正态分布教学设计
正态分布示范教案

正态分布示范教案第一章:正态分布的定义与特征1.1 引入:通过现实生活中的例子(如考试分数、人的身高等)引导学生了解正态分布的概念。
1.2 讲解正态分布的定义:一个连续型随机变量X服从正态分布,如果其概率密度函数为f(x) = (1/σ√(2π)) e^(-(x-μ)^2/(2σ^2)),其中μ是分布的均值,σ是分布的标准差。
1.3 分析正态分布的特征:均值、标准差、对称性、拖尾现象等。
1.4 练习:让学生通过图表或计算器观察正态分布的特性。
第二章:正态分布的参数估计2.1 引入:讲解参数估计的概念,以及正态分布参数估计的重要性。
2.2 讲解均值和标准差的点估计:利用样本均值和样本标准差来估计总体均值和总体标准差。
2.3 讲解置信区间:以样本均值为例,讲解如何计算置信区间,并解释其含义。
2.4 练习:让学生运用给出的数据,计算正态分布的均值和标准差的点估计,以及置信区间。
第三章:正态分布的假设检验3.1 引入:讲解假设检验的概念,以及正态分布假设检验的应用。
3.2 讲解单样本Z检验:通过给出样本数据,引导学生了解如何进行正态分布的单样本Z检验。
3.3 讲解两样本Z检验:通过给出两个样本数据,引导学生了解如何进行正态分布的两样本Z检验。
3.4 练习:让学生运用给出的数据,进行正态分布的假设检验。
第四章:正态分布的应用4.1 引入:讲解正态分布在日常生活中的应用,如质量控制、医学等领域。
4.2 讲解正态分布的应用案例:如某产品的质量控制,如何利用正态分布进行控制限的确定。
4.3 讲解正态分布在其他领域的应用:如医学中正常值的判断、心理测量等。
4.4 练习:让学生通过实例,运用正态分布解决实际问题。
第五章:总结与拓展5.1 总结:回顾本章所讲内容,让学生掌握正态分布的定义、特征、参数估计和假设检验。
5.2 拓展:讲解其他连续型分布,如t分布、卡方分布等,以及它们与正态分布的关系。
5.3 练习:让学生运用所学的知识,解决更复杂的实际问题。
高中数学教案正态分布

高中数学教案-正态分布一、教学目标1. 了解正态分布的概念,理解正态分布曲线的特点及应用。
2. 学会计算正态分布的概率密度函数,掌握正态分布的性质。
3. 能够运用正态分布解决实际问题,提高解决问题的能力。
二、教学重点与难点1. 重点:正态分布的概念、性质及应用。
2. 难点:正态分布的概率密度函数的计算及应用。
三、教学准备1. 教学工具:黑板、粉笔、多媒体课件。
2. 教学素材:正态分布的相关案例、练习题。
四、教学过程1. 导入:通过一个具体案例,引发学生对正态分布的兴趣,例如“考试分数的分布”。
2. 新课讲解:a) 介绍正态分布的定义及特点b) 讲解正态分布的概率密度函数c) 阐述正态分布的性质3. 案例分析:分析一些实际问题,运用正态分布解决问题,如“药物疗效的评估”。
4. 练习巩固:让学生独立完成一些关于正态分布的练习题,加深对知识点的理解。
5. 总结拓展:引导学生思考正态分布在其他领域的应用,如“经济学、生物学”。
五、课后作业1. 复习正态分布的概念、性质及概率密度函数。
2. 完成课后练习题,巩固所学知识。
3. 选择一个感兴趣的领域,查找正态分布在该领域的应用案例,下节课分享。
六、教学评估1. 课堂提问:通过提问了解学生对正态分布概念的理解程度,以及对正态分布性质和概率密度函数的掌握情况。
2. 课后作业:检查学生完成课后练习题的情况,评估学生对正态分布知识的掌握程度。
3. 案例分析报告:评估学生在案例分析中的表现,考察学生运用正态分布解决实际问题的能力。
七、教学策略1. 采用直观演示法,通过多媒体课件展示正态分布曲线,帮助学生形象地理解正态分布的特点。
2. 采用案例分析法,让学生在实际问题中体验正态分布的应用,提高解决问题的能力。
3. 采用分组讨论法,鼓励学生互相交流、合作解决问题,提高学生的团队协作能力。
八、教学反思1. 反思教学内容:检查教学内容是否全面、深入,是否符合学生的认知水平。
2. 反思教学方法:评估所采用的教学方法是否有效,是否能够激发学生的兴趣和参与度。
正态分布高中数学教案

正态分布高中数学教案
教学目标:
1. 了解正态分布的基本概念和性质;
2. 能够利用正态分布解决实际问题;
3. 训练学生的数理逻辑思维和解决问题的能力。
教学内容:
1. 正态分布的定义和特征;
2. 正态分布的标准化;
3. 正态分布在概率计算中的应用。
教学步骤:
1. 导入:通过一个例子引导学生了解正态分布的概念和特点;
2. 探究:讲解正态分布的定义和性质,帮助学生理解正态分布的特点;
3. 练习:让学生进行练习,例如计算正态分布的概率值;
4. 拓展:引导学生思考正态分布在实际问题中的应用;
5. 总结:对本节课的内容进行总结,并布置作业。
教学资源:
1. 教科书相关章节;
2. 教学投影仪;
3. 练习题和作业题。
教学评估:
1. 学生课堂表现;
2. 课后作业完成情况;
3. 学生对正态分布应用的理解和运用能力。
教学反思:
1. 是否能够引导学生正确理解和运用正态分布概念;
2. 是否能够激发学生探索正态分布在实际问题中的应用;
3. 是否能够提高学生数理逻辑思维和解决问题的能力。
高中数学教案正态分布3

