MATLAB中的FFT实例讲解

合集下载

用MATLAB进行FFT频谱分析

用MATLAB进行FFT频谱分析

用MATLAB进行FFT频谱分析假设一信号:()()292.7/2cos1.0996.2/2sin1.06.0+++=ttRππ画出其频谱图。

分析:首先,连续周期信号截断对频谱的影响。

DFT变换频谱泄漏的根本原因是信号的截断。

即时域加窗,对应为频域卷积,因此,窗函数的主瓣宽度等就会影响到频谱。

实验表明,连续周期信号截断时持续时间与信号周期呈整数倍关系时,利用DFT变换可以得到精确的模拟信号频谱。

举一个简单的例子:()ππ2.0100cos+=tY其周期为。

截断时不同的持续时间影响如图一.1:(对应程序)140.0160.0180.02截断时,时间间期为周期整数倍,频谱图0.0250.0320406080100截断时,时间间期不为周期整数倍,频谱图图错误!文档中没有指定样式的文字。

.1其次,采样频率的确定。

根据Shannon 采样定理,采样带限信号采样频率为截止频率的两倍以上,给定信号的采样频率应>1/,取16。

再次,DFT 算法包括时域采样和频域采样两步,频域采样长度M 和时域采样长度N 的关系要符合M ≧N 时,从频谱X(k)才可完全重建原信号。

实验中信号R 经采样后的离散信号不是周期信号,但是它又是一个无限长的信号,因此处理时时域窗函数尽量取得宽一些已接近实际信号。

实验结果如图一.2:其中,0点位置的冲激项为直流分量造成(对应程序为)0204060801001201401601802000.40.50.60.70.800.050.10.150.20.250.30.350.40.450.550100150图 错误!文档中没有指定样式的文字。

.2♣ARMA (Auto Recursive Moving Average )模型:将平稳随机信号x(n)看作是零均值,方差为σu 2的白噪声u(n)经过线性非移变系统H(z)后的输出,模型的传递函数为()()()∑∑=-=-+==Pk kk Qr r rza zb z A z B z H 111用差分方程表示为()()()∑∑==-+--=Qr r P k k r n u b k n x a n x 01AR (Auto Recursive )自回归模型,即ARMA 模型中系数b 只有在r=0的情况下为1,其余都是零,获得一个全极点模型:()()()∑=-+==Pk kk za z A z B z H 111差分方程表示为:()()()n u k n x a n x Pk k +--=∑=1AR 模型的功率谱估计为:()()()Ω-ΩΩ=j j uj x e A e A eS 12σ程序:%%------------------------------------------------------------------------%%功能:利用MATLAB 的FFT 函数做双正弦信号频谱分析 %%------------------------------------------------------------------------ fs=16; t=0:1/fs:200;x6=+sin(2*pi*t/*+cos(2*pi*t/+2)*;subplot(2,1,1);plot(t,x6);N=length(t);subplot(212);plot((-N/2:N/2-1)*fs/N,abs(fftshift(fft(x6,N)))) %绘制信号的频谱,横轴对应实际频率axis([0 0 160]);例子:%%------------------------------------------------------------------------%%功能:连续周期信号截断对频谱的影响%%------------------------------------------------------------------------fs=8000;n1=;n=0:1/fs:n1;n=n(1,1:end-1);N=length(n);y=cos(100*pi*n+*pi);subplot(2,2,1);plot(n,y);title('函数y=cos(100{\pi}t+{\pi})');subplot(2,2,2);stem((-N/2:N/2-1)*fs/N,abs(fftshift(fft(y,N))));axis([0 1000 0 100]);grid on;title('截断时,时间间期为周期整数倍,频谱图');n1=;n=0:1/fs:n1;n=n(1,1:end-1);N=length(n);y=cos(100*pi*n+*pi);subplot(2,2,3);plot(n,y);title('函数y=cos(100{\pi}t+{\pi})');subplot(2,2,4);stem((-N/2:N/2-1)*fs/N,abs(fftshift(fft(y,N))));axis([0 1000 0 100]);grid on;title('截断时,时间间期不为周期整数倍,频谱图');。

matlab fft计算空间频谱例子

matlab fft计算空间频谱例子

一、概述在信号处理和图像处理领域,计算空间频谱是一项非常重要的任务。

通过计算空间频谱,我们可以了解信号或图像在不同频率下的分布情况,从而对其进行分析和处理。

而在Matlab中,fft(快速傅里叶变换)则是计算空间频谱的常用工具之一。

本文将以一个实际例子来介绍如何使用Matlab进行fft计算空间频谱。

二、实例背景假设我们有一个一维的音频信号,我们希望了解该信号在频域上的分布情况。

通过计算其空间频谱,我们可以观察到该信号在不同频率下的能量分布情况,并且进一步分析和处理该信号。

三、Matlab fft计算空间频谱步骤1.准备数据我们需要准备待分析的音频信号数据。

在Matlab中,我们可以使用以下命令生成一个包含随机信号的向量:```Matlabx = randn(1,1024);```这里生成了一个包含1024个随机数的向量x,代表了我们所要分析的音频信号。

