高一上学期数学第一次月考试卷真题
高一上学期第一次月考数学试卷(含答案解析)
高一上学期第一次月考数学试卷(含答案解析)考试时间:120分钟;总分:150分学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合A ={x|x >2},B ={x|−2⩽x ⩽3},则A ∩B =( )A. (2,3)B. (2,3]C. [2,3]D. [−2,3]2. 如图所示的Venn 图中,已知A ,B 是非空集合,定义A ∗B 表示阴影部分的集合.若A ={x |0≤x <3},B ={y |y >2},则A ∗B =( )A. {x |x >3}B. {x |2≤x ≤3}C. {x |2<x <3}D. {x |x ≥3}3. 中国清朝数学家李善兰在859年翻译《代数学》中首次将“function ”译做“函数”,沿用至今.为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数.”这个解释说明了函数的内涵:只要有一个法则,使得取值范围中的每一个值x ,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象、表格还是其它形式.已知函数f(x)由如表给出,则f(f(−2)+1)的值为( )A. 1B. 2C. 3D. 44. 命题“∀x >1,x −1>lnx ”的否定为( )A. ∀x ≤1,x −1≤lnxB. ∀x >1,x −1≤lnxC. ∃x ≤1,x −1≤lnxD. ∃x >1,x −1≤lnx5. 设M =2a(a −2)+7,N =(a −2)(a −3),则M 与N 的大小关系是( )A. M >NB. M =NC. M <ND. 无法确定6. f(2x −1)的定义域为[0,1),则f(1−3x)的定义域为( )A. (−2,4]B. (−2,12]C. (0,23]D. (0,16] 7. 已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的条件.( )A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要 8. 已知集合A ={x|3−x x ≥2)},则∁R A =( ) A. {x|x >1}B. {x|x ≤0或x >1}C. {x|0<x <1}D. {x|x <0或x >1}二、多选题(本大题共4小题,共20.0分。
高一年级第一次月考数学试卷
高一年级第一次月考数学试卷一、选择题(每题5分,共60分)1. 设集合A = {xx^2 - 3x + 2 = 0},则集合A中的元素为()A. 1,2B. -1,-2C. 1,-2D. -1,22. 已知函数y = f(x)的定义域为(0, +∞),则函数y = f(x + 1)的定义域为()A. (-1, +∞)B. (0, +∞)C. (1, +∞)D. (0,1)3. 下列函数中,在区间(0,+∞)上为增函数的是()A. y=(1)/(x)B. y = -x + 1C. y=log_2xD. y = ((1)/(2))^x4. 若a = log_32,b=log_52,c = log_23,则()A. a>b>cB. b>a>cC. c>a>bD. c>b>a5. 函数y = √(x^2)-1的定义域为()A. [1, +∞)B. (-∞,-1]∪[1,+∞)C. [-1,1]D. (-∞,-1)6. 已知函数f(x)=2x + 1,g(x)=x^2,则f(g(2))的值为()A. 9B. 7C. 17D. 257. 设a = 2^0.3,b = 0.3^2,c=log_20.3,则a,b,c的大小关系是()A. a < b < cB. c < b < aC. c < a < bD. b < c < a8. 函数y = 3^x与y=log_3x的图象关于()对称。
A. x轴B. y轴C. 直线y = xD. 原点。