高中数学教案-正态分布一、教学目标1. 了解正态分布的定义、特点及应用范围。
2. 掌握正态分布曲线的绘制方法。
3. 能够运用正态分布解决实际问题。
二、教学内容1. 正态分布的定义及性质1.1 定义:正态分布是一种连续概率分布。
1.2 性质:正态分布曲线呈钟形,对称轴为平均值,曲线下的面积表示概率。
2. 正态分布曲线的绘制2.1 标准正态分布曲线:以平均值为对称轴,标准差为横坐标的曲线。
2.2 非标准正态分布曲线:通过平移和缩放标准正态分布曲线得到的曲线。
3. 正态分布的应用3.1 概率计算:求解在一定区间内取值的概率。
3.2 数据分析:判断数据是否符合正态分布,分析数据的集中趋势和离散程度。
三、教学重点与难点1. 正态分布的定义及性质2. 正态分布曲线的绘制方法3. 正态分布的应用四、教学方法1. 讲授法:讲解正态分布的定义、性质和应用。
2. 示例法:通过具体例子演示正态分布曲线的绘制和应用。
3. 练习法:让学生通过练习题巩固所学知识。
五、教学准备1. 教学PPT:包含正态分布的定义、性质、曲线绘制和应用的讲解及示例。
2. 练习题:设计一些有关正态分布的练习题,以便学生巩固所学知识。
3. 投影仪:用于展示PPT和练习题。
六、教学过程1. 导入:通过一个实际问题引入正态分布的概念,例如:考试成绩的分布。
2. 讲解:讲解正态分布的定义、性质和曲线绘制方法。
3. 示例:展示一个具体的例子,演示如何使用正态分布解决实际问题。
4. 练习:让学生尝试解决一些有关正态分布的问题。
七、课堂练习1. 判断题:判断下列各题的正误。
a) 所有正态分布曲线的形状都是对称的。
b) 正态分布曲线的最高点对应于平均值。
c) 正态分布曲线下方的面积表示概率。
2. 选择题:从下列选项中选择正确答案。
a) 一组数据服从正态分布,当数据值小于平均值时,概率密度逐渐减小。
b) 一组数据服从正态分布,当数据值大于平均值时,概率密度逐渐减小。
人教版高中选修2-3《正态分布》教案

人教版高中选修2-3《正态分布》教案一、教学目标1.知识与技能:–能够通过计算、观察与分析进行正态分布的基本参数估计与计算;–能够根据数据特征确定正态分布的使用条件,并运用正态分布解决实际问题。
2.过程与方法:–提高学生数理思维能力及运用计算机软件进行数据统计和分析的能力;–提高学生观察、归纳、分析问题及解决问题的能力。
3.情感态度与价值观:–培养学生科学态度,认识正态分布的重要性和应用价值,拓宽学生科学视野。
二、教学重、难点1.教学重点:–正态分布的基本概念与相关参数的计算;–正态分布的性质及模型的应用;–正态分布与假设检验。
2.教学难点:–正态分布在实际中的广泛应用。
三、教学内容1. 正态分布的基本概念与参数1.正态分布的定义–介绍正态分布的基本特征和概念。
2.正态分布的概率密度函数和分布函数–掌握正态分布的概率密度函数和分布函数的定义;–画出正态分布的概率密度函数和分布函数的图像。
3.正态分布的标准化–掌握正态分布的标准化转化法,以及标准正态分布表的使用方法。
2. 正态分布的参数估计与计算1.正态分布的基本形式–介绍正态分布的基本形式,以及参数的含义;–学习如何通过样本来估计总体的参数。
2.样本均值和样本标准差–掌握样本均值和样本标准差的定义和计算方法;–从样本中估计总体的均值和标准差。
3.抽样分布–掌握样本均值和样本标准差的概率分布,以及如何计算抽样分布。
3. 正态分布的应用1.正态分布的性质及模型的应用–描述正态分布的各种统计特征;–掌握利用正态分布进行概率估计的方法;–了解正态分布在实际问题中的应用,如质量控制、投资、风险评估等。
2.正态分布与假设检验–了解假设检验的基本内容及步骤;–学习如何从正态分布的角度来诠释假设检验。
四、教学方法1.授课讲解:对正态分布相关概念和公式进行讲解,以期解决学生对于正态分布不熟悉的情况。
2.讲解示范法:用实例向学生呈现正态分布的应用场景及应用方法,以期加深学生对于正态分布在实践中的应用认识。
2.4正态分布教案

2.4正态分布教案篇一:2.4正态分布教学设计教案教学准备1.教学目标1、知识:了解正态分布在实际生活中的意义和作用;结合正态曲线,加深对正态密度函数的理解;通过正态分布的图形特征,归纳正态曲线的性质;结合3σ原则对服从正态分布的变量进行简单决策2、能力:提高学生的整体认知能力、快速提取信息能力、识图能力、理论联系实际分析问题、解决问题的能力。
2.教学重点/难点1、重点:正态分布的概念和性质2、难点:正态分布(曲线)的性质及3σ原则简单应用3.教学用具课件4.标签正态分布,正态曲线性质教学过程山东省信息技术与课堂整合优质课评选《正态分布》教学设计五莲县第三中学李治国《正态分布》教学设计一、教学分析(一)教学目标1、知识:了解正态分布在实际生活中的意义和作用;结合正态曲线,加深对正态密度函数的理解;通过正态分布的图形特征,归纳正态曲线的性质;结合3σ原则对服从正态分布的变量进行简单决策2、能力:提高学生的整体认知能力、快速提取信息能力、识图能力、理论联系实际分析问题、解决问题的能力。
(二)重难点:1、重点:正态分布的概念和性质2、难点:正态分布(曲线)的性质及3σ原则简单应用二、教学过程及多媒体的应用本课主要利用powerpoint,数学专用scilab随机数表生成程序,几何画板,mathtype编辑程序制作了教学课件,因为本节内容所用数据以及公式较多,又需要使用数据构造作图并估计,是本节教学中的一个难点,传统教学很难解决课堂上大量的数据分组和作图问题,而利用以上媒体设计使数据分组快速直接,并能让图像动起来,能够节省课堂上的教学时间,提高教学效率,加大课堂容量,利用动画设计突破了研究正态曲线性质的教学难点,更有利于学生直观感知,总之,使用多媒体技术能够化抽象为具体,化分散为紧凑。
给学生以动感的认识,高度浓缩时空,有效突破重难点,激活课堂,起到事半功倍的效果。
(-)(复习导入)1、(1)运用多媒体画出频率分布直方图和总体密度曲线.(2)当样本容量n无限增大时,频率分布直方图变化的情况?(3)重新感知“样本容量越大,总体估计就越精确”.2.通过实例,说明正态分布(密度)是最基本、最重要的一种分布.如学生的学习成绩、气象中的平均气温、平均湿度等等,都服从或近似地服从正态分布.多媒体的作用:展示以前学习知识,回顾总结,引出课题(二)具体学习阶段自主学习探究一:概率密度函数的概念和函数形式其中:π是圆周率;e是自然对数的底;x是随机变量的取值;μ为正态分布的均值;σ是正态分布的标准差,正态分布一般记为n(μ,σ2).注意:①函数表达式的形式②当μ=0、σ=1时,正态总体称为标准正态总体,其相应的函数表示式是其相应的曲线称为标准正态曲线.多媒体作用:用图形展示数据的总体趋势,引出概念,展示函数形式,给学生以函数的认识。
正态分布示范教案

