经典光学物理学史36页PPT
物理学史ppt课件
![物理学史ppt课件](https://img.taocdn.com/s3/m/6ed3df59a417866fb94a8e2e.png)
主要贡献
开普勒行星三定律----中世纪科学与近代科 学的分水岭
1600年与第谷合作,使他从第谷处
获得了大量精确的天文学数据。 于1609和1619年,他先后提出了 行星运动三定律。
第谷用过的望远镜
第谷在天文台工作
7
1609年,开普勒出版了《新天文学》一书,提出了 著名的开普勒第一定律和第二定律。 第一定律(轨道定律):所有行星绕太阳运动的轨 道都是椭圆,太阳处在椭圆的一个焦点上。
伽利略的折射式望远镜
14
2、在力学方面的贡献:
(1)确立描述运动的基本特征量——速度和加速 度。
(2)用理想实验和斜面实验驳斥了亚里士多德的 “重物下落快”的错误观点,发现自由落体定 律,v=gt、h=gt2/2。
(3)发现惯性定律——隔了一代人,被牛顿总结成动 力学的基本定律之一。 (4)提出了运动的相对性原理。
20
牛顿第二定律:物体加速度的大 小跟它受到的作用力成正比、跟它的质 量成反比,加速度的方向跟作用F 力 m的a 方 向这定相是律同动—牛。力—顿用学两第公的个三式最物定便基体律是本之:就定间作是律的用。作力用和力反和作反用,作力用 力总是大小相等 ,方向相反,作用在同一 条直线上。 F12 F21
15
3、对科学方法的贡献
斜面实验在2002年被评为历史上“最
美丽”的十大物理实验之一。从斜面实
对现象的观察 提出假设(匀加速运动假设)
验进行看数伽学和利逻略辑的的推研理(究x~方t2)法:
实验验证
形成理论
开创了科学实验方法,核 心是将实验和逻辑推理( 包括数学演算)相结合。
提出了理想实验。
29
ห้องสมุดไป่ตู้
30
《物理光学》PPT课件
![《物理光学》PPT课件](https://img.taocdn.com/s3/m/566f18b4ddccda38366baf25.png)
h N / 2 单色光波长
M1走过的距离 视场中心移过的条纹的数目
6
3、泰曼干涉仪 结构原理 在迈克尔逊干涉仪的一个光路中加入了被测光学器件
单色准直光照明,使产生等厚干涉条纹,用于检验光 学零件的综合质量 检验原理 通过研究光波波面经光学零件后的变形确定零件质量
7
8
4、马赫-曾德干涉仪
结构和光路走向如图 适用于研究气体密度迅速 变化的状态
IG
Ii
1
F
s
Ii in
2
22
在F点,1=2m
2
,
2
2 m
2
IF
1
2Ii F sin2 (
4)
1
2Ii F(
4)2
G1 G2
Dd
d1
d2
当IF 0.81IM时,
2Ii 1 F(
4)2
0.81
Ii
Ii
1 F(
2)2
得到 其中
=4.15 2.07 Fs
s F ,为条纹精细度。 2
= 4 =21-,当 1时,变得很小。
F
(5) 条纹精细度s
定义:相邻条纹相位差2与 条纹锐度之比
s 2
F
2 1
反射率越趋近于1, s值越大,
条纹越精细,条纹锐度也越好。
二、法布里-泊罗干涉仪(一种多光束干涉装置)
(一)仪器结构
法布里-泊罗标准具(F-P)
玻璃板或石英板 隔圈
镀膜(提高表面的反射率)
......
Anr A(i)tt(r)(2n1) exp i(n 1) ,
r
t'
t
r'
r'
《光学》全套课件 PPT
![《光学》全套课件 PPT](https://img.taocdn.com/s3/m/c431c4babdeb19e8b8f67c1cfad6195f302be875.png)
τ
cosΔ
dt =0
τ0
I = I1 +I2
叠加后光强等与两光束单独照射时的光强之和,
无干涉现象
2、相干叠加 满足相干条件的两束光叠加后
I =I1 +I2 +2 I1I2 cosΔ 位相差恒定,有干涉现象
若 I1 I2
I =2I1(1+cosΔ
)
=4I 1cos2
Δ 2
Δ =±2kπ I =4I1
r2
§1-7 薄膜干涉
利用薄膜上、下两个表面对入射光的反射和 折射,可在反射方向(或透射方向)获得相干光束。
一、薄膜干涉 扩展光源照射下的薄膜干涉
在一均匀透明介质n1中
放入上下表面平行,厚度
为e 的均匀介质 n2(>n1),
用扩展光源照射薄膜,其
反射和透射光如图所示
a
n1
i
a1 D
B
n2
A
n1 C
2、E和H相互垂直,并且都与传播方向垂直,E、H、u三者满 足右螺旋关系,E、H各在自己的振动面内振动,具有偏振性.
