华中数学分析历年考研真题

合集下载

华中科技大学历年考研真题

华中科技大学历年考研真题

华中科技大学数学系数学分析1997,2000——2007(2004有答案)数值分析1999,2001——2002高等代数1997——2002,2004——2007概率统计2001——2002综合课程(应用数学、计算数学、概率统计专业)2003C语言程序设计(数学系计算数学专业)2002常微分方程2001——2002数理方程与泛函分析2001——2002专业英语翻译(概率论与数理统计、应用数学、计算数学专业)2006物理系数学(含高等数学线性代数)(物理系各专业)2007数学(物理类)2001,2003——2006数学(工科)(单考)2005数学(工科各专业)2003数学(理、工科类)(单)2002数学(单考)(工科各专业)2004数学(理工科)2006数学(理工类)(单考)2007高等数学(物理系)2002量子力学2001,2002,2003,2004,2005,2006(第1种),2006(第2种),2007统计物理2001——2002电动力学2001力学与电磁学2001——2004化学系物理化学2000——2007(2000——2002有答案)化学综合2007化工基础2007生物化工基础2007有机化学(化学各专业、结构工程、环境工程、生物化工专业)2000(2000有答案)有机化学(化学各专业、生物化工、材料加工工程、结构工程等专业)2001(2001有答案)有机化学(化学系各专业、环境科学专业)2002(2002有答案)有机化学(化学各专业)2003(2003有答案)有机化学(化学各专业、材料加工、环境化学专业)2004(2004有答案)有机化学(化学各专业、生物化学与分子生物学、生物信息技术、生物制药工程专业)2005有机化学(B卷)(应用化学等专业)2002有机化学(含高分子化学)(化学各专业及其他相关专业)2006有机化学(环境科学专业)2005无机化学2001——2002,2004——2005无机及分析化学2006无机与分析化学2003分析化学(分析化学、高分子化学与物理专业)2005分析化学(分析化学、高分子化学专业)2004分析化学(化学类各专业)2002分析化学(环境科学专业)2002——2005分析化学(环境科学、能源与环境工程专业)2006分析化学(有机化学、高分子化学与物理、环境工程专业)2001高分子化学2002——2003,2005——2006高分子化学(二)2004——2005高分子化学(一)2004高分子化学及物理2001——2002机械科学与工程学院机械设计1997——2002(1997——2001有答案)机械设计基础2002——2007机械原理1999——2002机械原理及机械零件2001液压传动2000——2002液压流体力学2000——2001画法几何与机械制图2001机械工程控制基础2006信号与线性系统1996——2002,2006——2007(1997有答案)信号与系统2002——2006控制理论(化工过程机械专业)2001控制理论(经典控制理论、现代控制理论)(控制理论与控制工程、检测技术及自动化装置、系统工程、系统信息化技术、系统分析与集成、建筑技术科学、模式识别与智能系统、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程、数字化设计及制造、设计艺术学专业)2005控制理论(经典控制理论、现代控制理论)(控制系所有专业、模式识别与智能系统、建筑技术科学专业)2006控制理论(控制理论与控制工程、检测技术及自动化装置、系统工程、机制、机电、车辆、材料加工、轮机工程、模式识别、导航、制导专业)2002(2002有答案)控制理论(控制系、图象所各专业及生物物理学、机械制造及自动化、机械电子工程等专业)2001(2001有答案)控制理论(自控系各专业、机电学院各专业、模式识别与智能控制、内燃机专业)1996(1996有答案)控制理论(自控系各专业、机械学院、交通学院有关专业、制冷及低温工程、模式识别与智能控制专业)1998(1998有答案)控制理论(自控系各专业、机械学院及其他有关专业)1997(1997有答案)控制理论(自控系各专业、机械学院有关专业、制冷及低温工程、生物医学工程、模式识别与智能系统、电力电子与电力传动、轮机工程、动力机械及工程专业)1999(1999有答案)控制理论(自控系各专业、机械制造、机械电子、材料加工、动力机械、模式识别、制冷、轮机工程、车辆工程等专业)2000(2000有答案)控制理论(自控系各专业、模式识别、机电控制等专业)1995(1995有答案)控制理论基础(船舶与海洋工程专业)2007自动控制理论(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001自动控制理论(电机与电器、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术、脉冲功率与等离子体、动力工程及其自动化专业)2005自动控制理论(电机与电器、电力系统及其自动化专业)2000自动控制理论(电力系统及其自动化、水力发电工程专业)1998自动控制理论(电气工程所有专业、动力机械及工程专业)2004自动控制理论(电气工程所有专业、制冷及低温工程专业)2002自动控制理论(电气学院所有专业)2006自动控制理论(电气学院所有专业、能源学院部分专业)2003自动控制理论(水利水电工程、电机与电器、电力系统及其自动化专业)1999 自动控制理论(水利水电工程、系统分析与集成专业)2003自动控制理论(水利水电工程专业)2001,2004——2007自动控制原理(水文学及水资源、水利水电工程、系统分析与集成专业)2002 自动控制原理(系统分析与集成、控制科学与工程、机械工程、仪器科学与技术、建筑技术与科学专业)2007电子技术基础(测试计量技术及仪器专业)2001电子技术基础(电磁场与微波技术、电路与系统、电力电子与电力传动、微电子学与固体电子学、半导体芯片系统与工艺、软件工程、模式识别与智能系统、信息安全、光学工程、光电信息工程、物理电子学、机械工程、仪器科学与技术专业)2007电子技术基础(电机与电器、电力电子与电力传动、微电子学与固体电子学、动力机械及工程、轮机工程、车辆工程专业)2000电子技术基础(电机与电器、电力电子与电力传动专业)1999电子技术基础(电机与电器、电力系统及其自动化、电力电子与电力传动、电工理论与新技术、轮机工程等专业)2001电子技术基础(电机与电器、电力系统及其自动化、电力电子与电力传动、电工理论与新技术、轮机工程等专业)2001电子技术基础(电气学院各专业、模式识别、精密仪器、测试计量、光学工程、物理电子学、微电子学专业)2002电子技术基础(光学工程、物理电子学、固体力学、流体力学、微电子学与固体电子学、模式识别与智能系统专业)1999电子技术基础(光学工程、物理电子学、光电信息工程、机械学院各专业)2005 电子技术基础(光学工程、物理电子学、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程专业)2004电子技术基础(光学仪器、物理电子学与光电子学、固体力学、流体力学、电子材料与元器件、模式识别与智能控制、内燃机、汽车设计制造专业)1998电子技术基础(光学仪器、物理电子学与光电子学、固体力学、汽车设计制造、电子材料与元器件、模式识别与智能控制、内燃机专业)1997电子技术基础(化工过程机械专业)2005——2006电子技术基础(精密仪器及机械专业)2003电子技术基础(轮机工程、车辆工程、精密仪器及机械、测试计量技术及仪器专业)2005电子技术基础(生物医学工程、生物物理学、生物材料与组织工程专业)2005——2006电子技术基础(生物医学工程、生物物理学专业)2003——2004电子技术基础(生物医学工程专业)2002电子技术基础(微电子学与固体电子学、半导体芯片系统设计与工艺、电力电子与电力传动、模式识别与智能系统专业)2005电子技术基础(微电子学与固体电子学、半导体芯片系统设计与工艺、电力电子与电力传动、模式识别与智能系统专业)2006电子技术基础(微电子学与固体电子学、电力电子与电力传动、导航、制导与控制专业)2003电子技术基础(微电子学与固体电子学、电力电子与电力传动、导航、制导与控制专业)2004电子技术基础(物理电子学、光信息科学与技术、光学工程专业)2006电子技术基础(物理电子学、光学工程、模式识别与智能系统、流体力学专业)2000电子技术基础(物理电子学、光学工程、模式识别与智能系统专业)2001电子技术基础(物理电子学与光电子学专业)1995数据结构1999——2001,2006——2007数据结构及程序设计技术2004——2006数据结构与算法分析2006——2007数据库系统原理1996——2002,2004计算机组成原理(计算机科学与技术、模式识别与智能系统、机械工程、仪器科学与技术、建筑技术科学专业)1992——2002,2006——2007(另有模拟试题一份)计算机组成原理(生物医学工程、生物信息技术专业)2007C语言程序设计(计算机软件与理论专业)2001——2002操作系统1995——2002程序设计基础1995——2002程序设计语言及编译1999——2002互换性与技术测量2000——2007工业设计史2004——2005工业设计史论2006——2007工业设计综合考试2004——2007微机原理(8086)及应用(控制科学系各专业、模式识别与智能系统、力学各专业、材料加工工程专业)2000(2000有答案)微机原理(8086)及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001(2001有答案)微机原理(8086)及应用(自动控制工程系各专业、模式识别与智能系统、流体力学、工程力学专业)1999(1999有答案)微机原理(电信系各专业、电子材料与元器件专业)1996(1996有答案)微机原理(电信系各专业、电子材料与元器件专业)1998微机原理(电信系各专业、微电子学与固体电子学专业)1999微机原理(二)(光学工程、物理电子学专业)2002微机原理(光学工程、物理电子学专业)1999——2002微机原理(光学仪器、物理电子学与光电子学专业)1997——1998(1997有答案)微机原理(软件工程专业)2007微机原理(三)(电路与系统专业)2002微机原理(通信与电子系统、信号与信息处理、电路与系统、电磁场与微波技术、电子材料与元器件专业)1997微机原理(一)(电机与电气、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术专业)2002微机原理及微机控制技术(自动控制理论及应用、工业自动化、模式识别与智能控制专业)1996——1998(1997——1998有答案)微机原理及应用(材料加工工程、数字化材料成形专业)2005——2006微机原理及应用(材料加工工程专业)2003——2004微机原理及应用(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001微机原理及应用(二)(电力电子与电力传动、微电子学与固体电子学专业)2002 微机原理及应用(机械制造及其自动化、机械电子工程专业)2001微机原理及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001 微机原理及应用(软件工程专业)2006微机原理及应用(三)(控制理论与控制工程、系统工程、固体力学、模式识别、检测技术及自动化装置、工程力学、导航、制导专业)2002(2002有答案)微机原理及应用(水利水电工程、轮机工程、微电子学与固体电子学、供热、供燃气通风及空调工程专业)2001微机原理三(电路与系统专业)2002微机原理与接口技术(生物医学工程专业)2004微机原理与应用(机械制造及其自动化、机械电子工程、车辆工程、精密仪器及机械、测试计算技术及仪器、材料加工工程、轮机工程专业)2002微机原理与应用(机械制造及其自动化、机械电子工程等专业)2001结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001电动力学2001综合考试(含C语言程序设计、数据结构)(计算机应用技术专业)2001综合考试(含计算机系统结构、计算机网络、数据结构)(计算机系统结构专业)2002综合考试(计算机应用技术专业)(数据结构、C语言程序设计)1999——2001 