2.进行fft计算接下来,我们可以使用Matlab中的fft函数对信号进行fft计算,得到其频谱。

具体的计算步骤如下:```MatlabN = length(x); 获取信号长度Y = fft(x); 对信号进行fft计算P2 = abs(Y/N); 计算双边频谱P1 = P2(1:N/2+1); 获取单边频谱P1(2:end-1) = 2*P1(2:end-1); 根据频谱长度修正幅值f = xxx*(0:(N/2))/N; 生成频率向量```在这段代码中,我们首先获取了信号长度N,然后对信号进行fft计算得到频谱Y。

我们计算了双边频谱P2,并根据频谱长度修正了其幅值。

我们生成了频率向量f,用于后续频谱可视化。

3.频谱可视化我们可以使用Matlab中的plot函数对频谱进行可视化展示,从而更直观地了解信号在频域上的分布情况。

```Matlabplot(f,P1)title('单边幅频特性')xlabel('频率(Hz)')ylabel('|P1(f)|')```通过以上步骤,我们就可以得到该音频信号在频域上的分布情况,并且可以通过频谱图来进一步分析和处理该信号。

matlab中fft滤波

matlab中fft滤波

matlab中fft滤波在MATLAB中,可以使用FFT(快速傅里叶变换)滤波器进行频域滤波。

FFT滤波器可以在频域上对信号进行处理,以去除不需要的噪声或干扰。

下面是一个简单的示例,演示如何使用FFT滤波器进行频域滤波:1、生成一个带有噪声的信号:matlabFs = 1000; % 采样频率t = 0:1/Fs:1-1/Fs; % 时间向量f = 50; % 信号频率x = sin(2*pi*f*t); % 纯净信号noise = 0.5*randn(size(t)); % 高斯噪声x_noisy = x + noise; % 带噪声的信号2、对带噪声的信号进行FFT变换:matlabX = fft(x_noisy); % FFT变换X_mag = abs(X); % 取幅度谱X_mag_normalized = X_mag/max(X_mag); % 归一化幅度谱3、定义滤波器参数:matlabf_cutoff = 100; % 截止频率alpha = 0.5; % 滤波器陡度参数4、应用FFT滤波器:matlabX_filtered = zeros(size(X));for k = 1:length(X)if X_mag[k] > f_cutoff/alphaX_filtered(k) = X(k);endendX_filtered = ifft(X_filtered); % IFFT变换,得到时域滤波后的信号5、可视化结果:matlabfigure;subplot(2,1,1); plot(t,x_noisy); title('带噪声的信号'); grid on;subplot(2,1,2); plot(t,real(X_filtered)); title('滤波后的信号'); grid on;在这个示例中,我们首先生成了一个带有高斯噪声的信号。

然后,我们对该信号进行FFT变换,并计算幅度谱。

[FFT] matlab中关于FFT的使用(理解频率分辨率、补零问题)

[FFT] matlab中关于FFT的使用(理解频率分辨率、补零问题)

[FFT] matlab中关于FFT的使用(理解频率分辨率、补零问题).txt我这人从不记仇,一般有仇当场我就报了。

没什么事不要找我,有事更不用找我!就算是believe中间也藏了一个lie!我那么喜欢你,你喜欢我一下会死啊?我又不是人民币,怎么能让人人都喜欢我?[FFT]matlab中关于FFT的使用(理解频率分辨率、补零问题)一.调用方法X=FFT(x);X=FFT(x,N);x=IFFT(X);x=IFFT(X,N)用MATLAB进行谱分析时注意:(1)函数FFT返回值的数据结构具有对称性。

例:N=8;n=0:N-1;xn=[4 3 2 6 7 8 9 0];Xk=fft(xn)→Xk =39.0000 -10.7782 + 6.2929i 0 - 5.0000i 4.7782 - 7.7071i 5.0000 4.7782 + 7.7071i 0 + 5.0000i -10.7782 - 6.2929iXk与xn的维数相同,共有8个元素。

Xk的第一个数对应于直流分量,即频率值为0。

(2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。

在IFFT时已经做了处理。

要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。

二.FFT应用举例例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。

采样频率fs=100Hz,分别绘制N=128、1024点幅频图。

