第9章概率论与数理统计的MATLAB实现讲稿汇总

合集下载

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用
Matlab提供了丰富的概率分布函数,可以帮助学生更好地理解不同的概率分布。

学生可以使用Matlab生成正态分布、二项分布、泊松分布等不同的概率分布,并画出相应的概率密度函数、累积分布函数等图形。

通过实际的计算和绘图,学生可以更直观地看到不同概率分布的特点,加深对概率分布的理解。

Matlab提供了各种统计函数,可以方便地进行数据的描述性统计和推断性统计。

学生可以使用Matlab计算样本的平均值、方差等描述性统计量,还可以使用Matlab进行假设检验、置信区间估计等推断性统计。

通过实际的计算和分析,学生可以更好地掌握统计学中的概念和方法。

Matlab还可以进行模拟实验,帮助学生理解概率和统计的原理。

学生可以使用Matlab 模拟抛硬币的实验,验证概率的定义和性质。

学生还可以使用Matlab模拟中心极限定理,观察样本均值的分布趋于正态分布的情况。

通过实际的模拟实验,学生可以更深入地理解抽样分布和极限定理等重要概念。

Matlab还可以用于数据的可视化。

学生可以使用Matlab绘制直方图、散点图、箱线图等图形,展示数据的分布和变化。

通过可视化的方式,学生可以更好地理解数据的特点和规律,并能够更直观地展示和解释统计分析的结果。

Matlab在《概率论与数理统计》教学中具有广泛的应用价值。

通过利用Matlab进行计算、模拟和可视化等任务,可以帮助学生更好地理解概率和统计的概念和方法,提高学习效果。

在教学中合理地使用Matlab可以有效地促进学生对概率论与数理统计的学习和理解。

(完整版)Matlab概率论与数理统计

(完整版)Matlab概率论与数理统计

Matlab 概率论与数理统计、matlab 基本操作 1. 画图【例01.01】简单画图hold off; x=0:0.1:2*pi; y=sin (x);plot(x,y, '-r'); x1=0:0.1:pi/2; y1=s in( x1); hold on;fill([x1, pi/2],[y1,1/2],'b');【例01.02】填充,二维均匀随机数hold off ;x=[0,60];y0=[0,0];y60=[60,60]; x1=[0,30];y1=x1+30; x2=[30,60];y2=x2-30;plot(x,y0, 'r' ,y0,x, plot(x1,y1, 'r' ,x2,y2, yr=u nifrnd (0,60,2,100);plot(yr(1,:),yr(2,:), axis( 'on'); axis( 'square' ); axis([-20 80 -20 80 ]);xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0]; fill(xv,yv, 'b');hold on ;'r' ,x,y60, 'r' ,y60,x,'r')'r');'m.')2. 排列组合kC=nchoosek(n,k) : CC n ,例 nchoosek(5,2)=10, nchoosek(6,3)=20.prod(n1:n2):从 n1 至U n2 的连乘【例01.03】至少有两个人生日相同的概率365 364|||(365 rs 1)rs365365 364 365 rs 1 365 365365rs=[20,25,30,35,40,45,50]; %每班的人数p1= on es(1,le ngth(rs)); p2=on es(1,le ngth(rs));%用连乘公式计算for i=1:le ngth(rs) p1(i)=prod(365-rs(i)+1:365)/365A rs(i); end%用公式计算(改进) for i=1:le ngth(rs)for k=365-rs(i)+1:365p2(i)=p2(i)*(k/365); end ; end%用公式计算(取对数) for i=1:le ngth(rs)p1(i)=exp(sum(log(365-rs(i)+1:365))-rs(i)*log(365)); end公式计算P 1n!C NN nN!1 (N n)!1N nN (N 1) (N n 1)、随机数的生成3. 均匀分布随机数rand(m,n);产生m行n列的(0,1)均匀分布的随机数rand(n);产生n行n列的(0,1)均匀分布的随机数【练习】生成(a,b)上的均匀分布4. 正态分布随机数randn(m,n); 产生m行n列的标准正态分布的随机数【练习】生成N(nu,sigma42)上的正态分布5. 其它分布随机数三、一维随机变量的概率分布1. 离散型随机变量的分布率(1) 0-1分布(2) 均匀分布_ k k n k(3) 二项分布:binopdf(x,n,p),若X ~ B(n, p),则P{X k} C n p (1 p),x=0:9 ;n=9;p=0.3;y= bin opdf(x ,n, p);plot(x,y,'b-',x,y,'r*')y=[ 0.0404, 0.1556, 0.2668, 0.2668, 0.1715, 0.0735, 0.0210, 0.0039, 0.0004, 0.0000 ]当n较大时二项分布近似为正态分布x=0:100; n=100;p=0.3;y= bin opdf(x ,n, p);plot(x,y,'b-',x,y,'r*')ke⑷泊松分布:piosspdf(x, lambda),若X ~ (),贝U P{ X k}k!x=0:9; lambda = 3;y= poisspdf (x,lambda);plot(x,y,'b-',x,y,'r*')y=[ 0.0498, 0.1494, 0.2240, 0.2240, 0.1680, 0.1008, 0.0504, 0.0216, 0.0081,0.0027]k 1⑸几何分布:geopdf (x, p),贝U P{X k} p(1 p)x=0:9;p=0.3y= geopdf(x,p);plot(x,y,'b-',x,y,'r*')y=[ 0.3000, 0.2100, 0.1470, 0.1029, 0.0720, 0.0504, 0.0353, 0.0247, 0.0173, 0.0121 ] x=0:10;N=20;M=8; n=4;y= hygepdf(x,N,M, n); plot(x,y,'b-',x,y,'r*')y=[ 0.1022, 0.3633, 0.3814, 0.1387, 0.0144, 0, 0, 0, 0, 0, 0 ]2. 概率密度函数(1)均匀分布:unifpdf(x,a,b) , f (x)其它a=0;b=1;x=a:0.1:b; y= uni fpdf (x,a,b);1 2 厂(x )2 ■厂ex=-10:0.1:12;mu=1;sigma=4;y= no rmpdf(x,mu,sigma);rn=10000;z= normrnd (mu,sigma,1,rn); % 产生 10000 个正态分布的随机数 d=0.5;a=-10:d:12;b=(hist(z,a)/rn)/d;%以a 为横轴,求出10000个正态分布的随机数的频率(6)超几何分布:hygepdf(x,N,M,n),则 P{Xk}C k nM CNC N(2)正态分布:normpdf(x,mu,sigma) , f (x)plot(x,y,'b-',a,b,'r.')1 _x⑶指数分布:exppdf(x,mu), f (x)其它x=0:0.1:10;mu=1/2;■ t京■I_ey= exppdf(x,mu); plot(x,y,'b-',x,y,'r*')1n i F⑷2分布:chi2pdf(x,n) , f (x; n) 2n ^( n 2) % e x 0hold onx=0:0.1:30;n=4;y= chi2pdf(x, n);plot(x,y,'b');%blue n=6;y= chi2pdf(x, n);plot(x,y,'r');%red n=8;y=chi2pdf(x ,n );plot(x,y,'c');%cya n n=10;y= chi2pdf(x, n);plot(x,y,'k');%black lege nd(' n=4', 'n=6', 'n=8', 'n=10');n 1((n 1) 2) x2 2⑸t 分布:tpdf(x,n) , f (x; n) ------------------ 1 -J n (n. 2) nhold onx=-10:0.1:10;n=2;y= tpdf(x, n);plot(x,y,'b');%bluen=6;y= tpdf(x, n);plot(x,y,'r');%redn=10;y= tpdf(x ,n );plot(x,y,'c');%cya nn=20;y= tpdf(x, n);plot(x,y,'k');%black lege nd(' n=2', 'n=6', 'n=10', 'n=20');((m山m 门2n2) 2)小2% 2 1 5 % 2(n2 2) n2n2x 0(6) F 分布:fpdf(x,n1,n2) , f (x; n「n2) (E 2)0 x 0hold onx=0:0.1:10;n1=2; n2=6;y= fpdf(x, n1, n2);plot(x,y,'b');%bluen1=6; n2=10;y= fpdf(x, n1, n2);plot(x,y,'r');%red n1=10; n2=6;y= fpdf(x, n1, n2);plot(x,y,'c');%cyann1=10; n2=10;y= fpdf(x, n1,n 2);plot(x,y,'k');%black legend(' n仁2; n2=6', ' n1= 6; n2=10', ' n仁10;n2=6', ' n仁10; n2=10');3.分布函数F(x) P{X x}【例03.01】求正态分布的累积概率值设X ~ N(3,22),求 P{2 X 5}, P{ 4 X 10}, P{ X 2}, P{X 3},14.逆分布函数,临界值y F(x) P{X x} , x F (y) , x称之为临界值【例03.02】求标准正态分布的累积概率值y=0:0.01:1;x=normin v(y,0,1);【例03.03】求2(9)分布的累积概率值hold offy=[0.025,0.975];x=ch i2in v(y,9);n=9;x0=0:0.1:30;y0=chi2pdf(x0, n); plot(x0,y0, 'r'); x1=0:0.1:x(1);y1=chi2pdf(x1, n);x2=x(2):0.1:30;y2=chi2pdf(x2 ,n);hold onfill([x1, x(1)],[y1,0], 'b');fill([x(2),x2],[0,y2], 'b');【练习1.1】二项分布、泊松分布、正态分布(1)对n 10, p 0.2二项分布,画出b(n,p)的分布律点和折线;(2)对np,画出泊松分布()的分布律点和折线;(3)对np, 2叩(1 p),画出正态分布N( , 2)的密度函数曲线;(4)调整n, p,观察折线与曲线的变化趋势。