3、在空间任一点处
εE = μH
4、电磁波的传播速度决定于介质的介电常量和磁导率,
为
u= 1 εμ
在真空中u= c =
1 ≈3×108[m ε0μ0
s 1]
5、电磁波的能量
S
=E
×H ,
只对光有些初步认识,得出一些零碎结论,没有形
成系统理论。
二、几何光学时期
•这一时期建立了反射定律和折射定律,奠定了几何光学基础。
•李普塞(1587~1619)在1608年发明了第一架望远镜。
•延森(1588~1632)和冯特纳(1580~1656)最早制作了复 合显微镜。 •1610年,伽利略用自己制造的望远镜观察星体,发现了木星 的卫星。 • 斯涅耳和迪卡尔提出了折射定律
光学中的物理学史
![光学中的物理学史](https://img.taocdn.com/s3/m/bcdc6d3883c4bb4cf7ecd17b.png)
的光线折射得更厉害,”胡克描述过肥皂泡
的颜色变化,认为不同的颜色是光脉冲对视 网膜留下的不同印象。红色和蓝色是原色, 其它颜色都是由这两种颜色合成和冲淡而成 。牛顿注意到这些说法的合理成分,同时也
提出许多疑问。在牛顿留下的手稿中,记录
牛顿的光学研究具有独特的风格,他在光学领域中的成 就集中反映在1704年出版的《光学》一书中。该书的副 标题是:《关于光的反射、折射、拐折和颜色的论文》
。全书共分三编,棱镜光谱实验收集在第一编中。在第
一编中,牛顿共提出19个命题,33个实验,他以大量篇 幅详细描述实验装臵、实验方法和观测结果。
1583年,伽利略在比萨教堂里注意到一盏悬灯的摆动, 随后用线悬铜球作模拟(单摆)实验,确证了微小摆动的 等时性以及摆长对周期的影响,由此创制出脉搏计用来 测量短时间间隔。 1586年,他发明了浮力天平,并写出论文《小天平》。
1588年他在佛罗伦萨研究院做了关于A.但丁《神曲》中 炼狱图形构想的学术演讲,其文学与数学才华大受人们 赞扬。 1592年伽利略转到帕多瓦大学任教。在此时期,他深入 而系统地研究了落体运动、抛射体运动、静力学、水力 学以及一些土木建筑和军事建筑等;发现了惯性原理, 研制了温度计和望远镜。 1597年,他收到J.开普勒赠阅的《神秘的宇宙》一书, 开始相信日心说,承认地球有公转和自转两种运动。
了许多当年的疑问和思考,例如,他问道” :
如果光是脉冲,为什么不像声音那样在传播
中偏离直线?
为什么弱的脉冲比强的脉冲运动快?
为什么水比水蒸汽更清晰?
为什么煤是黑的,煤烧成的灰反而是白的?