clf;fs=100;N=128; %采样频率和数据点数n=0:N-1;t=n/fs; %时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号y=fft(x,N); %对信号进行快速Fourier变换mag=abs(y); %求得Fourier变换后的振幅f=n*fs/N; %频率序列subplot(2,2,1),plot(f,mag); %绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=128');grid on;subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=128');grid on;%对信号采样数据为1024点的处理fs=100;N=1024;n=0:N-1;t=n/fs;x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号y=fft(x,N); %对信号进行快速Fourier变换mag=abs(y); %求取Fourier变换的振幅f=n*fs/N;subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');grid on;subplot(2,2,4)plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');grid on;运行结果:fs=100Hz,Nyquist频率为fs/2=50Hz。

MATLAB信号频谱分析FFT详解

MATLAB信号频谱分析FFT详解

MATLAB信号频谱分析FFT详解FFT(快速傅里叶变换)是一种常用的信号频谱分析方法,它可以将信号从时域转换到频域,以便更好地分析信号中不同频率成分的特征。

在MATLAB中,使用fft函数可以方便地进行信号频谱分析。

首先,我们先介绍一下傅里叶变换的基本概念。

傅里叶变换是一种将信号分解成不同频率成分的技术。

对于任意一个周期信号x(t),其傅里叶变换X(f)可以表示为:X(f) = ∫(x(t)e^(-j2πft))dt其中,X(f)表示信号在频率域上的幅度和相位信息,f表示频率。

傅里叶变换可以将信号从时域转换到频域,以便更好地分析信号的频率特征。

而FFT(快速傅里叶变换)是一种计算傅里叶变换的高效算法,它通过分治法将傅里叶变换的计算复杂度从O(N^2)降低到O(NlogN),提高了计算效率。

在MATLAB中,fft函数可以方便地计算信号的傅里叶变换。

使用FFT进行信号频谱分析的步骤如下:1. 构造信号:首先,我们需要构造一个信号用于分析。

可以使用MATLAB中的一些函数生成各种信号,比如sin、cos、square等。

2. 采样信号:信号通常是连续的,为了进行FFT分析,我们需要将信号离散化,即进行采样。

使用MATLAB中的linspace函数可以生成一定长度的离散信号。

3. 计算FFT:使用MATLAB中的fft函数可以方便地计算信号的FFT。

fft函数的输入参数是离散信号的向量,返回结果是信号在频率域上的复数值。

4. 频率换算:信号在频域上的复数值其实是以采样频率为单位的。

为了更好地观察频率成分,我们通常将其转换为以Hz为单位的频率。

可以使用MATLAB中的linspace函数生成一个对应频率的向量。

5. 幅度谱计算:频域上的复数值可以由实部和虚部表示,我们一般更关注其幅度,即信号的相对强度。

可以使用abs函数计算出频域上的幅度谱。

6. 相位谱计算:除了幅度谱,信号在频域上的相位信息也是重要的。

C语言、Matlab实现FFT几种编程实例..

C语言、Matlab实现FFT几种编程实例..
y=[yl,y2];
figure(1);
plot(y); %funboxing(O.001+1/3)
%////////////////////////
%/////////快速傅里叶变换matlab程序:
%////////////////////////clc;
clear;
clf;
N=input('Node number')
end
d1=1;
for m=1:log2(N)
d2=d1; %做蝶形运算的两个数之间的距离
d1=d1*2; %同一级之下蝶形结之间的距离
W=1; %蝶形运算系数的初始值
dw=exp(-j*pi/d2); %蝶形运算系数的增加量
for t=1:d2 %
for i=t:d1:N
i1=i+d2;
if(i1>N)break; %判断是否超出范围
函数原型:void main()
函数功能:测试FFT变换,演示函数使用方法
输入参数:无
输出参数:无
************************************************************/
void main()
{
int i;
for(i=0;i<FFT_N;i++) //给结构体赋值
T=input('cai yang jian ge')
f=input('frenquency')
choise=input('add zero or not? 1/0 ')
n=0:T:(N-1)*T; %采样点
k=0:N-1;

matlab中fft的fundamental

matlab中fft的fundamental

matlab中fft的fundamental
【最新版】
目录
1.MATLAB 中 FFT 的基本概念
2.FFT 的计算方法
3.FFT 的应用实例
正文
一、MATLAB 中 FFT 的基本概念
快速傅里叶变换(FFT)是一种高效的计算离散傅里叶变换(DFT)的算法。

在 MATLAB 中,FFT 函数可以用来计算信号的频域表示,从而分析信号的频率特性。

FFT 函数可以对信号进行频域分析,例如计算幅度、相位等。

二、FFT 的计算方法
FFT 的计算方法有多种,如蝴蝶运算、位逆序置换等。

在 MATLAB 中,FFT 函数采用蝴蝶运算的方法进行计算。

其基本思想是将 DFT 分解成更小的子问题,从而减少计算量。

蝴蝶运算通过将输入序列分为两部分,并用一个类似蝴蝶翅膀的形状进行计算,从而得到 FFT 结果。

三、FFT 的应用实例
1.信号频谱分析:FFT 可以用来分析信号的频谱特性,例如计算信号的幅度、相位等。

