性势能为:E p =12kx 2=12×10×12 J =5 J. 答案:(1)0.5 (2)5 J5.(多选)如图甲所示,倾角为θ=30°的光滑斜面固定在水平面上,自然伸长的轻质弹簧一端固定在斜面底端的挡板上.一质量为m 的小球,从离弹簧上端一定距离的位置由静止释放,接触弹簧后继续向下运动.小球运动的v -t 图象如图乙所示,其中OA 段为直线段,AB 段是与OA 相切于A 点的平滑曲线,BC 是平滑曲线,不考虑空气阻力,重力加速度为g .关于小球的运动过程,下列说法正确的是( )A .小球在tB 时刻所受弹簧的弹力等于12mg B .小球在t C 时刻的加速度大于12g C .小球从t C 时刻所在的位置由静止释放后,能回到出发点D .小球从t A 时刻到t C 时刻的过程中,重力势能的减少量等于弹簧弹性势能的增加量 解析:ABC 小球在t B 时刻速度达到最大,此时弹簧的弹力等于重力沿斜面的分力,即此时F 弹=mg sin 30°=12mg ,故A 正确;由题意可知,t A 时刻小球刚好与弹簧接触且弹簧无形变,此时小球的加速度a A =12g ,由图乙可知,A 点图线斜率的绝对值小于C 点图线斜率的绝对值,分析可知小球在t C 时刻的加速度大于12g ,故B 正确;整个过程中,弹簧和小球组成的系统机械能守恒,故小球从C 点释放能到达原来的释放点,故C 正确;小球从t A 时刻到t C 时刻的过程中,由系统机械能守恒知小球重力势能的减少量与动能的减少量之和等于弹簧弹性势能的增加量,故D 错误.视角4:弹簧模型中的动量问题6.如图所示,轻弹簧的一端固定在竖直墙上,质量为2m 的光滑弧形槽静止放在光滑水平面上.弧形槽底端与水平面相切,一个质量为m 的物块从槽高h 处开始自由下滑,下列说法错误的是( )A .在下滑过程中,物块和弧形槽组成的系统机械能守恒B .在下滑过程中,物块和槽的水平方向动量守恒C .物块压缩弹簧的过程中,弹簧的最大弹性势能E p =23mgh D .物块被弹簧反弹后,离开弹簧时的速度大小为 2gh 3解析:D 物块下滑过程,只有重力做功,系统机械能守恒,故A 正确;物块下滑过程,滑块与弧形槽组成的系统水平方向所受合外力为零,系统水平方向动量守恒,故B 正确;设物块到达水平面时速度大小为v 1,槽的速度大小为v 2,且可判断物块速度方向向右,槽的速度方向向左,以向右为正方向,在物块下滑过程中,槽和物块组成的系统水平方向动量守恒,由动量守恒定律得:m v 1-2m v 2=0,由机械能守恒定律得:mgh =12m v 21+12·2m v 22,由以上两式解得:v 1=2 gh 3,v 2= gh 3,物块与弹簧相互作用过程系统机械能守恒,物块离开弹簧时速度大小与物块接触弹簧前的速度大小相等,v =v 1=2gh 3,故D 错误;物块与弹簧相互作用过程系统机械能守恒,物块速度为零时,弹簧的弹性势能最大,由机械能守恒定律可知,最大弹性势能E p =12m v 21=2mgh 3,故C 正确. 7.(多选)如图所示,连接有轻弹簧的物块a 静止于光滑水平面上,物块b 以一定初速度向左运动.下列关于a 、b 两物块的动量p 随时间t 的变化关系图象,合理的是( )解析:BCD b与弹簧接触后,弹力慢慢增大,故两物块的加速度一定先增大后减小,故A不正确;b与弹簧接触后,压缩弹簧,b做减速运动,a做加速运动,且在运动过程中系统的动量守恒,如果b的质量较小,可能出现b反弹的现象,故B正确;由B中分析可知,两物块满足动量守恒定律,并且如果a、b两物块的质量相等,则可以出现C中的运动过程,故C正确;由B中分析可知,两物块满足动量守恒定律,如果a的质量很小,可能出现D中的运动过程,故D正确.。

高考物理弹簧类问题的几种模型及其处理方法归纳

高考物理弹簧类问题的几种模型及其处理方法归纳

弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。

其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。

还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。

根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。

一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。

当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。

2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。

3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。

同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值。

弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。

二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。

现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。

在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。

分析:上提m1之前,两物块处于静止的平衡状态,所以有:,,其中,、分别是弹簧k1、k2的压缩量。

2023年高考物理总复习核心素养微专题(二)模型建构—— 弹簧模型

2023年高考物理总复习核心素养微专题(二)模型建构—— 弹簧模型

模型建构——弹簧模型弹簧问题综合性大,但弹簧问题往往是由几个基本的模型组合而成,掌握弹簧问题的基本模型,对于解决复杂的弹簧问题有很重要的意义。

处理复杂的弹簧模型,要应用基本的弹簧模型,应用力的观点、能的观点以及动量的观点解决问题。

类型图示规律分析瞬时性初始时,A 、B 紧挨在一起但A 、B 之间无压力。

剪断细绳的瞬间,弹簧的弹力不能突变,AB 系统受到的合外力等于B 的重力,用整体法求AB 的加速度,隔离法求A 、B 间的相互作用力对称性斜面光滑,物块B 紧靠挡板,物块A 被外力控制恰使弹簧处于原长状态。