通信原理(电路与系统、通信与信息系统、信号与信息处理专业)2001通信原理(通信与信息系统、信号与信息处理专业)2002通信原理(物理电子学、光学工程专业)2001汽车理论2004——2006汽车理论和设计2001——2002汽轮机原理2001——2002发动机原理2001综合考试(1)(脉冲与数字电路、微机、高频电路)(电信系各专业、模式识别与智能系统专业)2000综合考试(含程序设计技术、数据结构、计算机组成原理、离散数学)(计算机学院各专业、机械学院各专业、模式识别与智能系统专业)2003综合考试(含数字电路、微机原理)(通信与信息系统、信号与信息处理、模式识别与智能系统专业)2002综合考试二(含通信原理、高频电子线路)(电信系各专业、模式识别与智能系统专业)2000综合考试一(传感器原理、数字电子技术)(控制、机械各专业、建筑技术科学、模式识别专业)2005综合考试(含数据结构、计算机组成原理、离散数学)2004——2005光电检测技术2001——2003,2005综合考试(含信号与线性系统、数字信号处理)2005综合考试(一)(含信号与线性系统、数字信号处理)2003——2004(2004有答案)专业英语翻译(计算机体系结构、软件与理论、应用技术、信息安全专业)2006 专业英语翻译(模式识别与智能系统专业)2006英语专业翻译(机械工程、工业工程、仪器科学与技术、管理科学与工程专业)2006材料科学与工程学院量子力学2001,2002,2003,2004,2005,2006(第1种),2006(第2种),2007物理化学2000——2007(2000——2002有答案)计算机图形学2002化学综合2007化工基础2007生物化工基础2007塑性成形原理2002有机化学(化学各专业、结构工程、环境工程、生物化工专业)2000(2000有答案)有机化学(化学各专业、生物化工、材料加工工程、结构工程等专业)2001(2001有答案)有机化学(化学系各专业、环境科学专业)2002(2002有答案)有机化学(化学各专业)2003(2003有答案)有机化学(化学各专业、材料加工、环境化学专业)2004(2004有答案)有机化学(化学各专业、生物化学与分子生物学、生物信息技术、生物制药工程专业)2005有机化学(B卷)(应用化学等专业)2002有机化学(含高分子化学)(化学各专业及其他相关专业)2006有机化学(环境科学专业)2005无机化学2001——2002,2004——2005无机及分析化学2006无机与分析化学2003分析化学(分析化学、高分子化学与物理专业)2005分析化学(分析化学、高分子化学专业)2004分析化学(化学类各专业)2002分析化学(环境科学专业)2002——2005分析化学(环境科学、能源与环境工程专业)2006分析化学(有机化学、高分子化学与物理、环境工程专业)2001高分子化学2002——2003,2005——2006高分子化学(二)2004——2005高分子化学(一)2004高分子化学及物理2001——2002材料成形原理2003——2007材料科学基础2002——2003,2005——2007材料学基础2001微机原理及接口技术(材料加工工程、数字化材料成形、环境科学与工程专业)2007微机及接口技术(生物医学工程、生物物理学专业)2001微机接口与技术(生物医学工程专业)2003微机原理及接口技术(生物医学工程专业)2002微机原理(8086)及应用(控制科学系各专业、模式识别与智能系统、力学各专业、材料加工工程专业)2000(2000有答案)微机原理(8086)及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001(2001有答案)微机原理(8086)及应用(自动控制工程系各专业、模式识别与智能系统、流体力学、工程力学专业)1999(1999有答案)微机原理(电信系各专业、电子材料与元器件专业)1996(1996有答案)微机原理(电信系各专业、电子材料与元器件专业)1998微机原理(电信系各专业、微电子学与固体电子学专业)1999微机原理(二)(光学工程、物理电子学专业)2002微机原理(光学工程、物理电子学专业)1999——2002微机原理(光学仪器、物理电子学与光电子学专业)1997——1998(1997有答案)微机原理(软件工程专业)2007微机原理(三)(电路与系统专业)2002微机原理(通信与电子系统、信号与信息处理、电路与系统、电磁场与微波技术、电子材料与元器件专业)1997微机原理(一)(电机与电气、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术专业)2002微机原理及微机控制技术(自动控制理论及应用、工业自动化、模式识别与智能控制专业)1996——1998(1997——1998有答案)微机原理及应用(材料加工工程、数字化材料成形专业)2005——2006微机原理及应用(材料加工工程专业)2003——2004微机原理及应用(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001微机原理及应用(二)(电力电子与电力传动、微电子学与固体电子学专业)2002 微机原理及应用(机械制造及其自动化、机械电子工程专业)2001微机原理及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001 微机原理及应用(软件工程专业)2006微机原理及应用(三)(控制理论与控制工程、系统工程、固体力学、模式识别、检测技术及自动化装置、工程力学、导航、制导专业)2002(2002有答案)微机原理及应用(水利水电工程、轮机工程、微电子学与固体电子学、供热、供燃气通风及空调工程专业)2001微机原理三(电路与系统专业)2002微机原理与接口技术(生物医学工程专业)2004微机原理与应用(机械制造及其自动化、机械电子工程、车辆工程、精密仪器及机械、测试计算技术及仪器、材料加工工程、轮机工程专业)2002微机原理与应用(机械制造及其自动化、机械电子工程等专业)2001结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001电动力学2001综合考试(材料加工工程专业)2001——2002陶瓷材料2005——2006陶瓷材料学2001——2002,2004金属材料2004金属材料学2001——2002金属塑性成形原理1997,1999,2001金属学及热处理2001——2002铸件形成理论2002铸件形成理论基础1998,2001铸造金属学及热处理1998,2001专业英语(材料学、纳米材料及技术专业)2006能源与动力工程学院传热学1999,2000,2001(第1种),2001(第2种),2003——2007(1999,2000,2001(第1种)有答案)锅炉原理2001——2002,2005流体机械原理2002内燃机原理2001——2002离心压缩机原理2001工程流体力学2002,2007结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001不可压缩流体力学2001——2006低温原理与设备2000——2002(2000有答案)电工电子技术2001,2003电站锅炉原理2004化工原理2001,2005制冷原理与设备2001——2002热工自动化2002工程热力学2001(第1种),2001(第2种),2002——2006专业英语翻译(动力机械及工程专业)2006电气与电子工程学院电路理论(电力系统及其自动化、高电压与绝缘技术、电机与电器、电工理论与新技术、电力电子与电力传动、环境工程专业)2001——2003电路理论(电气工程、环境科学与工程专业)2007电路理论(电气工程学科所有专业、环境工程、机械制造及自动化、精密制造、数字化设计专业)2005电路理论(电气工程学科所有专业、环境工程等专业)2006电路理论(电气工程学科所有专业、机械制造及自动化、环境工程、机械电子工程、机械设计及其理论、精微制造工业等专业)2004电路理论(光学工程、物理电子学、控制理论与控制工程、检测技术与自动化装置、系统工程、模式识别与智能系统专业)2002电路理论(光学工程、物理电子学专业)1999——2001电路理论(物理电子学与光电子学、光学仪器专业)1998电磁场2002,2007电磁场与电磁波2001——2006电磁学与热学2005电机学2001——2002电力电子技术2000——2001电力电子学2001——2002电力系统分析1999——2002发电厂及电力系统1998高电压技术2001——2002高压电器2001电子器件2002力学与电磁学2001——2004英语(电力系统及其自动化、电力电子与电力传动、电工理论与新技术、电气信息检测技术专业)2006交通科学与工程学院交通工程2001——2002,2004交通工程学2003,2005——2007综合考试(轮机工程专业)2004高级语言程序设计(C语言)2001——2002城市道路规划与设计2002,2006——2007城市道路设计2001——2005船舶力学基础2007船舶设计原理2001——2002船舶原理2001——2002控制理论(化工过程机械专业)2001控制理论(经典控制理论、现代控制理论)(控制理论与控制工程、检测技术及自动化装置、系统工程、系统信息化技术、系统分析与集成、建筑技术科学、模式识别与智能系统、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程、数字化设计及制造、设计艺术学专业)2005控制理论(经典控制理论、现代控制理论)(控制系所有专业、模式识别与智能系统、建筑技术科学专业)2006控制理论(控制理论与控制工程、检测技术及自动化装置、系统工程、机制、机电、车辆、材料加工、轮机工程、模式识别、导航、制导专业)2002(2002有答案)控制理论(控制系、图象所各专业及生物物理学、机械制造及自动化、机械电子工程等专业)2001(2001有答案)控制理论(自控系各专业、机电学院各专业、模式识别与智能控制、内燃机专业)1996(1996有答案)控制理论(自控系各专业、机械学院、交通学院有关专业、制冷及低温工程、模式识别与智能控制专业)1998(1998有答案)控制理论(自控系各专业、机械学院及其他有关专业)1997(1997有答案)控制理论(自控系各专业、机械学院有关专业、制冷及低温工程、生物医学工程、模式识别与智能系统、电力电子与电力传动、轮机工程、动力机械及工程专业)1999(1999有答案)控制理论(自控系各专业、机械制造、机械电子、材料加工、动力机械、模式识别、制冷、轮机工程、车辆工程等专业)2000(2000有答案)控制理论(自控系各专业、模式识别、机电控制等专业)1995(1995有答案)控制理论基础(船舶与海洋工程专业)2007自动控制理论(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001自动控制理论(电机与电器、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术、脉冲功率与等离子体、动力工程及其自动化专业)2005自动控制理论(电机与电器、电力系统及其自动化专业)2000自动控制理论(电力系统及其自动化、水力发电工程专业)1998自动控制理论(电气工程所有专业、动力机械及工程专业)2004自动控制理论(电气工程所有专业、制冷及低温工程专业)2002自动控制理论(电气学院所有专业)2006自动控制理论(电气学院所有专业、能源学院部分专业)2003自动控制理论(水利水电工程、电机与电器、电力系统及其自动化专业)1999 自动控制理论(水利水电工程、系统分析与集成专业)2003自动控制理论(水利水电工程专业)2001,2004——2007自动控制原理(水文学及水资源、水利水电工程、系统分析与集成专业)2002 自动控制原理(系统分析与集成、控制科学与工程、机械工程、仪器科学与技术、建筑技术与科学专业)2007结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001专业英语翻译(船舶与海洋结构物设计制造、轮机工程、交通工程专业)2006力学系材料力学(船舶与海洋结构物设计制造专业)2003——2004材料力学(船舶与海洋结构物设计制造、化工过程机械专业)2001——2002材料力学(船舶与海洋结构物设计制造、水下工程专业)2005——2006材料力学(固体力学、工程力学、材料加工工程专业)2001——2002材料力学(力学系所有专业)2002,2005——2006材料力学(岩土工程、道路与铁道工程、化工过程机械专业)2005——2006材料力学(岩土工程、道路与铁道工程专业)2003——2004材料力学(岩土工程专业)2001——2002材料力学一(固体力学、工程力学、动力机械及工程专业)2004理论力学1997——2006(1997——2001有答案)(另有《理论力学》考研复习内部资料,含理论力学课程考研基本要求、考研试题内容及题型的分析,10元。

