苏教版函数的单调性说课稿

合集下载

苏教版高中数学函数的单调性-说课稿说课课件精品教育文档

苏教版高中数学函数的单调性-说课稿说课课件精品教育文档

设计意图
• 因题目比较简单,不详细讲解,只用多媒体演示 其图象的变化情况。但要讲清:

①单调区间的开闭

②增、减区间的表示

③图象升、降的看法
(四)数学运用
例1:作出下列函数的图象,并写出函数的单调区间
(1)yx22
y
2
(2)y1(x0) x
y
O x
O
x
提问:能不能说,函数 f (x) 1 (x≠0)在定义域(-∞,0) ∪(0,+∞)上是
O
x1
x2
x
y
yf(x)
f (x1) f(x2)
O
x1
x2
x
问题4: 类比单调增函数概念,你能给出单 调减函数的概念吗?
教学设计
















提 出 问 题
建 构 概 念
运 用 概 念
深 化 概 念
问题5:(1)你能找出气温图中的单调区间吗?
单调增区间: [4,14] 单调减区间: [0,4] ,[14,24]
数学语言来刻画上述时段内“随着时间的增大气温逐渐升高”这 一特征?
(一)问题情境
设计意图
• 以气温曲线引出函数的单调性,通 过生活实例感受函数单调性的意义,培 养学生的识图能力与数形语言转化的能 力。
(二)学生活动
问题1:观察下列函数的图象,并指出图象的变化趋势.
y
y
y
O
x
f(x)2x2
幂函数
背景 函数 应用
概念 表示 性质