撤去外力后,A 物块的运动具有对称性分离性撤去外力F ,AB 向上运动的过程中,A 、B 相互作用力为0的位置为A 、B 分离的位置不变性弹性势能与物体质量无关,相等的伸长量和缩短量弹性势能相等弹性势能不变模型光滑斜面上物块A 被平行斜面的轻质弹簧拉住静止于O 点,如图所示,现将A 沿斜面拉到B 点无初速度释放,物块在BC 范围内做简谐运动,则下列说法错误的是( )A.在运动过程中,物块A 和弹簧组成的系统机械能守恒B.从B 到C 的过程中,合外力对物块A 的冲量为零C.物块A 从B 点到O 点过程中,动能的增量等于弹性势能的减小量D.B 点时物块A 的机械能最小【解析】选C。

在运动过程中,物块A和弹簧组成的系统机械能守恒,故A正确;从B到C的过程中,根据冲量定理可知Ft=mv C-mv B,由于B、C两点的速度为零,故合外力对物块A的冲量为零,故B正确;从B点到O点的过程中,对物块A根据动能定理可知-mgh-W弹=12m v O2-0,故动能的增量等于弹性势能的减小量减去克服重力做的功,故C错误;物块A和弹簧系统机械能守恒;B 点时弹簧的弹性势能最大,故物块A的机械能最小,故D正确。

弹性势能对称模型(2022·湖北选择考)如图所示,质量分别为m和2m的小物块Р和Q,用轻质弹簧连接后放在水平地面上,Р通过一根水平轻绳连接到墙上。

2022年高考物理二轮复习:弹簧模型问题归纳总结

2022年高考物理二轮复习:弹簧模型问题归纳总结

高考二轮复习弹簧模型问题归纳总结高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。

弹簧弹力的特点:弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。

高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能和加速度)。

不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。

弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。

如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。

在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。

由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。

(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。

)一、与物体平衡相关的弹簧例.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 -m2g/k2=m l g/k2.参考答案:C此题若求m l移动的距离又当如何求解?二、与分离问题相关的弹簧两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。

弹簧物理知识点总结高中

弹簧物理知识点总结高中

弹簧物理知识点总结高中一、弹簧的基本性质1.1 弹簧的形变与弹性力当外力作用于弹簧上时,会导致弹簧产生形变。

这种形变可以是拉伸或压缩,形变的大小和外力的大小成正比,这就是胡克定律的内容。

胡克定律可以用数学公式表示为:\[ F = kx \]其中,F 是外力的大小,k 是弹簧的弹性系数,x 是弹簧的形变。

在绝热过程中,胡克定律成立。

当外力消失时,弹簧会恢复到原来的状态,这是弹性力的作用。

弹性力的大小也可以用胡克定律来表示。

1.2 弹簧的应变能当弹簧发生形变时,产生了弹性力,这就说明了弹簧存储了一定的弹性势能。

对于一个形变为 x 处的弹簧,其弹性势能可以表示为:\[ U = \frac{1}{2}kx^2 \]这就是弹簧的应变能。

这个应变能是随着弹簧的形变而增加的,当外力消失时,这个应变能就会全部转化为机械能,这就是为什么我们可以利用弹簧来做一些机械装置。

二、弹簧振子2.1 单自由度弹簧振子单自由度弹簧振子是一种最简单的振动形式,它可以用于描述弹簧振动的一般规律。

其运动方程可以表示为:\[ m \frac{d^2x}{dt^2} + kx = 0 \]其中 m 是弹簧的质量,k 是弹簧的弹性系数,x 是弹簧的形变。

这个方程描述了单自由度弹簧振子的运动规律,它是一个二阶常系数线性微分方程。

2.2 多自由度弹簧振子对于多自由度的弹簧振子来说,其运动比较复杂。

多自由度弹簧振子的运动方程是一组偏微分方程,并且是非线性的。

对于这种情况,我们需要用到一些高级的数学工具和物理方法来进行分析。

2.3 阻尼弹簧振子阻尼弹簧振子是一种特殊的振动形式,它与阻尼振动有一些相似之处。

对于阻尼弹簧振子来说,其运动方程可以表示为:\[ m \frac{d^2x}{dt^2} + c \frac{dx}{dt} + kx = 0 \]其中 c 是阻尼系数。

阻尼弹簧振子的振动会逐渐减弱,最终停止振动。

这是因为阻尼的作用不断将机械能转化为热能。

高中物理弹簧弹力问题归类总结

高中物理弹簧弹力问题归类总结

弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m-=,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-=1F 二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度Fa M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F xT ma M F L M L ===【答案】x x T F L= 三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变.【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0 说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为 ( ) A.0 B.大小为233g ,方向竖直向下 C.大小为233g ,方向垂直于木板向下 D. 大小为233g , 方向水平向右 【解析】 末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos 3N F g a g m θ=== 【答案】 C. 四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有:11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k的弹力将由原来图 3-7-4图图3-7-2图 3-7-1图3-7-3 图3-7-6的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k + 故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ). 【解析】 系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--= 解得:()sin A B AF m m g a m θ-+=因物体A 与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d k θ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程. 【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大? (2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少?【解析】 由题意可知,弹簧开始的压缩量0mg x k =,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=.(1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得: 022v gx = (2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则: 002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mgF =[也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002x mg k F +=,解得: 032mgF =.]【答案】022gx 32mg说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题 通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。