华中师范大学《高等代数》《数学分析》考研真题(2009-2017汇总)

华中师范大学《高等代数》《数学分析》考研真题(2009-2017汇总)

考试复习重点资料(最新版)资料见第三页封面第1页温馨提示提示:本套资料经过精心编排,前2页是封面和提示部分,后面是资料试题部分。

资料涵盖了考试的重点知识和题型,可以很好的帮助你复习备考。

资料不在多而在精,一套系统的涵盖考试重点的资料,能够帮助你很好的提高成绩,减轻学习负担,再加上自己勤奋练习,肯定能取得理想的成绩。

寄语:无论你是考研、期末考试还是准备其他考试,既然决定了,就要坚持到底,花几个月的时间,精心准备,在加上资料的帮助,必然会得到回报。

1.一份合理科学的学习计划是你备考的领航灯。

要有总体的时间规划,也要有精细到每天的计划,不打无准备的仗。

2.资料需要反复练习,任何一件看似轻而易举的事情,都是经过反复刻意练习的结果。

公众号:第七代师兄,学习也是一样的,手里的资料,一定要反复练习几遍,才能孰能生巧,融汇贯通,考场上才能轻松应对。

3.态度决定一切,不要手稿眼底,从最基础的知识学起,基础扎实了,才能平底起高楼,才能将各类知识点运用自如。

4.坚持到底,无论是考试还是做事情,很多人打败自己的永远是自己。

切记心浮气躁,半途而废。

5.希望这套资料能够很好的帮助你复习备考,祝学习进步,加油。

第2页目录1华中师范大学2009年研究生入学考试试题高等代数4 2华中师范大学2010年研究生入学考试试题高等代数5 3华中师范大学2011年研究生入学考试试题高等代数6 4华中师范大学2012年研究生入学考试试题高等代数7 5华中师范大学2013年研究生入学考试试题高等代数9 6华中师范大学2014年研究生入学考试试题高等代数11 7华中师范大学2015年研究生入学考试试题高等代数12 8华中师范大学2016年研究生入学考试试题高等代数13 9华中师范大学2017年研究生入学考试试题高等代数15 10华中师范大学2009年研究生入学考试试题数学分析17 11华中师范大学2010年研究生入学考试试题数学分析19 12华中师范大学2011年研究生入学考试试题数学分析21 13华中师范大学2012年研究生入学考试试题数学分析23 14华中师范大学2013年研究生入学考试试题数学分析25 15华中师范大学2014年研究生入学考试试题数学分析27 16华中师范大学2015年研究生入学考试试题数学分析29 17华中师范大学2016年研究生入学考试试题数学分析31 18华中师范大学2017年研究生入学考试试题数学分析331.(20分)设a1,¨¨¨,a n是n个复数,x是复变元.求解:x取哪些复数值时下述等式(等式左边是n`1阶行列式)成立:ˇˇˇˇˇˇˇˇˇˇˇˇˇ111¨¨¨1x a1a2¨¨¨a nx2a21a22¨¨¨a2n............x n a n1a n2¨¨¨a n nˇˇˇˇˇˇˇˇˇˇˇˇˇ“0.2.(20分)设f p x q是n次实系数多项式,ną1.设f1p x q是f p x q的导数多项式.证明:(1)如果r是f p x q的m重根,mą0,则r是f1p x q的m´1重根(若r是f p x q的零重根则表示r不是f1p x q的根).(2)如果f p x q的根都是实数,则f1p x q的根也都是实数.3.(20分)设A是秩为r的mˆn阶矩阵,B是非零的mˆ1阶矩阵.考虑线性方程组AX“B,其中X是变元x1,¨¨¨,x n的列向量.证明:(1)线性方程组AX“B的任意有限个解向量X1,¨¨¨,X k的向量组的秩ďn´r`1.(2)若线性方程组AX“B有解,则它有n´r`1个解向量是线性无关的.4.(30分)设A,B,C都是n阶方阵,令˜A BC0¸是分块构成的2n阶方阵,其中右下块0表示n阶零方阵.(1)证明:rank ˜A BC0¸ěrank p B q`rank p C q.这里rank p B q表示矩阵B的秩.(2)举例说明:p1q中的等号和不等号都可能成立.5.(30分)设V是有限维向量空间,设U,W是V的两个子空间.(1)什么是U与W的和子空间U`W?请叙述关于U`W的维数公式.(2)证明关于和子空间的维数公式.6.(30分)设A为n阶实矩阵,λi“r`si是A的特征根,其中r,s是实数,i是虚数单位.(1)证明:12p A`A1q的特征根都是实数,令µ1﨨¨ďµn是12p A`A1q的全部特征根.(2)证明:µ1ďrďµn.(3)你有类似的估计s的办法吗?1.(20分)设F是任意数域,p p x q P F r x s.证明:p p x q是不可约多项式当且仅当p p x q是素多项式.2.(20分)(1)设A是n阶方阵,E是单位矩阵,k‰0.证明:A2“kA当且仅当rank p A q`rank p A´kE q“n.(2)证明:任意方阵可以表示为满秩矩阵和幂等矩阵的乘积.3.(20分)设R表示实数域,V“M3p R q表示所有3ˆ3实矩阵构成的向量空间.对给定的A P M3p R q,定义V上的线性变换A:VÑV为A pB q“AB´BA,对任意的B P M3p R q.设A“¨˚˝000010002˛‹‚.求A的特征值和相应的特征子空间;并求此时A的极小多项式.4.(30分)设有三元实二次型f p x,y,z q“x2`3y2`z2`4xz.并设x,y,z满足x2`y2`z2“1.试求f的最大值和最小值,并求当x,y,z取什么值时,f分别达到最大值和最小值.5.(30分)设R是实数域,V“C1r0,1s是闭区间r0,1s上的实连续可微函数的集合.V在函数的加法和数乘函数的运算下是一个向量空间.(1)证明函数f p x q“cos x,g p x q“2x,h p x q“e x在V中线性无关.(2)任意给定ną0,在V中找出n`1个线性无关的元素,并证明你的结论.(3)对某个m,是否有V和R m同构,如果是,给出证明;如果不是,说明理由.6.(30分)(1)设A和B均为n阶复方阵,证明:A与B相似当且仅当作为λ´矩阵,有λE´A等价于λE´B.(2)设A,B都是3阶幂零矩阵,证明:A相似于B当且仅当A与B有相同的极小多项式.(3)试说明上述结论p2q对4阶幂零矩阵是否成立,为什么?。

华中师范大学数学分析历年考研真题

华中师范大学数学分析历年考研真题

华中师范大学数学分析考研真题以上是01年数分2003年数学分析(综合卷)1.(16)求下列极限:(1))/1(2)!(lim n n n +∞→. (2))(x f 在]1,1[-上连续,恒不为0,求131sin )(1lim 30--+→x x x x f2.(15)设)(x f 在],[b a 上二阶可导,过点))(,(a f a A 与))(,(b f b B 的直线与曲线)(x f y =相较于))(,(c f c C ,其中b c a <<,证明:在),(b a 中至少存在一点ξ,使0)(=''ξf .3.(15) 证明:x x n n 21ln ∑∞=在]1,0(上一致收敛.4.(15) 设))}({(x f n 是],[b a 上的函数序列,满足对每一个],[b a x ∈导函数)(x f n '存在),2,1( =n 并且满足下列条件:(1)存在某一个],[0b a x ∈,使))}({(0x f n 收敛;(2)导函数列)}({x f n '在],[b a 上一致收敛. 证明: )}({x f n 在],[b a 上一致收敛.5.(14)设)(x f 在],[b a 上可导,其导函数)(x f '在],[b a 可积,对任意的自然数n .记⎰∑---+==b a ni n dx x f n a b n a b i a f )()(1σ , 证明:)]()([2lim a f b f a b n n n --=+∞→σ.2004年数学分析1.求下列极限(共50分,第1,2小题各10分,第3,4小题各15分)(1)21sin 0lim(cos )x x x → (2)11lim 123n n →∞+++1…+n (3)74444lim (112)x x x x x →∞++-- (4)1limsin (sin)2n n k k n nππ→∞=∑ 2.(15)设)(),(x g x f 在],[b a 上连续,在),(b a 内可导,若12,x x 是)(x f 在区间],[b a 上的两个零点,证明:存在[,]a b ξ∈,使得'()()'()0f f g ξξξ+=3.(15)设)(x f 在)0](,[>>a b b a 上连续,在),(b a 内可导,证明:在),(b a 内存在,ξη使b a f f ⋅'⋅=')()(2ηηξ.4.(15)设)(x f 在],[b a 上黎曼可积,证明:()f x e 在],[b a 上也是黎曼可积的.5.(15)'()(1,2,3,n f x n =…)在],[b a 上连续,函数)(x g 在],[b a 上也连续,且对],[b a 中任意的12,x x 和正整数n ,有1212|()()|||n n M f x f x x x n -≤-(0>M ),证明:lim ().'()0b n n a g x f x dx →+∞=⎰. 6.(15)设()n f x ( ,2,1=n )在],[b a 上连续,且{()}n f x 在],[b a 上一致收敛与)(x f .证明:(1)存在0>M ,使对任何自然数n ,有|()|,|()|n f x M f x M ≤≤及. (2)若)(x F 为-∞+∞(,)上连续函数,则(())n F f x 一致收敛于))((x f F .7.(10)设函数)(x f 在闭区间]1,1[-上具有三阶连续导数,且0)0(,1)1(,0)1(='==-f f f ,证明:在)1,1(-内至少存在一点ξ,使得(3)()3fξ=.8.(15)函数),(y x F 在点00(,)x y 的某个邻域内有连续的二阶偏导数,且00000000(,)0,'(,)0,'(,)0,''(,)0x y xx F x y F x y F x y F x y ==><,证明:由方程),(y x F 确定的隐函数()y f x =在0x 点取得极小值. 2005年数学分析1.求下列极限或指定函数的值:(1)1!2!3!!lim !n n n →∞++++ (10分) (2)135(21)lim 2462n n n n →∞- (10分) (3)1326lim[().1]2x x x x x e x →+∞-+-+(10分) (4)设)(x f 在0=x 的邻域二阶可导,且130()lim(1)x x f x x e x →++=,求(0),'(0),''(0)f f f 的值.(15分) 2.(15)设函数)(),(x g x f 在],[b a 上可导,且在),(b a 上'()0g x ≠,证明:存在)()'()(,)()()'()f a f f a bg g b g ξξξξξ-∈=-(使. 3.(15)设函数()f x 在]4,2[上有连续的一阶导函数,且(2)(4)0f f ==,证明:4242max |'()||()|x f x f x dx ≤≤≥⎰. 4.(13)设有方程.sin (01)x m q x q =+<<.若0101,.sin ,,sin ,,n n x m x m q x x m q x +==+=+ 证明:{}n x 收敛; 设lim n n x l →+∞=,再证明l 是方程.sin x m q x =+的唯一解. 5.(13)证明:函数项级数11((1))x n n x e n n ∞=-+∑在任何有穷区间[,]a b 上一致收敛. 6.(13)设()f x 在[,]a b 上二阶可导,且''()0f x >,证明:1()()2ba ab f f x dx b a +≤-⎰. 7.(13)设12,,,,n a a a 均为常数,证明:函数项级数101..!x n t n n a t e dt n ∞-=∑⎰在[,]a b 上一致收敛. 8.(13)设()f x 在[,]a b 上黎曼可积,()0,f x c ≥≥用可积准则证明:函数ln ()f x 在[,]a b 上黎曼可积.9.(10)设()f x 在[,]a b 上具有连续的二阶导数,证明:在(,)a b 内存在ξ,使得31()()()().''()224ba ab f x dx b a f b a f ξ+=-+-⎰ 2006年数学分析 1.(30) (1)111sin )1(sin lim 121----→x x e x x . (2) 设x x a x y +=,求y '. (3) dx x x ⎰+ln 1ln ln . (4)设yx y x y x f y arcsin )1(),(2-+=,求)1,(x f x '.(5)dxdy e y x y xD 22)(+⎰⎰+,其中}1),{(22≤+=y x y x D . (6) 求⎰-=Lydx ydy x I cos sin ,其中L 是从点)0,0(O 到点)0,(πA 的正弦曲线有x y sin =. 2.(20)设)(x f 在(,)a +∞上可导,且'()f x 在(,)a +∞上有界,证明:(1) )(x f 在(,)a +∞上一致连续. (2)()lim ()lim ()x x a f a f x f x ++→∞→=存在,但不一定存在. (3)若)(lim x f x +∞→存在,且)(lim )(lim x f x f ax x +→+∞→=,则)(x f '在(,)a +∞上至少有一个零点。