2.去噪:通过 FFT 可以将信号转换到频域,从而在频域中进行滤波去噪。

3.数据压缩:利用 FFT 可以将信号转换为频域表示,从而去除信号中的低频成分,实现数据压缩。

4.音频处理:在音频处理中,FFT 可以用来分析音频信号的频率特性,例如计算音频信号的基频等。

综上所述,MATLAB 中的 FFT 函数是一种强大的信号处理工具,可以应用于信号的频谱分析、去噪、数据压缩和音频处理等领域。

利用MATLAB编写FFT快速傅里叶变换

利用MATLAB编写FFT快速傅里叶变换

一、实验目的1.利用MATLAB 编写FFT 快速傅里叶变换。

2.比较编写的myfft 程序运算结果与MATLAB 中的FFT 的有无误差。

二、实验条件PC 机,MATLAB7.0三、实验原理1. FFT (快速傅里叶变换)原理:将一个N 点的计算分解为两个N/2点的计算,每个N/2点的计算再进一步分解为N/4点的计算,以此类推。

根据DFT 的定义式,将信号x[n]根据采样号n 分解为偶采样点和奇采样点。

设偶采样序列为y[n]=x[2n],奇采样序列为z[n]=x[2n+1]。

上式中的k N W -为旋转因子N k j e /2π-。

下式则为y[n]与z[n]的表达式:2.蝶形变换的原理:下图给出了蝶形变换的运算流图,可由两个N/2点的FFT(Y[k]和Z[k]得出N点FFT X[k])。

同理,每个N/2点的FFT可以由两个N/4点的FFT求得。

按这种方法,该过程可延迟后推到2点的FFT。

下图为N=8的分解过程。

图中最右边的为8个时域采样点的8点FFTX[k],由偶编号采样点的4点FFT和奇编号采样点的4点得到。

这4点偶编号又由偶编号的偶采样点的2点FFT和奇编号的偶采样点的2点FFT产生。

相同的4点奇编号也是如此。

依次往左都可以用相同的方法算出,最后由偶编号的奇采样点和奇编号的偶采样点的2点FFT算出。

图中没2点FFT成为蝶形,第一级需要每组一个蝶形的4组,第二级有每组两个蝶形的两组,最后一级需要一组4个蝶形。

四、实验内容1.定义函数disbutterfly ,程序根据FFT 的定义:]2[][][N n x n x n y ++=、n N W N n x n x n z -+-=])2[][(][,将序列x 分解为偶采样点y 和奇采样点z 。

function [y,z]=disbutterfly(x)N=length(x);n=0:N/2-1;w=exp(-2*1i*pi/N).^n;x1=x(n+1);x2=x(n+1+N/2);y=x1+x2;z=(x1-x2).*w;2.定义函数rader ,纠正输出序列的输出顺序。

FFT算法(用matlab实现)

FFT算法(用matlab实现)

数字信号处理实验报告 实验二 FFT 算法的MATLAB 实现(一)实验目的:理解离散傅立叶变换时信号分析与处理的一种重要变换,特别是FFT 在数字信号处理中的高效率应用。

(二)实验原理:1、有限长序列x(n)的DFT 的概念和公式:⎪⎪⎩⎪⎪⎨⎧-≤≤=-≤≤=∑∑-=--=101010)(1)(10)()(N k kn N N n kn N N n W k x N n x N k W n x k x)/2(N j N eW π-=2、FFT 算法调用格式是 X= fft(x) 或 X=fft(x,N)对前者,若x 的长度是2的整数次幂,则按该长度实现x 的快速变换,否则,实现的是慢速的非2的整数次幂的变换;对后者,N 应为2的整数次幂,若x 的长度小于N ,则补零,若超过N ,则舍弃N 以后的数据。

Ifft 的调用格式与之相同。

(三)实验内容1、题一:若x(n)=cos(n*pi/6)是一个N=12的有限序列,利用MATLAB 计算它的DFT 并画出图形。

源程序: clc; N=12; n=0:N-1; k=0:N-1;xn=cos(n*pi/6); W=exp(-j*2*pi/N); kn=n'*kXk=xn*(W.^kn) stem(n,Xk); xlabel('k'); ylabel('Xk'); grid on ;也可用FFT 算法直接得出结果,程序如下: clc; N=12; n=0:N-1;xn=cos(n*pi/6);Xk=fft(xn,N); stem(n,Xk); xlabel('k'); ylabel('Xk'); grid on ;实验结果:24681012kX k分析实验结果:用DFT 和用FFT 对序列进行运算,最后得到的结果相同。

但用快速傅立叶变换的运算速度可以快很多。

2、题二:一被噪声污染的信号,很难看出它所包含的频率分量,如一个由50Hz 和120Hz 正弦信号构成的信号,受均值随机噪声的干扰,数据采样率为1000Hz ,通过FFT 来分析其信号频率成分,用MA TLAB 实现。

用matlab实现离散傅里叶变换

用matlab实现离散傅里叶变换

用matlab实现离散傅里叶变换
摘要:
1.离散傅里叶变换的概述
2.MATLAB 实现离散傅里叶变换的方法
3.离散傅里叶变换的应用实例
4.注意事项和局限性
正文:
一、离散傅里叶变换的概述
离散傅里叶变换(Discrete Fourier Transform,DFT)是一种在离散域中实现的傅里叶变换,它可以将一个离散信号从时域转换到频域。

DFT 在工程、科学和数学等领域有着广泛的应用,例如信号处理、图像处理、音频处理等。

二、MATLAB 实现离散傅里叶变换的方法
MATLAB 提供了fft 函数来实现离散傅里叶变换,该函数的用法如下:```matlab
X = fft(x);
```
其中,x 是输入的离散信号,X 是输出的离散傅里叶变换结果。