9. 若函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x^2+1,则f(-1)等于()A. -2B. 2C. -1D. 010. 已知f(x)=x + 1,x≤slant0 x^2,x > 0,则f(f(-1))的值为()A. 0B. 1C. 2D. 411. 函数y = (1)/(x - 1)在区间[2,3]上的最大值为()A. 1B. (1)/(2)C. (1)/(3)D. (1)/(4)12. 若f(x)是偶函数,且在(0,+∞)上是减函数,f(3)=0,则不等式xf(x)>0的解集为()A. (-∞,-3)∪(0,3)B. (-3,0)∪(3,+∞)C. (-∞,-3)∪(-3,0)D. (0,3)∪(3,+∞)二、填空题(每题5分,共20分)13. 计算log_327=_ 。
南京市第九中学2024-2025学年高一上学期第一次月考数学试卷
江苏南京市第九中学2024-2025学年高一数学上第一次月考试卷一.选择题(共4小题)1.若不等式2kx2+kx﹣<0对一切实数x都成立,则k的取值范围为()A.(﹣3,0)B.[﹣3,0)C.[﹣3,0]D.(﹣3,0]2.已知集合,集合,则()A.M∈N B.C.M=N D.3.已知a>b>c,且a+b+c=0,则下列不等式一定成立的是()A.ab2>bc2B.ab2>b2cC.(ab﹣ac)(b﹣c)>0D.(ac﹣bc)(a﹣c)>04.已知正实数a,b满足2a+b=1,则的最小值为()A.3B.9C.4D.8二.多选题(共5小题)(多选)5.下列四个命题中正确的是()A.方程的解集为{2,﹣2}B.由所确定的实数集合为{﹣2,0,2}C.集合{(x,y)|3x+2y=16,x∈N,y∈N}可以化简为{(0,8),(2,5),(4,2)} D.中含有三个元素(多选)6.已知实数a,b∈R+,且2a+b=1,则下列结论正确的是()A.ab的最大值为B.a2+b2的最小值为C.的最小值为6D.(多选)7.下列四个命题是真命题的是()A.若函数f(x)的定义域为[﹣2,2],则函数f(x+1)的定义域为[﹣3,1]B.函数的值域为C.若函数y=x2+mx+4的两个零点都在区间为(1,+∞)内,则实数m的取值范围为(﹣5,﹣4)D.已知f(x)=x2﹣(m+2)x+2在区间[1,3]上是单调函数,则实数m的取值范围是(﹣∞,0]∪[4,+∞)(多选)8.已知集合A={x|﹣1<x<3},集合B={x|x<m+1},则A∩B=∅的一个充分不必要条件是()A.m≤﹣2B.m<﹣2C.m<2D.﹣4<m<﹣3(多选)9.若a<0<b,且a+b>0,则()A.B.C.|a|<|b|D.(a﹣1)(b﹣1)<0三.填空题(共4小题)10.定义在R上的函数f(x)满足,则=.11.若命题“∃x∈[﹣1,2],使得x2+mx﹣m﹣5≥0”是假命题,则m的取值范围是.12.已知关于x的不等式ax+b>0的解集为(﹣3,+∞),则关于x的不等式ax2+bx<0的解集为.13.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若∠B=∠C且7a2+b2+c2=4,则△ABC 的面积的最大值为.四.解答题(共5小题)14.命题p:实数x满足x2﹣4ax+3a2<0(其中a>0),命题q:实数x满足.(1)若a=1,且命题p、q均为真命题,求实数x的取值范围;(2)若q是p的充分不必要条件,求实数a的取值范围.15.已知函数f(x)=是定义域(﹣1,1)上的奇函数,(1)确定f(x)的解析式;(2)用定义证明:f(x)在区间(﹣1,1)上是减函数;(3)解不等式f(t﹣1)+f(t)<0.16.已知函数f(x)=x2+ax+3,a∈R(1)若函数的定义域为R,求实数a的取值范围;(2)若当x∈[﹣2,2]时,函数有意义,求实数a的取值范围.(3)若函数g(x)=f(x)﹣(a﹣2)x+a,函数y=g[g(x)]的最小值是5,求实数a的值.17.若x,y∈(0,+∞),x+2y+xy=30.(1)求xy的取值范围;(2)求x+y的取值范围.18.已知关于x的函数和.