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用概率论与数理统计是大学数学专业中的一门重要课程,它是对随机现象的研究及其规律性的科学。

而在这门课程的教学中,Matlab作为专业的数学软件,对于概率论与数理统计的教学起着非常重要的作用。

本文将探讨Matlab在概率论与数理统计教学中的应用,并探讨如何利用Matlab来加深学生对于这门课程的理解和掌握。

Matlab在概率论与数理统计教学中的应用主要体现在以下几个方面:1. 数据处理与分析概率论与数理统计课程的核心内容之一就是数据的处理与分析,而Matlab作为强大的数学工具,可以很好地帮助学生进行数据的处理和分析。

通过Matlab,学生可以学习如何使用各种统计方法对数据进行描述、分析和处理,比如数据的可视化、统计量的计算以及参数估计等。

Matlab还提供了丰富的数据处理和分析工具,如数据导入、处理、统计分析和绘图等,这些功能都可以帮助学生更好地理解和掌握课程中的内容。

3. 统计推断与假设检验统计推断与假设检验是概率论与数理统计课程的另一重要内容,而Matlab提供了丰富的统计推断和假设检验函数和工具箱,可以帮助学生进行各种统计推断和假设检验的计算和分析。

通过Matlab,学生可以学习如何使用各种统计推断方法进行参数估计和假设检验,如 t 检验、F检验、卡方检验等,从而更深入地理解统计推断和假设检验的原理和方法。

1. 实际案例分析通过Matlab,教师可以给学生提供丰富的实际案例和数据,让学生自己进行数据的处理、分析和模拟实验,从而更直观地理解概率论与数理统计的原理和方法。

教师可以给学生提供一些真实生活中的数据,让学生利用Matlab进行统计分析和概率模拟,然后结合实际案例进行讨论和分析,从而更好地理解课程中的内容。

2. 课堂演示和实验教师可以在课堂上使用Matlab进行一些数据处理、概率计算和统计推断的演示和实验,让学生更直观地感受到Matlab在概率论与数理统计中的应用。

概率统计与MATLAB精品PPT课件

概率统计与MATLAB精品PPT课件

功能:产生M lambda)
功能:计算分布密度p(x)在x的值
21.10.2020
x0 x0
7
§1 随机变量及其分布
均匀分布X~U(a,b) 命令1:Fx=unifcdf(x, a,b) 功能:计算累积概率Fx=P{X≤x}=F(x) 命令2:x=unifinv(p, a,b) 功能:计算随机量x,使得p=P{X≤x} 命令3:X=unifrnd(a,b,M,N) 功能:产生M*N维随机数矩阵X 命令4:Px=unifpdf(x, a,b) 功能:计算分布密度p(x)在x的值 补充:rand()---(0,1)均匀分布随机数
21.10.2020
12
§1 随机变量及其分布
例1某人向空中抛硬币100次,落下为正面的概率 为0.5。这100次中正面向上的次数记为X: (1)试计算x=45的概率和x≤45的概率; (2)绘制分布函数图象和分布列图象。
程序:》clear;
px=binopdf(45,100,0.5) % 计算x=45的概率
命令2:x=hygeinv(p,M, N,K)
功能:在已知参数M、N 、 K和p的情况下计算随 机量x,使得p=P{0≤次品数X≤x}
命令3:X=hygernd(M,N,K,m,n)
功能:在已知参数M,N ,K的情况下产生m*n维符合
超几何分布的随机数矩阵X
21.10.2020
2
§1 随机变量及其分布
21.10.2020
6
§1 随机变量及其分布
指数分布X~exp(λ)
1ex
P{Xx}
0
命令1:Fx=expcdf(x, lambda)
功能:计算累积概率Fx=P{X≤x}=F(x)

概率论与数理统计MATLAB上机实验报告

概率论与数理统计MATLAB上机实验报告

《概率论与数理统计》MATLAB上机实验实验报告一、实验目的1、熟悉matlab的操作。

了解用matlab解决概率相关问题的方法。

2、增强动手能力,通过完成实验内容增强自己动手能力。

二、实验内容1、列出常见分布的概率密度及分布函数的命令,并操作。

概率密度函数分布函数(累积分布函数) 正态分布normpdf(x,mu,sigma) cd f(‘Normal’,x, mu,sigma);均匀分布(连续)unifpdf(x,a,b) cdf(‘Uniform’,x,a,b);均匀分布(离散)unidpdf(x,n) cdf(‘Discrete Uniform’,x,n);指数分布exppdf(x,a) cdf(‘Exponential’,x,a);几何分布geopdf(x,p) cdf(‘Geometric’,x,p);二项分布binopdf(x,n,p) cdf(‘Binomial’,x,n,p);泊松分布poisspdf(x,n) cdf(‘Poisson’,x,n);2、掷硬币150次,其中正面出现的概率为0.5,这150次中正面出现的次数记为X(1) 试计算X=45的概率和X≤45 的概率;(2) 绘制分布函数图形和概率分布律图形。