正态分布示范教案第一章:正态分布的基本概念1.1 引入:通过引入日常生活中的例子,如考试成绩、身高、体重等,引导学生理解数据的分布规律。
1.2 定义:介绍正态分布的定义,解释均值、标准差等基本术语。
1.3 图形表示:教授如何绘制正态分布曲线,并解释曲线特点。
1.4 实例分析:分析一些实际数据集,让学生通过计算和绘图验证它们是否符合正态分布。
第二章:正态分布的性质2.1 引入:通过讲解正态分布的性质,使学生理解正态分布的重要性和广泛应用。
2.2 均值、中位数和众数:解释正态分布中均值、中位数和众数的关系,并通过实例进行说明。
2.3 概率密度函数:教授正态分布的概率密度函数公式,并解释其意义。
2.4 标准正态分布:介绍标准正态分布的概念,并解释其与普通正态分布的关系。
第三章:正态分布的应用3.1 引入:通过实际案例,让学生了解正态分布在实际问题中的应用。
3.2 假设检验:讲解如何使用正态分布进行假设检验,包括Z检验和t检验。
3.3 置信区间:教授如何计算正态分布数据的置信区间,并解释其含义。
3.4 数据分析:通过实际数据集,让学生运用正态分布进行数据分析,解决实际问题。
第四章:正态分布在实际领域的应用4.1 引入:通过讲解正态分布在不同领域的应用,让学生了解其广泛性。
4.2 医学领域:介绍正态分布在医学领域的应用,如疾病风险评估、药物剂量确定等。
4.3 工程领域:解释正态分布在工程领域的应用,如产品质量控制、可靠性分析等。
4.4 金融领域:讲解正态分布在金融领域的应用,如投资组合优化、风险管理等。
第五章:正态分布的扩展5.1 引入:引导学生思考正态分布的局限性,引出正态分布的扩展。
5.2 非正态分布:介绍一些常见的非正态分布,如泊松分布、二项分布等,并解释其特点。
5.3 转换方法:教授如何将非正态分布数据转换为正态分布,以及如何将正态分布数据转换为其他分布。
5.4 应用案例:通过实际案例,让学生了解在实际问题中如何灵活运用正态分布及其扩展。
《正态分布》教案

112341.510.50.511.5x=u2.4正态分布一、学习目标:1. 了解正态分布密度曲线、正态分布的概念;了解正态曲线的解析式及函数图像。
2. 通过图像熟悉正态曲线的特点; 能在实际中体会3σ原则的应用。
二、学习重难点学习重点:1.正态分布曲线的特点;2.正态分布在实际生活中的应用. 学习难点:1.利用正态分布的性质求概率;2.正态分布在实际中的应用。
三、学习过程: (一)知识提炼: 1.正态曲线:函数φμ,σ(x)= x ∈(-∞,+∞),其中实数μ,σ(σ>0)为参数,我们称φμ,σ(x)的图象为正态分布密度曲线,简称正态曲线. 2.正态曲线的性质:①曲线位于x 轴_____,与x 轴不相交. ②曲线是单峰的,它关于直线_____对称. ③曲线在x=μ处达到峰值______. ④曲线与x 轴之间的面积为__.⑤当σ一定时,曲线的位置由μ确定,曲线随着___的变化而沿x 轴平移. ⑥当μ一定时,曲线的形状由σ确定.σ越小,曲线越“_____”,表示总体的分布越_____;σ越大,曲线越“_____”,表示总体的分布越_____. 如右图所示。
3.正态变量在三个特殊区间内取值的概率 ①P(μ-σ<X ≤μ+σ)=_______; ②P(μ-2σ<X ≤μ+2σ)=_______; ③P(μ-3σ<X ≤μ+3σ)=_______. (二)典型例题:类型一、正态曲线的解析式 例1.如图是一个正态曲线.试根据该图像写出其正态分布的概率密度函数的解析式,求出总体随机变量的期望和方差.总结方法: 【变式训练1】1.关于正态曲线,下列说法正确的是_______.①函数 曲线上任一点M(x 0,y 0)的纵坐标y 0表示X=x 0的概率;②正态曲线在x 轴上方且与x 轴一定不相交;③如果随机变量X ˜N(μ, ),且F(x)=P(X<x),那么F(x)是R 上的增函数; ④μ一定时,σ越小,总体分布越分散;σ越大,总体分布越集中.()()22x 2x 2-μ-σϕπσ2σx<4-a)= .【变式训练2】设X ~N(1,22),试求P(-1<X ≤3)的值.P(X ≥5)的值 .类型三.正态曲线的实际应用例3.在某次数学考试中,考生的成绩X 服从正态分布X ~N(90,225). (1)求考试成绩X 位于区间(75,120)上的概率是多少?(2)若此次考试共有2000名考生,试估计考试成绩在120分以上的考生大约有多少人?总结方法:(四)课堂小结:。
高中数学正态分布教案及反思

高中数学正态分布教案及反思
一、教学目标
1. 理解正态分布的定义和性质。
2. 掌握使用正态分布表求解实际问题。
3. 能够在实际问题中应用正态分布理论解决问题。
二、教学重点和难点
重点:正态分布的定义和性质。
难点:应用正态分布理论解决实际问题。
三、教学流程
1. 导入:通过引入一个实际问题,引发学生对正态分布的思考。
2. 讲解:介绍正态分布的定义、性质以及正态分布表的使用方法。
3. 练习:让学生通过练习掌握正态分布的应用,并解决一些实际问题。
4. 拓展:让学生通过拓展性问题,进一步巩固对正态分布的理解。
5. 总结:对本节课的内容进行简单总结,澄清学生的疑惑。
四、课后作业
1. 完成练习题,巩固对正态分布的掌握。
2. 思考如何在日常生活中应用正态分布理论。
反思范本:
在本节课中,我认为我的教学方法比较灵活,能够引发学生的兴趣,让他们更加主动地参
与学习。
但是在讲解部分,我发现有些学生对正态分布的概念理解不够清晰,可能是因为
我在讲解时没有用简单明了的语言表达,导致学生理解困难。
在以后的教学中,我会更加
注重引导学生思考,让他们通过实际问题解决的方式来学习,以加深对知识的理解。
同时,我也会在备课时更加充分地考虑学生的接受能力,选择合适的教学方法和语言表达,让教
学效果更加明显。
《正态分布》的教学设计