高考物理建模之弹簧模型

高考物理建模之弹簧模型

高考物理建模之弹簧模型弹簧模型是高中物理里非常重要的建模,是高考物理必考的模型。

相比轻绳模型、轻杆模型,弹簧模型考查题型更加多样化,涉及的内容更加广全。

可以说,弹簧模型是历年高考物理的一个热点难点。

弹簧模型特点轻质弹簧质量可忽略,弹簧可以可压可伸,弹簧可产生拉力也可产生支持力。

在弹性限度内,弹力的大小与弹簧的压缩量或伸长量成正比。

弹簧模型规律1、同一根弹簧的弹力处处相等;2、弹力方向一定沿着弹簧轴线,并且与弹簧形变方向相反;3、弹力有指定公式:F=kx,其中x表示弹簧的压缩量或伸长量,非弹簧长度;4、弹簧弹力"瞬时"不会突变;5、弹簧处于原长时没有弹性势能,弹簧发生形变后具有弹性势能。

弹性势能有指定公式:F=kx2/2,该公式高中物理里没有涉及到,但仍然可以作为选择题判断的依据;6、弹性势能与弹力做功关系:弹力做正功,弹性势能减少;弹力做负功,弹性势能增加;7、弹力做功特点:与物体运动的路径无关,只与物体的始末位置有关(这和重力做功、电场力做功有共性);处理方法根据物体所处状态选择相对应的定则、定理或定律,具体表现:涉及平衡问题用平衡条件F合=0分析,涉及加速减速用牛顿运动定律,涉及圆周运动用向心力知识,涉及能量转化往往用动能定律、机械能守恒定律或能量转化定律等知识。

弹簧模型常见题型一、弹簧涉及的平衡问题梳理清楚研究对象,然后受力分析。

有时受力物体可能是一个结点,有时是弹簧的某一点,这就要根据题目来做判断。

然后利用F合=0列式求解。

经典例题1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有()A. l4>l3>l2>l1 B. l4=l3=l2=l1 C. l1>l3>l4>l2 D. l1>l3=l4>l2解析:B本题设计巧妙之处在于研究对象的选择,这个研究对象并不是木块,也不是整个弹簧,而是以弹簧最右端的"一点"进行受力研究。

高考物理弹簧类题型总结

高考物理弹簧类题型总结

专题复习——弹簧问题复习1:力学体系1——平衡状态下的弹簧问题(基础)1、(单选)探究弹力和弹簧伸长的关系时,在弹性限度内,悬挂15N 重物时,弹簧长度为0.16m ;悬挂20N 重物时,弹簧长度为0.18m.则弹簧的原长L0和劲度系数k 分别为( ) A . L0=0.02 m k =500 N/m B . L0=0.10 m k =500 N/m C . L0=0.02 m k =250 N/m D . L0=0.10 m k =250 N/m2、(单选)如图所示,A 、B 两个物块的重力分别是G A =3 N ,G B =4 N ,弹簧的重力不计,整个装置沿竖直方向处于静止状态,这时弹簧的弹力F =2 N ,则天花板受到的拉力和地板受到的压力,有可能是( ) A .3 N 和4 NB.5 N 和6 N C .1 N 和2 ND .5 N 和2 N3、(单选)一根轻质弹性绳的两端分别固定在水平天花板上相距80 cm 的两点上,弹性绳的原长也为80 cm.将一钩码挂在弹性绳的中点,平衡时弹性绳的总长度为100 cm ;再将弹性绳的两端缓慢移至天花板上的同一点,则弹性绳的总长度变为(弹性绳的伸长始终处于弹性限度内)( ) A .86 cm B .92 cm C .98 cm D .104 cm4、(单选)一个长度为L 的轻弹簧,将其上端固定,下端挂一个质量为m 的小球时,轻弹簧的总长度变为2L .现将两个这样的轻弹簧按如图所示方式连接,A 小球的质量为m ,B 小球的质量为2m ,则两小球平衡时,B 小球距悬点O 的距离为(不考虑小球的大小,且轻弹簧都在弹性限度范围内) ( ) A .4LB .5LC .6LD .7L5、(单选)如图所示,两根轻弹簧AC 和BD ,它们的劲度系数分别为k 1和k 2,它们的C 、D 端分别固定在质量为m 的物体上,A 、B 端分别固定在支架和正下方地面上.当物体m 静止时,上方的弹簧处于原长;若将物体的质量变为3m ,仍在弹簧的弹性限度内,当物体再次静止时,其相对第一次静止时位置下降了( ) A .mg k 1+k 2k 1k 2B .2mg k 1+k 2k 1k 2C .2mg 1k 1+k 2D .mg 1k 1+k 26、如图所示,质量为2m 的物体A 经过一轻质弹簧与地面上的质量为3m 的物体B 相连,弹簧的进度系数为k ,一条不可伸长的轻绳绕过定滑轮,一端连物体A ,另一端连一质量为m 的物体C ,物体A 、B 、C 都处于静止状态,已知重力加速度为g ,忽略一切摩擦 (1)求物体B 对地面的压力;(2)把物体C 的质量改为5m ,这时C 缓慢下降,经过一段时间系统达到新的平衡状态,这时B 仍没离开地面,且C 只受重力和绳的拉力作用,求此过程中物体A 上升的高度。