函数的单调性教案苏教版必修

函数的单调性教案苏教版必修

函数的单调性(一)教学目标:使学生理解增函数、减函数的概念,掌握判断某些函数增减性的方法,培养学生利用数学概念进行判断推理的能力和数形结合,辩证思维的能力;通过本节课的教学,启示学生养成细心观察,认真分析,严谨论证的良好思维习惯.教学重点:函数单调性的概念教学难点:函数单调性的判断和证明.教学过程:Ⅰ.复习回顾[师]前面我们学习了函数的概念、表示方法以及区间的概念,讨论了函数的定义域、值域的求法.今天我们再进一步来研究一下函数的性质(板书课题).Ⅱ.讲授新课[师]在初中我们已经学习了函数图象的画法,为了研究函数的性质,按照取值、列表、描点、作图等步骤分别画出y=x2和y=x3的图象如图.我们先着重来观察一下y=x2的图象,图象在y轴右侧的部分是上升的,也就是说在y 轴右侧越往右,图象上的点越高,这说明什么问题呢?[生]随着x的增加,y的值在增加[师]怎样用数学语言来表示呢?[生]设x1、x2∈[0,+∞)得y1=f(x1),y2=f(x2)当x1<x2时,f(x1)<f(x2)(学生经过预习可能答得很准确,但为什么也许还囫囵吞枣;或许答得不一定完整,或许怎样用数学语言来表示还感到困惑,教师应抓住时机予以启发)[师]好,××同学的回答很好,设x1、x2∈[0,+∞),体现了在y轴右侧,按照函数关系式得到了y1=f(x1),y2=f(x2),即有了两个点(x1,y1)、(x2,y2)而当x1<x2时,f(x1)<f(x2),则体现了越往右图象上的点越高,即体现了图象是上升的,这时我们说y =x2在[0,+∞)上是增函数.下面大家来看图象在y轴左侧的部分情形是怎样的?[生甲]图象在y轴的左侧也是上升的(或许生甲是别出心裁).[师]何以见得?[生甲]越往左,图象上的点越高.[师]生甲所谈对不对呢?[生]对(部分同学这样说,还有部分同学不吭气,感到和预习时的情况不一样,但又不清楚究竟该怎样,有无所适从之感).[师]生甲同学所述是完全有道理的!不过请同学们注意:他观察的视线是从右向左看的,为了与在y轴右侧部分观察的视线方向一致.我们对y轴的左侧部分也从左向右看,图象的情形是怎样的呢?[生甲]从左向右看,图象是下降的,也就是在y轴的左侧,越往右,图象上的点越低.[师]我们研究任何问题都要遵循一定的程序,都要在一定的条件下,否则将一塌糊涂,搞不出任何名堂.(或者在研究y轴右侧部分、研究y轴左侧部分图象的变化趋势时,就直载了当地指出随着x的增加,图象的变化趋势是怎样的,这样给学生指定观察方向,会减少不应有的麻烦)那么同学们考虑一下,在y 轴的左侧,越往右,图象上的点越低,说明什么问题呢?怎样用数学语言表示呢?[生]在y 轴右侧,越往右图象上的点越低,说明随着x 的增加,y 的值在减小,用数学语言表示是:设x 1、x 2∈(-∞,0)得y 1=f (x 1),y 2=f (x 2)当x 1<x 2时,f (x 1)>f (x 2)[师]好,这时我们说y =x 2在(-∞,0)上是减函数.一般地,设函数f (x )的定义域为Ⅰ:如果对于属于Ⅰ内某个区间上的任意两个自变量的值x 1、x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在这个区间上是增函数.(打出幻灯片§2.3.1 C)如果对于属于Ⅰ内某个区间上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说f (x )在这个区间上是减函数.如果函数y =f (x )在某个区间是增函数或减函数,那么就说函数y =f (x )在这一区间具有严格的单调性,这一区间叫做y =f (x )的单调区间,在单调区间上,增函数的图象是上升的,减函数的图象是下降的.注意:①函数的单调性也叫函数的增减性.②函数的单调性是对某个区间而言的,它是一个局部概念.③判定函数在某个区间上的单调性的方法步骤:a .设x 1、x 2∈给定区间,且x 1<x 2b .计算f (x 1)-f (x 2)至最简b .判断上述差的符号d .下结论(若差<0,则为增函数;若差>0,则为减函数)Ⅲ.例题分析[例1](课本P 34例1,与学生一块看,一起分析作答)[师]要了解函数在某一区间上是否具有单调性,从图象上进行观察是一种常用而又粗略的方法,严格地说,它需要根据单调函数的定义进行证明.下面举例说明[例2]证明函数f (x )=3x +2在R 上是增函数.证明:设任意x 1、x 2∈R ,且x 1<x 2则f (x 1)-f (x 2)=(3x 1+2)-(3x 2+2)=3(x 1-x 2)由x 1<x 2得x 1-x 2<0∴f (x 1)-f (x 2)<0 即f (x 1)<f (x 2)∴f (x )=3x +2在R 上是增函数[例3]证明函数f (x )=1x在(0,+∞)上是减函数. 证明:设任意x 1、x 2∈(0,+∞)且x 1<x 2则f (x 1)-f (x 2)=1x 1 -1x 2 =x 2-x 1x 1 x 2由x 1,x 2∈(0,+∞)得x 1x 2>0又x 1<x 2 得x 2-x 1>0∴f (x 1)-f (x 2)>0 即f (x 1)>f (x 2)∴f (x )=1x在(0,+∞)上是减函数 注意:通过观察图象、对函数是否具有某种性质作出一种猜想,然后通过推理的办法.证明这种猜想的正确性,是发现和解决问题的一种常用数学方法.Ⅳ.课堂练习课本P 37练习1,2,5,6,7Ⅴ.课时小结本节课我们学习了函数单调性的知识,同学们要切记:单调性是对某个区间而言的,同时在理解定义的基础上,要掌握证明函数单调性的方法步骤,正确进行判断和证明. Ⅵ.课后作业课本P 43习题 1~4函数的单调性(二)教学目标:使学生理解增函数、减函数的概念,掌握判断某些函数增减性的方法,培养学生利用数学概念进行判断推理的能力和数形结合,辩证思维的能力;通过本节课的教学,启示学生养成细心观察,认真分析,严谨论证的良好思维习惯.教学重点:函数单调性的判断和证明.教学难点:函数单调性的判断和证明.教学过程:[例1]已知函数f (x )在其定义域M 内为减函数,且f (x )>0,则g (x )=1+2f (x )在M 内为增函数。