《正态分布》的教学设计《正态分布》的教学设计作为一名教职工,就不得不需要编写教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。
那么你有了解过教学设计吗?下面是小编收集整理的《正态分布》的教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
今天我说课的内容是《正态分布》。
下面我从教材分析、目标分析、教学方法、学法指导、教学程序等几个方面来汇报对教材的钻研情况和本节课的教学设想。
一、教材分析正态分布是高中新教材人教A版选修2-3的第二章《随机变量及其分布》的最后一节内容,前面学习了离散型随机变量,离散型随机变量的取值是可列的。
今天我们会学习连续型随机变量,连续型随机变量是在某个区间内可取任何值。
其重要的代表——正态分布。
《正态分布》该节内容通过研究频率分布直方图、频率分布折线图、总体密度曲线,引出拟合的函数式,进而得到正态分布的概念,然后,分析正态曲线的特点和性质,最后研究了它的应用——随机变量落在某个区间的概率。
教材利用高尔顿板引入正态分布的密度曲线。
更直观,更易于解释曲线的来源。
正态分布是描述随机现象的一种最常见的分布,在现实生活中有非常广泛的应用。
二、目标分析本节课是一节概念课教学,应该让学生参与讨论、发现规律、探索并总结出性质和特点。
教学目标:1、理解并掌握正态分布和正态曲线的概念、意义及性质,并会画正态曲线。
2、通过正态分布的图形特征,归纳正态曲线的性质。
3、会用函数的概念、性质解决有关正态分布的问题。
能力目标:能用正态分布、正态曲线研究有关随机变量分布的规律,引导学生通过观察并探究规律,提高分析问题,解决问题的能力;培养学生数形结合,函数与方程等数学思想方法。
教学重点:归纳正态分布曲线的性质特点,掌握3σ原则。
教学难点:正态分布的意义的理解和性质的应用。
三、教法分析1.教学手段:运用多媒体辅助教学,增强教学的直观性,激发学生的学习兴趣。
《正态分布》教案

《正态分布》教案一、教学目标1. 让学生理解正态分布的概念和特点。
2. 让学生掌握正态分布的图形绘制和参数计算。
3. 让学生能够应用正态分布解决实际问题。
二、教学内容1. 正态分布的定义和性质2. 正态分布的概率密度函数和累积分布函数3. 正态分布的参数估计和假设检验4. 正态分布的应用实例三、教学方法1. 采用讲授法讲解正态分布的基本概念和性质。
2. 采用案例分析法分析正态分布的实际应用。
3. 采用互动讨论法引导学生探讨正态分布的问题解决方法。
四、教学准备1. 正态分布的教学PPT2. 正态分布的案例资料3. 正态分布的计算软件或工具五、教学过程1. 导入:通过一个与生活相关的正态分布实例,如身高、体重等,引出正态分布的概念。
2. 讲解:讲解正态分布的定义、性质、概率密度函数和累积分布函数。
3. 案例分析:分析正态分布的实际应用,如医学、工程等领域。
4. 实践操作:引导学生使用计算软件或工具,绘制正态分布图形,计算相关参数。
5. 互动讨论:引导学生探讨正态分布的问题解决方法,如参数估计、假设检验等。
6. 总结:对本节课的主要内容进行总结,强调正态分布的重要性和应用价值。
7. 作业布置:布置相关的练习题,巩固所学内容。
六、教学评估1. 课堂问答:通过提问的方式,了解学生对正态分布概念的理解程度。
2. 练习题:布置针对性的练习题,检查学生对正态分布知识的掌握情况。
3. 小组讨论:评估学生在小组讨论中的表现,了解他们能否将正态分布应用于实际问题。
七、教学拓展1. 对比其他概率分布:介绍与正态分布相关的其他概率分布,如二项分布、Poisson分布等,让学生了解它们的异同。
2. 正态分布的近似:讲解正态分布的近似方法,如68-95-99.7规则,让学生了解如何快速判断正态分布的数据范围。
八、教学难点与解决策略1. 正态分布的图形绘制和参数计算:通过示例和软件工具,让学生直观地理解正态分布的图形和参数。
2. 正态分布的假设检验:通过实际案例,讲解正态分布的假设检验方法,让学生掌握如何应用。
高中数学教案正态分布

高中数学教案--正态分布一、教学目标1. 让学生理解正态分布的概念,掌握正态分布曲线的特点及性质。
2. 培养学生运用正态分布解决实际问题的能力。
3. 引导学生运用数形结合的思想方法,分析正态分布的概率规律。
二、教学内容1. 正态分布的概念及特点2. 正态分布曲线的性质3. 正态分布的应用三、教学重点与难点1. 重点:正态分布的概念、特点及性质。
2. 难点:正态分布曲线的应用。
四、教学方法1. 采用讲授法、案例分析法、讨论法相结合的教学方法。
2. 利用多媒体课件辅助教学,增强学生的直观感受。
3. 引导学生主动探究,培养学生的动手实践能力。
五、教学过程1. 导入新课利用多媒体展示正态分布的实际例子,如考试成绩分布、身高分布等,引导学生思考正态分布的特点。
2. 讲解正态分布的概念及特点讲解正态分布的定义、概率密度函数、期望、方差等概念,并通过示例让学生理解正态分布的特点。
3. 分析正态分布曲线的性质分析正态分布曲线的对称性、尖峭性与平坦性,引导学生掌握正态分布曲线的特点。
4. 应用正态分布解决实际问题给出实际问题,如求某考生被录取的概率,引导学生运用正态分布公式进行计算。
5. 课堂小结总结本节课所学内容,强调正态分布的概念、特点及应用。
6. 布置作业布置一些有关正态分布的练习题,巩固所学知识。
7. 课后反思对本节课的教学情况进行反思,针对学生的掌握情况,调整教学策略。
六、教学评价1. 评价目标:通过评价学生对正态分布的理解和应用能力,检验教学目标的达成情况。
2. 评价方法:课堂问答:检查学生对正态分布概念和性质的理解。
练习题:评估学生运用正态分布解决实际问题的能力。
小组讨论:观察学生在讨论中的参与度和理解程度。
3. 评价内容:正态分布的定义和特征。
正态分布曲线的图形识别和特点描述。
正态分布公式和期望、方差的计算。
实际问题中正态分布的应用。
七、教学拓展1. 拓展话题:介绍正态分布在其他领域的应用,如物理学、生物学、社会科学等。
《正态分布》教案1

