磁共振伪影

合集下载

磁共振关节伪影及处理方法

磁共振关节伪影及处理方法

磁共振关节伪影及处理方法全文共四篇示例,供读者参考第一篇示例:磁共振成像(MRI)是一种常用的医学影像检查技术,通过磁场和无线电波来获取人体内部的高分辨率图像,可以用于诊断各种疾病和损伤。

在进行关节MRI检查时,有时会出现关节伪影的现象,给诊断和治疗带来困扰。

那么什么是关节伪影?它是如何产生的?又该如何处理呢?本文将详细介绍关于磁共振关节伪影及其处理方法。

关节伪影是指在关节MRI图像中出现的不真实的信号或图像变化,它可能由多种因素引起。

人体内部的组织结构很复杂,有时会出现信号叠加的情况,导致关节周围的结构无法清晰显示。

由于磁共振成像本身的原理,如磁场不均匀、磁场敏感性等也可能导致伪影的产生。

患者自身因素,如运动、呼吸等也会影响关节MRI图像的质量。

关节MRI图像上的伪影可能表现为暗影或亮影,严重影响对关节结构的准确评估。

如何准确识别和处理关节伪影就显得尤为重要。

以下是几种处理关节伪影的方法:1. 优化扫描参数:合理设置磁共振成像的参数,包括磁场强度、扫描序列、脉冲重复时间、回波时间等,可以有效减少伪影的产生,提高图像质量。

2. 使用新技术:随着医学影像技术的不断发展,越来越多的新技术应用于关节MRI检查中,如并行成像技术、高清晰度技术等,可以有效减少伪影的产生,提高图像的清晰度和准确性。

3. 优化患者体位:合理的患者体位可以减少患者运动带来的影响,如确保患者保持足够的静止度,避免呼吸等运动干扰,有助于减少伪影的产生。

4. 适当的后期处理:对于已经获得的关节MRI图像,可以通过适当的后期处理技术,如滤波、增强对比度等方法,降低伪影的影响,提高图像的质量和清晰度。

关节MRI检查在临床诊断中具有重要意义,但是伪影的产生会影响图像质量和诊断的准确性。

医护人员需要充分了解关节伪影的产生原因和处理方法,以便及时采取有效措施,提高关节MRI图像的质量,为临床诊断提供更可靠的依据。

希望本文能对您有所帮助。

第二篇示例:磁共振成像(MRI)是一种非侵入性的医学影像学技术,它可以通过磁场和无害的无线电波来生成详细的人体器官和组织的高分辨率图像。

磁共振伪影

磁共振伪影
• ⑵选用主磁场较低的MR设备进行扫描
• 场强越高,水质子与脂质子的进动频率差别越大,化学位移伪影越明显,因此选用场 强较低的设备进行扫描可以减轻化位移伪影。
• ⑶改变频率编码的方向
• 化学位移伪影主要发生于与频率编码方向垂直的水脂界面上,如果改变频率编码方向 ,使脂肪组织与其它组织的界面与频率编码方向平行可消除或减轻肉眼观察到的伪影 的程度。
MRV+C
利用顺磁性对比剂缩短血液的T1时间,与血液的流动 无关,这就克服了湍流、涡流和扫描平面内质子饱和所 引起的信号丢失。K空间的采集能快速的捕捉到静脉最 佳强化时间,在保证扫描速度的前提下提高了图像的空 间分辨率;3DFLASH序列重复时间短(7.65MS),对 背景信号(如脂肪)较TOF序列抑制的更有效
鬼 影
• 鬼影出现的原因,回波中心偏移,持续相 位编码偏移,或回波不幅度不稳定,往往 可由于系统的不稳定或患者运动所致。梯 度有问题或者线圈单元损坏
• 特点:往往出现在相位编码方向,由于患 者运动的伪影只出现在运动的部位,而系 统原因的伪影可在整个FOV中出现
• 解决方法;1 患者制动,2 工程师维修
• 化学位移伪影的对策很多,主要包括以下四个方面:
• ⑴增加频率编码的宽度
• 频率编码带宽也就是采样带宽,在参数调整界面可以进行设置。在主磁场强度一定的 情况下,水质子与脂质子的进动频率差别是固定不变的,以场强为1.5T设备为例,脂 肪和水的化学位移约为225Hz,如果矩阵为256′256,频率编码带宽为±12.5kHz(约 100Hz/像素),那么化学位移225Hz相当于移位2.25个像素。如果把频率编码带宽改 为±25kHz(约200Hz/像素),则化学位移相当于1.13个像素。因此,增加频率编码 带宽可以减轻化学位移伪影,需要注意的是增加频率带宽后,回波的采样速度还可得 到提高,但图像的SNR降低。

磁共振常见伪影的鉴别

磁共振常见伪影的鉴别

磁共振常见伪影的鉴别在磁共振成像中,伪影的出现比其他成像技术多,而且也教严重,因此正确鉴别和认识伪影、明确伪影产生的原因并采取相应的解决办法是临床诊断经常面临的问题。

下面就磁共振产生伪影主要原因、图像表现及解决办法进行介绍和探讨。

1、黑边界伪影:黑边界伪影是一种人为造成的沿水脂分界面、肌肉脂肪分界面分布的黑线状伪影。

这种伪影在视觉上可以清楚的勾画出组织轮廓。

但是它并不是正常的解剖结构。

胸部冠状位图像,回波时间为7ms,可以看到在肩部肌肉及肝脏周围分界清晰的黑边界伪影。

之所以会出现这种伪影,最常见的原因是在脂肪和水位于相同的层面时,设置TE时间恰好使水分子和脂肪分子的自旋处于反相位,使信号相互抵消。

在1.5磁场下,脂肪和水的频率相差3.5ppm,在T E取4.5ms的倍数时,可以消去伪影,如:4.5ms,9ms,13.6ms.2、化学位移伪影在推体、腹部、眼眶等含脂肪成份的组织边缘常可以看到化学位移伪影。

在频率编码方向上,磁共振系统利用不同分子的不同频率进行空间定位。

在不同器官中,由于水和肌肉组织与脂肪相比具有不同的共振频率,此时磁共振扫描仪依据这种频率差异进行空间定位时,含有脂肪成份的组织在频率编码方向上相对与正常位置发生偏移。