fft 函数的运行时间与输入信号的长度成正比,因此对于较大的信号,计算时间可能会较长。

三、离散傅里叶变换的应用实例
1.信号处理:在通信系统中,信号往往受到噪声的影响,通过离散傅里叶
变换可以将信号从时域转换到频域,以便分析和处理。

2.图像处理:离散傅里叶变换可以用于图像的频谱分析,从而实现图像的滤波、增强和压缩等操作。

3.音频处理:离散傅里叶变换可以用于音频信号的谱分析,从而实现音频信号的滤波、降噪和音质增强等操作。

四、注意事项和局限性
1.当使用fft 函数时,需要注意输入信号的长度应为2 的整数次幂,否则会导致结果错误。

2.在进行离散傅里叶变换时,需要根据实际应用场景选择合适的窗函数,以避免频谱泄漏和频谱混叠等问题。

3.离散傅里叶变换是一种近似方法,当信号长度较小时,结果可能存在误差。

matlab中fft函数的用法及关键问题详解

matlab中fft函数的用法及关键问题详解

MATLAB中的FFT函数用于计算一维和多维数组的离散傅里叶变换(DFT)及其逆变换。

以下是一些FFT函数的用法和关键问题的详解:用法:1. 一维FFT:```matlabY = fft(X)```其中,X是输入的一维数组,Y是输出的频域表示。

2. 多维FFT:```matlabY = fft(X,N)```其中,X是输入的多维数组,N指定输出数组的大小。

3. 逆FFT:```matlabX = ifft(Y)```其中,Y是输入的频域表示,X是输出的时域表示。

4. 多维逆FFT:```matlabX = ifft(Y,N)```其中,Y是输入的频域表示,N指定输出数组的大小。

关键问题详解:1. 零填充:FFT函数在计算DFT时默认进行零填充。

如果输入数组的大小不是2的幂,则会自动将其扩展到最近的较大2的幂。

可以通过指定第二个参数来选择不同的填充长度。

例如,fft(X,N)将X扩展到N点进行计算。

2. 长度为N的输入数组的DFT具有N个复数输出,可以表示为N 个频率分量的幅度和相位。

在计算DFT时,需要确保输入数组的长度不超过2^16-1(约65535),否则会超出MATLAB的矩阵大小限制。

如果需要处理更大的数据,可以使用分段处理或降采样等技术。

3. FFT函数返回的是复数数组,表示每个频率分量的幅度和相位。

可以使用abs函数获取幅度,使用angle函数获取相位。

对于逆FFT,输出的是实数数组,表示时域信号的样本值。

4. FFT函数默认按照升序排列频率分量。

如果需要按照降序排列,可以使用fftshift函数将输出数组进行平移操作。

例如,Y = fftshift(fft(X))将输出数组Y按照降序排列频率分量。

5. FFT函数对于输入数据的顺序和布局方式有特定的要求。

对于多通道数据(例如,多路信号),需要按照一定的顺序和布局方式进行排列,以确保正确的计算结果。

可以使用MATLAB中的矩阵布局工具(如meshgrid)来帮助定义数据的位置坐标和采样间隔等参数。

MATLAB快速傅里叶变换(fft)函数详解

MATLAB快速傅里叶变换(fft)函数详解

MATLAB快速傅⾥叶变换(fft)函数详解定义:M ATLAB帮助⽂件原⽂The 'i' in the 'Nth root of unity' 是虚数单位调⽤:1. Y = fft(y);2. Y = fft(y,N);式中,y是序列,Y是序列的快速傅⾥叶变换。