《正态分布》教案1【教学目标】1、了解正态分布的意义,掌握正态分布曲线的主要性质及正态分布的简单应用。
2、了解假设检验的基本思想,会用质量控制图对产品的质量进行检测,对生产过程进行控制。
【教学重难点】教学重点:1.正态分布曲线的特点;2.正态分布曲线所表示的意义.教学难点:1.在实际中什么样的随机变量服从正态分布;2.正态分布曲线所表示的意义.【教学过程】一、设置情境,引入新课这是一块高尔顿板,让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,最后掉入高尔顿板下方的某一球槽内。
问题1.在投放小球之前,你能知道这个小球落在哪个球槽中吗?问题2.重复进行高尔顿板试验,随着试验次数的增加,掉入每个球槽中小球的个数代表什么?问题3.为了更好的研究小球分布情况,对各个球槽进行编号,以球槽的编号为横坐标,以小球落入各个球槽的频率值为纵坐标,你能画出它的频率分布直方图吗?问题4.随着试验次数的增加,这个频率直方图的形状会发生什么样的变化?二、合作探究,得出概念随着试验次数的增加,这个频率直方图的形状会越来越像一条钟形曲线这条曲线可以近似下列函数的图像:21 斗・A(x) e 2- ,x (八,),72心其中实数丄和二(二.0)为参数,我们称的图像为正态分布密度曲线,曲线。
问题5.如果在高尔顿板的底部建立一个水平坐标轴,其刻度单位为球槽的宽度, 一个随机变量,X落在区间(a,b]的概率为什么?其几何意义是什么?一般地,如果对于任何实数a :::b,随机变量X满足bP(a<X 兰b) = f %^(x)dx,a2则称X的分布为正态分布,记作(」,二),如果随机变量X服从正态分布, X L (「二2)。
问题6.在现实生活中,什么样的分布服从或近似服从正态分布?问题7.结合;_(x)的解析式及概率的性质,你能说说正态分布曲线的特点吗? 简称正态X表示则记为可以发现,正态曲线有以下特点:(1)曲线位于x轴上方,与x轴不相交;(2)曲线是单峰的,它关于直线X -对称;1(3)曲线在x -「•处达到峰值一(4)曲线与x轴之间的面积为1 ;(5)当二一定时,曲线随着」德变化而沿x轴平移;(6)当」一定时,曲线的形状由匚确定,匚越小,曲线越“瘦高”,表示总体的分布越集中;二越大,曲线越“矮胖”,表示总体的分布越分散。
高中数学教案-正态分布

高中数学教案-正态分布教学目标:1. 理解正态分布的概念及其性质;2. 学会正态分布曲线的绘制;3. 能够应用正态分布解决实际问题。
教学重点:正态分布的概念及其性质,正态分布曲线的绘制。
教学难点:正态分布曲线的绘制,应用正态分布解决实际问题。
教学准备:PPT,黑板,粉笔,教学案例材料。
教学过程:一、导入(5分钟)1. 引入正态分布的概念,引导学生思考在日常生活中遇到的概率问题。
2. 通过举例,如考试及格率、身高分布等,让学生感知正态分布的存在。
二、新课讲解(15分钟)1. 讲解正态分布的定义及其数学表达式;2. 介绍正态分布的性质,如对称性、渐进线等;3. 讲解正态分布曲线的绘制方法,如标准正态分布曲线。
三、案例分析(10分钟)1. 提供几个实际案例,让学生应用正态分布进行分析;2. 引导学生思考如何利用正态分布解决实际问题。
四、课堂练习(5分钟)1. 布置几道有关正态分布的练习题,让学生独立完成;2. 对学生的练习结果进行讲解和指导。
2. 布置课后作业,巩固学生对正态分布的理解和应用能力。
教学反思:六、正态分布的参数估计(15分钟)1. 讲解正态分布的参数估计方法,包括均值和标准差的估计;2. 通过实例,让学生了解如何利用样本信息估计总体正态分布的参数;3. 介绍正态分布的置信区间和假设检验方法。
七、正态分布的应用(15分钟)1. 提供几个实际问题,让学生运用正态分布进行分析解决;2. 引导学生思考正态分布在不同领域的应用,如医学、工程等;3. 强调正态分布在水位监测、质量控制等方面的应用价值。
八、正态分布与其他分布的比较(10分钟)1. 介绍正态分布与其他常见分布(如均匀分布、指数分布等)的区别和联系;2. 通过图表和实例,让学生了解不同分布的特点及适用场景;3. 引导学生思考如何根据实际问题选择合适的概率分布模型。
九、正态分布的扩展(10分钟)1. 讲解正态分布的扩展形式,如对数正态分布、威布尔分布等;2. 介绍扩展正态分布的应用场景和解决实际问题的方法;3. 引导学生思考如何灵活运用正态分布及其扩展形式。
《正态分布》教案