在脊柱扫描中,视觉表现为一侧椎体的边缘厚度明显大于对侧。

在腹部和眼眶扫描中,会在水、脂分界面上出现黑影,而在对侧出现亮条状伪影。

在肾脏轴位扫描过程中,这种伪影表现为,在肾脏顶端的亮条状伪影,以及底端的黑条状伪影,并且场强越高此伪影越明显。

消除此伪影的最好方法是使用脂肪饱技术。

3、卷折伪影当FOV小于采集窗时常常会出现卷折伪影。

在相位编码方向及3D序列的片层方向上,表现为超出部分的图像会折叠到对侧,这种现象可以进行更正。

如果必须去处此伪影,可以在相位编码方向增加更多的编码步数加以校正。

在相位编码方向增加过采样亦可去处此伪影。

4、吉布斯(截断)伪影吉布斯伪影是一种非常强烈的、平行排列、黑白相间的一种条状伪影。

磁共振关节伪影及处理方法

磁共振关节伪影及处理方法

磁共振关节伪影及处理方法
磁共振成像(MRI)是一种非侵入性的影像学技术,常用于检查
关节疾病。

在MRI图像中,可能会出现伪影,其中包括关节磁共振
伪影。

关节磁共振伪影是指在MRI图像中出现的与真实解剖结构不
符的异常信号,可能会对临床诊断和治疗产生影响。

关节磁共振伪
影主要有以下几种类型和处理方法:
1. 金属伪影,金属植入物或假体可能会在MRI图像中产生伪影。

处理方法包括选择合适的MRI序列和参数,以减少金属伪影的影响;在可能的情况下,避免使用含金属材料的植入物。

2. 化学位移伪影,由于关节液体中的成分差异,可能会在MRI
图像中产生化学位移伪影。

处理方法包括使用特定的MRI序列和参数,以减少化学位移伪影的影响;在分析图像时,结合临床病史和
其他影像学资料,准确判断病变。

3. 部分体积效应伪影,当关节部位存在信号不均匀的情况时,
可能会出现部分体积效应伪影。

处理方法包括调整扫描参数和优化
扫描位置,以减少部分体积效应伪影的影响;在图像解读时,结合
临床表现和其他影像学检查结果,综合分析病变。

4. 运动伪影,患者在MRI扫描过程中的不适当运动可能会导致
图像模糊或伪影。

处理方法包括在扫描前对患者进行充分的交流和
准备,以减少运动伪影的发生;在图像重建和解读时,注意排除运
动伪影的影响。

总的来说,减少关节磁共振伪影的发生需要综合考虑扫描技术、患者准备和临床信息等多个因素。

此外,医学影像学专家在解读
MRI图像时,也需要结合临床资料和其他影像学检查结果,准确判
断病变,以确保诊断的准确性和可靠性。

MRI常见伪影及其定制化讲解

MRI常见伪影及其定制化讲解

MRI常见伪影及其定制化讲解在磁共振成像(MRI)中,伪影是指不应存在的图像扭曲或伪影。

这些伪影可以降低图像质量,影响诊断准确性。

本文将定制化讲解MRI中常见的七种伪影,包括运动伪影、截断伪影、化学位移伪影、磁敏感伪影、卷褶伪影、失真伪影和交叉成像伪影。

1.运动伪影运动伪影是由于扫描过程中患者或扫描设备移动而产生的。

为了减少运动伪影,可以采取以下措施:•嘱咐患者扫描过程中保持静止,对于无法配合的患者可采取适当的固定措施。

•采用快速扫描序列,缩短扫描时间,从而降低运动伪影的发生率。

•在扫描前对患者进行呼吸训练,使其适应扫描过程。

2.截断伪影截断伪影是由于信号被截断而产生的。

在MRI中,当信号强度低于预设阈值时,会被截断为零,从而导致图像中出现黑色区域。

为了减少截断伪影,可以采取以下措施:•适当调整图像重建的阈值,使其更适应实际的信号分布。

•采用饱和带技术,将信号强度过高的区域进行饱和处理,从而避免截断伪影的产生。

3.化学位移伪影化学位移伪影是由于原子核在磁场中的微小移动而产生的。

这种微小移动会导致图像中像素位置的偏移,从而产生伪影。

为了减少化学位移伪影,可以采取以下措施:•使用校准线圈来校正磁场不均匀性。

•采用傅里叶变换技术对图像进行校正,抵消化学位移伪影的影响。

4.磁敏感伪影磁敏感伪影是由于组织对磁场的敏感度不同而产生的。

在MRI中,磁敏感差异会导致图像失真和变形。

为了减少磁敏感伪影,可以采取以下措施:•在扫描前对患者进行适当的固定,避免磁场敏感度差异的影响。

•采用快速扫描序列,缩短扫描时间,从而降低磁敏感伪影的发生率。

•采用校正算法对图像进行校正,抵消磁敏感伪影的影响。

5.卷褶伪影卷褶伪影是由于信号重叠而产生的。

在MRI中,相邻组织的信号会相互干扰,导致图像中出现虚假轮廓和纹理。

为了减少卷褶伪影,可以采取以下措施:•在扫描前对患者进行适当的固定,避免组织间的相对移动。

•采用傅里叶变换技术对图像进行重建,消除信号重叠的影响。

轻松掌握各种磁共振伪影(必点收藏)

轻松掌握各种磁共振伪影(必点收藏)

轻松掌握各种磁共振伪影(必点收藏)展开全文与其他医学影像技术相比,MRI是出现伪影最多的一种影像技术。

所谓伪影是指在磁共振扫描或信息处理过程中,由于某种或几种原因出现了一些人体本身不存在的图像信息,可以表现为图像变形、重叠、缺失、模糊等,致使图像质量下降的影像,也称假影或鬼影(ghost)。

识别和设法消除/减小这些伪影非常造重要,从而也要求我们对MRI的物理原理和基本硬件构造有所了解。

MRI图像中每个点的信息,都由频率和相位编码决定。

当接收信息的频率和相位编码受到外界干扰时,将导致图像伪影的出现。

与其他医学影像技术相比,MRI是出现伪影最多的一种影像技术。

所谓伪影是指在磁共振扫描或信息处理过程中,由于某种或几种原因出现了一些人体本身不存在的图像信息,可以表现为图像变形、重叠、缺失、模糊等,致使图像质量下降的影像,也称假影或鬼影(ghost)。

识别和设法消除/减小这些伪影非常造重要,从而也要求我们对MRI的物理原理和基本硬件构造有所了解。

MRI图像中每个点的信息,都由频率和相位编码决定。

当接收信息的频率和相位编码受到外界干扰时,将导致图像伪影的出现。

1、卷褶伪影原因:扫描视野FOV小于解剖结构,则会发生“卷折”伪影,表现为一侧FOV之外的图像卷折到对侧FOV之内。

原理:射频接收装置,不能识别带宽以外的频率,任何超出范围外的频率将同带宽内的一个频率相“混叠”。

卷折总发生在相位编码FOV方向,因为频率编码方向默认使用两倍FOV大小的频率编码。

卷褶伪影具有以下特点:由于FOV小于受检部位所致;常出现在相位编码方向上;表现为FOV外一侧的组织信号卷褶并重叠到图像另一侧。

分类:•2D卷折•3D卷折对策:•增大扫描视野FOV•改变频率编码方向•添加FOV之外的饱和带•3D卷折,自动删除最上下的图像2、化学位移伪影原因:水和脂肪中的氢质子以稍微不同的共振频率进动,在梯度场内,所有的氢质子被激励后,脂肪氢质子信号来源的位置将会被错误记录。