高中物理弹簧问题总结

高中物理弹簧问题总结

高中物理弹簧问题总结弹簧是高中物理中一个重要的概念,也是一个常见的物理实验中的元件。

学习弹簧的性质和应用能够帮助我们更好地理解和应用力学以及弹性力学的原理。

下面是对高中物理弹簧问题的总结:一、弹簧的性质:1. 弹簧的弹性特性:弹簧具有恢复形变的能力,当受到外力时会发生形变,但当外力消失时能够恢复到初始形态。

2. 弹簧的刚性:在一定范围内,弹簧所受的力与形变成正比,即服从胡克定律。

3. 弹簧的弹性系数:弹簧的刚度可以用弹性系数来描述,即弹簧的劲度系数。

弹簧劲度系数越大,弹簧越难被拉伸或压缩。

二、胡克定律和弹性势能:1. 胡克定律:胡克定律描述了弹簧受力和形变之间的关系,也称为弹性力的大小与伸长或压缩的长度成正比。

2. 弹性势能:弹性势能是指弹簧在形变过程中储存的能量,储存的能量正比于弹簧劲度系数和形变量的平方。

三、串联和并联弹簧:1. 串联弹簧:将多个弹簧依次连接在一起,使之共同受力。

串联弹簧的总劲度系数等于各弹簧劲度系数的倒数之和。

2. 并联弹簧:将多个弹簧同时连接到相同的两个点上,使之同时受力。

并联弹簧的总劲度系数等于各弹簧劲度系数的和。

四、弹簧振子:1. 单摆弹簧振子:在一个质点下挂一根弹簧,使其成为一个振动系统。

单摆弹簧振子的周期与振子的长度和弹簧的劲度系数有关。

2. 弹簧振子的周期:弹簧振子的周期与振动的物体质量和弹簧的劲度系数成反比,与振动物体的下挂点到弹簧上竖直线的距离无关。

五、弹簧天平和弹簧测力计:1. 弹簧天平:弹簧天平是利用胡克定律实现测量物体质量的工具。

根据物体的质量对弹簧产生的形变,可以推算出物体的质量。

2. 弹簧测力计:弹簧测力计是一种测量物体受力的仪器,根据胡克定律以及弹簧劲度系数可以推算出物体所受的力。

弹簧问题是高中物理中经常出现的问题之一,理解了弹簧的性质和应用,能够更好地解决相关的物理计算题目。

同时,对于实际生活中的弹簧应用也有很大的参考价值,比如弹簧减震器、弹簧秤等等。

高考物理弹簧模型总结

高考物理弹簧模型总结

特级教师分析2013年高考物理必考题:含弹簧得物理模型【命题规律】高考中常出现得物理模型中,斜面问题、叠加体模型、含弹簧得连接体、传送带模型等在高考中得地位特别重要,本专题就这几类模型进行归纳总结与强化训练;传送带问题在高考中出现得概率也较大,而且解题思路独特,本专题也略加论述.有些问题在高考中变化较大,或者在前面专题中已有较全面得论述,在这里就不再论述与例举.试卷中下列常见得物理模型出现得概率较大:斜面问题、叠加体模型(包含子弹射入)、带电粒子得加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型、传送带问题、含弹簧得连接体模型.高考命题以《考试大纲》为依据,考查学生对高中物理知识得掌握情况,体现了“知识与技能、过程与方法并重”得高中物理学习思想.每年各地得高考题为了避免雷同而千变万化、多姿多彩,但又总有一些共性,这些共性可粗略地总结如下:三、含弹簧得物理模型纵观历年得高考试题,与弹簧有关得物理试题占有相当大得比重.高考命题者常以弹簧为载体设计出各类试题,这类试题涉及静力学问题、动力学问题、动量守恒与能量守恒问题、振动问题、功能问题等,几乎贯穿了整个力学得知识体系.为了帮助同学们掌握这类试题得分析方法,现将有关弹簧问题分类进行剖析.对于弹簧,从受力角度瞧,弹簧上得弹力就是变力;从能量角度瞧,弹簧就是个储能元件.因此,弹簧问题能很好地考查学生得综合分析能力,故备受高考命题老师得青睐.ﻫ“高考直通车”联合衡水毕业清华北大在校生将于2013年5月中旬推出得手写版高考复习笔记,希望对大家复习备考有所帮助。