牛顿不满意前人(包括他的老师)对光现象的
物理光学讲课课件
![物理光学讲课课件](https://img.taocdn.com/s3/m/7452dcd050e79b89680203d8ce2f0066f533643c.png)
目录
• 引言 • 光的干涉 • 光的衍射 • 光的偏振 • 光的吸收、色散和散射 • 现代光学技术及应用
01
引言
光学的发展历程
早期光学
从反射和折射定律的发现到光的波动理 论的提出。
几何光学
建立光的直线传播、反射和折射定律, 以及透镜成像等理论。
物理光学
从光的干涉、衍射和偏振等现象的研究 ,到光的电磁理论的确立。
非线性光学简介
非线性光学现象
阐述非线性光学中的基本 现象,如二次谐波产生、 和频与差频产生、光整流 、光克尔效应等。
非线性光学材料
介绍常见的非线性光学材 料,如晶体、半导体、有 机材料和光纤等,并分析 其特性。
非线性光学器件
概述非线性光学器件的原 理和应用,如光开关、光 限幅器、光逻辑门等。
量子光学简介
衍射条纹。
04
光的偏振
偏振现象和分类
偏振现象
光波在传播过程中,光矢量(即 电场强度矢量E)的振动方向对于 光的传播方向失去对称性的现象 。
分类
根据光矢量末端在垂直于传播方 向的平面上描绘出的轨迹形状, 可分为线偏振光、圆偏振光和椭 圆偏振光。
马吕斯定律和布儒斯特角
马吕斯定律
描述线偏振光通过偏振片后的透射光强与入射光强及偏振片透振方向之间的关 系,即$I = I_0 cos^2 theta$,其中$I_0$为入射光强,$theta$为透振方向与 入射光振动方向之间的夹角。
光电转换
将光能转换成电能或其他形式的能 量,应用于太阳能电池、光电探测 器等器件中。
02
光的干涉
干涉现象和条件
01
干涉现象
两列或多列波在空间某些区域 振动加强,在另一些区域振动 减弱,形成稳定的强弱分布的
光学封面物理学史教材图片
![光学封面物理学史教材图片](https://img.taocdn.com/s3/m/9570b4423b3567ec102d8a5d.png)
第四章 经典光学的发展
图4-49 巴耳末
第四章 经典光学的发展
图4-17惠更斯的光 波示意图
物理学史教材图片
第四章 经典光学的发展
图4-18惠更斯描绘 光波的示意图
物理学史教材图片
第四章 经典光学的发展
图4-19惠更斯原理 示意图
物理学史教材图片
第四章 经典光学的发展
图4-20 巴塞林纳斯用方解石 看到的双像 (B变为G和H,A变为ECFD)
图4-29 罗默的木 星卫星运动示意图
物理学史教材图片
第四章 经典光学的发展
图4-30 布拉德雷
物理学史教材图片
第四章 经典光学的发展
图4-31 光行差角 示意图
物理学史教材图片
第四章 经典光学的发展
图4-32 阿拉果的 旋转镜
物理学史教材图片
第四章 经典光学的发展
图4-33 斐索的旋 转齿轮法
物理学史教材图片
第四章 经典光学的发展
图4-34 斐索
物理学史教材图片
第四章 经典光学的发展
图4-35
傅科
物理学史教材图片
第四章 经典光学的发展
图4-36 傅科用旋转镜法比较光速
物理学史教材图片
第四章 经典光学的发展
图4-37 傅科的旋转镜
物理学史教材图片
第四章 经典光学的发展
第四章 经典光学的发展
图4-41 夫琅和费 绘制的太阳光谱图
物理学史教材图片
第四章 经典光学的发展
图4-42 夫琅和费正 在演示他的光谱仪
物理学史教材图片
第四章 经典光学的发展
图4-43 基尔霍夫和本生最早的棱镜光谱仪
《光学》全套课件 PPT
![《光学》全套课件 PPT](https://img.taocdn.com/s3/m/f688d5f6102de2bd960588dd.png)
[美]机载激光系统
•近年又产生了付立叶光学和非线性光学。 •付立叶光学:将数学中的付立叶变换和通讯中的线性系 统理论引入光学。
§1-1 光的电磁理论
一、光的电磁理论 按照麦克斯韦电磁场理论,变化的电场会产生变化 的磁场,这个变化的磁场又产生变化的电场,这样变化 的电场和变化的磁场不断地相互激发并由近及远地传播 形成电磁波。
•1610年,伽利略用自己制造的望远镜观察星体,发现了木星 的卫星。
• 斯涅耳和迪卡尔提出了折射定律