答:(1)P(x=45)=pd =3.0945e-07P(x<=45)=cd =5.2943e-07(2)3、用Matlab软件生成服从二项分布的随机数,并验证泊松定理。

用matlab依次生成(n=300,p=0.5),(n=3000,p=0.05),(n=30000,p=0.005)的二项分布随机数,以及参数λ=150的泊松分布,并作出图线如下。

由此可以见得,随着n的增大,二项分布与泊松分布的概率密度函数几乎重合。

因此当n足够大时,可以认为泊松分布与二项分布一致。

4、 设22221),(y x e y x f +−=π是一个二维随机变量的联合概率密度函数,画出这一函数的联合概率密度图像。

概率统计的数值实验MATLAB在概率统计教学中的应用-PPT精选

概率统计的数值实验MATLAB在概率统计教学中的应用-PPT精选

P A iA jA k P A k P A iA jA k n n 1 1 n 2 1 i j k n
PA1A2A3Ann1!
于是
n
P Ai i1
n
1, P Ai A j
1i jn
n 2 15
k 1
模拟Galton钉板试验的步骤: (1) 确定钉子的位置:将钉子的横、纵坐标存储在两个矩阵X和
Y中。 (2) 在Galton钉板试验中,小球每碰到钉子下落时都具有两种
4/5 0.5134
4/5 0.5086
4/5 0.5093
4/5 0.5093
π的近似值 3.1116 3.1165 3.1460 3.1418 3.1418
试验次数n
5千
1万
10万 100万 1000万
针长l/平行间 距d
相交频率
17/20 0.5432
17/20 0.5452
17/20 0.5420
概率
生日各不相同的概率 至少两人生日相同的概率 1
0.8
0.6
0.4
0.2
0 0 10 20 30 40 50 60 70 80 90 100 人数
• p1(30)=0.7063, p1(60)= 0.9941
分析:在30名学生中至少两人生日相同的概率为70.63%。 下面进行计算机仿真。
随机产生30个正整数,代表一个班30名学生的生日,然后观
解 记事件 A i 为第i个人拿到自已枪,事件 A i 为第i个人 没拿到自己枪,易知:
PAi


1 n
P Ai
n1 n
i1,2, ,n
又记 p 0 为没有一个人拿到自己枪的概率。

概率与数理统计matlab实验报告.doc

概率与数理统计matlab实验报告.doc

概率与数理统计matlab实验报告.doc一、实验目的通过本次实验,从理论和实践两个角度来学习概率与数理统计的基本知识,包括概率的基本概念、随机变量的概念、分布函数及其性质、期望值和方差、协方差和相关系数、极限定理等。

二、实验原理概率的基本概念:样本空间、随机事件、概率、基本事件、基本概率随机变量的概念:离散随机变量、连续随机变量及其概率密度函数、分布函数分布函数及其性质:分布函数的定义、分布函数的性质期望值和方差:随机变量的期望值和方差的定义协方差和相关系数:协方差和相关系数的定义和性质极限定理:大数定理和中心极限定理三、实验内容与步骤实验一掷硬币实验实验内容:掷硬币实验,记录掷硬币结果并画出频率直方图和频率分布图。

实验步骤:2.使用rand函数模拟掷硬币实验。

设定投掷仿真次数,通过ceil(rand(1,n)*2)-1产生等概率的0和1。

3.统计投掷结果并画出频率直方图。

实验二抛色子实验实验内容:抛色子实验,记录抛色子结果、投掷次数,并画出柱形图。

1.定义一个变量来存储抛色子的结果。

实验三正态分布实验实验内容:正态分布实验,生成符合正态分布的随机数,并绘制该随机变量的概率密度函数和分布函数图像。

1.使用normrnd函数生成符合正态分布的随机数。

2.计算随机变量的概率密度函数和分布函数。

实验四中心极限定理实验实验内容:中心极限定理实验,通过多次模拟,验证中心极限定理的正确性。

1.使用rand函数模拟实验。

2.计算多次试验结果的平均值和标准差。

3.统计多次试验结果,并画出概率密度函数和分布函数图像。

四、实验结论通过本次实验,可以初步了解概率与数理统计的基本概念,从而更好地理解随机现象的本质。

同时,通过实验的方式,可以更加生动直观地展示和验证概率与数理统计的各种经典理论,如期望值和方差、协方差和相关系数等。

此外,实验还通过各种模拟方式,向我们演示了中心极限定理的成立条件和具体表现,从而让我们更加深入地理解这一经典定理的内涵和实际意义。

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用概率论是《概率论与数理统计》课程中的重要部分,Matlab可以帮助学生更好地理解和应用概率论。

1. 随机数生成与概率计算Matlab可以生成符合不同分布的随机数,如正态分布、均匀分布等,并进行概率计算和统计推断。

以正态分布为例,使用命令“normrnd(mu,sigma,m,n)”可以生成一个mu为均值,sigma为标准差的n行m列的正态分布随机数矩阵。

使用函数“normpdf(x,mu,sigma)”可以计算正态分布的概率密度函数在x处的取值,使用函数“normcdf(x,mu,sigma)”可以计算正态分布的累积分布函数在x处的取值。

这些功能可以帮助学生更好地理解正态分布的概念和相关理论。

2. 离散随机变量的概率分布1. 数据描述与可视化Matlab可以帮助学生更好地进行数据描述和可视化。

使用命令“mean(x)”可以计算数据的平均值,使用命令“std(x)”可以计算数据的标准差,使用命令“hist(x)”可以绘制数据的直方图。

这些功能可以帮助学生更好地理解数据的基本特征和数据分布情况。

2. 参数估计与假设检验Matlab可以帮助学生完成参数估计和假设检验。

以t检验为例,使用命令“ttest(x,y)”可以进行两样本t检验,使用命令“ttest(x,m)”可以进行单样本t检验。

这些功能可以帮助学生更好地进行参数估计和假设检验的计算和分析。

结语综上所述,Matlab是一款重要的数学软件工具,在《概率论与数理统计》课程教学中发挥着重要的作用。

通过Matlab,学生可以更好地理解和应用概率论和数理统计的理论知识,提高他们的数据分析和计算能力。

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用概率论与数理统计是一门重要的数学学科,它主要研究随机事件发生的概率和随机变量的规律性。

Matlab是一种强大的科学计算软件,具有丰富的数学计算工具和图形绘制功能,因此在《概率论与数理统计》教学中,Matlab被广泛应用于概率论和数理统计的理论研究、统计分析和数据可视化等方面。