该笔记适合2014年、2015年、2016年高考生使用。

凡2013年5月中旬之后购买得高一、高二同学,每年指定日期可以免费更换一次最新一年得笔记。

另外,所有笔记使用者将被加入2014年高考备考专用平台,每周定期提供最新资料与高考互动。

笔记对外公开时间:5月20日1.静力学中得弹簧问题(1)胡克定律:F=kx,ΔF=k·Δx.(2)对弹簧秤得两端施加(沿轴线方向)大小不同得拉力,弹簧秤得示数一定等于挂钩上得拉力.●例4如图9-12甲所示,两木块A、B得质量分别为m1与m2,两轻质弹簧得劲度系数分别为k1与k2,两弹簧分别连接A、B,整个系统处于平衡状态.现缓慢向上提木块A,直到下面得弹簧对地面得压力恰好为零,在此过程中A与B得重力势能共增加了()【解析】取A、B以及它们之间得弹簧组成得整体为研究对象,则当下面得弹簧对地面得压力为零时,向上提A得力F恰好为:F=(m1+m2)g设这一过程中上面与下面得弹簧分别伸长x1、x2,如图9-12乙所示,由胡克定律得:故A、B增加得重力势能共为:.[答案] D【点评】①计算上面弹簧得伸长量时,较多同学会先计算原来得压缩量,然后计算后来得伸长量,再将两者相加,但不如上面解析中直接运用Δx=ΔF/k进行计算更快捷方便.②通过比较可知,重力势能得增加并不等于向上提得力所做得功.2.动力学中得弹簧问题(1)瞬时加速度问题(与轻绳、轻杆不同):一端固定、另一端接有物体得弹簧,形变不会发生突变,弹力也不会发生突变.(2)如图9-13所示,将A、B下压后撤去外力,弹簧在恢复原长时刻B与A开始分离.ﻫ图9-13●例5一弹簧秤秤盘得质量m1=1、5kg,盘内放一质量m2=10、5kg得物体P,弹簧得质量不计,其劲度系数k=800 N/m,整个系统处于静止状态,如图9-14所示.现给P施加一个竖直向上得力F,使P从静止开始向上做匀加速直线运动,已知在最初0、2 s内F就是变化得,在0、2s后就是恒定得,求F得最大值与最小值.(取g=10 m/s2)【解析】初始时刻弹簧得压缩量为:x0=((m1+m2)g/k=0、15 m设秤盘上升高度x时P与秤盘分离,分离时刻有:又由题意知,对于0~0、2s时间内P得运动有:1/2)at2=x解得:x=0、12m,a=6 m/s2故在平衡位置处,拉力有最小值F min=(m1+m2)a=72 N分离时刻拉力达到最大值Fmax=m2g+m2a=168 N.[答案]72N168 N【点评】对于本例所述得物理过程,要特别注意得就是:分离时刻m1与m2之间得弹力恰好减为零,下一时刻弹簧得弹力与秤盘得重力使秤盘产生得加速度将小于a,故秤盘与重物分离.3.与动量、能量相关得弹簧问题与动量、能量相关得弹簧问题在高考试题中出现频繁,而且常以计算题出现,在解析过程中以下两点结论得应用非常重要:(1)弹簧压缩与伸长得形变相同时,弹簧得弹性势能相等;(2)弹簧连接两个物体做变速运动时,弹簧处于原长时两物体得相对速度最大,弹簧得形变最大时两物体得速度相等.●例6如图9-15所示,用轻弹簧将质量均为m=1kg得物块A与B连接起来,将它们固定在空中,弹簧处于原长状态,A距地面得高度h1=0、90 m.同时释放两物块,A与地面碰撞后速度立即变为零,由于B压缩弹簧后被反弹,使A刚好能离开地面(但不继续上升).若将B 物块换为质量为2m得物块C(图中未画出),仍将它与A固定在空中且弹簧处于原长,从A 距地面得高度为h2处同时释放,C压缩弹簧被反弹后,A也刚好能离开地面.已知弹簧得劲度系数k=100 N/m,求h2得大小.【解析】设A物块落地时,B物块得速度为v1,则有:设A刚好离地时,弹簧得形变量为x,对A物块有:mg=kx从A落地后到A刚好离开地面得过程中,对于A、B及弹簧组成得系统机械能守恒,则有: 1/2·mv12=mgx+ΔE p换成C后,设A落地时,C得速度为v2,则有:1/2·2mv22=2mgh2从A落地后到A刚好离开地面得过程中,A、C及弹簧组成得系统机械能守恒,则有:联立解得:h2=0、5m.[答案] 0、5 m【点评】由于高中物理对弹性势能得表达式不作要求,所以在高考中几次考查弹簧问题时都要用到上述结论“①”.●例7用轻弹簧相连得质量均为2kg得A、B两物块都以v=6m/s得速度在光滑得水平地面上运动,弹簧处于原长,质量为4kg得物块C静止在前方,如图9-16甲所示.B与C碰撞后二者粘在一起运动,则在以后得运动中:(1)当弹簧得弹性势能最大时,物体A得速度为多大?(2)弹簧弹性势能得最大值就是多少?(3)A得速度方向有可能向左吗?为什么?【解析】(1)当A、B、C三者得速度相等(设为v A′)时弹簧得弹性势能最大,由于A、B、C三者组成得系统动量守恒,则有:(m A+mB)v=(mA+mB+m C)vA′解得:.(2)B、C发生碰撞时,B、C组成得系统动量守恒,设碰后瞬间B、C两者得速度为v′,则有:m B v=(mB+mC)v′解得:v′=A得速度为vA′时弹簧得弹性势能最大,设其值为Ep,根据能量守恒定律得:.(3)方法一A不可能向左运动.根据系统动量守恒有:(m A+m B)v=m AvA+(mB+m C)v B设A向左,则v A<0,vB>4 m/s则B、C发生碰撞后,A、B、C三者得动能之与为:实际上系统得机械能为:根据能量守恒定律可知,E′>E就是不可能得,所以A不可能向左运动.方法二B、C碰撞后系统得运动可以瞧做整体向右匀速运动与A、B与C相对振动得合成(即相当于在匀速运动得车厢中两物块相对振动)由(1)知整体匀速运动得速度v0=vA′=3 m/s取以v0=3 m/s匀速运动得物体为参考系,可知弹簧处于原长时,A、B与C相对振动得速率最大,分别为:v AO=v-v0=3 m/sv BO=|v′-v0|=1 m/s由此可画出A、B、C得速度随时间变化得图象如图9-16乙所示,故A不可能有向左运动得时刻.[答案](1)3 m/s(2)12J (3)不可能,理由略【点评】①要清晰地想象、理解研究对象得运动过程:相当于在以3m/s匀速行驶得车厢内,A、B与C做相对弹簧上某点得简谐振动,振动得最大速率分别为3 m/s、1 m/s.②当弹簧由压缩恢复至原长时,A最有可能向左运动,但此时A得速度为零.●例8探究某种笔得弹跳问题时,把笔分为轻质弹簧、内芯与外壳三部分,其中内芯与外壳质量分别为m与4m.笔得弹跳过程分为三个阶段:①把笔竖直倒立于水平硬桌面,下压外壳使其下端接触桌面(如图9-17甲所示);②由静止释放,外壳竖直上升到下端距桌面高度为h1时,与静止得内芯碰撞(如图9-17乙所示);③碰后,内芯与外壳以共同得速度一起上升到外壳下端距桌面最大高度为h2处(如图9-17丙所示).设内芯与外壳得撞击力远大于笔所受重力,不计摩擦与空气阻力,重力加速度为g.求:(1)外壳与内芯碰撞后瞬间得共同速度大小.(2)从外壳离开桌面到碰撞前瞬间,弹簧做得功.(3)从外壳下端离开桌面到上升至h2处,笔损失得机械能.【解析】设外壳上升到h1时速度得大小为v1,外壳与内芯碰撞后瞬间得共同速度大小为v2.(1)对外壳与内芯,从撞后达到共同速度到上升至h2处,由动能定理得:解得:.(2)外壳与内芯在碰撞过程中动量守恒,即:4mv1=(4m+m)v2将v2代入得:设弹簧做得功为W,对外壳应用动能定理有:将v1代入得:.(3)由于外壳与内芯达到共同速度后上升至高度h2得过程中机械能守恒,只有在外壳与内芯得碰撞中有能量损失,损失得能量将v1、v2代入得:E损=5/4mg(h2-h1).[答案]由以上例题可以瞧出,弹簧类试题得确就是培养与训练学生得物理思维、反映与开发学生得学习潜能得优秀试题.弹簧与相连物体构成得系统所表现出来得运动状态得变化,为学生充分运用物理概念与规律(牛顿第二定律、动能定理、机械能守恒定律、动量定理、动量守恒定律)巧妙解决物理问题、施展自身才华提供了广阔空间,当然也就是区分学生能力强弱、拉大差距、选拔人才得一种常规题型.因此,弹簧试题也就成为高考物理题中得一类重要得、独具特色得考题.。