高一数学《函数的单调性》说课稿模板(通用7篇)

高一数学《函数的单调性》说课稿模板(通用7篇)

高一数学《函数的单调性》说课稿模板(通用7篇)高一数学《函数的单调性》模板篇1下面是小编整理的高一数学《函数的单调性》说课稿模板,希望对大家有所帮助。

一、教材分析1 、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。

“二面角”是人教版《数学》第二册(下B)中9.7的内容。

它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。

因此,它起着承上启下的作用。

通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。

2、教学目标:知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。

(2)进一步培养学生把空间问题转化为平面问题的化归思想。

能力目标:(1) 突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。

(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。

德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。

情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。

3、重点、难点:重点:“二面角”和“二面角的平面角”的概念难点:“二面角的平面角”概念的形成过程二、教法分析1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。

2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。

3、教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用多媒体来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。

【苏教版】函数精讲教案3.函数的单调性

【苏教版】函数精讲教案3.函数的单调性

第二讲 函数的单调性一.课标要求1.结合具体函数,了解单调性的含义;三.要点精讲2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。

(3)设复合函数y = f [g(x )],其中u =g(x ) , A 是y = f [g(x )]定义域的某个区间,B 是映射g : x →u =g(x ) 的象集:①若u =g(x ) 在 A 上是增(或减)函数,y = f (u )在B 上也是增(或减)函数,则函数y = f [g(x )]在A 上是增函数;②若u =g(x )在A 上是增(或减)函数,而y = f (u )在B 上是减(或增)函数,则函数y = f [g(x )]在A 上是减函数。

(4)判断函数单调性的方法步骤利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤:○1 任取x 1,x 2∈D ,且x 1<x 2; ○2 作差f (x 1)-f (x 2); ○3 变形(通常是因式分解和配方); ○4 定号(即判断差f (x 1)-f (x 2)的正负);○5 下结论(即指出函数f (x )在给定的区间D 上的单调性)。

(5)简单性质①奇函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反; ③在公共定义域内:增函数+)(x f 增函数)(x g 是增函数; 减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数。

函数的单调性说课稿

函数的单调性说课稿

函数的单调性(1) 说课稿一.说教材1.地位及重要性函数的单调性一节属高中数学第一册(上)的必修内容,在高考的重要考查范围之内。

函数的单调性是函数的一个重要性质,也是在研究函数时经常要注意的一个性质,并且在比较几个数的大小、对函数的定性分析以及与其他知识的综合应用上都有广泛的应用。

通过对这一节课的学习,既可以让学生掌握函数单调性的概念和证明函数单调性的步骤,又可加深对函数的本质认识。

也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。

2.教学目标(1)了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;(2)了解能用图形语言正确表述具有单调性的函数的图象特征;(3)明确掌握利用函数单调性定义证明函数单调性的方法与步骤;并能用定义证明某些简单函数的单调性;(4)培养学生严密的逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质;同时让学生体验数学的艺术美,养成用辨证唯物主义的观点看问题。

3.教学重难点重点是对函数单调性的有关概念的本质理解。

难点是利用函数单调性的概念证明或判断具体函数的单调性。

二.说教法根据本节课的内容及学生的实际水平,我尝试运用“问题解决”与“多媒体辅助教学”的模式。

力图通过提出问题、思考问题、解决问题的过程,让学生主动参与以达到对知识的“发现”与接受,进而完成对知识的内化,使书本知识成为自己知识;同时也培养学生的探索精神。

三.说学法在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。

然后通过对函数单调性的概念的学习理解,最终把问题解决。

整个过程学生学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。

四.说过程通过设置问题情景、课堂导入、新课讲授及终结阶段的教学中,我力求培养学生的自主学习的能力,以点拨、启发、引导为教师职责。

数学:2.1.3《函数的单调性》说课稿(苏教版必修一)