一、概率论的应用1. 概率计算:Matlab可以进行各种概率计算,包括事件的概率计算、条件概率计算、概率分布计算等。

通过编写相应的概率计算程序,可以方便地进行概率问题的求解和验证。

2. 模拟实验:概率论中常常需要进行大量的随机实验,通过模拟实验来验证概率理论的结论。

Matlab提供了丰富的随机数生成函数,可以生成各种分布的随机样本并进行相关的分析和验证。

3. 统计分布拟合:在概率论中,常常需要对实际观测数据进行统计分布的拟合。

Matlab提供了多种分布的函数和工具箱,可以帮助进行数据的拟合和参数估计。

二、数理统计的应用1. 描述统计分析:Matlab可以对数据进行基本的描述统计分析,包括数据的中心趋势、离散程度和分布状况的度量等。

通过编写相应的统计分析程序,可以方便地获取数据的平均值、方差、标准差等统计指标。

2. 参数估计与假设检验:在数理统计中,常常需要对总体参数进行估计和假设检验。

Matlab提供了多种参数估计和假设检验的函数和工具箱,可以进行参数的点估计、区间估计和假设检验等分析。

3. 数据可视化与分析:Matlab具有强大的数据可视化功能,可以绘制各种图表和图形,包括直方图、散点图、箱线图等。

通过对数据进行可视化分析,可以更直观地了解数据的分布特征和相关关系。

除了以上应用,Matlab还可以在概率论与数理统计的教学中进行实际案例分析和建模。

通过编写相应的程序和脚本,可以更具体地研究和解决实际问题,提高学生的应用能力和创新思维。

Matlab在《概率论与数理统计》教学中的应用范围广泛,包括概率计算、模拟实验、统计分布拟合、描述统计分析、参数估计与假设检验、数据可视化与分析等方面。

matlab概率论与数量统计求解

matlab概率论与数量统计求解

81
9.5 方差分析及计算机求解
单因子方差分析 双因子方差分析 多因子方差分析
2020/2/6
高等应用数学问题的 MATLAB 求解
82
9.5.1 单因子方差分析
2020/2/6
高等应用数学问题的 MATLAB 求解
83
单因子方差分析表
2020/2/6
高等应用数学问题的 MATLAB 求解
高等应用数学问题的 MATLAB 求解
42
2020/2/6
高等应用数学问题的 MATLAB 求解
43
2020/2/6
高等应用数学问题的 MATLAB 求解
44
【例9-15】考虑前面的随机数,可以用下面的语句
得出随机数的各阶矩
2020/2/6
高等应用数学问题的 MATLAB 求解
45
2/6
61
【例9-20】
2020/2/6
高等应用数学问题的 MATLAB 求解
62
2020/2/6
高等应用数学问题的 MATLAB 求解
63
9.3.3 非线性函数的最小二乘参数 估计与区间估计
2020/2/6
高等应用数学问题的 MATLAB 求解
64
2020/2/6
高等应用数学问题的 MATLAB 求解
100
例如函数名前一部分为 gam 常用于表示和 G 分布有关的函数,这类关键词在表中给出。 函数名的后一部分为 pdf 的表示求取概率 密度的函数,cdf 表示分布函数,inv 表示 逆分布函数,rnd 表示随机数生成函数, stat 表示矩阵、方差估计,fit 表示参数估计。
学会了这样的组合,则可以立即构造出你
度函数与概率分布函数曲线

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用【摘要】摘要:本文探讨了Matlab在《概率论与数理统计》教学中的应用。

在介绍了研究背景、目的和意义。

在分别阐述了Matlab在概率论教学中的基本概念应用、在数理统计教学中的数据分析应用、在概率论与数理统计教学中的模拟实验设计、在教学案例分析中的应用以及在编程训练中的应用。

结论部分总结了Matlab在教学中的重要性,并展望了未来研究方向。

本文旨在为教师和学生提供更有效的教学和学习工具,以提高教学效果和学习成果。

Matlab在概率论与数理统计教学中的应用将在未来持续发展,并为该领域的研究和实践提供更多可能性。

【关键词】Matlab, 概率论, 数理统计, 教学, 应用, 模拟实验, 数据分析, 编程训练, 教学案例分析, 重要性, 研究方向, 总结1. 引言1.1 研究背景研究背景部分将重点介绍Matlab在概率论与数理统计教学中的应用现状和意义。

通过Matlab软件,学生可以直观地展示概率分布的图像、计算统计量、进行数据拟合和模拟实验等操作。

Matlab的使用不仅提高了教学效果,也使学生在处理大量数据和复杂问题时更加得心应手。

在现代社会,数据分析已经成为一项必不可少的技能。

运用Matlab软件进行概率论与数理统计教学的实践意义愈发重要。

本文将进一步探讨Matlab在概率论与数理统计教学中的具体应用,以期能够为教学改革和学生能力培养提供参考和借鉴。

1.2 目的引言概率论与数理统计是现代数学中非常重要的一门学科,它不仅是其他学科的基础,而且在各个领域都有着广泛的应用。

而在教学中,如何让学生更加直观地理解和应用这些概念,是一个很重要的问题。

本文旨在探讨Matlab在《概率论与数理统计》教学中的应用,通过应用Matlab软件,可以更好地帮助学生理解难点,提高学习的效率和趣味性,从而提高教学质量。

1.3 意义在《概率论与数理统计》教学中,Matlab的应用具有重要的意义。

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用Matlab是一款强大的科学计算软件,广泛应用于数学、工程、物理和计算机科学等领域,同时也是教育和科学研究的重要工具。

在概率论与数理统计的教学中,Matlab可以帮助学生更深入、更直观地理解课程内容,并提高计算和分析数据的效率。

下面将介绍在概率论与数理统计教学中,Matlab的主要应用。

1. 均值、方差和标准差的计算在概率论和数理统计课程中,我们经常需要计算随机变量的均值、方差和标准差等统计量。

在Matlab中,可以通过mean函数、var函数和std函数来计算各种统计量。

例如:>> x = [1,2,3,4,5,6];>> mean(x)ans = 3.5000>> var(x)ans = 2.91672. 概率分布函数的绘制Matlab提供了丰富的绘图功能,可以用来绘制各种概率分布函数,包括正态分布、均匀分布、指数分布等。

通过绘制概率分布函数,可以帮助学生更好地理解不同概率分布的特征和性质。

例如:>> x = -5:0.01:5;>> y = normpdf(x,0,1);>> plot(x,y)上面的代码可以绘制标准正态分布的概率密度函数,并将其显示在图形窗口中。

3. 概率计算>> A = [1 0.2; 0.8 0.5];>> prob(A)ans =1 0.30000 0.7000上面的代码计算了由矩阵A所表示的概率分布的概率矩阵。

4. 统计检验>> x = [73 82 69 85 79];>> y = [81 89 78 91 86];>> [h,p,ci,stats] = ttest(x,y)上面的代码计算了两组成绩的t检验,其中h表示检验结果的显著性,p表示检验结果的P值,ci表示检验结果的置信区间,stats表示检验结果的统计数据。