《正态分布》教案一、教学目标1. 让学生理解正态分布的概念,掌握正态分布曲线的特点及应用。
2. 培养学生运用正态分布解决实际问题的能力。
3. 引导学生运用数形结合的思想方法,分析正态分布的概率性质。
二、教学内容1. 正态分布的概念2. 正态分布曲线的特点3. 正态分布的应用4. 标准正态分布5. 正态分布的概率计算三、教学重点与难点1. 教学重点:正态分布的概念、正态分布曲线的特点及应用。
2. 教学难点:正态分布的概率计算,标准正态分布表的使用。
四、教学方法1. 采用讲授法、案例分析法、讨论法、数形结合法等。
2. 利用多媒体课件辅助教学,增强直观性。
五、教学过程1. 导入:通过实际例子(如考试成绩分布)引出正态分布的概念。
2. 讲解:详细讲解正态分布的定义、特点及应用,引导学生掌握正态分布的基本知识。
3. 案例分析:分析实际问题,让学生运用正态分布解决具体问题。
4. 数形结合:利用图形(如正态分布曲线)帮助学生理解正态分布的概率性质。
5. 巩固练习:布置练习题,让学生巩固所学知识。
7. 布置作业:布置课后作业,巩固所学知识。
六、教学评价1. 评价方式:过程性评价与终结性评价相结合。
2. 评价内容:(1) 正态分布的概念、特点及应用的理解程度。
(2) 正态分布的概率计算能力。
(3) 数形结合思想的运用。
3. 评价方法:(1) 课堂问答、讨论。
(2) 课后练习及作业。
(3) 实际问题解决能力的展示。
七、教学资源1. 教材:《概率论与数理统计》。
2. 多媒体课件:正态分布的图形、案例分析等。
3. 标准正态分布表:供学生查询使用。
4. 实际案例资料:用于分析讨论。
八、教学进度安排1. 课时:2课时。
2. 教学计划:(1) 第一课时:正态分布的概念、特点及应用。
(2) 第二课时:正态分布的概率计算,案例分析。
九、教学反思1. 反思内容:(1) 学生对正态分布的理解程度。
(2) 教学方法的有效性。
(3) 学生实际问题解决能力的提升。
高中数学教案正态分布

高中数学教案-正态分布一、教学目标1. 了解正态分布的概念,掌握正态分布曲线的特点及对称性。
2. 能够运用正态分布的知识解决实际问题,如求随机事件的概率、判断事件是否独立等。
3. 培养学生的逻辑思维能力、数据分析能力及运用数学解决实际问题的能力。
二、教学内容1. 正态分布的概念及特点2. 正态分布曲线的对称性3. 标准正态分布表的使用4. 利用正态分布解决实际问题5. 练习与拓展三、教学重点与难点1. 重点:正态分布的概念、特点及对称性,标准正态分布表的使用。
2. 难点:利用正态分布解决实际问题。
四、教学方法1. 讲授法:讲解正态分布的概念、特点、对称性及标准正态分布表的使用。
2. 案例分析法:分析实际问题,引导学生运用正态分布解决这些问题。
3. 练习法:布置练习题,巩固所学知识。
4. 小组讨论法:分组讨论,培养学生的合作与交流能力。
五、教学过程1. 导入:引入正态分布的概念,引导学生思考实际生活中的正态分布现象。
2. 讲解:讲解正态分布的特点、对称性及标准正态分布表的使用。
3. 案例分析:分析实际问题,引导学生运用正态分布解决这些问题。
4. 练习:布置练习题,让学生巩固所学知识。
5. 总结:对本节课的内容进行总结,强调重点知识点。
6. 拓展:引导学生思考正态分布在其他领域的应用,提高学生的综合素质。
7. 作业布置:布置课后作业,巩固所学知识。
8. 课堂小结:对本节课的教学情况进行总结,为学生反馈学习情况。
六、教学评估1. 课后作业:布置有关正态分布的习题,要求学生在规定时间内完成,以此评估学生对课堂所学知识的掌握程度。
2. 课堂提问:在授课过程中,教师应适时提问学生,了解学生对正态分布概念、特点及应用的理解情况。
3. 小组讨论:评估学生在小组讨论中的表现,包括分析问题、解决问题及合作交流能力。
4. 课后访谈:教师可对部分学生进行课后访谈,了解他们对正态分布知识的理解和应用情况。
七、教学反思在授课结束后,教师应认真反思教学过程,包括:1. 教学内容是否符合学生实际需求,是否有助于培养学生的数学素养。
正态分布示范教案

正态分布示范教案【教案】一、教学目标1.知识目标:学生掌握正态分布的基本概念、标准正态分布的性质和正态分布的标准化方法。
2.能力目标:学生能够根据给定的正态分布的参数,计算相应的概率和区间。
3.情感目标:培养学生对数理统计的兴趣,增强数学思维和计算能力。
二、教学内容1.正态分布的基本概念及性质2.标准正态分布3.正态分布的标准化方法三、教学过程1.导入(10分钟)通过一个问题引入正态分布的概念,例子:“班级100名同学的数学考试成绩呈正态分布,平均成绩为70分,标准差为8分,问有多少学生的成绩在60分到80分之间?”引导学生思考并预测。
2.普及正态分布的概念(20分钟)简述正态分布的定义和性质,并引导学生理解正态分布的特点和应用,如图形呈钟形对称,均值、中位数和众数相等,标准差决定了曲线的陡缓程度等。
3.标准正态分布的引入(15分钟)引导学生了解标准正态分布的概念及特性,如均值为0,标准差为1,曲线在x轴两边分别为无穷远。
引导学生思考标准正态分布与一般正态分布的关系。
4.标准化方法的介绍(20分钟)通过具体的例子,教师示范如何将一般正态分布标准化为标准正态分布。
引导学生理解标准化的意义和方法,并进行实际操作练习。
5.应用计算(25分钟)通过多个实际问题,让学生应用所学的知识计算正态分布概率和区间。
如计算一些数值对应的标准分数,计算一段区间内的概率等。
6.总结与拓展(10分钟)总结正态分布的基本概念、标准正态分布的性质和正态分布的标准化方法,引导学生思考正态分布的实际应用领域,拓展学生的思维。
四、教学资源与评价教学资源:教材、白板、标准化表格等。
评价方式:课堂练习、小组讨论、个人作业等。
五、教学反思。
高中数学教案--正态分布