名词解释磁共振成像的伪影是什么

名词解释磁共振成像的伪影是什么

名词解释磁共振成像的伪影是什么磁共振成像(Magnetic Resonance Imaging,MRI)是一种非侵入性的医学影像技术,通过对人体内部的氢核进行磁共振信号的检测和分析,得到高质量的人体结构和功能图像。

尽管磁共振成像在医学领域中被广泛使用,但在图像生成过程中,可能会出现一些伪影。

那么,名词解释磁共振成像的伪影是什么?伪影是指在医学成像过程中,由于各种因素导致的图像显示异常或失真的现象。

磁共振成像中的伪影主要包括硬件伪影、运动伪影和化学位移伪影。

硬件伪影是指由于磁共振成像设备本身的特点或缺陷引起的图像失真。

例如,磁共振成像中使用的线圈可能存在不均匀磁场分布,导致图像中出现明暗不均或重影的现象。

此外,线圈的信号接收效果可能会受到外部干扰或电磁波的影响,进而产生噪声和干扰,造成图像的伪影。

运动伪影是由于患者的运动在图像扫描过程中引起的图像模糊或畸变。

在磁共振成像中,患者需要在一段时间内保持身体相对静止,以便获得清晰的图像。

然而,任何微小的运动都可能导致图像的伪影。

例如,呼吸运动、心跳引起的血流变化,甚至是患者的不自觉的细微动作,都可能对图像质量产生负面影响。

化学位移伪影主要是由于组织中不同类型的原子对磁共振频率的不同响应引起的。

在磁共振成像中,信号是通过检测氢原子核的共振信号来获得的。

然而,不同类型的组织中氢原子核的化学位移频率并不完全相同,这就会导致图像中的伪影。

例如,脂肪和水的共振频率之间存在差异,当脂肪和水同时存在于图像中时,可能会出现化学位移伪影。

为了解决磁共振成像中的伪影问题,人们采取了一系列的技术手段和改进措施。

例如,通过改进设备硬件来减少硬件伪影的产生,优化线圈设计、提高磁场均匀性等。

另外,通过引入运动校正技术或采用更快的扫描方式来减少或修复运动伪影。

化学位移伪影可以通过使用特定的成像序列或优化扫描参数来解决。

总之,磁共振成像的伪影是在图像生成过程中出现的异常或失真,主要包括硬件伪影、运动伪影和化学位移伪影。

磁共振mri伪影ppt课件

磁共振mri伪影ppt课件
像两端梯度线性下降,偏离理 想形势。
• 确保磁场内无金属物;报修
工程师。
精品课件
5
拉链伪影
• 图像上表现为沿相位编码方
向排列的“拉链状”伪影。
• 属于射频噪声(不需要的外
界无线电频率的噪声)。
• 去除监护装置,关紧扫描间
的门;报修工程师。
精品课件
6
灯芯绒伪影
• 图像上表现为覆盖整个图像
的“棘刺状”伪影。可为单一方 向,也可为多个方向相交排列。
• 磁体间内存在放电辐射。 • 关闭或封闭放电辐射源,查看
有无松动的金属物。
精品课件
7
交叉伪影
交叉部位(或有饱和脉冲的部位)
低信号或信噪比非常低。
层面内组织受到其它层面/额外的
射频脉冲激发,提前饱和,不能产生
信号。
定位时注意层面交叉让开要观观察的部位。
在两种信号强度差别很大的组织间产生。
数字图像像素不能无限小,导致图像与实际解
剖存在差异(阶梯状信号的强度变化)。图像
的空间分辨力较低(即像素较大)。
增加图像空间分辨力。增加采集时间降低
带宽。
精品课件
12
细线伪影
• 图像上表现为图像的局部较
细小的伪影。
• 来源于射频脉冲的受激回波
对图像采集的第一个回波产生干 扰。
列。
精品课件
17
磁共振常见伪影简介
谢谢大家
精品课件
18
精品课件
8
卷褶伪影
图像上表现为FOV外一侧的
组织信号卷褶并重叠到图像的另 一侧通常出现在相位编码方向。
受检物体的尺寸超出FOV的
大小
采用卷褶抑制技术;空间饱
和技术;增大FOV。