数学:2.1.3《函数的单调性》说课稿(苏教版必修一)

《函数的单调性》说课稿各位领导、老师你们好!我今天说课的内容是《函数的单调性》。

以下我从五个方面来汇报我是如何研究教材、备课和设计教学过程的。

一、教材分析教材:我选用的教材是苏教版《普通高中课程标准实验教科书数学》(必修一)第二章2.1.3第一节《函数的单调性》。

在备课中,我主要思考的问题是:教材的地位和作用是什么?学生在学习中可能会遇到什么困难?如何依据现代教育理论和新课程理念,设计教学过程?如何结合教学内容,发展学生能力?(一) 教学内容本节课内容教材共分两课时进行,这是第一课时,该课时主要学习函数的单调性的的概念,依据函数图象判断函数的单调性和依据定义证明函数的单调性。

(二) 教材的地位和作用本节课是在学生学习了函数概念的基础上所研究的函数的一个重要性质,常伴随着函数的其它性质出现。

它既是在学生学过函数概念图象、表示方法等知识后的延续和拓展,又是后面研究指数函数、对数函数、幂函数等各类函数的单调性的基础,在整个高中数学中起着承上启下的作用。

研究函数单调性的过程体现了数学的“数形结合”和“从一般到特殊”的思想方法,这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大意义。

函数的单调性是函数的一个重要性质,是研究函数时经常要注意的一个性质.并且在比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用.(三)学情分析知识上已经掌握了一次函数、二次函数的图象和基本性质以及集合等内容,但对知识的理解和方法的掌握一些细节上不完备,反应在解题中就是思维不缜密,过程不完整;能力上具备了一定的观察、类比、分析、归纳能力,但知识整合和主动迁移的能力较弱,数形结合的意识和思维的深刻性还需进一步培养和加强;情感上多数学生有积极的学习态度,能主动参与研究,少数学生的学习主动性还需要通过营造一定的学习氛围来加以带动。

根据上述教学内容的地位和作用,结合教学大纲和学生的实际,确定了以下教学重点和难点:(四)教材的重点﹑难点﹑关键及成因教学重点:函数单调性的概念与判断,单调区间的概念。

函数的单调性说课稿

函数的单调性说课稿

《函数的单调性》说课稿各位评委老师:大家好!很高兴参加这次说课活动,希望各位评委老师对我的说课提出宝贵意见.我说课的内容是《函数的单调性》的教学设计,下面我分别从教学内容分析、学生情况分析、教学目标分析、教学重难点分析、教学方法分析、教学过程的设计以及教学评价与反思这七个方面来汇报我对这节课的教学设想。

一、教学内容的分析1.教材内容本节课选自江苏省职业学校文化课教材《数学》第一册第三章函数第三节函数的单调性,本节课内容教材主要学习函数的单调性的概念,判断函数的单调性和应用定义证明函数的单调性.2. 教材的地位和作用函数是本章的核心概念,也是中学数学中的基本概念,函数贯穿整个中职数学课程,它是整个中职数学中起着承上启下作用的核心知识之一。

函数的单调性是学生初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有一个初步的感性认识,是函数概念的延续和拓展.函数的单调性是后续研究指数函数、对数函数等其它数学知识的重要基础,是解决数学问题的常用工具,也是培养学生逻辑推理能力和渗透数形结合思想的重要素材.函数的单调性是学生学习函数概念后学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念.函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都经历了直观感受、文字描述和严格定义三个阶段,即都从图象观察,以函数解析式为依据,经历用符号语言刻画图形语言,用定量分析解释定性结果的过程.因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据.二、学生情况分析从知识结构来讲,学生已经学习过一次函数,二次函数,反比例函数,函数的概念及函数的表示,能画出一些简单函数的图象,从图象的直观变化,学生能得到函数增减性。

从能力结构来讲,通过初中对函数的学习,学生已经具备了一定的观察事物的能力,抽象归纳能力和语言转换能力,但知识整合和主动迁移的能力较弱,数形结合的意识和思维的深刻性还需进一步培养和加强。