华中科技大学历年考研真题

华中科技大学历年考研真题

华中科技大学数学系数学分析1997,2000——2007(2004有答案)数值分析1999,2001——2002高等代数1997——2002,2004——2007概率统计2001——2002综合课程(应用数学、计算数学、概率统计专业)2003C语言程序设计(数学系计算数学专业)2002常微分方程2001——2002数理方程与泛函分析2001——2002专业英语翻译(概率论与数理统计、应用数学、计算数学专业)2006物理系数学(含高等数学线性代数)(物理系各专业)2007数学(物理类)2001,2003——2006数学(工科)(单考)2005数学(工科各专业)2003数学(理、工科类)(单)2002数学(单考)(工科各专业)2004数学(理工科)2006数学(理工类)(单考)2007高等数学(物理系)2002量子力学2001,2002,2003,2004,2005,2006(第1种),2006(第2种),2007统计物理2001——2002电动力学2001力学与电磁学2001——2004化学系物理化学2000——2007(2000——2002有答案)化学综合2007化工基础2007生物化工基础2007有机化学(化学各专业、结构工程、环境工程、生物化工专业)2000(2000有答案)有机化学(化学各专业、生物化工、材料加工工程、结构工程等专业)2001(2001有答案)有机化学(化学系各专业、环境科学专业)2002(2002有答案)有机化学(化学各专业)2003(2003有答案)有机化学(化学各专业、材料加工、环境化学专业)2004(2004有答案)有机化学(化学各专业、生物化学与分子生物学、生物信息技术、生物制药工程专业)2005有机化学(B卷)(应用化学等专业)2002有机化学(含高分子化学)(化学各专业及其他相关专业)2006有机化学(环境科学专业)2005无机化学2001——2002,2004——2005无机及分析化学2006无机与分析化学2003分析化学(分析化学、高分子化学与物理专业)2005分析化学(分析化学、高分子化学专业)2004分析化学(化学类各专业)2002分析化学(环境科学专业)2002——2005分析化学(环境科学、能源与环境工程专业)2006分析化学(有机化学、高分子化学与物理、环境工程专业)2001高分子化学2002——2003,2005——2006高分子化学(二)2004——2005高分子化学(一)2004高分子化学及物理2001——2002机械科学与工程学院机械设计1997——2002(1997——2001有答案)机械设计基础2002——2007机械原理1999——2002机械原理及机械零件2001液压传动2000——2002液压流体力学2000——2001画法几何与机械制图2001机械工程控制基础2006信号与线性系统1996——2002,2006——2007(1997有答案)信号与系统2002——2006控制理论(化工过程机械专业)2001控制理论(经典控制理论、现代控制理论)(控制理论与控制工程、检测技术及自动化装置、系统工程、系统信息化技术、系统分析与集成、建筑技术科学、模式识别与智能系统、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程、数字化设计及制造、设计艺术学专业)2005控制理论(经典控制理论、现代控制理论)(控制系所有专业、模式识别与智能系统、建筑技术科学专业)2006控制理论(控制理论与控制工程、检测技术及自动化装置、系统工程、机制、机电、车辆、材料加工、轮机工程、模式识别、导航、制导专业)2002(2002有答案)控制理论(控制系、图象所各专业及生物物理学、机械制造及自动化、机械电子工程等专业)2001(2001有答案)控制理论(自控系各专业、机电学院各专业、模式识别与智能控制、内燃机专业)1996(1996有答案)控制理论(自控系各专业、机械学院、交通学院有关专业、制冷及低温工程、模式识别与智能控制专业)1998(1998有答案)控制理论(自控系各专业、机械学院及其他有关专业)1997(1997有答案)控制理论(自控系各专业、机械学院有关专业、制冷及低温工程、生物医学工程、模式识别与智能系统、电力电子与电力传动、轮机工程、动力机械及工程专业)1999(1999有答案)控制理论(自控系各专业、机械制造、机械电子、材料加工、动力机械、模式识别、制冷、轮机工程、车辆工程等专业)2000(2000有答案)控制理论(自控系各专业、模式识别、机电控制等专业)1995(1995有答案)控制理论基础(船舶与海洋工程专业)2007自动控制理论(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001自动控制理论(电机与电器、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术、脉冲功率与等离子体、动力工程及其自动化专业)2005自动控制理论(电机与电器、电力系统及其自动化专业)2000自动控制理论(电力系统及其自动化、水力发电工程专业)1998自动控制理论(电气工程所有专业、动力机械及工程专业)2004自动控制理论(电气工程所有专业、制冷及低温工程专业)2002自动控制理论(电气学院所有专业)2006自动控制理论(电气学院所有专业、能源学院部分专业)2003自动控制理论(水利水电工程、电机与电器、电力系统及其自动化专业)1999 自动控制理论(水利水电工程、系统分析与集成专业)2003自动控制理论(水利水电工程专业)2001,2004——2007自动控制原理(水文学及水资源、水利水电工程、系统分析与集成专业)2002 自动控制原理(系统分析与集成、控制科学与工程、机械工程、仪器科学与技术、建筑技术与科学专业)2007电子技术基础(测试计量技术及仪器专业)2001电子技术基础(电磁场与微波技术、电路与系统、电力电子与电力传动、微电子学与固体电子学、半导体芯片系统与工艺、软件工程、模式识别与智能系统、信息安全、光学工程、光电信息工程、物理电子学、机械工程、仪器科学与技术专业)2007电子技术基础(电机与电器、电力电子与电力传动、微电子学与固体电子学、动力机械及工程、轮机工程、车辆工程专业)2000电子技术基础(电机与电器、电力电子与电力传动专业)1999电子技术基础(电机与电器、电力系统及其自动化、电力电子与电力传动、电工理论与新技术、轮机工程等专业)2001电子技术基础(电机与电器、电力系统及其自动化、电力电子与电力传动、电工理论与新技术、轮机工程等专业)2001电子技术基础(电气学院各专业、模式识别、精密仪器、测试计量、光学工程、物理电子学、微电子学专业)2002电子技术基础(光学工程、物理电子学、固体力学、流体力学、微电子学与固体电子学、模式识别与智能系统专业)1999电子技术基础(光学工程、物理电子学、光电信息工程、机械学院各专业)2005 电子技术基础(光学工程、物理电子学、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程专业)2004电子技术基础(光学仪器、物理电子学与光电子学、固体力学、流体力学、电子材料与元器件、模式识别与智能控制、内燃机、汽车设计制造专业)1998电子技术基础(光学仪器、物理电子学与光电子学、固体力学、汽车设计制造、电子材料与元器件、模式识别与智能控制、内燃机专业)1997电子技术基础(化工过程机械专业)2005——2006电子技术基础(精密仪器及机械专业)2003电子技术基础(轮机工程、车辆工程、精密仪器及机械、测试计量技术及仪器专业)2005电子技术基础(生物医学工程、生物物理学、生物材料与组织工程专业)2005——2006电子技术基础(生物医学工程、生物物理学专业)2003——2004电子技术基础(生物医学工程专业)2002电子技术基础(微电子学与固体电子学、半导体芯片系统设计与工艺、电力电子与电力传动、模式识别与智能系统专业)2005电子技术基础(微电子学与固体电子学、半导体芯片系统设计与工艺、电力电子与电力传动、模式识别与智能系统专业)2006电子技术基础(微电子学与固体电子学、电力电子与电力传动、导航、制导与控制专业)2003电子技术基础(微电子学与固体电子学、电力电子与电力传动、导航、制导与控制专业)2004电子技术基础(物理电子学、光信息科学与技术、光学工程专业)2006电子技术基础(物理电子学、光学工程、模式识别与智能系统、流体力学专业)2000电子技术基础(物理电子学、光学工程、模式识别与智能系统专业)2001电子技术基础(物理电子学与光电子学专业)1995数据结构1999——2001,2006——2007数据结构及程序设计技术2004——2006数据结构与算法分析2006——2007数据库系统原理1996——2002,2004计算机组成原理(计算机科学与技术、模式识别与智能系统、机械工程、仪器科学与技术、建筑技术科学专业)1992——2002,2006——2007(另有模拟试题一份)计算机组成原理(生物医学工程、生物信息技术专业)2007C语言程序设计(计算机软件与理论专业)2001——2002操作系统1995——2002程序设计基础1995——2002程序设计语言及编译1999——2002互换性与技术测量2000——2007工业设计史2004——2005工业设计史论2006——2007工业设计综合考试2004——2007微机原理(8086)及应用(控制科学系各专业、模式识别与智能系统、力学各专业、材料加工工程专业)2000(2000有答案)微机原理(8086)及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001(2001有答案)微机原理(8086)及应用(自动控制工程系各专业、模式识别与智能系统、流体力学、工程力学专业)1999(1999有答案)微机原理(电信系各专业、电子材料与元器件专业)1996(1996有答案)微机原理(电信系各专业、电子材料与元器件专业)1998微机原理(电信系各专业、微电子学与固体电子学专业)1999微机原理(二)(光学工程、物理电子学专业)2002微机原理(光学工程、物理电子学专业)1999——2002微机原理(光学仪器、物理电子学与光电子学专业)1997——1998(1997有答案)微机原理(软件工程专业)2007微机原理(三)(电路与系统专业)2002微机原理(通信与电子系统、信号与信息处理、电路与系统、电磁场与微波技术、电子材料与元器件专业)1997微机原理(一)(电机与电气、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术专业)2002微机原理及微机控制技术(自动控制理论及应用、工业自动化、模式识别与智能控制专业)1996——1998(1997——1998有答案)微机原理及应用(材料加工工程、数字化材料成形专业)2005——2006微机原理及应用(材料加工工程专业)2003——2004微机原理及应用(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001微机原理及应用(二)(电力电子与电力传动、微电子学与固体电子学专业)2002 微机原理及应用(机械制造及其自动化、机械电子工程专业)2001微机原理及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001 微机原理及应用(软件工程专业)2006微机原理及应用(三)(控制理论与控制工程、系统工程、固体力学、模式识别、检测技术及自动化装置、工程力学、导航、制导专业)2002(2002有答案)微机原理及应用(水利水电工程、轮机工程、微电子学与固体电子学、供热、供燃气通风及空调工程专业)2001微机原理三(电路与系统专业)2002微机原理与接口技术(生物医学工程专业)2004微机原理与应用(机械制造及其自动化、机械电子工程、车辆工程、精密仪器及机械、测试计算技术及仪器、材料加工工程、轮机工程专业)2002微机原理与应用(机械制造及其自动化、机械电子工程等专业)2001结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001电动力学2001综合考试(含C语言程序设计、数据结构)(计算机应用技术专业)2001综合考试(含计算机系统结构、计算机网络、数据结构)(计算机系统结构专业)2002综合考试(计算机应用技术专业)(数据结构、C语言程序设计)1999——2001 