三、波动光学时期
• 1801年,托马斯· 杨做出了光的双缝干涉实验 • 1808年,马吕发现了光在两种介质界面上反射时的偏振性。
托马斯· 杨
பைடு நூலகம்
惠更斯
牛顿
• 1815年,菲涅耳提出了惠更斯——菲涅耳原理 • 1845年,法拉弟发现了光的振动面在强磁场中的旋转,揭 示了光现象和电磁现象的内在联系。 • 1865年,麦克斯韦提出,光波就是一种电磁波 通过以上研究,人们确信光是一种波动。
三、研究方法
实验 ——假设 ——理论 ——实验
§0-2 光学发展简史
一、萌芽时期 世界光学的(知识)最早记录,一般书上说是古希腊欧 几里德关于“人为什么能看见物体”的回答,但应归中国的 墨翟。从时间上看,墨翟(公元前468~376年),欧几里德 (公元前330~275年),差一百多年。
墨翟(公元前468~376年)
红 橙 黄 绿 青 蓝 紫
760nm~630nm 630nm~590nm 590nm~570nm 570nm~500nm 500nm~460nm 460nm~430nm 430nm~400nm
光在不同媒质中传播时,频率不变,波 长和传播速度变小。 折射率 n = c = ε μ r r
《初中物理光学》PPT课件
![《初中物理光学》PPT课件](https://img.taocdn.com/s3/m/03c5e3c3690203d8ce2f0066f5335a8102d2663d.png)
课件•光学基础知识•透镜及其应用•光的色散与光谱目录•光的干涉与衍射•光学仪器与使用•光学实验与探究光学基础知识光是一种电磁波光的传播速度光的传播路径030201光的本质与传播光源与光线光源能够自行发光的物体称为光源。
如太阳、电灯等。
光线为了形象地表示光的传播路径和方向,我们通常用一条带箭头的直线来表示光线。
箭头指向表示光的传播方向。
光线的分类根据光源和光线的特点,可以将光线分为平行光线、发散光线和会聚光线等。
光的直线传播光沿直线传播的条件01光沿直线传播的现象02光沿直线传播的应用03光的反射与折射光的反射光的折射反射与折射的应用透镜及其应用透镜的种类与性质凸透镜凹透镜透镜的焦点和焦距凸透镜成像规律当物体为实物时,成正立、缩小的虚像,像和物在同一侧。
当物体为虚物,凹透镜到虚物的距离为一倍焦距(指绝对值)以内时,成正立、放大的实像,像与物在透镜的同侧。
当物体为虚物,凹透镜到虚物的距离为一倍焦距(指绝对值)时,成像于无穷远。
当物体为虚物,凹透镜到虚物的距离为一倍焦距以外两倍焦距以内(均指绝对值)时,成倒立、放大的虚像,像与物在透镜的异侧。
当物体为虚物,凹透镜到虚物的距离为两倍焦距(指绝对值)时,成与物体同样大小的虚像,在透镜异侧。
凹透镜成像规律老花眼镜利用凸透镜对光线的会聚作用制成的。
利用凹透镜对光线的发散作用制成的。
放大镜利用凸透镜成正立、放大的虚像的原理制成的。
照相机利用凸透镜成像规律中物距大投影仪立、放大的实像的原理制成的。
透镜在生活中的应用光的色散与光谱光的色散现象光的色散现象原理光的色散现象定义不同颜色的光在介质中的折射率不同,因此当复色光通过棱镜等介质时,会被分解为不同颜色的单色光。
光的色散现象实例光谱的分类根据产生方式不同,光谱可分为发射光谱、吸收光谱和反射光谱等。
光谱的概念光谱是复色光经过色散系统(如棱镜、光栅)分光后,被色散开的单色光按波长(或频率)大小而依次排列的图案。
光谱的特点不同元素或化合物在特定条件下产生的光谱具有特征性,因此光谱分析在化学、物理等领域具有广泛应用。
物理学史完美版PPT
![物理学史完美版PPT](https://img.taocdn.com/s3/m/c500a05469dc5022abea00db.png)
勒纳德为了研究光电子从金属表面逸出时所具有的能量,在电极间加反向电压,直到 使光电流截止,从反向电压的截止值(即遏止电压)V,可以推算电子逸出金属表面的最 大速度。是勒纳德研究光电效应的实验装置。入射光照在铝阴极A 上,反向电压加在阳极 E 与A 之间。阳极中间挖了一个小孔,让电子束穿过,打到集电极D 上。勒纳德用不同材 料做阴极,用不同光源照射,发现都对遏止电压有影响,唯独改变光的强度对遏止电压没 有影响。电子逸出金属表面的最大速度与光强无关,这就是勒纳德的新发现。但是这个结 论与经典理论是矛盾的。根据经典理论,电子接受光的能量获得动能,应该是光越强,能 量也越大,电子的速度也就越快。和经典理论有抵触的实验事实还不止此,在勒纳德之前, 人们已经遇到了其他的矛盾,例如:
1.光的频率低于某一临界值时,不论光有多强,也不会产生光电流,可是根据经典 理论,应该没有频率限制。
2.光照到金属表面,光电流立即就会产生,可是根据经典理论,能量总要有一个积 累过程。
本来,这些矛盾正是揭露了经典理论的不足,可是,勒纳德却煞费苦心地想出了一个 补救办法,企图在不违反经典理论的前提下,对上述事实作出解释。他在1902 年提出触 发假说,假设在电子的发射过程中,光只起触发作用,电子原本就是以某一速度在原子内 部运动,光照到原子上,只要光的频率与电子本身的振动频率一致,就发生共振,所以光 只起打开闸门的作用,闸门一旦打开,电子就以其自身的速度从原子内部逸走。他认为, 原子里电子的振动频率是特定的,只有频率合适的光才能起触发作用。他还建议,由此也 许可以了解原子内部的结构。勒纳德的触发假说很容易被人们接受,当时颇有影响。1905 年,还没有当上专利局二级技术员的爱因斯坦提出了光量子理论和光电方程。就在这一年, 勒纳德因阴极射线的研究获得了诺贝尔物理奖。难怪人们没有对爱因斯坦的光电效应理论 给予应有的重视。
光学精品PPT教学课件
![光学精品PPT教学课件](https://img.taocdn.com/s3/m/fed4b1f36bec0975f465e2f8.png)
变大
23
光的衍射
2020年10月2日
24
水波的传播
S
2020年10月2日
25
水波的衍射
S1
2020年10月2日
26
光的直线传播
S
2020年10月2日
27
光的衍射
S
2020年10月2日
28
2020年10月2日
29
光的衍射
光离开直线传播路径绕
到障碍物阴影里去的现象。
衍射时产生的明暗条纹叫衍
条纹间距: x =l/d
2020年10月2日
8
双缝干涉的条纹间距
条纹间距: X=L / d
测X、L、 d→
2020年10月2日
9
双缝干涉的条纹间距
1.增大双缝间的距离, 2.增条S大纹像S间1屏距到d双_减_缝_小的_ 距离,
条纹间S2距增___大_
3. 增大光的波L长,
条纹间距_增__大_
2020年10月2日
标准面
ab 空气薄膜
2020年10月2日
被测面
b a
19
巩固1
【C】
图中所示是用干涉法检查某块厚玻璃板
的上表面是否平的装置.所用单色光是用
普通光源加滤光片产生的.检查中所观察
到的干涉条纹是由下列哪两个表面反射
的光线叠加而成的?
A. a的上表面和b的下表面
B. a的上表面和b的上表面
C. a的下表面和b的上表面
劈形空气薄膜后,从
上往下观察到的干涉条纹
A.变疏 C.不变 2020年10月2日
B.变密 D.消失
【A】
21
增透膜
照相机镜头上涂有一层增透膜,增强了绿
物理光学基础知识ppt课件
![物理光学基础知识ppt课件](https://img.taocdn.com/s3/m/64a03f8f6037ee06eff9aef8941ea76e58fa4aa9.png)
04
光源与光谱分析
光源类型及特性
1 2 3
热辐射光源
通过加热物体产生光辐射,如白炽灯、黑体辐射 源等。具有连续的光谱分布,色温与发光体温度 相关。
气体放电光源
利用气体放电产生光辐射,如荧光灯、钠灯等。 光谱分布与放电物质及条件有关,可实现特定波 长的光输出。
激光光源
通过受激辐射产生相干光,具有单色性、方向性 和高亮度等特点。广泛应用于科研、工业、医疗 等领域。
光谱分析原理及方法
光谱分析原理
01
不同物质具有不同的光谱特征,通过对物质发射、吸收或散射
的光进行分析,可以了解物质的成分、结构等信息。
光谱分析方法
02
包括发射光谱分析、吸收光谱分析、拉曼光谱分析、荧光光谱
分析等。各种方法具有不同的特点和适用范围。
光谱仪器
03
常用的光谱仪器有分光光度计、光谱仪、原子发射光谱仪等。
衍射现象
单缝衍射
单色光通过单缝时,在屏幕上形成中央亮纹、两侧明暗相 间的衍射条纹,表明光在传播过程中遇到障碍物或小孔时 会发生偏离直线传播的现象。