MRI常见伪影分析与对策

MRI常见伪影分析与对策

MRI常见伪影分析与对策MRI(Magnetic Resonance Imaging)是一种通过利用磁共振现象来获取人体或动物体内部结构和功能信息的影像技术。

然而,在MRI图像中常常会出现一些伪影,这些伪影可能会对诊断结果产生干扰。

因此,对常见的MRI伪影进行分析并制定相应的对策非常重要。

1. 磁化传递伪影(Magnetization Transfer Effects)磁化传递伪影是由于组织之间的磁化传递所引起的,会导致图像的对比度降低。

对策可以使用磁化恢复序列,其中包括短时间反转恢复(STIR)和反转恢复(IR),以改善对比度。

2. 金属伪影(Metallic Artifacts)金属伪影主要是由于患者体内植入金属物体(如人工关节或牙填充物)所引起的。

这些金属物体会产生局部磁性畸变,导致伪影的产生。

对策可以使用短暂瞬时回波(STE)序列或化学抑制技术来减少或抑制金属伪影。

3. 运动伪影(Motion Artifacts)运动伪影是由于患者的呼吸、心跳或其他运动而引起的图像模糊或变形。

减少运动伪影的方法包括使用呼吸抑制技术、绑定患者以减少运动、延长扫描时间以获得清晰的图像等。

4. 化学位移伪影(Chemical Shift Artifacts)化学位移伪影是由于不同物质具有不同的磁共振频率而引起的。

这种伪影通常出现在脂肪和水之间的界面上,导致界面区域的图像模糊。

对策可以使用相移技术来减少化学位移伪影。

5. 波纹伪影(Aliasing Artifacts)波纹伪影是由于采样不足或持有时间不足而引起的,导致图像中出现波纹状伪影。

对策可以增加采样频率或使用平行成像技术来减少波纹伪影。

6. 部分饱和伪影(Partial Volume Artifacts)部分饱和伪影是由于扫描平面并未完全覆盖目标组织而引起的,导致图像中出现部分饱和的区域。

对策可以使用多个扫描平面或利用局部放大技术来减少部分饱和伪影。

总之,对常见的MRI伪影进行分析并制定相应的对策可以提高MRI图像质量,减少对诊断结果的干扰。

磁共振常见伪影的鉴别

磁共振常见伪影的鉴别

之阳早格格创做磁共振罕睹真影的鉴别正在磁共振成像中,真影的出现比其余成像技能多,而且也教宽沉,果此精确鉴别战认识真影、精确真影爆收的本果并采与相映的办理办法是临床诊疗时常里临的问题.底下便磁共振爆收真影主要本果、图像表示及办理办法举止介绍战探讨.1、乌鸿沟真影:乌鸿沟真影是一种人为制成的沿火脂分界里、肌肉脂肪分界里分散的乌线状真影.那种真影正在视觉上不妨领会的勾绘出构制表面.然而是它本去不是仄常的解剖结构.胸部冠状位图像,回波时间为7ms,不妨瞅到正在肩部肌肉及肝净周围分界浑晰的乌鸿沟真影.之所以会出现那种真影,最罕睹的本果是正在脂肪战火位于相共的层里时,树坐TE时间恰佳使火分子战脂肪分子的自旋处于反相位,使旗号相互对消.正在1.5磁场下,脂肪战火的频次出进3.5pp m,正在TE与4.5ms的倍数时,不妨消去真影,如:4.5ms, 9ms,13.6ms.2、化教位移真影正在推体、背部、眼眶等含脂肪成份的构制边沿常不妨瞅到化教位移真影.正在频次编码目标上,磁共振系统利用分歧分子的分歧频次举止空间定位.正在分歧器官中,由于火战肌肉构制与脂肪相比具备分歧的共振频次,此时磁共振扫描仪依据那种频次好别举止空间定位时,含有脂肪成份的构制正在频次编码目标上相对于与仄常位子爆收偏偏移.正在脊柱扫描中,视觉表示为一侧椎体的边沿薄度明隐大于对于侧.正在背部战眼眶扫描中,会正在火、脂分界里上出现乌影,而正在对于侧出现明条状真影.正在肾净轴位扫描历程中,那种真影表示为,正在肾净顶端的明条状真影,以及底端的乌条状真影,而且场强越下此真影越明隐.与消此真影的最佳要领是使用脂肪鼓技能.3、卷合真影当FOV小于支集窗时时常会出现卷合真影.正在相位编码目标及3D序列的片层目标上,表示为超出部分的图像会合叠到对于侧,那种局里不妨举止改正.如果必须去处此真影,不妨正在相位编码目标减少更多的编码步数加以矫正.正在相位编码目标减少过采样亦可去处此真影.4、凶布斯(截断)真影凶布斯真影是一种非常热烈的、仄止排列、乌黑相间的一种条状真影.正在椎体T2Wl扫描中,从很明的脑脊液到无旗号的推间盘内均不妨瞅阻挡易收觉到的很微强的凶布斯真影.那种真影正在脑真量与颅骨接界里也格中罕睹.它反应了从傅坐叶变换到图象沉修历程中,应用有限的相位编码步数.应用更多的相位编码步数不妨缩小那种真影的爆收.第一幅应用火模赢得的轴位像.正在火仄目标应用128次编码步数,正在笔曲目标使用256次编码步数.不妨很明隐的瞅到正在安排目标上,火模边沿存留明隐的乌黑相间的真影,而正在从顶到矮目标此真影明隐较强.第二幅像是正在二个目标上均采与256次编码步数.正在火模的边沿上那种细小的真影明隐消得.5、推链状真影很多本果不妨引起推链状真影,主要道述与硬件及硬件不太相搞的,而是由中部射频搞扰间接引起的真影.当正在图像支集历程中,由于扫描房间的门被挨启而使射频旗号加进而引起的那种推链真影很简单被预防战统制.那种由于无线电射频旗号引起的推链状真影正在图像上表示为笔曲于频次编码目标的线状影.由于设备战硬件问题引起的推链状真影不妨出当前任性轴进与. 相位编码目标上的疏通真影正在序列支集历程中,由于受检者的血管动摇、吞吐动做、呼吸疏通、爬动以及死理疏通等均可引起疏通真影.非常类似于出名的凶布斯真影.果为奇尔那种真影超出了FOV的范畴.而且它不象凶布斯真影那样正在边沿赶快的减强.应用分歧的技能以及分解真影爆收的部位战本果不妨采与相映的要领,与消正在相位编码目标上那种真影.正在血管人心的目标使用空间预鼓战技能,不妨减强血管的动摇真影.空间预鼓战技能也不妨减强由于吞吐、呼吸引起的疏通真影.应用表面线圈不妨减强感兴趣区近端的疏通真影.使用较短的脉冲序列,以及呼吸及心电触收技能均可减强疏通真影.片层的流进效力当不自旋鼓战的血液尾次加进片层大概片层组时,会引起血液的流进效力.它的特性是血流加进的第一个层里的血管(动脉战静脉)呈明隐的下旗号.常常不只只存留第一个层里,离得越近的层里衰减越明隐.那种真影对于血栓的诊疗存留明隐的误导效率.如果要进一步鉴别,不妨使用梯度回波的流进技能去辨别流进真影战血栓.6、片层接叠真影:片层接叠真影表示为正在腰椎的多片层、多角度扫描时,正在图像中部分旗号的拾得.如果通太过歧推间盘仄里的片层是不仄止的,那么片层便会爆收接叠.如果正在共一时间支集二个片层,比圆:L4-5战L5-S1.那么,火仄扫描赢得的第二幅图象部分旗号被鼓战掉.那表示为正在图像上出现火仄的戴状旗号拾得的局里.正在下图腰推轴位像中那种真影表示为,正在图像底部矮旗号的、火仄走背的戴状真影.果而,阻拦咱们对于推管后部的益伤情况的评估.8、魔角效力:魔角效力,最罕睹于肌键战韧戴走背与主碰场目标夹角呈55度时出现.正在仄常情况下,火分子与肌键的胶本纤维正在奇极一奇极效力的效率下,具备很短的T2时间,此时正在图像上表示为无旗号.当肌键与主碰场夹角正在55度时,奇极效力消得,使T2时间延少了一倍.此时,正在惯例序列上肌键的旗号是不妨瞅睹的.比圆正在肩袖战膝闭节肌键上不妨瞅到此局里.9、波纹状真影,正在使用体部线圈应用梯度回波序列扫描时,正在图像上那种真影是很罕睹的.果为正在体部的二侧主碰场本去不是匀称普遍的,使得正在分歧时相相加战相减时一侧旗号叠加到另一侧上边.10、射频溢出真影,正在头颅轴位图像上表示为图像的不匀称局里.那种真影的存留是由于扫描仪从病人接支到太强的旗号.常常自动预扫描常常不妨安排担当器去预防此局里的爆收.如果此真影依旧存留,不妨使用脚动调谐.11、核心面状真影是一种正在图像核心、小圆面状的下旗号影.爆收本果是由于担当器的曲流电压持绝偏偏离制成的.通过傅坐叶变换后,那些电压恒定偏偏离的局里正在图像上表示为明了小圆面.12、磁化真影:磁化真影爆收的本果是正在微强的梯度变更大概者磁场强度爆收微强变更时,出当前具备分歧磁化率的二种物量的接界里附近.大的磁化真影罕睹于铁磁性物量与代了非磁性物量 (比圆人体)时,正在其周围产死很大的磁化真影.梯度变更使周围构制爆收自旋得相战频次位移.进而引起周围仄常解剖结构形变,并可睹乌、明相间的地区.那种局里正在梯度回波序列上非常敏感,具备很少的回波时间.头颅的轴位像,患者眼险涂抹了睫毛膏.由于睫毛膏引起的磁化真影使得眼球前半部分仄常结构易以隐现.13、整弥补真影,由于K空间数据支集较少,大概者需要0弥补.。