第9章概率论与数理统计的MATLAB实现讲稿

第9章概率论与数理统计的MATLAB实现讲稿

第9章 概率论与数理统计的MATLAB 实现MA TLAB 总包提供了一些进行数据统计分析的函数,但不完整。

利用MA TLAB 统计工具箱,可以进行基本概率和数理统计分析,以及进行比较复杂的多元统计分析。

本章主要针对大学本科的概率统计课程介绍工具箱的部分功能。

9.1 随机变量及其分布利用统计工具箱提供的函数,可以比较方便地计算随机变量的分布律(概率密度函数)和分布函数。

9.1.1 离散型随机变量及其分布律如果随机变量全部可能取到的不相同的值是有限个或可列个无限多个,则称为离散型随机变量。

MA TLAB 提供的计算常见离散型随机变量分布律的函数及调用格式: 函数调用格式(对应的分布) 分布律y=binopdf(x,n,p)(二项分布) )()1(),|(),,1,0(x I p p x n p n x f n x n x --⎪⎪⎭⎫ ⎝⎛= y=geopdf(x,p)(几何分布) x p p p x f )1()|(-= ),1,0( =xy=hygepdf(x,M,K,n)(超几何分布) ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=n M x n K M x K n K M x f ),,|(y=poisspdf(x,lambda)(泊松分布) λλλ-=e x x f x !)|(),1,0( =x y=unidpdf(x,n)(离散均匀分布) NN x f 1)|(= 9.1.2 连续型随机变量及其概率密度对于随机变量X 的分布函数)(x F ,如果存在非负函数)(x f ,使对于任意实数x 有⎰∞-=x dt t f x F )()(则称X 为连续型随机变量,其中函数)(x f 称为X 的概率密度函数。

MA TLAB 提供的计算常见连续型随机变量分布概率密度函数的函数及调用格式:函数调用格式(对应的分布) 概率密度函数y=betapdf(x,a,b)(β分布) )10()1(),(1),|(11<<-=--x x x b a B b a x f b ay=chi2pdf(x,v)(卡方分布) )2(2)|(2212v exv x f v x v Γ=--)0(≥xy=exppdf(x,mu)(指数分布) μμμxex f -=1)|()0(≥xy=fpdf(x,v1,v2)(F 分布) 2211222121212121111)2()2()2(),|(v v v v v x v x vv v v v v v v x f +-⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛ΓΓ+Γ= y=gampdf(x,a,b)(伽马分布) b xa a e x ab b a x f --Γ=1)(1),|()0(≥xy=normpdf(x,mu,sigma)(正态分布) 222)(21),|(σμπσσμ--=x ex fy=lognpdf(x,mu,sigma)(对数正态分布) 222)(ln 21),|(σμπσσμ--=x ex x fy=raylpdf(x,b)(瑞利分布) 2222)|(b x e b x b x f -=y=tpdf(x,v)(学生氏t 分布) 2121)2()21()|(+-⎪⎪⎭⎫ ⎝⎛+Γ+Γ=v v x v v v v x f πy=unifpdf(x,a,b)(连续均匀分布) )(1),|(],[x I ab b a x f b a -=y=weibpdf(x,a,b)(威布尔分布) )(),|(),0(1x I eabx b a x f bax b ∞--= 比如,用normpdf 函数计算正态概率密度函数值。

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用摘要:在《概率论与数理统计》课程教学中引入了Matlab软件,对常见的一些概率和统计现象进行了课堂现场展示。

结果表明:Matlab软件能够直观地进行高尔顿钉板实验等经典案例演示,解决了《概率论与数理统计》课程教学中不直观、难理解的难题。

关键词:本科教学;概率论与数理统计;Matlab软件一、引言《概率论与数理统计》是面向理工类院校的本科生开设的一门数学基础必修课程[1]。

通过本课程的学习,使学生理解概率论与数理统计的基本概念,进而初步掌握处理随机现象的基本思想和方法,培养学生运用数理统计方法分析和解决实际问题的能力。

该课程与《高等数学》、《线性代数》一起构成了理工科院校必修的三门基础数学课程,也是必修课程中唯一涉及研究随机现象的基础课程。

随着大数据时代的到来,该课程成为支撑人工智能发展的重要基础数学课程之一。

Matlab软件[2]是国际上通用的工程计算软件之一,其包含丰富的内嵌函数,能够满足几乎所有工程领域的计算需求,其Statitic工具包包含了几乎所有的随机分析模块,采用Matlab软件进行案例演示教学是提高教学质量的有力途径。

本文以高尔顿钉板实验为例,Matlab软件在《概率论与数理统计》教学中的应用。

二、Matlab软件简介Matlab是由美国Mathwork公司开发的一种集数值计算、符号计算和图形可视化三大基本功能于一体的软件,功能强大、操作简单,是国际公认的优秀数学应用软件之一。

该软件由Matlab内核和辅助工具箱组成,具备丰富的数值计算功能(矩阵运算、多项式和有理分式计算、数据统计分析以及数值积分)、符号计算功能(求方程的解析解、公式的简化、展开多项式)以及便笺式的编程语言(语法规则更简单、更贴近人的思维方式和表达习惯),具有强大简易的作图功能(可绘制连续曲线、离散曲线、直方图、阶梯图和枝干图等,可使用直角坐标系、极坐标系、对数及半对数坐标系)和高智能化等特点。

概率统计在MATLAB中的实现方法解析

概率统计在MATLAB中的实现方法解析

概率统计在MATLAB中的实现方法解析概率统计是一门研究随机现象的规律性和不确定性的学科,广泛应用于各个领域。

而MATLAB是一种强大的科学计算软件,可以在概率统计领域中提供很多实用的工具和方法。

本文将探讨概率统计在MATLAB中的实现方法,帮助读者更好地理解和应用于实践。

一、概率分布的生成和拟合在概率统计中,对于一些已知的概率分布,我们常常需要生成符合该分布的随机数,或者通过已有的样本数据对分布进行拟合。

在MATLAB中,可以使用一些函数来实现这些操作。

首先,对于已知的概率分布,例如正态分布(高斯分布),可以使用normrnd()函数生成符合该分布的随机数。

该函数的输入参数包括均值和标准差,输出为符合正态分布的随机数。

例如,我们可以生成100个符合均值为0,标准差为1的正态分布随机数:```MATLABx = normrnd(0, 1, 100, 1);```对于已有的样本数据,我们可以使用fitdist()函数对数据进行概率分布的拟合。

该函数可以自动选择合适的分布类型,并给出对应的参数估计值。

例如,我们有一组样本数据x,需要对其进行正态分布的拟合:```MATLABdist = fitdist(x, 'Normal');```通过fitdist()函数返回的dist对象,我们可以获取该分布的参数估计值、置信区间等信息。

二、假设检验和置信区间估计假设检验和置信区间估计是概率统计中常用的分析方法,用于判断样本数据是否符合某个假设、计算参数估计的可信度等。

在MATLAB中,可以使用一些函数来实现假设检验和置信区间估计。

对于假设检验,MATLAB提供了ttest2()和chi2gof()等函数,用于分别进行两样本t检验和卡方检验。

例如,我们有两组样本数据x和y,需要进行两样本t检验:```MATLAB[h, p] = ttest2(x, y);```通过ttest2()函数返回的h值可以判断是否拒绝原假设,p值则表示检验结果的显著性。

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用概率论与数理统计是数学系本科生的一门重要课程,也是各个理工科专业的基础课程之一。

它主要研究随机现象的规律性和数理统计的应用。

在这门课程中,学生需要掌握一些概率论和数理统计的基本概念、定理和方法,同时需要熟练掌握各种概率分布的性质和应用、随机变量和随机过程的概念、数理统计的各种抽样分布以及参数估计、假设检验等内容。