y可以是⼀向量或矩阵,若y为向量,则Y是y的FFT,并且与y具有相同的长度。

若y为⼀矩阵,则Y是对矩阵的每⼀列向量进⾏FFT。

说明:1. 函数fft返回值的数据结构具有对称性根据采样定理,fft能分辨的最⾼频率为采样频率的⼀半(即Nyquist频率),函数fft返回值是以Nyqusit频率为轴对称的,Y的前⼀半与后⼀半是复数共轭关系。

2. 幅值作FFT分析时,幅值⼤⼩与输⼊点数有关,要得到真实的幅值⼤⼩,只要将变换后的结果乘以2除以N即可(但此时零频—直流分量—的幅值为实际值的2倍)。

对此的解释是:Y除以N得到双边谱,再乘以2得到单边谱(零频在双边谱中本没有被⼀分为⼆,⽽转化为单边谱过程中所有幅值均乘以2,所以零频被放⼤了)。

3. 基频若分析数据时长为T,则分析结果的基频就是f0=1/T,分析结果的频率序列为[0:N-1]*f04. 执⾏N点FFT在调⽤格式2中,函数执⾏N点FFT。

若y为向量且长度⼩于N,则函数将y补零⾄长度N,若向量y的长度⼤于N,则函数截断y使之长度为N。

注意:使⽤N点FFT时,若N⼤于向量y的长度,将给频谱分析结果带来变化,应该特别注意。

例⼦:将对N点FFT进⾏举例,说明当N⼤于向量y的长度时给频谱分析带来的变化。

例图上图中,左列为信号时域图形,右列为对应信号的频谱图。

可以看出当N⼤于向量y的长度时,由于fft⾃动将100s后的信号值补零,原信号实际变为左下⾓的时域图形,所以频率发⽣了变化(增加多种频率的⼩振幅振动,主峰幅值被削弱)。

结论:使⽤N点FFT时,不应使N⼤于y向量的长度,否则将导致频谱失真。

MATLAB中FFT的使用方法(频谱分析)

MATLAB中FFT的使用方法(频谱分析)

MATLAB中FFT的使用方法(频谱分析)一.调用方法X=FFT(x);X=FFT(x,N);x=IFFT(X);x=IFFT(X,N)用MATLAB进行谱分析时注意:(1)函数FFT返回值的数据结构具有对称性。

例:N=8;n=0:N-1;xn=[4 3 2 6 7 8 9 0];Xk=fft(xn)→Xk =39.0000 -10.7782 + 6.2929i 0 - 5.0000i 4.7782 - 7.7071i 5.0000 4.7782 + 7.7071i 0 + 5.0000i -10.7782 - 6.2929iXk与xn的维数相同,共有8个元素。

Xk的第一个数对应于直流分量,即频率值为0。

(2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。

在IFFT时已经做了处理。

要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。

二.FFT应用举例例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。

采样频率fs=100Hz,分别绘制N=128、1024点幅频图。

clf;fs=100;N=128; %采样频率和数据点数n=0:N-1;t=n/fs; %时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号y=fft(x,N); %对信号进行快速Fourier变换mag=abs(y); %求得Fourier变换后的振幅f=n*fs/N; %频率序列subplot(2,2,1),plot(f,mag); %绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=128');grid on;subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=128');grid on;%对信号采样数据为1024点的处理fs=100;N=1024;n=0:N-1;t=n/fs;x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号y=fft(x,N); %对信号进行快速Fourier变换mag=abs(y); %求取Fourier变换的振幅f=n*fs/N;subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');grid on;subplot(2,2,4)plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');grid on;运行结果:fs=100Hz,Nyquist频率为fs/2=50Hz。