(1)若y1≥y2,求x的取值范围;(2)若关于x的不等式(其中0<t≤2)的解集D=[m,n],求证:.参考答案与试题解析一.选择题(共4小题)1.【解答】解:k=0时,﹣<0恒成立,故满足题意;k≠0时,,∴﹣3<k<0.∴实数k的取值范围是(﹣3,0].故选:D.2.【解答】解:={x|x=12k,k∈N*},={x|x=24k,k∈Z},故A错误,C错误,当x=﹣12时,,既不在集合M,也不在集合N,故B错误;当元素满足为24的正整数倍时,比满足为12的正整数倍,故M∩N=,故D正确,故选:D.3.【解答】解:因为a>b>c,且a+b+c=0,所以a>0,c<0,对于A,由于a>c,而当b=0时,ab2=bc2,故A错误;对于B,当b=0时,ab2=b2c,故B错误;对于C,由于a>0,b>c,则b﹣c>0,所以(ab﹣ac)(b﹣c)=a(b﹣c)(b﹣c)>0,故C正确;对于D,因为a>b>c,所以a﹣b>0,a﹣c>0,又c<0,所以(ac﹣bc)(a﹣c)=c(a﹣b)(a﹣c)<0,故D错误.故选:C.4.【解答】解:因为正实数a,b满足2a+b=a+a+b=1,则====5++=9,当且仅当a+b=2a且2a+b=1,即a=b=时取等号.故选:B.二.多选题(共5小题)5.【解答】解:对于A,方程的解集为{(2,﹣2)},故A错误;对于B,当a>0,b>0时,=,当a>0,b<0时,=,当a<0,b>0时,=﹣1+1=0,当a<0,b<0时,=﹣1﹣1=﹣2,故所确定的实数集合为{﹣2,0,2},故B正确;对于C,3x+2y=16,x∈N,y∈N,则或或,故集合{(x,y)|3x+2y=16,x∈N,y∈N}可以化简为{(0,8),(2,5),(4,2)},故C正确;对于D,A=={﹣3,0,1,2}中含有4个元素,故D错误.故选:BC.6.【解答】解:对于A,因为a,b∈R+,2a+b=1,所以,得,当且仅当时,取等号,所以ab的最大值为,所以A正确,对于B,因为a,b∈R+,2a+b=1,所以0<a<1,b=1﹣2a>0,所以,所以,所以当时,a2+b2有最小值,所以B错误,对于C,因为a,b∈R+,2a+b=1,所以,当且仅当,即时,取等号,所以的最小值为,所以C错误,对于D,因为2a+b=1,所以,由选项B知,所以,所以,所以,所以,所以,所以D正确.故选:AD.7.【解答】解:由﹣2≤x+1≤2,解得﹣3≤x≤1,即函数f(x+1)的定义域为[﹣3,1],故A正确;函数的定义域为[2,+∞),易知函数在[2,+∞)上单调递增,则函数的值域为[2,+∞),故B错误;若函数y=x2+mx+4的两个零点x1,x2都在区间为(1,+∞)内,则x1>1,x2>1,∴x1﹣1>0,x2﹣1>0,且x1+x2=﹣m,x1x2=4,故即解得﹣5<m <﹣4,故C正确,若f(x)=x2﹣(m+2)x+2在[1,3]单调递增,则,若f(x)=x2﹣(m+2)x+2在[1,3]单调递减,则,故实数m的取值范围是(﹣∞,0]∪[4,+∞),D正确.故选:ACD.8.【解答】解:根据题意,A={x|﹣1<x<3},集合B={x|x<m+1},若A∩B=∅.则m+1≤﹣1≤﹣2,对于A,m≤﹣2为A∩B=∅的充分必要条件,故A错,对于B,m<﹣2为A∩B=∅的一个充分不必要条件,故B正确,对于C,m<2为A∩B=∅的一个必要不充分条件,故C错,对于D,﹣4<m<﹣3为A∩B=∅的一个充分不必要条件,故D正确,故选:BD.9.【解答】解:A选项:∵a<0<b,且a+b>0,∴b>﹣a>0,可得,即,A正确;B选项,,B错误;C选项,a<0<b即|a|=﹣a,|b|=b,由a+b>0可得|b|>|a|,C正确;D选项,因为当,所以(a﹣1)(b﹣1)>0,D错误.故选:AC.三.填空题(共4小题)10.【解答】解:∵,∴==2+2+2+1=7.故答案为:7.11.