通信原理(电路与系统、通信与信息系统、信号与信息处理专业)2001通信原理(通信与信息系统、信号与信息处理专业)2002通信原理(物理电子学、光学工程专业)2001汽车理论2004——2006汽车理论和设计2001——2002汽轮机原理2001——2002发动机原理2001综合考试(1)(脉冲与数字电路、微机、高频电路)(电信系各专业、模式识别与智能系统专业)2000综合考试(含程序设计技术、数据结构、计算机组成原理、离散数学)(计算机学院各专业、机械学院各专业、模式识别与智能系统专业)2003综合考试(含数字电路、微机原理)(通信与信息系统、信号与信息处理、模式识别与智能系统专业)2002综合考试二(含通信原理、高频电子线路)(电信系各专业、模式识别与智能系统专业)2000综合考试一(传感器原理、数字电子技术)(控制、机械各专业、建筑技术科学、模式识别专业)2005综合考试(含数据结构、计算机组成原理、离散数学)2004——2005光电检测技术2001——2003,2005综合考试(含信号与线性系统、数字信号处理)2005综合考试(一)(含信号与线性系统、数字信号处理)2003——2004(2004有答案)专业英语翻译(计算机体系结构、软件与理论、应用技术、信息安全专业)2006 专业英语翻译(模式识别与智能系统专业)2006英语专业翻译(机械工程、工业工程、仪器科学与技术、管理科学与工程专业)2006材料科学与工程学院量子力学2001,2002,2003,2004,2005,2006(第1种),2006(第2种),2007物理化学2000——2007(2000——2002有答案)计算机图形学2002化学综合2007化工基础2007生物化工基础2007塑性成形原理2002有机化学(化学各专业、结构工程、环境工程、生物化工专业)2000(2000有答案)有机化学(化学各专业、生物化工、材料加工工程、结构工程等专业)2001(2001有答案)有机化学(化学系各专业、环境科学专业)2002(2002有答案)有机化学(化学各专业)2003(2003有答案)有机化学(化学各专业、材料加工、环境化学专业)2004(2004有答案)有机化学(化学各专业、生物化学与分子生物学、生物信息技术、生物制药工程专业)2005有机化学(B卷)(应用化学等专业)2002有机化学(含高分子化学)(化学各专业及其他相关专业)2006有机化学(环境科学专业)2005无机化学2001——2002,2004——2005无机及分析化学2006无机与分析化学2003分析化学(分析化学、高分子化学与物理专业)2005分析化学(分析化学、高分子化学专业)2004分析化学(化学类各专业)2002分析化学(环境科学专业)2002——2005分析化学(环境科学、能源与环境工程专业)2006分析化学(有机化学、高分子化学与物理、环境工程专业)2001高分子化学2002——2003,2005——2006高分子化学(二)2004——2005高分子化学(一)2004高分子化学及物理2001——2002材料成形原理2003——2007材料科学基础2002——2003,2005——2007材料学基础2001微机原理及接口技术(材料加工工程、数字化材料成形、环境科学与工程专业)2007微机及接口技术(生物医学工程、生物物理学专业)2001微机接口与技术(生物医学工程专业)2003微机原理及接口技术(生物医学工程专业)2002微机原理(8086)及应用(控制科学系各专业、模式识别与智能系统、力学各专业、材料加工工程专业)2000(2000有答案)微机原理(8086)及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001(2001有答案)微机原理(8086)及应用(自动控制工程系各专业、模式识别与智能系统、流体力学、工程力学专业)1999(1999有答案)微机原理(电信系各专业、电子材料与元器件专业)1996(1996有答案)微机原理(电信系各专业、电子材料与元器件专业)1998微机原理(电信系各专业、微电子学与固体电子学专业)1999微机原理(二)(光学工程、物理电子学专业)2002微机原理(光学工程、物理电子学专业)1999——2002微机原理(光学仪器、物理电子学与光电子学专业)1997——1998(1997有答案)微机原理(软件工程专业)2007微机原理(三)(电路与系统专业)2002微机原理(通信与电子系统、信号与信息处理、电路与系统、电磁场与微波技术、电子材料与元器件专业)1997微机原理(一)(电机与电气、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术专业)2002微机原理及微机控制技术(自动控制理论及应用、工业自动化、模式识别与智能控制专业)1996——1998(1997——1998有答案)微机原理及应用(材料加工工程、数字化材料成形专业)2005——2006微机原理及应用(材料加工工程专业)2003——2004微机原理及应用(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001微机原理及应用(二)(电力电子与电力传动、微电子学与固体电子学专业)2002 微机原理及应用(机械制造及其自动化、机械电子工程专业)2001微机原理及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001 微机原理及应用(软件工程专业)2006微机原理及应用(三)(控制理论与控制工程、系统工程、固体力学、模式识别、检测技术及自动化装置、工程力学、导航、制导专业)2002(2002有答案)微机原理及应用(水利水电工程、轮机工程、微电子学与固体电子学、供热、供燃气通风及空调工程专业)2001微机原理三(电路与系统专业)2002微机原理与接口技术(生物医学工程专业)2004微机原理与应用(机械制造及其自动化、机械电子工程、车辆工程、精密仪器及机械、测试计算技术及仪器、材料加工工程、轮机工程专业)2002微机原理与应用(机械制造及其自动化、机械电子工程等专业)2001结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001电动力学2001综合考试(材料加工工程专业)2001——2002陶瓷材料2005——2006陶瓷材料学2001——2002,2004金属材料2004金属材料学2001——2002金属塑性成形原理1997,1999,2001金属学及热处理2001——2002铸件形成理论2002铸件形成理论基础1998,2001铸造金属学及热处理1998,2001专业英语(材料学、纳米材料及技术专业)2006能源与动力工程学院传热学1999,2000,2001(第1种),2001(第2种),2003——2007(1999,2000,2001(第1种)有答案)锅炉原理2001——2002,2005流体机械原理2002内燃机原理2001——2002离心压缩机原理2001工程流体力学2002,2007结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001不可压缩流体力学2001——2006低温原理与设备2000——2002(2000有答案)电工电子技术2001,2003电站锅炉原理2004化工原理2001,2005制冷原理与设备2001——2002热工自动化2002工程热力学2001(第1种),2001(第2种),2002——2006专业英语翻译(动力机械及工程专业)2006电气与电子工程学院电路理论(电力系统及其自动化、高电压与绝缘技术、电机与电器、电工理论与新技术、电力电子与电力传动、环境工程专业)2001——2003电路理论(电气工程、环境科学与工程专业)2007电路理论(电气工程学科所有专业、环境工程、机械制造及自动化、精密制造、数字化设计专业)2005电路理论(电气工程学科所有专业、环境工程等专业)2006电路理论(电气工程学科所有专业、机械制造及自动化、环境工程、机械电子工程、机械设计及其理论、精微制造工业等专业)2004电路理论(光学工程、物理电子学、控制理论与控制工程、检测技术与自动化装置、系统工程、模式识别与智能系统专业)2002电路理论(光学工程、物理电子学专业)1999——2001电路理论(物理电子学与光电子学、光学仪器专业)1998电磁场2002,2007电磁场与电磁波2001——2006电磁学与热学2005电机学2001——2002电力电子技术2000——2001电力电子学2001——2002电力系统分析1999——2002发电厂及电力系统1998高电压技术2001——2002高压电器2001电子器件2002力学与电磁学2001——2004英语(电力系统及其自动化、电力电子与电力传动、电工理论与新技术、电气信息检测技术专业)2006交通科学与工程学院交通工程2001——2002,2004交通工程学2003,2005——2007综合考试(轮机工程专业)2004高级语言程序设计(C语言)2001——2002城市道路规划与设计2002,2006——2007城市道路设计2001——2005船舶力学基础2007船舶设计原理2001——2002船舶原理2001——2002控制理论(化工过程机械专业)2001控制理论(经典控制理论、现代控制理论)(控制理论与控制工程、检测技术及自动化装置、系统工程、系统信息化技术、系统分析与集成、建筑技术科学、模式识别与智能系统、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程、数字化设计及制造、设计艺术学专业)2005控制理论(经典控制理论、现代控制理论)(控制系所有专业、模式识别与智能系统、建筑技术科学专业)2006控制理论(控制理论与控制工程、检测技术及自动化装置、系统工程、机制、机电、车辆、材料加工、轮机工程、模式识别、导航、制导专业)2002(2002有答案)控制理论(控制系、图象所各专业及生物物理学、机械制造及自动化、机械电子工程等专业)2001(2001有答案)控制理论(自控系各专业、机电学院各专业、模式识别与智能控制、内燃机专业)1996(1996有答案)控制理论(自控系各专业、机械学院、交通学院有关专业、制冷及低温工程、模式识别与智能控制专业)1998(1998有答案)控制理论(自控系各专业、机械学院及其他有关专业)1997(1997有答案)控制理论(自控系各专业、机械学院有关专业、制冷及低温工程、生物医学工程、模式识别与智能系统、电力电子与电力传动、轮机工程、动力机械及工程专业)1999(1999有答案)控制理论(自控系各专业、机械制造、机械电子、材料加工、动力机械、模式识别、制冷、轮机工程、车辆工程等专业)2000(2000有答案)控制理论(自控系各专业、模式识别、机电控制等专业)1995(1995有答案)控制理论基础(船舶与海洋工程专业)2007自动控制理论(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001自动控制理论(电机与电器、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术、脉冲功率与等离子体、动力工程及其自动化专业)2005自动控制理论(电机与电器、电力系统及其自动化专业)2000自动控制理论(电力系统及其自动化、水力发电工程专业)1998自动控制理论(电气工程所有专业、动力机械及工程专业)2004自动控制理论(电气工程所有专业、制冷及低温工程专业)2002自动控制理论(电气学院所有专业)2006自动控制理论(电气学院所有专业、能源学院部分专业)2003自动控制理论(水利水电工程、电机与电器、电力系统及其自动化专业)1999 自动控制理论(水利水电工程、系统分析与集成专业)2003自动控制理论(水利水电工程专业)2001,2004——2007自动控制原理(水文学及水资源、水利水电工程、系统分析与集成专业)2002 自动控制原理(系统分析与集成、控制科学与工程、机械工程、仪器科学与技术、建筑技术与科学专业)2007结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001专业英语翻译(船舶与海洋结构物设计制造、轮机工程、交通工程专业)2006力学系材料力学(船舶与海洋结构物设计制造专业)2003——2004材料力学(船舶与海洋结构物设计制造、化工过程机械专业)2001——2002材料力学(船舶与海洋结构物设计制造、水下工程专业)2005——2006材料力学(固体力学、工程力学、材料加工工程专业)2001——2002材料力学(力学系所有专业)2002,2005——2006材料力学(岩土工程、道路与铁道工程、化工过程机械专业)2005——2006材料力学(岩土工程、道路与铁道工程专业)2003——2004材料力学(岩土工程专业)2001——2002材料力学一(固体力学、工程力学、动力机械及工程专业)2004理论力学1997——2006(1997——2001有答案)(另有《理论力学》考研复习内部资料,含理论力学课程考研基本要求、考研试题内容及题型的分析,10元。