磁共振常见伪影的鉴别

磁共振常见伪影的鉴别

磁共振罕有伪影的辨别在磁共振成像中,伪影的消失比其他成像技巧多,并且也教轻微,是以准确辨别和熟悉伪影.明白伪影产生的原因并采纳响应的解决办法是临床诊断经常面对的问题.下面就磁共振产生伪影重要原因.图像表示及解决办法进行介绍和商量.1.黑鸿沟伪影:黑鸿沟伪影是一种工资造成的沿水脂分界面.肌肉脂肪分界面散布的黑线状伪影.这种伪影在视觉上可以清楚的勾勒出组织轮廓.但是它其实不是正常的剖解构造.胸部冠状位图像,回波时光为7ms,可以看到在肩部肌肉及肝脏四周分界清楚的黑鸿沟伪影.之所以会消失这种伪影,最罕有的原因是在脂肪和水位于雷同的层面时,设置TE时光正好使水分子和脂肪分子的自旋处于反相位,使旌旗灯号互相抵消.在1.5磁场下,脂肪和水的频率相差3.5ppm,在TE取4.5ms的倍数时,可以消去伪影,如:4.5ms, 9ms,13.6ms.2.化学位移伪影在推体.腹部.眼眶等含脂肪成份的组织边沿常可以看到化学位移伪影.在频率编码偏向上,磁共振体系运用不合分子的不合频率进行空间定位.在不合器官中,因为水和肌肉组织与脂肪比拟具有不合的共振频率,此时磁共振扫描仪根据这种频率差别进行空间定位时,含有脂肪成份的组织在频率编码偏向上相对与正常地位产生偏移.在脊柱扫描中,视觉表示为一侧椎体的边沿厚度显著大于对侧.在腹部和眼眶扫描中,会在水.脂分界面上消失黑影,而在对侧消失亮条状伪影.在肾脏轴位扫描进程中,这种伪影表示为,在肾脏顶端的亮条状伪影,以及底端的黑条状伪影,并且场强越高此伪影越显著.清除此伪影的最好办法是运用脂肪饱技巧.3.卷折伪影当FOV小于收集窗时经常会消失卷折伪影.在相位编码偏向及3D序列的片层偏向上,表示为超出部分的图像会折叠到对侧,这种现象可以进行更正.假如必须行止此伪影,可以在相位编码偏向增长更多的编码步数加以校订.在相位编码偏向增长过采样亦可行止此伪影.4.吉布斯(截断)伪影吉布斯伪影是一种异常强烈的.平行分列.诟谇相间的一种条状伪影.在椎体T2Wl扫描中,从很亮的脑脊液到无旌旗灯号的推间盘内均可以看不轻易觉察到的很渺小的吉布斯伪影.这种伪影在脑本质与颅骨接壤面也十分罕有.它反响了从傅立叶转换到图象重建进程中,运用有限的相位编码步数.运用更多的相位编码步数可以削减这种伪影的产生.第一幅运用水模获得的轴位像.在程度偏向运用128次编码步数,在垂直偏向运用256次编码步数.可以很显著的看到在阁下偏向上,水模边沿消失显著的诟谇相间的伪影,而在从顶到低偏向此伪影显著较弱.第二幅像是在两个偏向上均采取256次编码步数.在水模的边沿上这种渺小的伪影显著消掉.5. 拉链状伪影许多原因可以引起拉链状伪影,重要讲述与硬件及软件不太相关的,而是由外部射频干扰直接引起的伪影.当在图像收集进程中,因为扫描房间的门被打开而使射频旌旗灯号进入而引起的这种拉链伪影很轻易被防止和掌握.这种因为无线电射频旌旗灯号引起的拉链状伪影在图像上表示为垂直于频率编码偏向的线状影.因为装备和软件问题引起的拉链状伪影可以出如今随意率性轴向上. 相位编码偏向上的活动伪影在序列收集进程中,因为受检者的血管摇动.吞咽动作.呼吸活动.蠕动以及心理活动等均可引起活动伪影.异常相似于有名的吉布斯伪影.因为有时这种伪影超出了FOV的规模.并且它不象吉布斯伪影那样在边沿敏捷的削弱.运用不合的技巧以及剖析伪影产生的部位和原因可以采取响应的办法,清除在相位编码偏向上这种伪影.在血管生齿的偏向运用空间预饱和技巧,可以削弱血管的摇动伪影.空间预饱和技巧也可以削弱因为吞咽.呼吸引起的活动伪影.运用概况线圈可以削弱感兴致区远端的活动伪影.运用较短的脉冲序列,以及呼吸及心电触发技巧均可削弱活动伪影.片层的流入效应该没有自旋饱和的血液初次进入片层或片层组时,会引起血液的流入效应.它的特色是血流进入的第一个层面的血管(动脉和静脉)呈显著的高旌旗灯号.平日不止只消失第一个层面,离得越远的层面衰减越显著.这种伪影对血栓的诊断消失显著的误导感化.假如要进一步辨别,可以运用梯度回波的流入技巧来差别流入伪影和血栓.6.片层交叠伪影:片层交叠伪影表示为在腰椎的多片层.多角度扫描时,在图像中部分旌旗灯号的丧掉.假如经由过程不合推间盘平面的片层是不服行的,那么片层就会产生交叠.假如在统一时光收集两个片层,例如:L4-5和L5-S1.那么,程度扫描获得的第二幅图象部分旌旗灯号被饱和掉落.这表示为在图像上消失程度的带状旌旗灯号丧掉的现象.鄙人图腰推轴位像中这种伪影表示为,在图像底部低旌旗灯号的.程度走向的带状伪影.因而,阻碍我们对推管后部的毁伤情形的评估.8. 魔角效应:魔角效应,最罕有于肌键和韧带走向与主碰场偏向夹角呈55度时消失.在正常情形下,水分子与肌键的胶原纤维在偶极一偶极效应的感化下,具有很短的T2时光,此时在图像上表示为无旌旗灯号.当肌键与主碰场夹角在55度时,偶极效应消掉,使T2时光延伸了一倍.此时,在通例序列上肌键的旌旗灯号是可以看见的.例如在肩袖和膝关节肌键上可以看到此现象.9.波浪状伪影,在运用体部线圈运用梯度回波序列扫描时,在图像上这种伪影是很罕有的.因为在体部的两侧主碰场其实不是平均一致的,使得在不合时相相加和相减时一侧旌旗灯号叠加到另一侧上边.10.射频溢出伪影,在头颅轴位图像上表示为图像的不平均现象.这种伪影的消失是因为扫描仪从病人吸收到太强的旌旗灯号.平日主动预扫描平日可以调节接收器来防止此现象的产生.假如此伪影依旧消失,可以运用手动调谐.11.中间点状伪影是一种在图像中间.小圆点状的高旌旗灯号影.产生原因是因为接收器的直流电压中断偏离造成的.经由傅立叶转换后,这些电压恒定偏离的现象在图像上表示为亮了小圆点.12.磁化伪影:磁化伪影产生的原因是在渺小的梯度变更或者磁场强度产生渺小变更时,出如今具有不合磁化率的两种物资的接壤面邻近.大的磁化伪影罕有于铁磁性物资代替了非磁性物资 (例如人体)时,在其四周形成很大的磁化伪影.梯度变更使四周组织产生自旋掉相和频率位移.从而引起四周正常剖解构造形变,并可见黑.表态间的区域.这种现象在梯度回波序列上异常迟钝,具有很长的回波时光.头颅的轴位像,患者眼险涂抹了睫毛膏.因为睫毛膏引起的磁化伪影使得眼球前半部分正常构造难以显示.13.零填充伪影,因为K空间数据收集较少,或者须要0填充.。