圆孔衍射
单色光通过小圆孔时,在屏幕上形成明暗相间的圆环状衍 射条纹,揭示了光的波动性。
泊松亮斑
当单色光照射到不透光的小圆板上时,在圆板后面的屏幕 上会出现一个亮斑,即泊松亮斑,这是光的衍射现象的一 个著名实例。
于携带和使用。
智能化
结合人工智能和机器学习技术 ,实现光学设备的自动化和智 能化操作。
多功能化
将多种光学功能集成在一个设 备上,提高设备的综合性能。
高精度化
提高光学设备的测量精度和稳 定性,满足高精度测量和实验
需求。
06
总结与展望
精品物理光学PPT课件(完整版)
![精品物理光学PPT课件(完整版)](https://img.taocdn.com/s3/m/d03d32ca70fe910ef12d2af90242a8956becaacf.png)
激光源、双缝、屏幕。
实验现象
在屏幕上观察到明暗相间的干涉条纹。
理论分析
通过双缝的光波在屏幕上叠加,形成干涉图样。根据干涉条件,可推 导出条纹间距与光源波长、双缝间距及屏幕距离的关系。
薄膜干涉原理及应用
01
薄膜干涉
光波在薄膜前后表面反射后叠加形成的干涉现象。
02 03
原理分析
光波在薄膜前后表面反射时,相位发生变化,当光程差为半波长的奇数 倍时,反射光相互加强,形成亮纹;当光程差为半波长的偶数倍时,反 射光相互减弱,形成暗纹。
光的偏振现象
光波是横波,其振动方向 垂直于传播方向。通过偏 振片可以观察到光的偏振 现象。
几何光学基本概念
光线和光束
光线表示光传播的路径和 方向,光束是由无数条光 线组成的集合。
光的反射和折射
光在两种不同介质的交界 面上会发生反射和折射现 象,遵循反射定律和折射 定律。
透镜成像
透镜是一种光学元件,可 以改变光线的传播方向。 通过透镜可以形成实像或 虚像。
光的色散
色散是指复色光分解为单色光的现象 。牛顿的棱镜实验揭示了光的色散现 象。
02
光的干涉现象
干涉现象及其条件
干涉现象
干涉图样
两列或多列光波在空间某些区域相遇 时,光强在空间重新分布的现象。
明暗相间的条纹,反映了光波的振幅 和相位信息。
干涉条件
两列光波的频率相同、振动方向相同 、相位差恒定。
双缝干涉实验分析
量子光学应用与前景
列举量子光学在量子通信、量子计算、量子精密测量等领域的应 用,以及未来可能的发展趋势和挑战。
06
实验方法与技巧指导
基本实验仪器使用说明
分光计
【精品】物理光学PPT课件(完整版)
![【精品】物理光学PPT课件(完整版)](https://img.taocdn.com/s3/m/7b0e0158551810a6f52486b7.png)
三维简谐波的复指数表示
复振幅:
下面讨论一下平面简谐波投射在一个平面上,这个平面上
的光场分布。
x
波矢k的方向余弦为
在z=0(XOY)平面上光场复振幅:
O
z
这表明,z=0平面上任意两点的位相差仅 仅由Δx来决定。
如图所示: x
O
z 4π
2π
0 -2π
可以利用复振幅方便-4地π 求光强度,
• 对光导纤维的研究形成了光纤光学或导波光学; • 导波光学,电子学和通讯理论的结合使得光通信得到迅
速发展和应用,成为人类在20世纪最重要的科技成就; • 非线性光学,信息光学及集成光学等理论与技术的结合
可能会导致新一代计算机—光计算机的诞生.
2. 物理光学的应用
测控,通信,医疗,信息处理,光学设计。
• 薄膜光学的建立,源于光学薄膜的研究和薄膜技 术的发展;
• 傅立叶光学的建立源于数学、通讯理论和光的衍 射的结合;它利用系统概念和频谱语言来描述光 学变换过程,形成了光学信息处理的内容.
• 集成光学源于将集成电路的概念和方法引入光学 领域;
• 非线性光学源于高强度激光的出现、它研究当介质已不 满足线性叠加原理时所产生的一些新现象,如倍频,混 频,自聚焦等;
• 基本问题:在各种条件下的传播问题。 • 基本原理:惠更斯-菲涅耳原理。 • 波前:原为等相面,现泛指波场中的 任一曲面,
更多的是指一个平面。
• 主要方法:如何描述、识别、分解、改造、记录 和再现波前,构成了波动光学的主要方法。
量子光学:研究光与物质的相互作用的问题。
• 把光视为一个个分立的粒子(光子),它主要用于 分析辐射、光发射以及光与物质的相互作用。