两个matlab实现最大熵法图像分割程序
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
%两个程序,亲测可用
clear all
a=imread('moon.tif');
figure,imshow(a)
count=imhist(a);
[m,n]=size(a);
N=m*n;
L=256;
count=count/N;%%每一个像素的分布概率
count
for i=1:L
if count(i)~=0
st=i-1;
break;
end
end
st
for i=L:-1:1
if count(i)~=0
nd=i-1;
break;
end
end
nd
f=count(st+1:nd+1); %f是每个灰度出现的概率
size(f)
E=[];
for Th=st:nd-1 %%%设定初始分割阈值为Th
av1=0;
av2=0;
Pth=sum(count(1:Th+1));
%%%第一类的平均相对熵为
for i=0:Th
av1=av1-count(i+1)/Pth*log(count(i+1)/Pth+0.00001);
end
%%%第二类的平均相对熵为
for i=Th+1:L-1
av2=av2-count(i+1)/(1-Pth)*log(count(i+1)/(1-Pth)+0.00001); end
E(Th-st+1)=av1+av2;
end
position=find(E==(max(E)));
th=st+position-1
for i=1:m
for j=1:n
if a(i,j)>th
a(i,j)=255;
else
a(i,j)=0;
end
end
end
figure,imshow(a);
%%%%%%%%%%%%%%%%%%%%%2-d 最大熵法(递推方法) %%%%%%%%%%% clear all;
clc;
tic
a=imread('trial2_2.tiff');
figure,imshow(a);
a0=double(a);
[m,n]=size(a);
h=1;
a1=zeros(m,n);
% 计算平均领域灰度的一维灰度直方图
for i=1:m
for j=1:n
for k=-h:h
for w=-h:h;
p=i+k;
q=j+w;
if (p<=0)|( p>m)
p=i;
end
if (q<=0)|(q>n)
q=j;
end
a1(i,j)=a0(p,q)+a1(i,j);
end
end
a2(i,j)=uint8(1/9*a1(i,j));
end
end
fxy=zeros(256,256);
% 计算二维直方图
for i=1:m
for j=1:n
c1=a0(i,j);
d=double(a2(i,j));
fxy(c1+1,d+1)=fxy(c1+1,d+1)+1;
end
end
Pxy=fxy/m/n;
% figure,
% mesh(Pxy);
% title('二维灰度直方图');
%计算Hl
Hl=0;
for i=1:256
for j=1:256
if Pxy(i,j)>0.00001
Hl=Hl-Pxy(i,j)*log(Pxy(i,j));
else
Hl=Hl;
end
end
end
%计算PA,HA
PA=zeros(256,256);
HA=zeros(256,256);
PB=zeros(256,256);
PA(1,1)=Pxy(1,1);
if PA(1,1)<1e-4
HA(1,1)=0;
else
HA(1,1)=-PA(1,1)*log(PA(1,1));
end
for i=2:256
PA(i,1)=PA(i-1,1)+Pxy(i,1);
if Pxy(i,1)>0.00001
HA(i,1)=HA(i-1,1)-Pxy(i,1)*log(Pxy(i,1));
else
HA(i,1)=HA(i-1,1);
end
end
for j=2:256
PA(1,j)=PA(1,j-1)+Pxy(1,j);
if Pxy(1,j)>0.00001
HA(1,j)=HA(1,j-1)-Pxy(1,j)*log(Pxy(1,j));
else
HA(1,j)=HA(1,j-1);
end
end
for i=2:256
for j=2:256
PA(i,j)=PA(i-1,j)+PA(i,j-1)-PA(i-1,j-1)+Pxy(i,j);
if Pxy(i,j)>0.00001
HA(i,j)=HA(i-1,j)+HA(i,j-1)-HA(i-1,j-1)-Pxy(i,j)*log(Pxy(i,j));
else
HA(i,j)=HA(i-1,j)+HA(i,j-1)-HA(i-1,j-1);
end
end
end
%计算最大熵
PB=1-PA;
h=zeros(256,256);
hmax=0;
for i=1:256
for j=1:256
if abs(PA(i,j))>0.00001&abs(PB(i,j))>0.00001
h(i,j)=log(PA(i,j)*PB(i,j))+HA(i,j)/PA(i,j)+(Hl-HA(i,j))/PB(i,j);
else
h(i,j)=0;
end
if h(i,j)>hmax
hmax=h(i,j);
s=i-1;
t=j-1;
end