为了更好地帮助学生理解和掌握这些知识,教师可以借助Matlab这一强大的数学计算软件进行教学。

Matlab是一种被广泛应用于科学和工程领域的高级技术计算软件,其功能强大,操作简便,可用于数据处理、分析、绘图以及复杂算法的实现等。

在概率论与数理统计的教学中,利用Matlab可以方便地进行概率论和数理统计的相关计算、模拟和可视化,使得抽象的数学理论更加具体直观,提高学生对概率论与数理统计知识的理解和掌握。

下面将介绍Matlab在《概率论与数理统计》教学中的应用。

一、概率论的基本概念和方法1.1 概率分布的可视化在概率论的教学中,学生需要学习各种概率分布的性质、密度函数和分布函数的特点,以及随机变量的数学期望、方差等特征。

利用Matlab,可以方便地绘制各种概率分布的概率密度函数和分布函数图像,比如正态分布、均匀分布、指数分布、泊松分布等。

通过可视化的方式,学生可以直观地感受不同概率分布的特点和规律,加深对概率分布的理解和记忆。

1.2 随机变量的模拟和统计量的计算在概率论的教学中,学生需要了解随机变量的概念、性质,以及随机变量的分布、统计量等。

利用Matlab,可以方便地生成服从某种概率分布的随机变量序列,并进行统计量的计算,比如样本均值、样本方差等。

通过实际的随机变量模拟和统计量计算,学生可以更好地理解随机变量的特性和统计量的含义,提高对概率论知识的掌握。

二、数理统计的基本方法和应用2.1 参数估计和假设检验在数理统计的教学中,学生需要学习参数估计的方法、假设检验的原理和步骤,以及不同统计量的分布。

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用1. 引言1.1 研究背景概率论与数理统计作为现代科学研究的基础,广泛应用于物理、生物、经济、工程等各个领域。