函数单调性说课稿

函数单调性说课稿

函数单调性说课稿各位评委老师,大家好!我是来自南京晓庄学院07数本(2)班的第七小组代表,今天我说课的题目是《函数的简单性质--单调性》.我将从教材分析,教法分析,学法分析,教学过程以及板书设计五个方面来进行说课.一、教材分析1.教材地位《函数的单调性》是苏科版高中数学必修一第二章1.3节的内容。

在此之前,学生已学习了函数的概念、定义域、值域以及表示方法,这为过渡到本节课的学习起着铺垫作用。

本节内容是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。

掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。

2.教学目标根据上述教材地位分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:知识与技能:通过学习,理解增函数、减函数的概念;会尝试根据函数图象写出函数的单调区间;初步掌握利用函数单调性的定义证明或判定一些较简单函数在其定义域内某个区间上的单调性,能运用函数单调性概念解决简单的问题。

过程与方法:经历观察、归纳、抽象、概括的过程,自主建构单调增函数、单调减函数等概念,使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.情感、态度与价值观:在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

3.教学重点、难点本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点教学重点:函数单调性的概念,判断函数的单调性解决措施:由函数的图像引出函数单调性的语言描述的概念,用准确的数学符号语言去刻画图象的上升与下降,把对单调性直观感性的认识上升到理性的高度.教学难点:对函数单调性概念的理解,以及根据定义证明函数的单调性.解决措施引导学生归纳并抽象出函数单调性的定义以及根据定义证明函数的单调性为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:二、教法分析数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。

《函数的单调性》说课稿(附教案)

《函数的单调性》说课稿(附教案)

《函数的单调性》说课稿一、教学内容分析:函数的单调性是学生在掌握了函数概念等基础知识后,学习函数的第一个性质,主要刻画了函数在某区间上图象的变化趋势(上升或下降),为进一步学习函数其它性质提供了方法依据,如在研究函数的值域、定义域、最大值、最小值等性质中有重要应用。

同时它又是后续研究指数函数、对数函数以及三角函数性质的基础。

而且在解决解不等式、证明不等式、数列的性质等数学问题时也有重要的应用。

所以函数的单调性在高中数学中具有核心知识地位和承上启下的重要作用。

二、教学目标的确定:根据本课教材内容的特点、学生现有知识基础、认知能力以及所任教班级学生的特点,本节课从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的理解;强调判断、证明函数单调性的方法的落实;突出逻辑思维能力、类比化归、数形结合能力的培养。

三、教学诊断分析:在函数单调性这节课中,对于函数的单调性,学生在认知过程中主要存在两个方面的困难:(1)“图象是上升的,函数是单调递增的;图象是下降的,函数是单调递减的”仅就图象角度直观描述函数单调性的特征学生并不感到困难。

困难在于,把具体的、直观形象的函数单调性的特征抽象出来,用数学的符号语言描述。

即把某区间上“随着x 的增大,y 也增大”(单调增)这一特征用该区间上“任意的21x x <,有)()(21x f x f <”(单调增)进行刻画.其中最难理解的是为什么要在区间上“任意”取两个大小不等的12x x 、。

(2)利用定义证明函数的单调性过程中,对学生在代数方面严格推理能力的要求对高一的学生同样比较困难。

针对这两方面学生存在的困难,在教学中我所采用的教师启发引导,学生探究学习的教学方法,以及多媒体直观教学和反例的恰当应用,较好的解决了学生在这两方面的困惑。

此外,在教学过程中,单调性定义还需要注意以下易错点和疑点:(1)单调性是函数的一个区间上的性质,函数在不同的区间上可以有不同的单调性。

苏教版高中数学函数的单调性教学设计2

苏教版高中数学函数的单调性教学设计2

课题:函数的简单性质(一)——函数的单调性无锡市第三高级中学 成钰一、本节内容在教材中的地位与作用:《函数的单调性》系苏教版高中数学必修一2.1.3.1的内容,该内容包括函数的单调性及函数的最值。