【解答】解;由题意原命题的否定“∀x∈[﹣1,2],使得x2+mx﹣m﹣5<0”是真命题,不妨设,其开口向上,对称轴方程为,则只需f(x)在[﹣1,2]上的最大值[f(x)]max<0即可,我们分以下三种情形来讨论:情形一:当即m≥2时,f(x)在[﹣1,2]上单调递增,此时有[f(x)]max=f(2)=m﹣1<0,解得m<1,故此时满足题意的实数m不存在;情形二:当即﹣4<m<2时,f(x)在上单调递减,在上单调递增,此时有[f(x)]max=max{f(2)(﹣1)}<0,只需,解不等式组得﹣2<m<1,故此时满足题意的实数m的范围为﹣2<m<1;情形三:当即m≤﹣4时,f(x)在[﹣1,2]上单调递减,此时有[f(x)]max=f(﹣1)=﹣2m﹣4<0,解得m>﹣2,故此时满足题意的实数m不存在;综上所述:m的取值范围是(﹣2,1).故答案为:(﹣2,1).12.【解答】解:∵关于x的不等式ax+b>0的解集为(﹣3,+∞),∴﹣=﹣3且a>0,∴b=3a,∴不等式ax2+bx<0,可化为ax2+3ax<0,又∵a>0,∴x2+3x<0,解得﹣3<x<0,即原不等式的解集为(﹣3,0).故答案为:(﹣3,0).13.【解答】解:由∠B=∠C得b=c,代入7a2+b2+c2=4得,7a2+2b2=4,即2b2=4﹣7a2,由余弦定理得,cos C==,所以sin C===,则△ABC的面积S===a==×≤××==,当且仅当15a2=8﹣15a2取等号,此时a2=,所以△ABC的面积的最大值为,故答案为:.四.解答题(共5小题)14.【解答】解:(1)由x2﹣4ax+3a2<0,得(x﹣3a)(x﹣a)<0,又a>0,所以a<x<3a;当a=1时,1<x<3,即p为真时,实数x的取值范围是1<x<3;由,得,解得2<x≤3,即q为真时,实数x的取值范围是2<x≤3;则p、q均为真命题时,实数x的取值范围是(2,3);(2)由(1)知p:a<x<3a,a>0,q:2<x≤3;当q是p的充分不必要条件时,;解得1<a≤2,所以实数a的取值范围是(1,2].15.【解答】解:(1)根据题意,函数f(x)=是定义域(﹣1,1)上的奇函数,则有f(0)==0,则b=0;此时f(x)=,为奇函数,符合题意,故f(x)=,(2)证明:设﹣1<x1<x2<1,f(x1)﹣f(x2)=﹣=﹣又由﹣1<x1<x2<1,则(x1﹣x2)<0,x1x2+1>0,(﹣1)<0,(﹣1)<0,则有f(x1)﹣f(x2)>0,即函数f(x)在(﹣1,1)上为减函数;(3)根据题意,f(t﹣1)+f(t)<0⇒f(t﹣1)<﹣f(t)⇒f(t﹣1)<f(﹣t)⇒,解可得:<t<1,即不等式的解集为(,1).16.【解答】解:(1)若函数的定义域为R,则对任意的x∈R,x2+ax+3≠0,由于函数f(x)=x2+ax+3为开口向上的二次函数,故只需要Δ=a2﹣12<0,解得,故a的范围为{a|};(2)对x∈[﹣2,2]有意义,则对于x∈[﹣2,2],f(x)﹣a=x2+ax+3﹣a≥0恒成立,记h(x)=x2+ax+3﹣a,对称轴为,当时,即a≥4,此时h(x)在x∈[﹣2,2]单调递增,故,与a≥4矛盾,舍去,当,即a≤﹣4,此时h(x)在x∈[﹣2,2]单调递减,故h(2)=4+2a+3﹣a=7+a≥0⇒a≥﹣7,故﹣7≤a≤﹣4,当,即﹣4<a<4,此时,解得﹣6≤a≤2,故﹣4<a≤2,综上可得:{a|﹣7≤a≤2};(3)g(x)=f(x)﹣(a﹣2)x+a=x2+2x+a+3=(x+1)2+a+2≥a+2,令t=g(x),则t≥a+2,y=g[g(x)]=g(t)=(t+1)2+a+2,t≥a+2,则g(t)为开口向上,对称轴为t=﹣1的二次函数,当a+2≤﹣1⇒a≤﹣3,此时g(t)min=g(﹣1)=a+2=5⇒a=3,不符合要求,舍去,当a+2>﹣1⇒a>﹣3,此时或a=﹣6(舍去),故a=﹣1.17.【解答】解:(1)因为x,y∈(0,+∞),x+2y+xy=30,所以30﹣xy=x+2y,当且仅当x=2y时取等号,解可得,0<xy≤18,(2)因为x,y∈(0,+∞),30=x+2y+xy=x+y+y(x+1)≤x+y+()2,当且仅当x+1=y时取等号,所以(x+1+y)2+4(x+1+y)﹣124≥0,解可得,x+y+1或x+y+1(舍),故x+y≥8﹣3,又x+y=x+2+﹣3,0<x<30,所以由对勾函数的性质可得x+y<30,所以8﹣3≤x+y<30.18.