matlab的FFT函数介绍

matlab的FFT函数介绍

matlab的FFT函数2010-04-26 22:16相关语法:Y = fft(X)Y = fft(X,n)Y = fft(X,[],dim)Y = fft(X,n,dim)定义如下:相关的一个例子:Fs = 1000; % 采样频率T = 1/Fs; % 采样时间L = 1000; % 总的采样点数t = (0:L-1)*T; % 时间序列(时间轴)%产生一个幅值为0.7频率为50HZ正弦+另外一个信号的幅值为1频率为120Hz 的正弦信号x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);y = x + 2*randn(size(t)); % 混入噪声信号plot(Fs*t(1:50),y(1:50)) %画出前50个点title('Signal Corrupted with Zero-Mean Random Noise')xlabel('time (milliseconds)')NFFT = 2^nextpow2(L); % 求得最接近总采样点的2^n,这里应该是2^10=1024 Y = fft(y,NFFT)/L; %进行fft变换(除以总采样点数,是为了后面精确看出原始信号幅值)f = Fs/2*linspace(0,1,NFFT/2+1);%频率轴(只画到Fs/2即可,由于y为实数,后面一半是对称的)% 画出频率幅度图形,可以看出50Hz幅值大概0.7,120Hz幅值大概为1.plot(f,2*abs(Y(1:NFFT/2+1)))title('Single-Sided Amplitude Spectrum of y(t)')xlabel('Frequency (Hz)')ylabel('|Y(f)|')PS:前段时间,只是为了自己看明白,没有管太多,刚才上空间发现几位的留言,感觉惭愧。

matlab 信号按频率分解

matlab 信号按频率分解

matlab 信号按频率分解在MATLAB中,我们可以使用快速傅里叶变换(FFT)来对信号进行频率分解。

首先,我们需要获取信号的时间域数据,然后使用MATLAB中的fft函数对其进行傅里叶变换。

以下是一个简单的示例代码,演示了如何在MATLAB中对信号进行频率分解:matlab.% 生成示例信号。

fs = 1000; % 采样频率。

t = 0:1/fs:1-1/fs; % 时间向量。

f1 = 50; % 信号1的频率。

f2 = 120; % 信号2的频率。

A1 = 1; % 信号1的幅度。

A2 = 0.5; % 信号2的幅度。

x = A1sin(2pif1t) + A2sin(2pif2t); % 合成信号。

% 进行傅里叶变换。

N = length(x); % 信号长度。

X = fft(x)/N; % 进行傅里叶变换并归一化。

% 计算频率轴。

f = (0:N-1)(fs/N); % 计算频率轴。

% 绘制频谱。

plot(f,abs(X));xlabel('频率 (Hz)');ylabel('幅度');title('信号频率分解');在这个示例中,我们首先生成了一个包含两个不同频率信号的合成信号。

然后使用fft函数对其进行傅里叶变换,并通过归一化处理得到频率分量的幅度。

最后,我们绘制了信号的频率分解图,横坐标表示频率,纵坐标表示对应频率分量的幅度。

除了这个简单的示例之外,在实际应用中,我们还可以对信号进行滤波、频谱分析、谱估计等进一步处理,以更全面地了解信号的频率特性。

总的来说,在MATLAB中进行信号的频率分解是非常方便和灵活的,可以根据实际需求进行相应的处理和分析。

matlab的FFT函数介绍

matlab的FFT函数介绍

matlab的FFT函数之欧侯瑞魂创作时间:二O二一年七月二十九日2010-04-26 22:16相关语法:Y = fft(X)Y = fft(X,n)Y = fft(X,[],dim)Y = fft(X,n,dim)定义如下:相关的一个例子:Fs = 1000; % 采样频率T = 1/Fs; % 采样时间L = 1000; % 总的采样点数t = (0:L-1)*T; % 时间序列(时间轴)%发生一个幅值为0.7频率为50HZ正弦+另外一个信号的幅值为1频率为120Hz 的正弦信号x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);y = x + 2*randn(size(t)); % 混入噪声信号plot(Fs*t(1:50),y(1:50)) %画出前50个点title('Signal Corrupted with Zero-Mean Random Noise')xlabel('time (milliseconds)')NFFT = 2^nextpow2(L); % 求得最接近总采样点的2^n,这里应该是2^10=1024 Y = fft(y,NFFT)/L; %进行fft变换(除以总采样点数,是为了后面精确看出原始信号幅值)f = Fs/2*linspace(0,1,NFFT/2+1);%频率轴(只画到Fs/2即可,由于y为实数,后面一半是对称的)% 画出频率幅度图形,可以看出50Hz幅值大概0.7,120Hz幅值大概为1.plot(f,2*abs(Y(1:NFFT/2+1)))title('Single-Sided Amplitude Spectrum of y(t)')xlabel('Frequency (Hz)')ylabel('|Y(f)|')PS:前段时间,只是为了自己看明白,没有管太多,刚才上空间发现几位的留言,感觉忸捏。