磁化率伪影机制-概述说明以及解释

磁化率伪影机制-概述说明以及解释

磁化率伪影机制-概述说明以及解释1.引言1.1 概述磁化率伪影是磁共振成像中一种常见的图像伪影现象。

在磁共振成像过程中,我们通过对被检体施加恒定磁场并加以调制的射频脉冲来产生磁共振信号,进而获取图像信息。

然而,在实际应用中,我们常常会遇到一些图像异常的情况,其中之一就是磁化率伪影。

磁化率伪影是由于组织间磁化率不匹配所导致的图像伪影,其机制来源于不同组织间的磁化率差异。

磁化率是物质的磁化程度与外加磁场的关系,它是描述物质响应外加磁场的能力的一个重要物理参数。

在磁共振成像中,我们将被检体置于强磁场中,不同组织的磁化率会因其成分和微观结构的差异而有所不同。

当存在磁化率不匹配的情况时,不同组织的磁化率在磁场中会产生不同的局部磁场强度。

这些局部磁场的差异会导致MR信号相位的变化,进而在图像中出现明显的伪影。

磁化率伪影通常呈现为图像中亮或暗的条状或斑点状信号,严重时可能会干扰医生对图像的解读和诊断。

磁化率伪影虽然在临床应用中可能带来一定的干扰,但也可以通过合理的注意和处理来减轻其影响。

同时,磁化率伪影的产生机制也为我们提供了一定的启示,帮助我们更好地理解磁共振成像中组织的磁化特性,从而进一步优化成像技术和提升影像质量。

本文将对磁化率伪影的产生机制、影响和应用进行详细的探讨,并总结磁化率伪影机制的相关内容。

此外,我们还将从磁共振成像的角度出发,探讨磁化率伪影对成像的启示,并展望未来的研究方向。

通过深入研究和理解磁化率伪影的机制,我们有望为磁共振成像技术的进一步发展和临床应用提供有益的参考和指导。

1.2文章结构文章结构部分应包括以下内容:文章结构的目的是为读者提供一个清晰的导读,使读者能够了解整篇文章的框架和内容安排。

本文将按照以下结构进行讨论:第一部分是引言。

该部分首先提供了对磁化率伪影机制的概述,包括其定义和意义。

接着介绍了本文的结构,即各个部分的内容安排。

最后,解释本文的目的,即探讨磁化率伪影机制的产生、影响和应用。

磁共振运动伪影补偿方法

磁共振运动伪影补偿方法

磁共振运动伪影补偿方法
磁共振成像(MRI)是一种常用的医学影像学技术,它可以通过对人体组织中的原子核进行扫描来生成高分辨率的图像。

然而,在MRI成像过程中,可能会出现伪影,其中之一就是由于运动所引起的伪影。

运动伪影是由于受试者在扫描过程中的呼吸、心跳或其他运动而导致图像模糊或失真。

为了补偿磁共振运动伪影,科研人员和工程师们提出了多种方法。

其中一种常见的方法是使用运动校正技术。

这种技术可以通过跟踪受试者的运动并对图像进行实时调整来减少或消除伪影。

运动校正技术通常涉及到使用传感器来监测受试者的运动,然后利用这些信息来调整MRI扫描序列,以便在图像重建过程中对运动进行校正。

另一种常见的方法是使用并行成像技术。

这种技术可以通过同时采集多个数据来减少扫描时间,从而降低了受试者的运动对图像质量的影响。

并行成像技术可以通过并行采集多个k空间线来加快图像采集速度,从而减少了对运动敏感度。

此外,还有一些其他方法被提出来补偿磁共振运动伪影,比如
使用先进的序列设计、运动估计和校正算法等。

这些方法在不断的研究和改进中,以期能够更好地解决磁共振运动伪影的问题。

总的来说,补偿磁共振运动伪影的方法是多种多样的,涉及到多个领域的知识,包括医学影像学、工程学、计算机科学等。

科研人员和工程师们在不断地努力和创新,希望能够不断提高MRI成像的质量和稳定性,从而为临床诊断和科研工作提供更可靠的数据支持。

磁共振避免伪影方法

磁共振避免伪影方法

磁共振避免伪影方法
在磁共振成像中,伪影是一种常见的现象,它会影响图像的质量和诊断的准确性。

为了避免伪影,可以采取以下措施:
1. 优化扫描参数:根据不同的检查部位和病变,选择合适的扫描参数,如矩阵大小、层厚、FOV等。

同时,适当调整扫描时间,以获得更好的图像质量。

2. 增强信号稳定性:通过提高信号的稳定性,可以减少伪影的产生。

这可以通过使用高性能的接收器、优化线圈设计和摆放位置来实现。

3. 校准和校正:定期对磁共振系统进行校准和校正,确保其性能和准确性。

这包括磁场均匀性的校准、射频系统的校准和梯度系统的校准等。

4. 患者准备和配合:在检查前,向患者解释检查过程和注意事项,并指导患者进行适当的准备。

例如,告知患者保持静止、避免吞咽、深呼吸等。

同时,确保患者身上没有金属物品,以免产生伪影。

5. 图像处理和后处理:在图像生成后,进行适当的图像处理和后处理,以减少伪影的影响。

例如,滤波、平滑、去噪等技术可以提高图像的清晰度和对比度。

6. 多模式成像:采用多种成像模式相结合的方法,可以更好地显示病变的特征和位置。

例如,T1加权成像、T2加权成像、脂肪抑制成像等可以提供不同的信息,有助于避免误诊。

7. 设备维护和更新:定期对磁共振设备进行维护和更新,以确保其正常运行和准确性。

这包括硬件的更换、软件的更新和校准等。

综上所述,为了避免磁共振伪影,需要综合考虑多种因素,包括扫描参数的优化、信号稳定性的增强、校准和校正的进行、患者的准备和配合、图像处理和后处理的实施、多模式成像的应用以及设备的维护和更新等。