在教学中,传统的概率论与数理统计教学往往通过纸笔计算和手工绘图进行,这样的方式在一定程度上限制了学生对概念的理解和实际应用能力的培养。

而引入Matlab这样的数学计算软件,可以极大地提高教学效率,使学生更直观地理解抽象的数学概念,提高他们的学习兴趣和动手能力。

通过将Matlab与概率论与数理统计相结合,可以更好地展示概率分布、统计分析、随机模拟等概念,加深学生对这些内容的理解和掌握。

研究Matlab在概率论与数理统计教学中的应用具有重要意义。

本文将探讨Matlab在概率论与数理统计教学中的具体应用,分析其在教学中的优势和未来发展方向。

1.2 研究意义概率论与数理统计作为数学学科中重要的分支,旨在研究事件的发生规律以及数据的分布特征,对现代科学、技术和社会管理等领域都具有重要的应用价值。

在教学中,采用Matlab作为工具可以加深学生对概率与统计理论的理解,提高他们的计算和分析能力,培养他们解决实际问题的能力。

通过引入Matlab,学生可以更加直观地掌握数学模型的建立和计算方法,提高他们对概率与统计学习的兴趣和积极性,进一步激发他们学习的潜力。

Matlab在教学中的应用也有助于培养学生的动手能力和实际解决问题的能力,提高他们的实践能力和创新思维。

教师可以结合具体案例,引导学生运用Matlab工具分析问题,并进行模拟实验和数据处理,使学生在实践中不断探索、思考和总结,从而提高他们的学习效果和实际应用能力。

Matlab在概率论与数理统计教学中的应用具有重要的意义和价值。

2. 正文2.1 Matlab在概率论教学中的基本概念应用Matlab可以用来计算概率。

通过编写简单的代码,可以计算各种随机事件发生的概率,例如掷硬币、抛骰子等。

这样的实践可以帮助学生深入理解概率的概念,同时提高他们的计算能力。

(完整版)Matlab概率论与数理统计

(完整版)Matlab概率论与数理统计

(完整版)Matlab概率论与数理统计Matlab 概率论与数理统计⼀、matlab基本操作1.画图【例01.01】简单画图hold off;x=0:0.1:2*pi;y=sin(x);plot(x,y,'-r');x1=0:0.1:pi/2;y1=sin(x1);hold on;fill([x1, pi/2],[y1,1/2],'b');【例01.02】填充,⼆维均匀随机数hold off;x=[0,60];y0=[0,0];y60=[60,60];x1=[0,30];y1=x1+30;x2=[30,60];y2=x2-30;xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0];fill(xv,yv,'b');hold on;plot(x,y0,'r',y0,x,'r',x,y60,'r',y60,x,'r');plot(x1,y1,'r',x2,y2,'r');yr=unifrnd (0,60,2,100);plot(yr(1,:),yr(2,:),'m.')axis('on');axis('square');axis([-20 80 -20 80 ]);2. 排列组合C=nchoosek(n,k):kn C C =,例nchoosek(5,2)=10, nchoosek(6,3)=20.prod(n1:n2):从n1到n2的连乘【例01.03】⾄少有两个⼈⽣⽇相同的概率公式计算nn nn NNn N N N N n N N N C n p )1()1(1)!(!1!1+--?-=--=-=365364(3651)365364365111365365365365rs rs rs ?-+-+=-=-?rs=[20,25,30,35,40,45,50]; %每班的⼈数 p1=ones(1,length(rs)); p2=ones(1,length(rs));% ⽤连乘公式计算for i=1:length(rs)p1(i)=prod(365-rs(i)+1:365)/365^rs(i); end% ⽤公式计算(改进) for i=1:length(rs)for k=365-rs(i)+1:365p2(i)=p2(i)*(k/365);end ;end% ⽤公式计算(取对数) for i=1:length(rs)⼆、随机数的⽣成3.均匀分布随机数rand(m,n); 产⽣m⾏n列的(0,1)均匀分布的随机数rand(n); 产⽣n⾏n列的(0,1)均匀分布的随机数【练习】⽣成(a,b)上的均匀分布4.正态分布随机数randn(m,n); 产⽣m⾏n列的标准正态分布的随机数【练习】⽣成N(nu,sigma.^2)上的正态分布5.其它分布随机数三、⼀维随机变量的概率分布1. 离散型随机变量的分布率(1) 0-1分布 (2) 均匀分布(3) ⼆项分布:binopdf(x,n,p),若~(,)X B n p ,则{}(1)k k n kn P X k C p p -==-,x=0:9;n=9;p=0.3; y= binopdf(x,n,p); plot(x,y,'b-',x,y,'r*')y=[ 0.0404, 0.1556, 0.2668, 0.2668, 0.1715, 0.0735, 0.0210, 0.0039, 0.0004, 0.0000 ]‘当n 较⼤时⼆项分布近似为正态分布 x=0:100;n=100;p=0.3; y= binopdf(x,n,p); plot(x,y,'b-',x,y,'r*')(4)泊松分布:piosspdf(x, lambda),若~()Xπλ,则{}! k eP X kkλλ-==x=0:9; lambda =3;y= poisspdf (x,lambda);plot(x,y,'b-',x,y,'r*')y=[ 0.0498, 0.1494, 0.2240, 0.2240, 0.1680, 0.1008, 0.0504, 0.0216, 0.0081, 0.0027 ] (5)⼏何分布:geopdf (x,p),则1 {}(1)kP X k p p-==-(6)超⼏何分布:hygepdf(x,N,M,n),则{}k n kM N MnNC CP X kC--==x=0:9;p=0.3y= geopdf(x,p);plot(x,y,'b-',x,y,'r*')y=[ 0.3000, 0.2100, 0.1470, 0.1029, 0.0720, 0.0504, 0.0353, 0.0247, 0.0173, 0.0121 ]x=0:10;N=20;M=8;n=4;y= hygepdf(x,N,M,n);plot(x,y,'b-',x,y,'r*')y=[ 0.1022, 0.3633, 0.3814, 0.1387, 0.0144, 0, 0, 0, 0, 0, 0 ]2.概率密度函数(1)均匀分布:unifpdf(x,a,b),1()a x bf x b a≤≤=-其它a=0;b=1;x=a:0.1:b;y= unifpdf (x,a,b);(2)正态分布:normpdf(x,mu,sigma),221()2()2xf x eµσπσ--=x=-10:0.1:12;mu=1;sigma=4;y= normpdf(x,mu,sigma);rn=10000;z= normrnd (mu,sigma,1,rn); %产⽣10000个正态分布的随机数d=0.5;a=-10:d:12;b=(hist(z,a)/rn)/d;%以a为横轴,求出10000个正态分布的随机数的频率plot(x,y,'b-',a,b,'r.')(3)指数分布:exppdf(x,mu),11()xe a x bf xθθ-≤≤=?其它x=0:0.1:10;mu=1/2;y= exppdf(x,mu);plot(x,y,'b-',x,y,'r*')(4)2χ分布:chi2pdf(x,n),12221(;)2(2)00n xnx e xf x n nx--≥=Γ<hold onx=0:0.1:30;n=4;y= chi2pdf(x,n);plot(x,y,'b');%blue n=6;y= chi2pdf(x,n);plot(x,y,'r');%redn=8;y= chi2pdf(x,n);plot(x,y,'c');%cyan n=10;y= chi2pdf(x,n);plot(x,y,'k');%black legend('n=4', 'n=6', 'n=8', 'n=10');(5)t分布:tpdf(x,n),22((1)2)(;)1(2)n xf x nnn nπ-Γ+=+?Γ?hold onx=-10:0.1:10;n=2;y= tpdf(x,n);plot(x,y,'b');%blue n=6;y= tpdf(x,n);plot(x,y,'r');%redn=10;y= tpdf(x,n);plot(x,y,'c');%cyann=20;y= tpdf(x,n);plot(x,y,'k');%black legend('n=2', 'n=6', 'n=10', 'n=20');(6)F分布:fpdf(x,n1,n2),112122212112121222(()2)10(;,)(2)(2)00n n nnn n n nx x xf x n n n n n nx+--Γ++≥=?ΓΓ<hold onx=0:0.1:10;n1=2; n2=6;y= fpdf(x,n1,n2);plot(x,y,'b');%bluen1=6; n2=10;y= fpdf(x,n1,n2);plot(x,y,'r');%redn1=10; n2=6;y= fpdf(x,n1,n2);plot(x,y,'c');%cyann1=10; n2=10;y= fpdf(x,n1,n2);plot(x,y,'k');%blacklegend(' n1=2; n2=6', ' n1=6; n2=10', ' n1=10; n2=6', ' n1=10; n2=10');3.分布函数(){}F x P X x=≤【例03.01】求正态分布的累积概率值设2~(3,2)X N,求{25},{410},{2},{3}P X P X P X P X<<-<<>>,p1=normcdf(5,3,2)- normcdf(2,3,2)=0.5328p1=normcdf(1,0,1)- normcdf(-0.5,0,1) =0.5328p2=normcdf(10,3,2)- normcdf(-4,3,2)=0.9995p3=1-(normcdf(2,3,2)- normcdf(-2,3,2))=0.6977p4=1-normcdf(3,3,2)=0.5004. 逆分布函数,临界值(){}y F x P X x ==≤,1()x F y -=,x 称之为临界值【例03.02】求标准正态分布的累积概率值y=0:0.01:1;x=norminv(y,0,1);【例03.03】求2(9)χ分布的累积概率值hold offy=[0.025,0.975]; x=chi2inv(y,9); n=9;x0=0:0.1:30;y0=chi2pdf(x0,n); plot(x0,y0,'r');x1=0:0.1:x(1);y1=chi2pdf(x1,n); x2=x(2):0.1:30;y2=chi2pdf(x2,n); hold onfill([x1, x(1)],[y1,0],'b'); fill([x(2),x2],[0,y2],'b');函数名调⽤形式注释sort sort(x),sort(A) 排序,x 是向量,A 是矩阵,按各列排序 sortrows sortrows(A) A 是矩阵,按各⾏排序 mean mean(x) 向量x 的样本均值 var var(x) 向量x 的样本⽅差 std std(x) 向量x 的样本标准差 median median(x) 向量x 的样本中位数 geomean geomean(x) 向量x 的样本⼏何平均值 harmmean harmmean(x) 向量x 的样本调和平均值 rangerange(x)向量x 的样本最⼤值与最⼩值的差【练习1.1】⼆项分布、泊松分布、正态分布(1)对10,0.2n p ==⼆项分布,画出(,)b n p 的分布律点和折线;(2)对np λ=,画出泊松分布()πλ的分布律点和折线;(3)对2,(1)np np p µσ==-,画出正态分布2(,)N µσ的密度函数曲线;(4)调整,n p ,观察折线与曲线的变化趋势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9章 概率论与数理统计的MATLAB 实现MATLAB 总包提供了一些进行数据统计分析的函数,但不完整。

利用MATLAB 统计工具箱,可以进行概率和数理统计分析,以及进行比较复杂的多元统计分析。

9.1 随机变量及其分布利用统计工具箱提供的函数,可以比较方便地计算随机变量的分布列(或密度函数)和分布函数。

9.1.1 常见离散型随机变量的分布列的计算如果随机变量全部可能取到的不相同的值是有限个或可列无限多个,则称为离散型随机变量。

MATLAB 提供的计算常见离散型随机变量分布列的函数及调用格式:函数调用格式(对应的分布) 分布列 y=binopdf(x,n,p)(二项分布) )()1(),|(),,1,0(x I p p C p n x f n xn xxn --=y=geopdf(x,p)(几何分布) xp p p x f )1()|(-= ),1,0( =x y=hygepdf(x,M,K,n)(超几何分布) nMx n kM x K C C C n K M x f --=),,|( y=poisspdf(x,lambda)(泊松分布) λλλ-=e x x f x !)|(),1,0( =x y=unidpdf(x,n)(离散均匀分布) NN x f 1)|(= 9.1.2 常见连续型随机变量的密度函数计算对于随机变量X 的分布函数)(x F ,如果存在非负函数)(x f ,使对于任意实数x 有⎰∞-=x dt t f x F )()(则称X 为连续型随机变量,其中函数)(x f 称为X 的密度函数。