函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。

二、学情、教法分析按现行新教材结构体系,学生只学过一次函数、二次函数、反比例函数,所以对函数的单调性研究也只能限于这几种函数。

依据现有认知结构,学生只能根据函数的图象观察出“随着自变量的增大,函数值增大”的变化趋势,而不能用符号语言进行严密的代数证明,只能依据形的直观性进行感性判断而不能进行“思辩”的理性认识。

所以在教学中要找准学生学习思维的“最近发展区”进行有意义的建构教学。

在教学过程中,要注意学生第一次接触代数形式的证明,为使学生能迅速掌握代数证明的格式,要注意让学生在内容上紧扣定义贯穿整个学习过程,在形式上要从有意识的模仿逐渐过渡到独立的证明。

三、教学目标与教学重、难点的制定依据课程标准的具体要求以及基于教材内容的具体分析,制定本节课的教学目标为: (1)知识目标:函数单调性的定义、函数单调性定义证明的格式 (2)能力目标:①运用函数单调性的定义判断并证明简单函数的单调性②利用简单的代数证明,培养学生分析问题、解决问题的逻辑思维能力(3)情感目标:①渗透数形结合的数学思想②激发学生参与数学学习、教学活动的兴趣。

在本节课的教学中以函数的单调性的概念为线,它始终贯穿于教师的整个课堂教学过程和学生的学习过程;利用函数的单调性的定义证明简单函数的单调性是对函数单调性概念的深层理解,且“作差、变形、定号”过程学生不易掌握。

函数的单调性教案苏教版必修

函数的单调性教案苏教版必修

函数的单调性教案苏教版必修一、教学目标:1. 理解函数单调性的概念,能够判断简单函数的单调性。

2. 掌握利用函数单调性解决实际问题的方法。

3. 培养学生的逻辑思维能力和数学运算能力。

二、教学内容:1. 函数单调性的定义与性质2. 常见函数的单调性3. 利用函数单调性解决问题三、教学重点与难点:1. 重点:函数单调性的概念及判断方法,利用函数单调性解决问题。

2. 难点:函数单调性的证明,复杂函数单调性的判断。

四、教学方法:1. 采用讲授法,讲解函数单调性的定义、性质及判断方法。

2. 利用案例分析法,分析实际问题中的函数单调性。

3. 运用数形结合法,直观展示函数单调性。

五、教学过程:1. 引入:通过生活中的实例,如购物时的折扣问题,引导学生思考函数单调性的意义。

2. 讲解:讲解函数单调性的定义、性质及判断方法,引导学生理解并掌握。

3. 案例分析:分析实际问题中的函数单调性,如物体运动过程中的速度与时间的关系。

4. 练习:让学生自主探究常见函数的单调性,如正弦函数、余弦函数等。

5. 巩固:通过课后习题,巩固所学知识,提高学生的数学运算能力。

6. 总结:对本节课的内容进行总结,强调函数单调性的重要性。

7. 作业布置:布置适量作业,让学生进一步巩固函数单调性的相关知识。

六、教学评估:1. 课堂提问:通过提问了解学生对函数单调性的理解和掌握程度。

2. 练习题:检查学生对常见函数单调性的判断和应用能力。

3. 课后作业:评估学生对课堂所学知识的巩固情况及运用能力。

七、教学反思:1. 针对学生的反馈,调整教学方法和节奏,以便更好地传授知识。

2. 针对学生的疑难问题,进行讲解和辅导,确保学生掌握函数单调性。

3. 结合学生的实际应用情况,丰富教学案例,提高学生的学习兴趣。

八、拓展与延伸:1. 引导学生探究函数单调性与导数的关系。

2. 探讨函数单调性在实际问题中的应用,如优化问题、经济问题等。

3. 推荐相关阅读材料,引导学生深入研究函数单调性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《函数的单调性》说课稿
一、教材分析-----教学内容、地位和作用
本课是苏教版新课标普通高中数学必修一第二章第1节《函数的简单性质》的内容,该节中内容包括:函数的单调性、函数的最值、函数的奇偶性。