MATLAB中的FFT实例讲解

MATLAB中的FFT实例讲解

MATLAB仿真实验傅里叶变换与信号频谱图本实验将简要介绍如何利用FFT函数描绘指定信号的频谱图像。

一、相关函数1、FFT函数离散傅里叶(Fourier)变换函数。

【语法】Y = fft(X)Y = fft(X,n)Y = fft(X,[],dim)Y = fft(X,n,dim)相关函数:IFFT(x)逆傅里叶变换。

【例1】画出函数y(t)的图像。

t = 0:0.001:0.6;x = sin(2*pi*50*t)+sin(2*pi*120*t);y = x + 2*randn(size(t));plot(1000*t(1:50),y(1:50))title('Signal Corrupted with Zero-Mean Random Noise')xlabel('time (milliseconds)')Signal Corrupted with Zero-Mean Random Noise Frequency content of y【图像】Power spectral densityFrequency (Hz)(a)时域图f(t)(b)频域图F(ω) 图3Sin(100πt)+2Sin(280πt)的频谱图4、()(100)(280)f t Sin t Cos t ππ=g 的频谱图调制信号sin(100)t π,载波cos(280)t π。

【程序】Frequency (Hz)Frequency (Hz)图(c )Cos (280πt )频谱图 图4 Sin (100πt )Cos (280πt )的频谱图4、带有随机噪声的信号频谱若传输信号为()sin(100)sin(280)f t t t ππ=+,在传输过程中由于信道噪声的干扰,波形变得杂乱无章。

利用频域变换可以分辨出两种频率成份。

Power spectral density)。

matlab的FFT函数介绍

matlab的FFT函数介绍

matlab的FFT函数之阳早格格创做2010-04-26 22:16相闭语法:Y = fft(X)Y = fft(X,n)Y = fft(X,[],dim)Y = fft(X,n,dim)定义如下:相闭的一个例子:Fs = 1000; % 采样频次T = 1/Fs; % 采样时间L = 1000; % 总的采样面数t = (0:L-1)*T; % 时间序列(时间轴)%爆收一个幅值为0.7频次为50HZ正弦+其余一个旗号的幅值为1频次为120Hz 的正弦旗号x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);y = x + 2*randn(size(t)); % 混进噪声旗号plot(Fs*t(1:50),y(1:50)) %绘出前50个面title('Signal Corrupted with Zero-Mean Random Noise')xlabel('time (milliseconds)')NFFT = 2^nextpow2(L); % 供得最交近总采样面的2^n,那里该当是2^10=1024 Y = fft(y,NFFT)/L; %举止fft变更(除以总采样面数,是为了后里透彻瞅出本初旗号幅值)f = Fs/2*linspace(0,1,NFFT/2+1);%频次轴(只绘到Fs/2即可,由于y为真数,后里一半是对于称的)% 绘出频次幅度图形,不妨瞅出50Hz幅值大概0.7,120Hz幅值大概为1.plot(f,2*abs(Y(1:NFFT/2+1)))title('Single-Sided Amplitude Spectrum of y(t)')xlabel('Frequency (Hz)')ylabel('|Y(f)|')PS:前段时间,不过为了自己瞅明黑,不管太多,刚刚才上空间创造几位的留止,感觉忸捏.本来要掌握matlab中fft的用法,主要有二面注意的场合:1、从公式上瞅,matlab的fft序号是从1到N,然而是绝大普遍课本上是从0到N-1.2、Y=fft(x)之后,那个Y是一个复数,它的模值该当除以(length(x)2),才搞得到各个频次旗号本质幅值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MATLAB仿真实验
傅里叶变换与信号频谱图
本实验将简要介绍如何利用FFT函数描绘指定信号的频谱图像。

一、相关函数
1、FFT函数
离散傅里叶(Fourier)变换函数。

【语法】
Y = fft(X)
Y = fft(X,n)
Y = fft(X,[],dim)
Y = fft(X,n,dim)
相关函数:IFFT(x)逆傅里叶变换。

【例1】画出函数y(t)的图像。

t = 0:0.001:0.6;
x = sin(2*pi*50*t)+sin(2*pi*120*t);
y = x + 2*randn(size(t));
plot(1000*t(1:50),y(1:50))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('time (milliseconds)')
Signal Corrupted with Zero-Mean Random Noise Frequency content of y
【图像】
Power spectral density
Frequency (Hz)(a)时域图f(t)(b)频域图F(ω) 图3Sin(100πt)+2Sin(280πt)的频谱图
4、()(100)(280)f t Sin t Cos t ππ=g 的频谱图
调制信号sin(100)t π,载波cos(280)t π。

【程序】
Frequency (Hz)
Frequency (Hz)
图(c )Cos (280πt )频谱图 图4 Sin (100πt )Cos (280πt )的频谱图
4、带有随机噪声的信号频谱
若传输信号为()sin(100)sin(280)f t t t ππ=+,在传输过程中由于信道噪声的干
扰,波形变得杂乱无章。

利用频域变换可以分辨出两种频率成份。

Power spectral density
)。

相关文档
最新文档