提能专题二 弹簧模型

提能专题二  弹簧模型

()
[解析] 木块与斜面间的最大静摩擦力 fmax=μmgcos θ= 0.4mg,木块重力沿斜面方向的分力为 G1=mgsin θ=0.6mg,由 G1>fmax 可知,弹簧弹力的方向不可能向下,即弹簧不可能处于 压缩状态,故 A 错误;弹簧有最大形变量时满足 G1+fmax=kΔxm, 解得 Δxm=mkg,故 B 错误;当 G1=F 弹时,木块受到的摩擦力 为零,故 C 正确;当 G1>F 弹时,木块受到的摩擦力沿斜面向上, 当 G1<F 弹时,木块受到的摩擦力沿斜面向下,故 D 错误。
[特别提醒] (1)弹簧压缩和伸长的形变量相同时(从弹簧原长开始压缩 或伸长),弹簧的弹性势能相等; (2)弹簧连接两个物体做变速运动时,弹簧处于原长时两物 体的相对速度最大;弹簧的形变量最大时,两物体的速度相等。
二、弹簧模型的 3 种考法
一静力学中的弹簧模型
[例 1] 如图所示,一质量为 m 的木块与劲
可解得 t1=2 mk 。
(2)起始时刻 A 受三个力,满足 mg+kx0-N1=m3a
B 受三个力,满足 Mg+N1-F1=M3a
又 kx0+mg=ma
联立解得 F1=Mg-a3+2m3 a
A 与 B 脱离时 B 受两个力,满足 Mg-F2=M3a
解得 F2=Mg-a3。
[答案] (1)2
m k
(3)解决弹簧弹力做功和能量转化问题的关键环节 ①分析物体的受力情况并结合初始条件明确物体做什么运 动。 ②根据功的计算公式分析在每一个过程或者阶段中有哪些 力做功、哪些力不做功、哪些力做正功或者做负功。 ③根据功能关系明确哪些能量在增加或者减少。 ④注意重力做功和弹力做功的重要特点并列方程求解。
[答案] C

高中物理模型总结整理

高中物理模型总结整理

lv 0 v Sv 0A Bv 0 AB v 0 l滑块、子弹打木块模型之一子弹打木块模型:包括一物块在木板上滑动等。

μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。

②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。

小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。

例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。

解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。

水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ①由动能定理,对子弹 -f(s+l )=2022121mv mv - ②对木块 fs=0212-MV ③由①式得 v=)(0v v M m - 代入③式有 fs=2022)(21v v Mm M -• ④ ②+④得 f l =})]([2121{2121212120220222v v Mm M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。