【解答】解:(1)y1≥y2可得x2﹣2|x|≥4x2﹣16,即3x2+2|x|﹣16≤0,即(|x|﹣2)(3|x|+8)≤0,即,则﹣2≤x≤2,则实数x的取值范围是[﹣2,2];证明:(2)因为,所以y1≥y2,由(1)知x∈[﹣2,2],所以D=[m,n]⊆[﹣2,2];(i)0<t<1时,当x∈[0,2]时,,所以当x∈[0,2]时,恒成立,当x∈[﹣2,0)时,令=x2+2x﹣(2t﹣2)x+t2=x2+(4﹣2t)x+t2,y=g(x)对称轴x=t﹣2<﹣1,故y=g(x)在[﹣1,0)上为增函数,又g(﹣1)=1+2t﹣4+t2=(t+1)2﹣4<0,g(0)=t2>0,所以存在x0∈(﹣1,0)使得g(x0)=0,故g(x)≥0的解集为[x0,0],所以当x∈[﹣2,2]时,的解集为[x0,2],其中x0∈(﹣1,0),所以D=[m,n]⊆(﹣1,2],则;(ii)当t=1时,y1≥﹣1≥y2,因为,所以y1≥﹣1恒成立,由题意知﹣1≥y2的解集为D=[m,n],所以m,n是方程﹣1=4x2﹣16的两根,所以,所以;(iii)当1<t≤2时,当x∈[0,2]时,由(i)知,当x∈[﹣2,0)时,令,∴在[﹣2,2]恒成立,故只需要考虑(2t﹣2)x﹣t2≥y2在[﹣2,2]的解集即可,由(2t﹣2)x﹣t2≥y2,可得4x2﹣(2t﹣2)x+t2﹣16≤0,由题意m,n是4x2﹣(2t﹣2)x+t2﹣16=0的两根,令φ(x)=4x2﹣(2t﹣2)x+t2﹣16,其对称轴为,φ(2)=16﹣2(2t﹣2)+t2﹣16=t2﹣4t+4=(t﹣2)2≥0,φ(﹣2)=16+2(2t﹣2)+t2﹣16=t2+4t﹣4=(t+2)2﹣8>0,所以m,n∈[﹣2,2],,又h(t)=﹣3t2﹣2t+65在1<t≤2为单调减函数,∴h(t)<h(1)=60,∴,综上,.。
黑龙江省齐齐哈尔市第八中学校2024-2025学年高一上学期第一次月考数学试卷
黑龙江省齐齐哈尔市第八中学校2024-2025学年高一上学期第一次月考数学试卷一、单选题1.集合{}12A x x =-≤<,{}1B x x =>,则()R A B ⋂=ð( )A .{}11x x -≤<B .{}11x x -≤≤C .{}12x x -≤<D .{}2x x <2.不等式1021x x -≥+的解集为( ) A .1,12⎛⎤- ⎥⎝⎦B .[)1,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭C .[)1,1,2⎛⎤-∞-+∞ ⎥⎝⎦UD .1,12⎡⎤-⎢⎥⎣⎦3.若0a b <<,则下列结论正确的是( )A .22b a >B .b a a b >C .2ab b >D .22ac bc > 4.下列四组函数中,()f x 与()g x 不相等的是( )A .()||f x x =与()g x =B .2()1f x x =+与2()1g t t =+C .||()x f x x =与1,0()1,0x g x x >⎧=⎨-<⎩D .()f x =()g x 5.已知{}21,2,x x x ∈-,则实数x 为( )A .0B .1C .0或1D .0或1或2 6.中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形三边长求三角形面积的公式:设三角形的三条边长分别为a ,b ,c ,则三角形的面积S 可由公式S =p 为三角形周长的一半,这个公式也被称为海伦-秦九韶公式.现有一个三角形的边长满足6p =,8a b +=,则此三角形面积的最大值为( )A .B .C .D .7.已知关于x 的不等式2240ax bx ++<的解集为4,m m ⎛⎫ ⎪⎝⎭,其中0m <,则44b a b +的最小值为( )A .-2B .1C .2D .88.已知函数()222,02,0x x x f x x x x ⎧-+≥=⎨-<⎩,若关于x 的不等式()()()200f x af x a -<>⎡⎤⎣⎦恰有1个整数解,则实数a 的最大值( )A .3B .4C .1D .