华中师范大学2002-2013数学分析试题解答

华中师范大学2002-2013数学分析试题解答

1
1
2 1 1 1 (1 ) (1 ) (1 ) x x x
5 6 4 6 1 6
1 (1 ) x
5 6

1 3
4:解:由 f ( x) 在 x a 处的泰勒展开式可得:
f ( x) f (a) f '(a)( x a) [( x a)]
令 x a ,则 f (a ) f (a) f '(a) ( )
于是对任意的 0 ,存在 N 0 ,当 n N 时,有
M1M 2 n (b a)n n!
于是当当 n N 时,对一切 x [a, b] 有
f n ( x)
n M 1M 2 (b a)n n!
故 f n ( x) 在 [a, b] 上一致收敛于 0 七、 证明:不妨设 f ( x) 在处取得最小值,于是
2 3 1 3
lim
x 0
sin x f (0) x ln 3 3ln 3
二、证明:由题可知:
f (c) f (a) f (b) f (c) ca bc
f (a) 1, f '(a) 0
由于 f ( x) 在 [0,1] 上二阶可导,由泰勒公式可知:
f ( x) f (a) f '(a)( x a) f ''( x ) f ''( x ) ( x a) 2 1 ( x a) 2 2! 2!
x 在 a 与 x 之间
f ( x)sin x (1 f ( x)sin x) 3 (1 f ( x)sin x) 3 1
2 1
2:解:由于 lim x 0
1 3

华中科技大学考研数学分析真题答案

华中科技大学考研数学分析真题答案

2008年华中科技大学招收硕士研究生.入学考试自命题试题数学分析一、 求极限1111lim(1...)23n n I n→∞=++++解: 一方面显然1I ≥另一方面1111...23n n++++≤,且1lim 1n n n →∞=由迫敛性可知1I =。

注:1lim 1nn n →∞=可用如下两种方式证明1) 1n h =+,则22(1)2(1)1(2)2n n n n n n n h h h n n-=+≥+⇒≤≥ 即lim 0n n h →∞=,从而1lim 1nn n →∞=2) =有lim 11n n nn →∞==-。

二、证明2232(38)(812)y x y xy dx x x y ye dy ++++为某个函数的全微分,并求它的原函数。

证明:记22(,)38P x y x y xy =+,32(,)812y Q x y x x y ye =++,则2316P x xy y ∂=+∂,2316Qx xy x ∂=+∂⇒P Q y x ∂∂=∂∂ Pdx Qdy ∴+是某个函数的全微分设原函数为(,)x y Φ,则x y d dx dy Pdx Qdy Φ=Φ+Φ=+2232238(,)4()x x y xy x y x y x y y ϕ∴Φ=+⇒Φ=++32328()812y y x x y y x x y ye ϕ'⇒Φ=++=++()12()12(1)y y y ye y y e C ϕϕ'⇒=⇒=-+322(,)412(1)y x y x y x y y e C C ∴Φ=++-+所求原函数为(为常数)三、设Ω是空间区域且不包含原点,其边界∑为封闭光滑曲面:用n 表示∑的单位外法向量,(,,)r x y z =和2r r x y ==+,证明:cos(,)2n r dS r Ω∑=⎰⎰⎰⎰⎰ 证明:设n 的方向余弦为cos ,cos ,cos αβγ。

因为r 的方向余弦为,,x y zr r r,所以cos(,)cos cos cos x y zn r r r rαβγ=++,由于原点不在空间区域,根据高斯公式,有11cos(,)(cos cos cos )22121()()()2x y zn r dS dS r r r x y zdydz dzdx dxdy r r rx y z dxdydz x r y r z r dxdydz r αβγ∑∑∑ΩΩ=++=++⎛⎫∂∂∂=++ ⎪∂∂∂⎝⎭=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰注:当原点也在该区域时,结论也成立,详细参考课本P296第8题答案。

2008年华中科技大学数学分析考研试题(1)

2008年华中科技大学数学分析考研试题(1)

lim f ( x) = 1
。证明 f ( x) = e , ∀x ∈ (0,+∞ ) 。
x
9 计算第一类曲面积分
x2 + y 2 + z 2 = a2 , y ≤ 0 。
∫∫ ( x + y + z ) dS
Σ
,其中 Σ 是左半球面
其边界 Σ 为封闭光滑曲面; 10 设 Ω 是空间区域且不包含原点,
ρ 用 n 表 示 Σ 的 单 位 外 法 向 量 , r = ( x, y , z ) 和
ρ
ρ r = | r | = x 2 + y 2 + z 2 ,证明 ∫∫∫ Ω
ρ ρ dxdydz 1 = ∫∫ cos(n , r ) dS r 2 Σ 。
a
y
1 b (b − x) n +1 f ( x)dx n + 1∫a
cos nx 2 5 讨论函数项级数 n=1 + 1 的和函数 S ( x) 在 (0,2π ) 上的连续性与
∑n

可导性。 (15)
xy , x2 + y2 ≠ 0 2 2 f ( x, y ) = x + y 0, x 2 + y 2 = 0 在原点 (0,0) 处的连续 6 讨论函数
性、偏导数的存在性与可微性。 (15) 7 设反常积分 ∫ 收敛。
x 8 设 f ( x) 在 (0,+∞ ) 上 满 足 函 数 方 程 f (2 x) = e f ( x) , 且
+∞
1
f ( x)dx
绝对收敛且
x → +∞
lim f ( x ) = 0
, 证明 ∫

华中师大04年数学分析

华中师大04年数学分析

华 中 师 范 大 学2019年研究生入学考试试题(数学分析)一、 求下列极限(共50分,第1、2小题各10分,第3、4小题各15分)1、21sin 0lim(cos )x x x →;2、lim n →∞; 3、74lim x x →∞+-; 4、1lim sin (sin)2n n k k n nππ→∞=∑。

二、(15)设f(x),g(x)在[a,b]上连续,在(a,b)内可导,若12,x x 是f(x)在区间[a,b]上的两个零点,证明:存在[,]a b ξ∈,使得三、(15)设f(x)在[a,b](b>a>0)上连续,在(a,b)内可导,证明:在(a,b )内存在,ξη使 2.'()'().f f a b ηηξ=四、(15)设f(x)在[a,b]上黎曼可积,证明:()f x e 在[a,b]上也是黎曼可积的。

五、(15)设'()(1,2,3,n f x n =…)在[a,b]上连续,函数g(x)在[a,b]上也连续,且对[a,b]中任意的12,x x 和正整数n 有1212|()()|||n n M f x f x x x n-≤- (M>0为常数)证明:lim ().'()0bn n a g x f x dx →+∞=⎰六、(15)设()n f x (n=1,2,3…)在[a,b]上连续,且{()}n f x 在[a,b]上一致收敛与f(x)。

证明:1)存在M>0,使对任何自然数n 有|()|,|()|n f x M f x M ≤≤及2)若F(x)为-∞+∞(,)上连续函数,则(())n F f x 一致收敛于F(f(x)). 七、(10)设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且 f(-1)=0,f(1)=1,f '(0)=0,证明在(-1,1)内至少存在一点ξ 使得(3)()3fξ=。

八、(15)设函数F(x,y)在点00(,)x y 的某个邻域内有连续的二阶偏导数, 且00000000(,)0,'(,)0,'(,)0,''(,)0x y xx F x y F x y F x y F x y ==>< 证明:由方程(,)0F x y =确定的隐函数()y f x =在0x 点取得极小值。

(完整word版)2004-2010华中师范大学数学分析考研真题

(完整word版)2004-2010华中师范大学数学分析考研真题

2004年数学分析1.求下列极限(共50分,第1,2小题各10分,第3,4小题各15分)(1)21sinlim(cos )xx x →(2)n(3)74lim x x →∞- (4)1lim sin(sin)2nn k k n nππ→∞=∑ 2.(15)设)(),(x g x f 在],[b a 上连续,在),(b a 内可导,若12,x x 是)(x f 在区间],[b a 上的两个零点,证明:存在[,]a b ξ∈,使得'()()'()0f f g ξξξ+=3.(15)设)(x f 在)0](,[>>a b b a 上连续,在),(b a 内可导,证明:在),(b a 内存在,ξη使ba f f ⋅'⋅=')()(2ηηξ.4.(15)设)(x f 在],[b a 上黎曼可积,证明:()f x e在],[b a 上也是黎曼可积的.5.(15)'()(1,2,3,n f x n =…)在],[b a 上连续,函数)(x g 在],[b a 上也连续,且对],[b a 中任意的12,x x 和正整数n ,有1212|()()|||n n Mf x f x x x n -≤-(0>M ),证明:lim ().'()0bn n ag x f x dx →+∞=⎰.6.(15)设()n f x ( ,2,1=n )在],[b a 上连续,且{()}n f x 在],[b a 上一致收敛与)(x f .证明:(1)存在0>M ,使对任何自然数n ,有|()|,|()|n f x M f x M ≤≤及. (2)若)(x F 为-∞+∞(,)上连续函数,则(())n F f x 一致收敛于))((x f F .7.(10)设函数)(x f 在闭区间]1,1[-上具有三阶连续导数,且0)0(,1)1(,0)1(='==-f f f ,证明:在)1,1(-内至少存在一点ξ,使得(3)()3fξ=.8.(15)函数),(y x F 在点00(,)x y 的某个邻域内有连续的二阶偏导数,且00000000(,)0,'(,)0,'(,)0,''(,)0x y xx F x y F x y F x y F x y ==><,证明:由方程),(y x F 确定的隐函数()y f x =在0x 点取得极小值.2005年数学分析1.求下列极限或指定函数的值:(1)1!2!3!!lim !n n n →∞++++(10分) (2)lim 62n n→∞(10分)(3)132lim [().2x x x x x e →+∞-+(10分) (4)设)(x f 在0=x 的邻域二阶可导,且130()lim(1)x x f x x e x→++=,求(0),'(0),''(0)f f f 的值.(15分) 2.(15)设函数)(),(x g x f 在],[b a 上可导,且在),(b a 上'()0g x ≠,证明:存在)()'()(,)()()'()f a f f a bg g b g ξξξξξ-∈=-(使.3.(15)设函数()f x 在]4,2[上有连续的一阶导函数,且(2)(4)0f f ==,证明:4242max |'()||()|x f x f x dx ≤≤≥⎰.4.(13)设有方程.sin (01)x m q x q =+<<.若0101,.sin ,,sin ,,n n x m x m q x x m q x +==+=+证明:{}n x 收敛; 设lim n n x l →+∞=,再证明l 是方程.sin x m q x =+的唯一解.5.(13)证明:函数项级数11((1))x nn x e nn ∞=-+∑在任何有穷区间[,]a b 上一致收敛.6.(13)设()f x 在[,]a b 上二阶可导,且''()0f x >,证明:1()()2baa b f f x dx b a +≤-⎰. 7.(13)设12,,,,n a a a 均为常数,证明:函数项级数101..!xn t n n a t e dt n ∞-=∑⎰在[,]a b 上一致收敛. 8.(13)设()f x 在[,]a b 上黎曼可积,()0,f x c ≥≥用可积准则证明:函数ln ()f x 在[,]a b 上黎曼可积.9.(10)设()f x 在[,]a b 上具有连续的二阶导数,证明:在(,)a b 内存在ξ,使得31()()()().''()224baa b f x dx b a f b a f ξ+=-+-⎰2006年数学分析1.(30) (1)111sin)1(sin lim121----→x x e x x . (2) 设x x a x y +=,求y '. (3)dx xx ⎰+ln 1ln ln . (4)设yx y x y x f y arcsin)1(),(2-+=,求)1,(x f x '. (5)dxdy e y x y xD22)(+⎰⎰+,其中}1),{(22≤+=y x y x D . (6) 求⎰-=Lydx ydy x I cos sin ,其中L 是从点)0,0(O 到点)0,(πA 的正弦曲线有x y sin =.2.(20)设)(x f 在(,)a +∞上可导,且'()f x 在(,)a +∞上有界,证明:(1) )(x f 在(,)a +∞上一致连续.(2)()lim ()lim ()x x af a f x f x ++→∞→=存在,但不一定存在.(3)若)(lim x f x +∞→存在,且)(lim )(lim x f x f ax x +→+∞→=,则)(x f '在(,)a +∞上至少有一个零点。