总课时安排为3课时,《函数的单调性》是本节中的第一课时。

函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是今后研究具体函数的单调性理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均有着广泛的应用;在历年的高考中对函数的单调性考查每年都有涉及;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。

按现行教材结构体系,该内容安排在学习了函数的现代定义及函数的三种表示方法之后,了解了在生活实践中函数关系的普遍性,另外学生已在初中学过一次函数、反比例函数、二次函数等初等函数。

在学生现有认知结构中能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性、发挥好多媒体教学的优势;
在本节课是以函数的单调性的概念为主线,它始终贯穿于整个课堂教学过程;这是本节课的重点内容。

利用函数的单调性的定义证明具体函数的单调性一个难点,也是对函数单调性概念的深层理解,且在“作差、变形、定号”过程学生不易掌握。

学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助。

另外,这也是以后要学习的不等式证明的比较法的基本思路,现在提出来对今后的教学也有了一定的铺垫。

二、学情分析
教学目标的制定与实现,主要取决于我们对学习者掌握的程度。

只有了解学习者原来具有的认知结构,学习者的准备状态,学习风格,情感态度等,我们才能制定合适的教学目标,安排合适的教学活动与评价标准。

不同的教学环境,不同的学习主体有着不同的学习动机和学习特点。

我所教授的班级的学生具体学情
具体到我们班级学生而言有以下特点:学生多才多艺,个性张扬,但学科成绩不很理想,参差不齐;
经受不住挫折,需要经常受到鼓励和安慰,否则就不能坚持不懈的学习;学习习惯不好,小动作较多,学习时注意力抗干扰能力不强,易被外界因素所影响,需要不断的引导;独立解决问题能力弱,畏难情绪严重,探索精神不足。

只有少部分学生学习习惯良好,学风严谨,思维缜密。

三、教学目标:
根据新课标的要求,以及对教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:
(一)三维目标
1 知识与技能:
(1)使学生理解函数单调性的概念,能判断并证明一些简单函数在给定区间上的单调性。

(2)通过函数单调性的教学,逐步培养学生观察、分析、概括与合作能力;
2 过程与方法:
(1)通过本节课的学习,通过“数与形”之间的转换,渗透数形结合的数学思想。

(2)通过探究活动,明白考虑问题要细致、缜密,说理要严密、明确。

3 情感,态度与价值观:在平等的教学氛围中,通过学生之间、师生之间的交流、合作与评价,拉近学生之间、师生之间的情感距离,培养学生对数学的兴趣。

(二)重点、难点
重点:函数单调性的概念:
为了突出重点,使学生理解该概念,整个过程分为:
每个步骤都是在教师的参与下与引导下,通过学生与学生之间,师生之间的合作交流,不断反省,探索,直到完善结论,最终达到一个严密,简洁的定义。

难点:函数单调性的判断与推证:
突破该难点的:通过对照、分析定义,引导学生,概括出证明方法及步骤:“取量定大小,作差定符号,判断得结论”,并注意解题过程的规范性与严谨性。

四、教学方法:
合作学习认为教学是师生之间、生生之间相互作用的过程,强调多边互动,共同掌握知识。

视教学为师生平等参与和互动的过程,强调教师只是小组中的普通一员,起到一个引导者,管理者角色。

在课堂教学中要加强知识发生过程的教学,充分调动学生的参与的积极性,有效地渗透数学思想方法,发展学生个性品质,从而达到提高学生整体的数学素养的目的。

结合教学目标和学生情况我采用合作交流,探究学习相结合的教学方法。

五、内容组织形式
希望得到各位评委的批评指正
课后记:
在本节课中我力求做一名引导者,管理者营造一种平等,民主,和谐的学习气氛,充分发挥评价在教学中的导向和激励作用,与学生平等,民主的讨论问题,增强学生之间的合作交流意识。

集体讲授时力求简要清晰,高效低耗。

相关文档
最新文档