磁共振常见伪影

磁共振常见伪影
• 交换电池,无变化
• 更换导线,无变化 • 更换 VCG 模块, 故障消除
Internal use only
Team Leader LCB, BU MR Clinical Applications, Michael C. Pawlak, April 13-15, 2010
14
硬件相关伪影
射频干扰
•Intera Nova 1.5T •R11.1.2.0 •线影 •所有线圈 •一层 •间歇出现
梯度电缆过滤器问题
Internal use only
Team Leader LCB, BU MR Clinical Applications, Michael C. Pawlak, April 13-15, 2010
Internal use only
Team Leader LCB, BU MR Clinical Applications, Michael C. Pawlak, April 13-15, 2010
5
硬件相关伪影
• 模糊影/鬼影
• 如果仅仅出现在成像对象上,那么很可能是因为缺乏高级指令文件所造成的。 • 注意排除上述原因
Team Leader LCB, BU MR Clinical Applications, Michael C. Pawlak, April 13-15, 2010
26
与病人安置及准备有关
• 病人/线圈运动
在 SENSE 重建中, 我们做如下假设:
• 交叉点(重叠点)数 ≤ 折减系数 • 参考扫描反映线圈的灵敏度 • reference-scan 提示我们哪里有指示信号的存在(正规化) • 否则出现伪影
解决方案: 运用2 “real” NSA’s (2 个无折叠抑制,或 4个折叠抑制)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

伪影是指MR图像中与实际解剖结构不相符的信号,可以表现为图像变形、重叠、缺失、模糊等。

每一幅MRI图像都存在不同程度的伪影。

MRI检查中伪影主要造成三个方面的问题:(1)使图像质量下降,甚至无法分析;(2)掩盖病灶,造成漏诊;(3)出现假病灶,造成误诊。

因此正确的认识伪影及其对策对于提高MRI临床诊断水平非常重要。

MRI的伪影主要分为装备伪影、运动伪影及磁化率敏感伪影等三大类。

本节将重点介绍MRI常见伪影的原因、表现及其对策。

一、设备伪影所谓设备伪影是指与MRI成像设备及MR成像固有技术相关的伪影。

设备伪影主要取决于生产产家的设备质量、安装调试等因素,成像参数的选择也是影响设备伪影的重要因素。

下面主要讨论与成像参数有关的设备伪影。

(一)化学位移伪影化学位移伪影是指由于化学位移现象导致的图像伪影。

化学位移现象我们已经在MRS一节作了介绍。

大家都知道MR图像是通过施加梯度场造成不同位置的质子进动频率出现差异来完成空间定位编码的。

由于化学位移现象,脂肪中的质子的进动频率要比水中的质子快3.5PPM(约147Hz/T),如果以水分子中的质子的进动频率为MR成像的中心频率,则脂肪信号在频率编码方向上将向梯度场强较低(进动频率较低)的一侧错位。

以盆腔横断面T2WI为例,如果左右方向为频率编码方向且梯度场为左侧高右侧低,膀胱内的尿液呈现高信号,周围脂肪也呈高信号。

膀胱左旁的脂肪向右侧移位并与膀胱内的尿液信号叠加,在膀胱左侧缘形成一条信号更高的白色条带;而膀胱右旁的脂肪也向右移位,从而在膀胱右缘处形成一条信号缺失的黑色条带。

化学位移伪影的特点包括:(1)出现在频率编码方向上;(2)脂肪组织的信号向频率编码梯度场强较低的一侧移位;(3)场强越高,化学位移伪影也越明显。

化学位移伪影的对策包括:(1)改变频率编码方向。

这仅能改变化学位移伪影的方向,并不能减轻或消除化学位移伪影。

(2)施加脂肪抑制技术。

脂肪信号被抑制后,其化学位移伪影将同时被抑制。

(3)增加频率编码的带宽。

以1.0 T扫描机为例,脂肪和水的化学位移为147Hz,如果矩阵为256×256,频率编码带宽为25 KHz(约100Hz/像素),那么化学位移147Hz相当于移位1.5个像素,如果把频率编码带宽改为50KHz(约200Hz/像素),则化学位移相当于0.75个像素,伪影明显减轻。

(二)卷褶伪影当受检物体的尺寸超出FOV的大小,FOV外的组织信号将折叠到图像的另一侧,这种折叠被称为卷褶伪影。

MR信号在图像上的位置取决于信号的相位和频率,信号的相位和频率分别由相位编码和频率编码梯度场获得。

信号的相位和频率具有一定范围,这个范围仅能对FOV内的信号进行空间编码,当FOV外的组织信号融入图像后,将发生相位或频率的错误,把FOV外一侧的组织信号错当成另一侧的组织信号,因而把信号卷褶到对侧,从而形成卷褶伪影。

实际上卷褶伪影可以出现在频率编码方向,也可以出现在相位编码方向上。

由于在频率方向上扩大信号空间定位编码范围,不增加采集时间,目前生产的MRI仪均采用频率方向超范围编码技术,频率编码方向不出现卷褶伪影,因此MR图像上卷褶伪影一般出现在相位编码方向上。

在三维MR成像序列中,由于在层面方向上也采用了相位编码,卷褶伪影也可以出现在层面方向上,表现为第一层外的组织信号卷褶到最后一层的图像中。

卷褶伪影具有以下特点:(1)由FOV小于受检部位所致,(2)常出现在相位编码方向上,(3)表现为FOV外一侧的组织信号卷褶并重叠到图像的另一侧。

避免卷褶伪影的对策有:(1)增大FOV,使之大于受检部位;(2)切换频率编码与相位编码的方向,把层面中径线较短的方向设置为相位编码方向。

如进行腹部横断面成像时,把前后方向设置为相位编码方向不易出现卷褶伪影;(3)相位编码方向超范围编码,是指对相位编码方向上超出FOV范围的组织也进行相位编码,不同的MRI仪产家采用不同方法进行超范围相位编码。

如西门子公司采用的过度采样(over sample)技术,根据被检组织在相位编码方向上超出FOV 的多少来决定过度编码的范围,可以1%到100%范围内随意选择,采集时间随所选的范围成比例增加。

GE公司采用去相位卷褶(no phase wrap,NPW)技术,通常用于2个NEX或4个NEX的序列,如果是2个NEX,施加NPW技术后实际上只执行1个NEX,但相位编码范围增大1倍,采集的总相位编码线(MR信号)数目没有改变,因此不增加采集时间;如果是1个NEX的序列则需要增加采集时间,与西门子公司过度采样技术相仿,但过度编码的范围不能随意选择。

(三)截断伪影截断伪影也称环状伪影,在空间分辨力较低的图像比较明显,表现为多条同中心的弧线状低信号影。

MRI图像是由多个像素构成的,数字图像要想真实展示实际解剖结构,其像素应该无限小,但实际上像素的大小是有限的,因此图像与实际解剖存在差别,这种差别实际上就是截断差别,当像素较大时其失真将更为明显,就可能出现肉眼可见的明暗相间的条带,这就是截断伪影。