MA TLAB 提供的计算常见连续型随机变量分布密度函数的函数及调用格式:函数调用格式(对应的分布) 密度函数 y=betapdf(x,a,b)(β分布) )10()1(),(1),|(11<<-=--x x x b a B b a x f b ay=chi2pdf(x,v)(卡方分布) )2(2)|(2212v exv x f v x v Γ=--)0(≥xy=exppdf(x,mu)(指数分布) μμμxex f -=1)|()0(≥xy=fpdf(x,v1,v2)(F 分布) 2211222121212121111)2()2()2(),|(v v v v v x v x vv v v v v v v x f +-⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛ΓΓ+Γ= y=gampdf(x,a,b)(伽马分布) b xa a e x ab b a x f --Γ=1)(1),|()0(≥xy=normpdf(x,mu,sigma)(正态分布) 222)(21),|(σμπσσμ--=x ex fy=lognpdf(x,mu,sigma)(对数正态分布) 222)(ln 21),|(σμπσσμ--=x ex x fy=raylpdf(x,b)(瑞利分布) 2222)|(b x e b x b x f -=y=tpdf(x,v)(学生氏t 分布) 2121)2()21()|(+-⎪⎪⎭⎫ ⎝⎛+Γ+Γ=v v x v v v v x f π y=unifpdf(x,a,b)(连续均匀分布) )(1),|(],[x I ab b a x f b a -=y=weibpdf(x,a,b)(威布尔分布) )(),|(),0(1x I eabx b a x f bax b ∞--=比如,用normpdf 函数计算正态概率密度函数值。

该函数的调用格式为:Y=normpdf(X,MU,SIGMA)计算数据X 中各值处参数为MU 和SIGMA 的正态概率密度函数的值。

参数SIGMA 必须为正。

正态概率密度函数的计算公式为:222)(21),|(σμπσσμ--==x ex f y9.1.3 用函数pdf 计算随机变量的分布列或概率密度除了用上述的函数计算服从相应分布的随机变量的分布列或概率密度外,还可以用函数pdf 计算随机变量的分布列或概率密度。

调用格式:Y = pdf('name',X,A1,A2,A3)返回服从参数为A1,A2,A3的'name'分布的随机变量在X 处的分布列或密度函数值。

Y 与X 同型,分布函数名'name'常见的取值如下:'beta'或'Beta':Beta 分布 'bino'或'Binomial':二项分布 'chi2'或'Chisquare':卡方分布 'exp'或'Exponential':指数分布 'f'或'F':F 分布'gam'或'Gamma':GAMMA 分布 'geo'或'Geometric':几何分布'hyge'或'Hypergeometric':超几何分布 'logn'或'Lognormal':对数正态分布'nbin'或'Negative Binomial':负二项分布 'ncf'或'Noncentral F':非中心F 分布 'nct'或'Noncentral t':非中心t 分布'ncx2'或'Noncentral Chi-square':非中心卡方分布 'norm'或'Normal':正态分布 'poiss'或'Poisson':泊松分布 'rayl'或'Rayleigh':瑞利分布 't'或'T':T 分布'unif'或'Uniform':均匀分布'unid'或'Discrete Uniform':离散均匀分布 'weib'或'Weibull':Weibull 分布比如,计算自由度为8的卡方分布,在点2.18处的密度函数值的命令为:pdf('chi2',2.18,8)9.1.4 分布函数对于离散型随机变量X ,设x 为任意实数,X 的分布函数为:{}x X P x F ≤=)(对于连续型随机变量X ,假设其概率密度函数为)(x f ,则其分布函数为:⎰∞-=x dt t f x F )()(对常见分布的随机变量,MATLAB 均提供了专门的函数来计算它们各自的分布函数,这些函数是具体如下:函数调用格式 对应的分布F=betacdf(x,a,b) β分布 F=binocdf(x,n,p) 二项分布 F=chi2cdf(x,v) 卡方分布 F=expcdf(x,mu) 指数分布 F=fcdf(x,v1,v2) F 分布 F=gamcdf(x,a,b) 伽马分布 F=geocdf(x,p) 几何分布 F=hygecdf(x,M,K,n) 超几何分布 F=normcdf(x,mu,sigma) 正态分布 F=logncdf(x,mu,sigma) 对数正态分布 F=poisscdf(x,lambda) 泊松分布 F=raylcdf(x,b) 瑞利分布 F=tcdf(x,v) 学生氏t 分布 F=unidcdf(x,n) 离散均匀分布 F=unifcdf(x,a,b) 连续均匀分布 F=weibcdf(x,a,b) 威布尔分布例如,用normcdf 函数计算正态分布的分布函数。

该函数的调用格式为:F=normcdf(X,MU,SIGMA)计算参数为MU 和SIGMA 的正态分布函数在数据X 中每个值处的值。

参数SIGMA 必须为正。

正态分布的分布函数为:⎰∞---=x t dt e x F 222)(21),|(σμπσσμ 结果),|(σμx F 为取自参数为μ和σ的正态分布总体的单个观测量落在区间),(x -∞中的概率。

另外,还可以用函数cdf 计算随机变量的分布函数。

调用格式:F= cdf('name',X,A1,A2,A3)返回服从参数为A1,A2,A3的'name'分布的随机变量在X 处的分布函数值。

分布函数名'name'常见的取值同函数pdf 中的'name'。

例9-1 某仪器需安装一个电子元件,需要电子元件的使用寿命不低于1000小时即可。

现有甲乙两厂的电子元件可供选择,甲厂生产的电子元件的寿命服从正态分布)50,1100(2N ,乙厂生产的电子元件的寿命服从正态分布)80,1150(2N 。

问应选哪个工厂的产品呢?解:设)50,1100(~2N X ,)80,1150(~2N Y 。

则有:{}≈≥1000X P 0.9772 {}≈≥1000Y P 0.9696 因此,应选甲厂生产的产品。

注:计算{}1000≥X P 的命令为: 1-normcdf(1000,1100,50) 或1-cdf('norm',1000,1100,50)计算{}1000≥Y P 的命令为: 1-normcdf(1000,1150,80) 或1-cdf('norm',1000,1150,80)9.1.5 分布函数的逆函数MATLAB 中,常见分布的分布函数的逆函数及其调用格式:函数调用格式 对应的分布 x=betainv(P,a,b) β分布 x=binoinv(P,n,p) 二项分布 x=chi2inv(P,v) 卡方分布 x=expinv(P,mu) 指数分布 x=finv(P,v1,v2) F 分布 x=gaminv(P,a,b) 伽马分布 x=geoinv(P,p) 几何分布 x=hygeinv(P,M,K,n) 超几何分布 x=norminv(P,mu,sigma) 正态分布 x=logninv(P,mu,sigma) 对数正态分布 x=poissinv(P,lambda) 泊松分布 x=raylinv(P,b) 瑞利分布x=tcdfinv(P,v) 学生氏t 分布 x=unidinv(P,n) 离散均匀分布 x=unifinv(P,a,b) 连续均匀分布 x=weibinv(P,a,b) 威布尔分布在MATLAB 中,还可以用函数icdf 计算随机变量的分布函数的逆函数。

调用格式:X=icdf('name',P,A1,A2,A3)服从参数为A1,A2,A3的'name'分布的随机变量的分布函数在X 处值为P 。

相关文档
最新文档