即Q=f l ,l 为子弹现木块的相对位移。

结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。

即 Q=ΔE 系统=μNS 相其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量 与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属 块与木板间动摩擦因数为μ=0.1,g 取10m/s 2。

求两木板的最后速度。

2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度 (如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离 B 板。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特级教师分析2013年高考物理必考题:含弹簧的物理模型【命题规律】高考中常出现的物理模型中,斜面问题、叠加体模型、含弹簧的连接体、传送带模型等在高考中的地位特别重要,本专题就这几类模型进行归纳总结和强化训练;传送带问题在高考中出现的概率也较大,而且解题思路独特,本专题也略加论述.有些问题在高考中变化较大,或者在前面专题中已有较全面的论述,在这里就不再论述和例举.试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型(包含子弹射入)、带电粒子的加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型、传送带问题、含弹簧的连接体模型.高考命题以《考试大纲》为依据,考查学生对高中物理知识的掌握情况,体现了“知识与技能、过程与方法并重”的高中物理学习思想.每年各地的高考题为了避免雷同而千变万化、多姿多彩,但又总有一些共性,这些共性可粗略地总结如下:三、含弹簧的物理模型纵观历年的高考试题,和弹簧有关的物理试题占有相当大的比重.高考命题者常以弹簧为载体设计出各类试题,这类试题涉及静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能问题等,几乎贯穿了整个力学的知识体系.为了帮助同学们掌握这类试题的分析方法,现将有关弹簧问题分类进行剖析.对于弹簧,从受力角度看,弹簧上的弹力是变力;从能量角度看,弹簧是个储能元件.因此,弹簧问题能很好地考查学生的综合分析能力,故备受高考命题老师的青睐.“高考直通车”联合衡水毕业清华北大在校生将于2013年5月中旬推出的手写版高考复习笔记,希望对大家复习备考有所帮助。