截断伪影容易出现在两种情况下:(1)图像的空间分辨力较低(即像素较大);(2)在两种信号强度差别很大的组织间,如T2WI上脑脊液与骨皮质之间。

截断伪影的特点有:(1)常出现在空间分辨力较低的图像上;(2)相位编码方向往往更为明显,因为为了缩短采集时间相位编码方向的空间分辨力往往更低;(3)表现为多条明暗相间的弧线或条带。

截断伪影的对策主要是增加图像空间分辨力,但同时往往需要增加采集时间。

(四)部分容积效应与其他任何断层图像一样,MR图像同样存在部分容积效应,造成病灶的信号强度不能得以客观表达,同时将影响病灶与正常组织的对比。

解决的办法主要是减薄层厚。

(五)层间干扰MR成像需要采用射频脉冲激发,由于受梯度场线性、射频脉冲的频率特性等的影响,实际上MR二维采集时扫描层面附近的质子也会受到激励,这样就会造成层面之间的信号相互影响(图28),我们把这种效应称为层间干扰(cross talk)或层间污染(cross contamination)。

层间干扰的结果往往是偶数层面的图像整体信号强度降低,因而出现同一序列的MR图像一层亮一层暗相间隔的现象。

层间干扰伪影的对策包括:(1)设置一定的层间距;(2)采用跳跃方式采集各层图像信号,如总共有10层图像,先激发采集第1、3、5、7、9层,再激发采集第2、4、6、8、10层;(3)采用三维采集技术。

二、运动伪影MR图像的运动伪影往往是指由于受检者的宏观运动引起的伪影。

这些运动可以是自主运动如肢体运动、吞咽等,也可以是非自主运动如心跳、血管搏动。

运动可以是随机的如胃肠道蠕动、吞咽等,也可以是周期性运动如心跳和血管搏动等。

运动伪影出现的原因主要是由于在MR信号采集的过程中,运动器官在每一次激发、编码及信号采集时所处的位置或形态发生了变化,因此将出现相位的错误,在傅里叶转换时其信号的位置即发生错误,从而出现伪影。

运动伪影具有以下共同特点:(1)主要出现在相位编码方向上;(2)伪影的强度取决于运动结构的信号强度,后者信号强度越高,相应的伪影越亮。

(3)伪影复制的数目、位置受基本正弦运动的相对强度、TR、NEX、FOV等的因素影像。

下面将介绍常见运动伪影的特点及其对策。

(一)随机自主运动伪影随机自主运动伪影是指不具有周期性且受检者能够自主控制的运动造成的伪影,如吞咽、眼球转动、肢体运动等造成的伪影。

随机自主运动伪影的特点有:(1)主要造成图像模糊;(2)伪影出现在相位编码方向;(3)受检者可以控制。

主要对策有:(1)检查前争取病人的配合,保证扫描期间保持不动;(2)尽量缩短图像采集时间;(3)吞咽运动伪影可以在喉部施加预饱和带。

(二)呼吸运动伪影呼吸运动伪影主要出现在胸腹部MR图像上,呼吸运动具有一定的节律性和可控制性。

特点为:(1)主要造成图像模糊;(2)伪影出现在相位编码方向上;(3)受检者可以在一定程度控制。

对策包括:(1)施加呼吸触发技术(T2WI)或呼吸补偿技术(SE T1WI);(2)采用快速成像序列屏气扫描;(3)施加脂肪抑制技术,因为MR图像上脂肪信号很高,造成伪影也很明显,脂肪信号抑制后伪影将明显减轻;(4)在前腹壁施加预饱和带抑制腹壁皮下脂肪的信号;(5)施加腹带等减小呼吸运动的幅度;(6)增加NEX。

(三)心脏搏动伪影心脏搏动伪影不仅可以造成心脏MRI图像的模糊,而且伪影将重叠于周围结构上。

心脏搏动伪影具有以下特点:(1)具有很强的周期性;(2)受检者不能自主控制;(3)沿相位编码方向分布。

心脏搏动伪影的对策有:(1)施加心电门控或心电触发技术,主要用于心脏大血管MR检查;(2)在心脏区域施加预饱和带,主要用于心脏周围结构如脊柱的检查;(3)切换相位编码方向,如脊柱矢状面或横断面成像时,如果相位编码为前后方向,心脏搏动伪影将重叠在脊柱上,如果把相位编码方向改成左右(横断面)或上下(矢状面),伪影将不再重叠于脊柱上。

(四)大血管搏动伪影大血管搏动伪影常见于以下几种情况:(1)腹部MRI成像,特别是梯度回波快速成像序列;(2)增强扫描时由于血液信号增加,容易出现搏动伪影,梯度回波序列容易出现,SE T1WI也可出现来自静脉的搏动伪影;(3)其他临近大血管的部位,利用梯度回波成像或增强扫描均易出现搏动伪影。

大血管搏动伪影的特点为:(1)具有很强的周期性;(2)沿相位编码方向分布;(3)常表现为一串等间距的血管影;(4)血管信号越高,搏动伪影越明显;(5)在成像区域靠血流上游的层面搏动伪影较明显,如腹部横断面图像中主动脉搏动伪影以上方层面较明显,而腔静脉搏动伪影则以下方层面较明显。

大血管搏动伪影的对策有:(1)在成像区域血流的上游施加预饱和带;(2)使用流动补偿技术,对较慢的血流造成的伪影有较好的效果,如颅脑SE T1WI增强扫描施加该技术后来自于静脉窦的搏动伪影可明显减少;(3)施加心电门控;(4)切换相位编码方向,这并不能消除搏动伪影,但可使搏动伪影的方向发生改变,如肝脏横断面扰相GRE T1WI序列,如果相位编码方向为前后方向,则主动脉搏动伪影将重叠于左肝外叶,如果把相位编码方向改为左右方向,则主动脉搏动伪影可避开左肝外叶。

三、磁化率伪影及金属伪影磁化率是物质的基本特性之一,某种物质的磁化率是指这种物质进入外磁场后的磁化强度与外磁场强度的比率。

抗磁性物质的磁化率为负值,顺磁性物质的磁化率为正值,一般顺磁性物质磁化率很低,铁磁性物质的磁化率很高。

MR成像时,两种磁化率差别较大的组织界面上将出现伪影,这种伪影称为磁化率伪影。

磁化率伪影表现为局部信号明显减弱或增强,常同时伴有组织变形。

磁化率伪影具有以下特点:(1)常出现在磁化率差别较大的组织界面附近,如脑脊液与颅骨间、空气与组织之间等;(2)体内或体外的金属物质特别是铁磁性物质可造成局部磁化率发生显著变化,出现严重的磁化率伪影;(3)梯度回波序列对磁化率变化较敏感,与自旋回波类序列相比更容易出现磁化率伪影,EPI序列的磁化率伪影更为严重;(4)一般随TE的延长,磁化率伪影越明显,因此T2WI或T2*WI的磁化率伪影较T1WI明显。

相关文档
最新文档