高中数学教案--正态分布一、教学目标1. 了解正态分布的概念、特点及应用范围。
2. 掌握正态分布曲线的性质,包括对称性、渐进线等。
3. 学会如何计算正态分布的概率密度函数和累积分布函数。
4. 能够运用正态分布解决实际问题,提高数据分析能力。
二、教学重点与难点1. 教学重点:正态分布的概念、特点及应用范围;正态分布曲线的性质;正态分布的概率密度函数和累积分布函数的计算。
2. 教学难点:正态分布的概率密度函数和累积分布函数的计算及应用。
三、教学方法1. 采用讲授法,讲解正态分布的基本概念、性质和计算方法。
2. 利用数形结合法,通过图形演示正态分布曲线的特点。
3. 结合实际案例,让学生学会运用正态分布解决实际问题。
4. 开展小组讨论,培养学生的合作能力和解决问题的能力。
四、教学准备1. 教学课件:正态分布的图形、性质、计算方法及应用案例。
2. 练习题:涵盖正态分布的基本概念、性质和计算方法。
3. 实际案例数据:用于引导学生运用正态分布解决实际问题。
五、教学过程1. 导入:通过一个实际案例,引出正态分布的概念,激发学生的兴趣。
2. 新课讲解:讲解正态分布的基本概念、性质和计算方法。
3. 案例分析:分析实际案例,让学生学会运用正态分布解决实际问题。
4. 课堂练习:让学生独立完成练习题,巩固所学知识。
6. 课后作业:要求学生完成练习题,加深对正态分布的理解和应用。
教学反思:本节课通过讲解正态分布的基本概念、性质和计算方法,让学生学会了如何运用正态分布解决实际问题。
在教学过程中,注意引导学生参与课堂讨论,提高学生的积极性和合作能力。
通过课后作业的布置,巩固所学知识,为后续课程的学习打下基础。
六、教学评价1. 评价目标:了解学生对正态分布的概念、性质和应用的掌握情况。
2. 评价方法:课堂练习、课后作业、小组讨论、课堂表现。
3. 评价内容:正态分布的基本概念、性质、计算方法及实际应用。
4. 评价时间:单元测试、学期末考试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4 正态分布教学设计乾安七中数学组杨文波2014-5-29一、教学目标1. 知识目标:理解并掌握(标准)正态分布和正态曲线的概念、意义及性质,并能简单应用。
2. 能力目标:能用正态分布、正态曲线研究有关随机变量分布的规律,引导学生通过观察并探究规律,提高分析问题,解决问题的能力;培养学生数形结合,函数与方程等数学思想方法。
3. 情感目标:通过教学中一系列的探究过程使学生体验发现的快乐,形成积极的情感,培养学生的进取意识和科学精神。
二、教学重点、难点:重点:正态分布的概念、正态曲线的性质和标准正态分布的一些简单计算。
难点:正态分布的意义和性质。
三、教学设想【一】导入新课1、问题引入:在2007年的高考中,某省全体考生的高考平均成绩是490分,标准差是80,计划本科录取率为0.4 ,则本科录取分数线可能划在多少分?2、回顾样本的频率分布与总体分布之间的关系.前面我们研究了离散新随机变量,他们只取有限个或可列个值,我们用分布列来描述总体的统计规律;而许多随机现象中出现的一些变量,如上节课研究的某产品的尺寸,它的取值是可以充满整个区间或者区域的,总体分布通常不易知道,我们是用什么去估计总体分布的呢?----用样本的频率分布(即频率分布直方图)去估计总体分布.回头看上一节得出的100个产品尺寸的频率分布直方图,发现:横坐标是产品的尺寸;纵坐标是频率与组距的比值,什么才是在各组取值的频率呢?---直方图的面积。
设想:当样本容量无限增大,分组的组距无限的缩小时,这个频率直方图无限接近于一条光滑的曲线-----总体密度曲线。
它能够很好的反映了总体在各个范围内取值的概率。
由概率的性质可以知道(1)整条曲线与x轴所夹的总面积应该是?---1(2)总体在任何一个区间内取值的概率等于这个范围内面积下面,同学们一起观察一下总体密度曲线的形状,看它具有什么特征?“中间高,两头低,左右对称”的特征。
像具有这种特征的总体密度曲线一般就是或者近似的是以下函数的图像。
(板书函数、标题):【二】正态分布(1)正态总体的函数解析式、正态分布与正态曲线产品尺寸的总体密度曲线具有“中间高,两头低”的特征,像这种类型的总体密度曲线,一般就是或近似地是以下一个函数的图象:(板书)),(x ,e 21)x (f 222)x (+∞-∞∈σπ=σμ--①这个总体是具有无限容量的抽象总体,其分布叫做正态分布,其图像叫做正态曲线。
在函数解析式中有两个参数μ、σ:μ表示总体的平均数;σ(σ>0)表示总体的标准差,下面我们来研究一下这两个参数在图像上有怎样的影响呢? 1、μ表示总体的平均数(它不就是前面学习的随机变量的?---期望,而期望是反映总体分布的?---平均水平),(回头看频率分布直方图)大家思考一下,这个总体分布的平均数在什么位置呢?最高点那个位置,为什么呢?因为规定的尺寸为25.40mm ,总体在它的左右取值的概率最大,尺寸过大或过小毕竟占少数,所以图像才会呈现“中间高,两头低”的特征。
下面大家看一下flash (改变μ的值,肯定学生的回答,得出1、2、3条性质)用《几何画板》画出三条正态曲线:即①μ=-1,σ=0.5;②μ=0,σ=1;③μ=1,σ=2,其图象如下图所示:①曲线在x 轴的上方,与x 轴不相交。
②曲线关于直线x=μ对称,且在x=μ时位于最高点。
③当x<μ时,曲线上升;当x>μ时,曲线下降。
并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近。
以上便是参数μ对正态曲线的影响2、下面我们再分析若 μ是定值,即对称轴一定,σ决定着曲线的什么? σ(σ>0)是总体的标准差(总体标准差是衡量总体波动大小的特征数,反映了总体分布的集中与离散程度)(再用《几何画板》改变的σ值,让学生总结规律,得出正态曲线的第五条性质)σ越小,曲线越“瘦高”,表示总体的分布越集中,那集中在什么位置?----平均数μ附近,同理: 若σ越大,曲线越“矮胖”,表示总体的分布越分散,越远离平均数;④当μ一定时,曲线的形状由改变μ的值确定。
σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中。