2008年华中科技大学数学分析考研试题

2008年华中科技大学数学分析考研试题

lim f ( x) = 1
。证明 f ( x) = e , ∀x ∈ (0,+∞ ) 。
x
9 计算第一类曲面积分
x2 + y 2 + z 2 = + y + z ) dS
Σ
,其中 Σ 是左半球面
其边界 Σ 为封闭光滑曲面; 10 设 Ω 是空间区域且不包含原点,
性、偏导数的存在性与可微性。 (15) 7 设反常积分 ∫ 收敛。
x 8 设 f ( x) 在 (0,+∞ ) 上 满 足 函 数 方 程 f (2 x) = e f ( x) , 且
+∞
1
f ( x)dx
绝对收敛且
x → +∞
lim f ( x ) = 0
, 证明 ∫
+∞
1
f 2 ( x)dx
x →0 +
.求 f ( x) 和 g ( x) .(15)
2 2 3 2 y 3 证明 (3x y + 8 xy )dx + ( x + 8 x y + 12 ye )dy 为某个函数的全微分,并
求它的原函数.(15) 4 设 f (t ) 为连续函数,证明(15)

b
a
dy ∫ ( y − x)n f ( x)dx =
华中科技大学 08 硕士研究生考试数学分析试题 1 求极限 x→+∞ π 2
x 1
2 lim ( arctan x) x
(15)
' 设 f ( x) 连 续 , g ( x) 可 导 , 且 g ( x) − f ( x) = 1 − 6 x 与
g ( x) + ∫ f (t )dt = 2 + x − x 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华中师范大学数学分析考研真题以上是01年数分2003年数学分析(综合卷)1.(16)求下列极限:(1))/1(2)!(lim n n n +∞→. (2))(x f 在]1,1[-上连续,恒不为0,求131sin )(1lim 30--+→x x x x f2.(15)设)(x f 在],[b a 上二阶可导,过点))(,(a f a A 与))(,(b f b B 的直线与曲线)(x f y =相较于))(,(c f c C ,其中b c a <<,证明:在),(b a 中至少存在一点ξ,使0)(=''ξf .3.(15) 证明:x x n n 21ln ∑∞=在]1,0(上一致收敛.4.(15) 设))}({(x f n 是],[b a 上的函数序列,满足对每一个],[b a x ∈导函数)(x f n '存在),2,1( =n 并且满足下列条件:(1)存在某一个],[0b a x ∈,使))}({(0x f n 收敛;(2)导函数列)}({x f n '在],[b a 上一致收敛. 证明: )}({x f n 在],[b a 上一致收敛.5.(14)设)(x f 在],[b a 上可导,其导函数)(x f '在],[b a 可积,对任意的自然数n .记⎰∑---+==ba n i n dx x f n ab n a b i a f )()(1σ , 证明:)]()([2lim a f b f a b n n n --=+∞→σ. 2004年数学分析1.求下列极限(共50分,第1,2小题各10分,第3,4小题各15分)(1)21sin 0lim(cos )x x x → (2)11123n n +++1…+n (3)74444lim 112)x x x x x →∞+-- (4)1lim sin (sin)2n n k k n nππ→∞=∑2.(15)设)(),(x g x f 在],[b a 上连续,在),(b a 内可导,若12,x x 是)(x f 在区间],[b a 上的两个零点,证明:存在[,]a b ξ∈,使得'()()'()0f f g ξξξ+=3.(15)设)(x f 在)0](,[>>a b b a 上连续,在),(b a 内可导,证明:在),(b a 内存在,ξη使b a f f ⋅'⋅=')()(2ηηξ.4.(15)设)(x f 在],[b a 上黎曼可积,证明:()f x e 在],[b a 上也是黎曼可积的.5.(15)'()(1,2,3,n f x n =…)在],[b a 上连续,函数)(x g 在],[b a 上也连续,且对],[b a 中任意的12,x x 和正整数n ,有1212|()()|||n n M f x f x x x n -≤-(0>M ),证明:lim ().'()0b n n a g x f x dx →+∞=⎰. 6.(15)设()n f x ( ,2,1=n )在],[b a 上连续,且{()}n f x 在],[b a 上一致收敛与)(x f .证明:(1)存在0>M ,使对任何自然数n ,有|()|,|()|n f x M f x M ≤≤及. (2)若)(x F 为-∞+∞(,)上连续函数,则(())n F f x 一致收敛于))((x f F .7.(10)设函数)(x f 在闭区间]1,1[-上具有三阶连续导数,且0)0(,1)1(,0)1(='==-f f f ,证明:在)1,1(-内至少存在一点ξ,使得(3)()3f ξ=.8.(15)函数),(y x F 在点00(,)x y 的某个邻域内有连续的二阶偏导数,且00000000(,)0,'(,)0,'(,)0,''(,)0x y xx F x y F x y F x y F x y ==><,证明:由方程),(y x F 确定的隐函数()y f x =在0x 点取得极小值.2005年数学分析1.求下列极限或指定函数的值: (1)1!2!3!!lim !n n n →∞++++(10分) (2)lim 62n n→∞(10分)(3)132lim [().2x x x x x e →+∞-+(10分) (4)设)(x f 在0=x 的邻域二阶可导,且130()lim(1)x x f x x e x→++=,求(0),'(0),''(0)f f f 的值.(15分) 2.(15)设函数)(),(x g x f 在],[b a 上可导,且在),(b a 上'()0g x ≠,证明:存在)()'()(,)()()'()f a f f a bg g b g ξξξξξ-∈=-(使. 3.(15)设函数()f x 在]4,2[上有连续的一阶导函数,且(2)(4)0f f ==,证明:4242max |'()||()|x f x f x dx ≤≤≥⎰.4.(13)设有方程.sin (01)x m q x q =+<<.若0101,.sin ,,sin ,,n n x m x m q x x m q x +==+=+证明:{}n x 收敛; 设lim n n x l →+∞=,再证明l 是方程.sin x m q x =+的唯一解.5.(13)证明:函数项级数11((1))x n n x e nn ∞=-+∑在任何有穷区间[,]a b 上一致收敛. 6.(13)设()f x 在[,]a b 上二阶可导,且''()0f x >,证明:1()()2ba ab f f x dx b a +≤-⎰. 7.(13)设12,,,,n a a a 均为常数,证明:函数项级数101..!x n t n n a t e dt n ∞-=∑⎰在[,]a b 上一致收敛. 8.(13)设()f x 在[,]a b 上黎曼可积,()0,f x c ≥≥用可积准则证明:函数ln ()f x 在[,]a b 上黎曼可积.9.(10)设()f x 在[,]a b 上具有连续的二阶导数,证明:在(,)a b 内存在ξ,使得31()()()().''()224ba ab f x dx b a f b a f ξ+=-+-⎰ 2006年数学分析1.(30) (1)111sin )1(sin lim 121----→x x e x x . (2) 设x x a x y +=,求y '. (3) dx xx ⎰+ln 1ln ln . (4)设y x y x y x f y arcsin)1(),(2-+=,求)1,(x f x '. (5)dxdy e y x y xD 22)(+⎰⎰+,其中}1),{(22≤+=y x y x D . (6) 求⎰-=Lydx ydy x I cos sin ,其中L 是从点)0,0(O 到点)0,(πA 的正弦曲线有x y sin =.2.(20)设)(x f 在(,)a +∞上可导,且'()f x 在(,)a +∞上有界,证明:(1) )(x f 在(,)a +∞上一致连续.(2)()lim ()lim ()x x a f a f x f x ++→∞→=存在,但不一定存在. (3)若)(lim x f x +∞→存在,且)(lim )(lim x f x f ax x +→+∞→=,则)(x f '在(,)a +∞上至少有一个零点。