该笔记适合2014年、2015年、2016年高考生使用。

凡2013年5月中旬之后购买的高一、高二同学,每年指定日期可以免费更换一次最新一年的笔记。

另外,所有笔记使用者将被加入2014年高考备考专用平台,每周定期提供最新资料和高考互动。

笔记对外公开时间:5月20日1.静力学中的弹簧问题(1)胡克定律:F=kx,ΔF=k·Δx.(2)对弹簧秤的两端施加(沿轴线方向)大小不同的拉力,弹簧秤的示数一定等于挂钩上的拉力.●例4 如图9-12甲所示,两木块A、B的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,两弹簧分别连接A、B,整个系统处于平衡状态.现缓慢向上提木块A,直到下面的弹簧对地面的压力恰好为零,在此过程中A和B的重力势能共增加了( )【解析】取A、B以及它们之间的弹簧组成的整体为研究对象,则当下面的弹簧对地面的压力为零时,向上提A的力F恰好为:F=(m1+m2)g设这一过程中上面和下面的弹簧分别伸长x1、x2,如图9-12乙所示,由胡克定律得:故A、B增加的重力势能共为:.[答案] D【点评】①计算上面弹簧的伸长量时,较多同学会先计算原来的压缩量,然后计算后来的伸长量,再将两者相加,但不如上面解析中直接运用Δx=ΔF/k进行计算更快捷方便.②通过比较可知,重力势能的增加并不等于向上提的力所做的功.2.动力学中的弹簧问题(1)瞬时加速度问题(与轻绳、轻杆不同):一端固定、另一端接有物体的弹簧,形变不会发生突变,弹力也不会发生突变.(2)如图9-13所示,将A、B下压后撤去外力,弹簧在恢复原长时刻B与A开始分离.图9-13●例5 一弹簧秤秤盘的质量m1=1.5 kg,盘内放一质量m2=10.5 kg的物体P,弹簧的质量不计,其劲度系数k=800 N/m,整个系统处于静止状态,如图9-14 所示.现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在最初0.2 s内F是变化的,在0.2 s后是恒定的,求F的最大值和最小值.(取g=10 m/s2)【解析】初始时刻弹簧的压缩量为:x0=((m1+m2)g/k=0.15 m设秤盘上升高度x时P与秤盘分离,分离时刻有:又由题意知,对于0~0.2 s时间内P的运动有:1/2)at2=x解得:x=0.12 m,a=6 m/s2故在平衡位置处,拉力有最小值F min=(m1+m2)a=72 N分离时刻拉力达到最大值F max=m2g+m2a=168 N.[答案] 72 N 168 N【点评】对于本例所述的物理过程,要特别注意的是:分离时刻m1与m2之间的弹力恰好减为零,下一时刻弹簧的弹力与秤盘的重力使秤盘产生的加速度将小于a,故秤盘与重物分离.3.与动量、能量相关的弹簧问题与动量、能量相关的弹簧问题在高考试题中出现频繁,而且常以计算题出现,在解析过程中以下两点结论的应用非常重要:(1)弹簧压缩和伸长的形变相同时,弹簧的弹性势能相等;(2)弹簧连接两个物体做变速运动时,弹簧处于原长时两物体的相对速度最大,弹簧的形变最大时两物体的速度相等.●例6 如图9-15所示,用轻弹簧将质量均为m=1 kg的物块A和B连接起来,将它们固定在空中,弹簧处于原长状态,A距地面的高度h1=0.90 m.同时释放两物块,A与地面碰撞后速度立即变为零,由于B压缩弹簧后被反弹,使A刚好能离开地面(但不继续上升).若将B物块换为质量为2m的物块C(图中未画出),仍将它与A固定在空中且弹簧处于原长,从A距地面的高度为h2处同时释放,C压缩弹簧被反弹后,A也刚好能离开地面.已知弹簧的劲度系数k=100 N/m,求h2的大小.【解析】设A物块落地时,B物块的速度为v1,则有:设A刚好离地时,弹簧的形变量为x,对A物块有:mg=kx从A落地后到A刚好离开地面的过程中,对于A、B及弹簧组成的系统机械能守恒,则有:1/2·mv12=mgx+ΔE p换成C后,设A落地时,C的速度为v2,则有:1/2·2mv22=2mgh2从A落地后到A刚好离开地面的过程中,A、C及弹簧组成的系统机械能守恒,则有:联立解得:h2=0.5 m.[答案] 0.5 m【点评】由于高中物理对弹性势能的表达式不作要求,所以在高考中几次考查弹簧问题时都要用到上述结论“①”.●例7 用轻弹簧相连的质量均为2 kg的A、B两物块都以v=6 m/s的速度在光滑的水平地面上运动,弹簧处于原长,质量为4 kg的物块C静止在前方,如图9-16 甲所示.B 与C碰撞后二者粘在一起运动,则在以后的运动中:(1)当弹簧的弹性势能最大时,物体A的速度为多大?(2)弹簧弹性势能的最大值是多少?(3)A的速度方向有可能向左吗?为什么?【解析】(1)当A、B、C三者的速度相等(设为v A′)时弹簧的弹性势能最大,由于A、B、C三者组成的系统动量守恒,则有:(m A+m B)v=(m A+m B+m C)v A′解得:.(2)B、C发生碰撞时,B、C组成的系统动量守恒,设碰后瞬间B、C两者的速度为v′,则有:m B v=(m B+m C)v′解得:v′=A的速度为v A′时弹簧的弹性势能最大,设其值为E p,根据能量守恒定律得:.(3)方法一 A不可能向左运动.根据系统动量守恒有:(m A+m B)v=m A v A+(m B+m C)v B设A向左,则v A<0,v B>4 m/s则B、C发生碰撞后,A、B、C三者的动能之和为:实际上系统的机械能为:根据能量守恒定律可知,E′>E是不可能的,所以A不可能向左运动.方法二 B、C碰撞后系统的运动可以看做整体向右匀速运动与A、B和C相对振动的合成(即相当于在匀速运动的车厢中两物块相对振动)由(1)知整体匀速运动的速度v0=v A′=3 m/s取以v0=3 m/s匀速运动的物体为参考系,可知弹簧处于原长时,A、B和C相对振动的速率最大,分别为:v AO=v-v0=3 m/sv BO=|v′-v0|=1 m/s由此可画出A、B、C的速度随时间变化的图象如图9-16乙所示,故A不可能有向左运动的时刻.[答案] (1)3 m/s (2)12 J (3)不可能,理由略【点评】①要清晰地想象、理解研究对象的运动过程:相当于在以3 m/s匀速行驶的车厢内,A、B和C做相对弹簧上某点的简谐振动,振动的最大速率分别为3 m/s、1 m/s.②当弹簧由压缩恢复至原长时,A最有可能向左运动,但此时A的速度为零.●例8 探究某种笔的弹跳问题时,把笔分为轻质弹簧、内芯和外壳三部分,其中内芯和外壳质量分别为m和4m.笔的弹跳过程分为三个阶段:①把笔竖直倒立于水平硬桌面,下压外壳使其下端接触桌面(如图9-17甲所示);②由静止释放,外壳竖直上升到下端距桌面高度为h1时,与静止的内芯碰撞(如图9-17乙所示);③碰后,内芯与外壳以共同的速度一起上升到外壳下端距桌面最大高度为h2处(如图9-17丙所示).设内芯与外壳的撞击力远大于笔所受重力,不计摩擦与空气阻力,重力加速度为g.求:(1)外壳与内芯碰撞后瞬间的共同速度大小.(2)从外壳离开桌面到碰撞前瞬间,弹簧做的功.(3)从外壳下端离开桌面到上升至h2处,笔损失的机械能.【解析】设外壳上升到h1时速度的大小为v1,外壳与内芯碰撞后瞬间的共同速度大小为v2.(1)对外壳和内芯,从撞后达到共同速度到上升至h2处,由动能定理得:解得:.(2)外壳与内芯在碰撞过程中动量守恒,即:4mv1=(4m+m)v2将v2代入得:设弹簧做的功为W,对外壳应用动能定理有:将v1代入得:.(3)由于外壳和内芯达到共同速度后上升至高度h2的过程中机械能守恒,只有在外壳和内芯的碰撞中有能量损失,损失的能量将v1、v2代入得:E损=5/4mg(h2-h1).[答案] 由以上例题可以看出,弹簧类试题的确是培养和训练学生的物理思维、反映和开发学生的学习潜能的优秀试题.弹簧与相连物体构成的系统所表现出来的运动状态的变化,为学生充分运用物理概念和规律(牛顿第二定律、动能定理、机械能守恒定律、动量定理、动量守恒定律)巧妙解决物理问题、施展自身才华提供了广阔空间,当然也是区分学生能力强弱、拉大差距、选拔人才的一种常规题型.因此,弹簧试题也就成为高考物理题中的一类重要的、独具特色的考题.。

相关文档
最新文档