结论:正态分布由μ、σ唯一确定,因此记为:N (μ,2) (利用图像、性质解题)【例1】 (2007全国2理14)在某项测量中,测量结果服从正态分布N (1,2)(>0),若在(0,1)内取值的概率为0.4,则在(0,2)内取值的概率为 。
解.在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0),正态分布图象的对称轴为x=1,ξ在(0,1)内取值的概率为0.4,可知,随机变量ξ在(1,2)内取值的概率于ξ在(0,1)内取值的概率相同,也为0.4,这样随机变量ξ在(0,2)内取值的概率为0.8。
(5)当μ=0,σ=1时,相应的函数解析式大大的简化了:R x ,e 21)x (f 2x 2∈π=-。
其图像也简单了,关于y 轴对称,我们把这样的正态总体称为标准正态总体,相应的曲线称为标准正态曲线。
由于标准正态总体N(0,1)在正态总体研究中有非常重要的作用,人们专门制定了《标准正态分布表》以供查用(P —65)(在课件上,调出标准正态分布表,教学生查阅)1、在这个表中,相应于 x 0 的值Φ(x 0)是指总体取值小于x 0 的概率即Φ(x 0)=p(x<x 0))(0x x P ≤=。
(如图)2、利用标准正态曲线的对称性说明等式Φ(x 0)=1-Φ(-x 0)3、 标准正态总体在任一区间(x 1,x 2)内取值概率p )(21x x x <<=Φ(x 0)-Φ(x 1)的几何意义。
【例2】 求标准正态总体在(-1,2)内取值的概率。
解:利用等式p=Φ(x 0)-Φ(x 1)有p=Φ(2)-Φ(-1)= Φ(2)-[1-Φ(1)] 【三】 课堂练习1(2007湖南卷)设随机变量ξ服从标准正态分布(01)N ,,已知( 1.96)0.025Φ-=,则(|| 1.96)P ξ<=( C ) A .0.025B .0.050C .0.950D .0.975【分析】ξ服从标准正态分布(01)N ,,(|| 1.96)( 1.96 1.96)P P ξξ⇒<=-<<= (1.96)( 1.96)12( 1.96)120.0250.950.ΦΦΦ--=--=-⨯=【五】新的问题,激发兴趣我们通过标准正态曲线的对称性以及标准正态分布表,可以求出标准正态总体N(0,1)在任一区间(x 1,x 2)内取值的概率P )(21x x x <<=Φ(x 0)-Φ(x 1) 我们知道任何一对不同的μ,σ就有一个不同的正态总体,对于一般的正态总体N(μ,σ2),在任一区间(a,b)内的取值概率如何进行计算呢?可否也通过查标准正态分布表来求出它呢?-回答是肯定的,否则制定了标准正态分布表就失去了它的意义。
2.正态总体N(μ,σ2)在任一区间取值的概率计算(点拨思路,计算应用)。
一般的正态总体N(μ,σ2)均可以化成标准正态总体N(0,1)进行研究.可以证明,对任一正态总体N(μ,σ2),取值小于x 的概率F(0x )=P(x<0x )转化公式为: ⎪⎪⎭⎫⎝⎛-Φ=σμ00)(x x F 向学生指出,等式⎪⎭⎫ ⎝⎛σμ-Φ=x )x (F 的严格证明要用到积分变换的知识,它有待在今后的学习中解决。
最后,可向学生展示公式⎪⎭⎫ ⎝⎛σμ-Φ=x )x (F 的应用。
【例3】 已知正态总体N(1,4),.求F(|x|<3)。
(4)学习正态分布有什么意义? 服从正态分布的总体特征一般地,当一随机变量是大量微小的独立随机因素共同作用的结果,而每一种因素都不能起到压倒其他因素的作用时,这个随机变量就被认为服从正态分布.像产品尺寸这一类典型总体,它的特征是:生产条件正常稳定,即工艺、设备、技术、操作、原料、环境等可以控制的条件都相对稳定,而且不存在产生系统误差的明显因素.所以它服从正态分布下面,大家一起来找找实际生活中那些现象都服从或近似服从正态分布? 生产中,在正常生产条件下各种产品的质量指标、测量的误差(如电子管的使用寿命、零件的尺寸等)在生物学中,同一群体的某种特征(如08年广西区高考考生体检的身高、体重、肺活量),在一定条件下生长某农作物的产量等,在气象中,梧州今年五月份的平均气温、平均降雨量等,两江的水位等 在生活中,某一时间段的车流量、人流量,同学的考试成绩,喝的饮料等 总之:正态分布广泛存在于各个领域当中,在概率和统计中都占有重要地位【五】课堂小结1.本节课我们主要学习了正态分布的若干性质,服从正态分布的总体的特征,如何使用《标准正态分布表》,要求同学们能知道正态曲线的大致形状以及从图象上直观得到正态分布的性质,并能利用《标准正态分布表》及相关等式进行计算。
2.本节课介绍了如何利用标准正态分布表计算一般正态分布在任一区间取值的概率的方法。
这种方法体现了化归的思想方法。
对公式⎪⎭⎫ ⎝⎛σμ-Φ=x )x (F ,应在理解的基础上加以运用。
【三】 课堂练习1、设随即变量ξ服从正态分布)4,2(N ,求)42(<<ξP 。
(参考数据:;8413.0)1(=φ9772.0)2(=φ,6915.0)5.0(=φ )2、在2007年的高考中,某省全体考生的考试成绩服从正态分布N (490,80)2,若该省计划本科录取率为0.4 ,则本科录取分数线可能划在多少分?(参考数据:6.0)25.0(=φ)A .500分B .505分C .510分D .515分【六】布置作业:1、(2007浙江卷5)已知随机变量ξ服从正态分布2(2)N σ,, (4)0.84P ξ=≤,则(0)P ξ=≤( A )A .0.16B .0.32C .0.68D ,0.842.(2006年湖北卷)在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布()100,70N .已知成绩在90分以上(含90分)的学生有12名. (Ⅰ)试问此次参赛的学生总数约为多少人?(Ⅱ)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可供查阅的(部分)标准正态分布表()()x x P x <=φ16. 点评:本小题主要考查正态分布,对独立事件的概念和标准正态分布的查阅,考查运用概率统计知识解决实际问题的能力。
解:(Ⅰ)设参赛学生的分数为ξ,因为ξ~N(70,100),由条件知, P(ξ≥90)=1-P (ξ<90)=1-F(90)=1-Φ)107090(-=1-Φ(2)=1-0.9772=0.228.这说明成绩在90分以上(含90分)的学生人数约占全体参赛人数的2.28%,因此,参赛总人数约为0228.012≈526(人)。