3.(20)设)(x f 在]1,0[上连续,)1()0(f f =,(1)证明: 存在01[0,]2x ∈,使得001()()2f x f x =+. (2)试推测|:对任意正整数n ,是否存在01[0,]n x n -∈,使得001()()f x f x n=+,并证明你的结论. 4.(10)设)(x f 在[0,)+∞上连续,且0)(>x f ,记00()()()xx tf t dt x f t dtϕ=⎰⎰, (1)求0lim ()x x ϕ+→. (2)证明:()x ϕ在(0,)+∞上是严格单调递增.5.(10)证明: 若1n n a∞=∑绝对收敛,则)(12311-∞=+++∑n n n a a a a 也绝对收敛.6.(15)设)(x f 在[0,]2π上连续,证明: (1){sin }[0]2n x π在,上不一致收敛. (2){sin ()}[0]2n x f x π()在,上一致收敛的充要条件是()02f π=. 7.(10)设),,(z y x f 为3R 上的n 次齐次函数:对),,(),,(,0z y x f t tz ty ta f t n =>∀,且具有一阶连续偏导数,'(,,)0z f x y z ≠,若方程(,,)0f x y z =确定了可微的隐函数(,)z g x y =,证明:(,)z g x y =必为一次齐次函数.8,(20)设(,)f x y 2在R 上具有二阶连续的偏导数,证明:(1)对2R 内任意光滑简单闭曲线L ,总有2222()L D f f f ds dxdy n x y ∂∂∂=+∂∂∂⎰⎰⎰,其中n 为L 的外法方向,f n ∂∂是(,)f x y 沿n 的方向导数,D 是L 围成的有界闭区域;(2)(,)f x y 为2R 是的调和函数(即22220f f x y ∂∂+≡∂∂)的充要条件是对2R 内的任意光滑简单闭曲线L ,总有0L f ds n∂=∂⎰. 9.(15)设n 是正整数,给定方程1n x x +=,证明: (1)此方程仅有惟一的正根(0,1)n x ∈. (2)lim 1n n x →∞=.2007年数学分析1.(30) 计算题:(1)1)]1sin[sin(ln )1(ln lim 230--→x x e x x . (2) 设x x x x y +=ln ,求y '.(3) dx e x dx e x x ⎰⎰+∞-+∞-⋅02044. (4)设),(y x f 可微,且b f a f f y x ===)1,1(,)1,1(,1)1,1(,令)],(),,([)(x x f x x f f x F =,求)1('F . (5)dxdy e y x y xD 222)(33)(+⎰⎰+,其中}1),{(22≤+=y x y x D .(6) 求⎰-=Lx x ydx e ydy e I cos sin ,其中L 是从点)0,0(O 到点)0,2(A 的下半圆周x y x 222=+.2.(25)设)(x f 在),0(+∞上可导,且)(x f x '⋅在),0(+∞上有界,证明: (1))(x f 在),0(+∞上一致连续. (2))(lim )0(0x f f x +→+=存在.(3)若将条件“)(x f x '⋅在),0(+∞上有界”改为“)(lim 0x f x x '⋅+→和)(lim x f x x '⋅+∞→都存在”,试问: 还能否推出)(x f 在),0(+∞上一致连续.如果能请证明你的结论,如果不能请举反例.3.(25)设)(x f 在),0(+∞内4阶可导, (1) 证明:若)(lim x f x ∞→和)(lim x f x '∞→都存在,则0)(lim ='∞→x f x . (2) 若)(lim x f x ∞→和)(lim 4x f x )(∞→都存在,是否能推出对任意的正整数41≤≤k ,)(lim x f k x )(∞→都存在且为0,请证明你的结论.4.(10)设)(x f 在[0,)+∞上连续,且A x f x =∞→)(lim (A 可以为∞+或∞-),试证:⎰=+∞→x x A dt t f x 0)(1lim . 5.(15)设∑==≥n k k n n a s a 1,0,证明:∑∞=1n n a 收敛⇔∑∞=1n n n s a 收敛. 6.(15)若n a 单调递减,且0lim =∞→n n a ,证明:(1)∑∞=1cos n n nx a 在]2,[απα-上一致收敛,其中πα≤≤0. (2)∑∞=1cos n n nx a 在]2,[απα-上一致收敛的充要条件是∑∞=1n n a 收敛.7.(15)设),(y x u u =是由方程组⎩⎨⎧='+'+++=0)()()()(z g z f y x z g z yf zx u 所确定的二阶连续可微隐函数,其中g f ,有二阶连续的导数,证明:0)(222222=∂∂∂-∂∂⋅∂∂y x u yu x u . 8.(15)设),,(z y x f 上3R 具有二阶连续的偏导数,证明:(1)对3R 内任意光滑简单闭曲面S ,总有dxdydz z f y f x f dS n f V S )(222222∂∂+∂∂+∂∂=∂∂⎰⎰⎰⎰⎰ ,其中n 为S 的外法方向,f n ∂∂是),,(z y x f 沿n 的方向导数,V 是S 围成的有界闭区域; (2) ),,(z y x f 为3R 是的调和函数(即0222222≡∂∂+∂∂+∂∂z f y f x f )的充要条件是对3R 内的任意光滑简单闭曲线S ,总有0=∂∂⎰⎰dS n f S. 2008年数学分析1.(36)计算题: (1) n n n n n n )12()1(1lim -+∞→ (2) dxdydz z y x t t z y x t ⎰⎰⎰≤++→+++222222240sin 1lim (3) 求曲线积分⎰+-L yx ydx xdy 229,其中L 为平面内任意一条不经过原点的正向光滑封闭简单曲线. 2.(15)设函数)(x f 在),0[+∞上具有连续的导函数,且)(lim x f x '∞→存在有限,10<<α,是一个常数,证明:)(αx f 在),0[+∞上一致连续.3.(15)设)(x f 和)(x g 在],[b a 上连续且在),(b a 内可导,试证:在),(b a 内存在点ξ,使得)()]()([)()]()([ξξf a g b g g a f b f '-='-.4.(20)证明:函数项级数∑∞=-=1)(n nx ne x f 在),0(+∞上收敛,但不一致收敛,而和函数)(x f 在),0(+∞上可以任意次求导. 5.(20)证明:方程)sin(2xy y x =+在原点的某个邻域内可以唯一确定隐函数)(x f y =,并)0(y '计算的值.6.(14)证明:若函数)(x f 在],[b a 上无界,则必存在],[b a 上的某点,使得)(x f 在该点的任何邻域内无界.7.(12)设函数u 在),0[+∞上连续可微且+∞<'+⎰dx x u x u ))()((22,试证:(1)存在),0[+∞中的子列∞=1}{n n x 使得当∞→n 时, +∞→n x 且0)(→n x u(2)存在某常数0>C ,使得21022},0[)))()((()(sup dx x u x u C x u x ⎰∞++∞∈'+≤ 8.(18)设3R ⊂Ω为有界闭区域,且具有光滑边界+∞<<Ω∂T 0,.(1)设v u ,是Ω上具有连续二阶偏导数的函数,试证:dS n u v dxdydz v u dxdydz u v ⎰⎰⎰⎰⎰⎰⎰⎰Ω∂ΩΩ∂∂+∇∇-=∆,其中222222z u y u x u u ∂∂+∂∂+∂∂=∆,u ∇为u 的梯度, n u ∂∂为u 沿区域的边界的外法向n 的方向导数;(2)设),,,(t z y x u 在),0[T ⨯Ω上具有连续一阶偏导数,试证:),0[,),,,(),,,(T t dxdydz t z y x t u dxdydz t z y x u dt d ∈∀∂∂=⎰⎰⎰⎰⎰⎰ΩΩ;(3)设),,,(t z y x u 在),0[T ⨯Ω上具有连续二阶偏导数且满足3u u tu +∆=∂∂若u 在 ),0[T ⨯Ω上恒为零记2222)()()(z u y u x u u ∂∂+∂∂+∂∂=∇,试证dxdydz u u t E ⎰⎰⎰Ω-∇=)4121()(42在),0[T 上是减函数.2009年数学分析1.(30)计算题: (1)1)1()]ln 1cos[sin()sin(lim 0-++→βαx x x x (2) 计算二重积分dxdy y y D ⎰⎰sin ,其中D 是由0,1,===x y x y 围成的区域.(3) 求曲线积分⎰-+----C y x dx y dy x 22)2()1(4)2()1(其中C 为平面内任意一条不经过点)2,1(得正向光滑封闭简单曲线 2.(12)设函数)(x f 定义在开区间),(b a 内,若对任意的),(b a c ∈,都有)(lim x f c x →存在,且)(lim x f a x +→和)(lim x f b x +→也存在,则)(x f 在开区间),(b a 内有界.3.(12)证明:含参量反常积分dy xe xy ⎰+∞-0在),[+∞δ上一致收敛)0(>δ,但在),0(+∞内不一致收敛. 4.(20)设函数)(x f 在]1,0[上连续,在)1,0(内可微,且存在0>M ,使得M x x f x f x x 2)()(),1,0(<-'∈∀,证明: (1) xx f )(在]1,0[内一致连续. (2))(lim 0x f x +→存在. 5.(20)证明下面结论: (1)若)(x f 在]1,0[上连续,则⎰=∞→100)(lim dx x f x n x . (2)若)(x f 在]1,0[上连续可微,则⎰=∞→10)1()(lim f dx x f x n n n . 6.(18)设⎪⎩⎪⎨⎧=+≠+++=0 , 00,sin ),(222222222y x y x y x y x y x y x f ,讨论),(y x f 在原点)0,0(处的连续性,偏导的存在性以及可微性. 7.(20)设函数列)}({x f n 中的每一项函数)(x f n 都是],[b a 上的单调函数,试证明:(1)若∑∞=1)(n n a f 和∑∞=1)(n n b f 都绝对收敛,则∑∞=1)(n n x f 在],[b a 上一致收敛.(2)若每一项函数)(x f n 的单调性相同,且∑∞=1)(n n a f 和∑∞=1)(n n b f 都收敛,则在上一致收敛.8.(18)设f 连续,证明:(1)证明:⎰⎰⎰⎰--=V dx x x f dxdydz z f 112)1)(()(π,其中1:222≤++z y x V .(2)记函数dxdydz cz by ax f c b a F V⎰⎰⎰++=)(),,(,其中1:222≤++z y x V ,证明:球面1222=++c b a 为函数),,(c b a F 的等值面,即),,(c b a F 在球面1222=++c b a 上恒为常数,并求出此常数. 2010年数学分析1.(30)计算题: (1)设函数)(x f 定义在),(+∞-∞上,满足:1)0()(lim ,cos )()2(0===→f x f x x f x f x ,求)(x f . (2) 设⎰=40tan πxdx a n n ,求)(121+∞=+∑n n n a a n 的值. (3) 求曲线积分dz y x dy x z dx z y L)()()(-+-+-⎰,其中L 为平面0=++z y x 与球面1222=++z y x 相交的交线,方向从z 轴正向看是逆时针的.2.(12)设0,)(>=ααx x f ,证明:当10≤<α时, )(x f 在),0(+∞上一致连续; 当1>α时, )(x f 在),0(+∞上不一致连续.3.(12)证明:含参量x 反常积分dy xe xy ⎰+∞-0在),[+∞δ上一致收敛)0(>δ,但在),0(+∞内不一致收敛.4.(20)函数)(x f 在],[b a 上连续,在),(b a 内二阶可导,且过点))(,(a f a 和))(,(b f b 的直线与曲线)(x f y =相交于点))(,(c f c (b c a <<),证明:存在),(b a ∈ξ,使得0)(=''x f .5.(20)设可微函数列)}({x f n 在],[b a 上逐点收敛,且对任意],[b a x ∈存在x 的邻域)(x U ,使得)}({x f n '在],[)(b a x U ⋂上一致有界,证明:(1))}({x f n '在]1,0[上一致有界. (2))}({x f n 在]1,0[上一致收敛.6.(20)设⎪⎩⎪⎨⎧=+≠++=0, 00 ),ln(),(222222y x y x y x xy y x f ,讨论),(y x f 在原点)0,0(处的连续性,偏导的存在性以及可微性. 7.(20)已知)(x f 是),0[+∞上的正值连续函数,且+∞<⎰+∞dx x f 0)(1,证明: (1)存在数列),2,1)(,0[ =+∞∈n x n 满足:}{n x 严格单调递增,+∞=+∞=∞→∞→)(lim ,lim n n n n x f x . (2)+∞=⎰+∞→dt t f x xx 02)(1lim .8.(16)已知),,(z y x f 和),,(z y x g 在1:222≤++z y x V 上具有二阶连续的偏导数,记z y x zy x ∂∂+∂∂+∂∂=∇∂∂+∂∂+∂∂=∆,222222 (1)证明:⎰⎰⎰⎰⎰⎰⎰⎰∇⋅-∂∂=∇⋅∇VV S dxdydz f g dS n f gdxdydz f g )()(,其中n 表示S 的外法线方向,S 为球面1222=++z y x .(2)若222z y x f ++=∆,试计算:dxdydz z f z y x z y f z y x y x f z y x xI V )(222222222∂∂+++∂∂+++∂∂++=⎰⎰⎰.。

相关文档
最新文档