-1二、多选题9.设x R ∈,则“2210x x +->”成立的一个充分不必要条件是( )A .12x >B .1x <-或12x >C .2x <-D .1x <- 10.下列命题中正确的是( )A .任意非零实数a ,b ,都有2b a a b+≥ B .当1x >时,11x x +-的最小值是2C .当010x << 5D .若正数x ,y 满足213x y+=,则2x y +的最小值为3 11.下列说法不正确的是( )A .不等式()()2110x x --<的解集为112x x ⎧⎫<<⎨⎬⎩⎭B .若实数a ,b ,c 满足22ac bc >,则a b >C .若x ∈R ,则函数y = 2D .已知函数()213f x x x +=-,且()2f a =-,则a 的值为2或3三、填空题12.若命题2:R,21p x x x ∃∈-≥-,则p 的否定为.13.函数12y x -的定义域是(用区间表示) 14.已知正实数a ,b 满足a +b =1,则222124a b a b+++的最小值为.四、解答题15.设集合{|13}A x x =-<<,集合{|22}B x a x a =-<<+.(1)若=2a ,求A B ⋃和;A B ⋂(2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要不充分条件,求实数a 的取值范围. 16.设()()212f x ax a x a =+-+-.(1)若命题“对任意实数x ,()2f x ≥-”为真命题,求实数a 的取值范围.(2)解关于x 的不等式()1(R)f x a a <-∈.17.如图,某人计划用篱笆围成一个一边靠墙(墙的长度没有限制)的矩形菜园.设菜园的长为m x ,宽为m y .(1)若菜园面积S 为272m ,则x ,y 为何值时,可使所用篱笆总长C 最小?(2)若使用的篱笆总长C 为30m ,求121z x y =++的最小值.。
天津市实验中学2024-2025学年高一上学期第一次月考数学试卷
天津市实验中学2024-2025学年高一上学期第一次月考数学试卷一、单选题1.下列关系中正确的是()A .1Q 2∈B RC .0+ÎND .π∈Z2.下列各式中:①{}{}00,1,2∉;②{}{}0,1,22,1,0⊆;③{}0,1,2∅⊆;④{}0∅=;⑤{}(){}0,10,1=;⑥{}00=,正确的个数是()A .1B .2C .3D .43.全集{*U x x =∈N ∣且}{}{}10,1,3,5,7,6,7,8,9x A B <==,则()U A B ⋃=ð()A .{}2B .{}2,4C .{}7D .{}2,4,74.已知命题p :1x ∃>,240x -<,则p ⌝是()A .1x ∃>,240x -≥B .1x ∃≤,240x -<C .1x ∀≤,240x -≥D .1x ∀>,240x -≥5.若集合{}1,,A a b =,集合{}2,,B a a ab =,且A B =,则()A .1a =-,0b =B .1a =,0b =C .1a =±,0b =D .不确定6.已知全集U =R ,{}31A x x =-<<,{}02B x x =≤<,则图中阴影部分表示的集合为()A .{}30x x -<<B .{}30x x -<≤C .{}32x x -<<D .{}01x x ≤<7.已知,a b ∈R ,则“1a >,1b <-”是“222a b +>”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.已知集合{}220|A x mx x m =-+=仅有两个子集,则实数m 的取值构成的集合为()A .{}1,1-B .{}1,0,1-C .{}0,1D .∅二、填空题9.某校学生积极参加社团活动,高一某班共有40名学生,其中参加围棋社团的学生有23名,参加合唱社团的学生有25名(并非每个学生必须参加某个社团).请问,在该班学生中,同时参加围棋社团和合唱社团的最多有名学生,最少有名学生.10.若集合{}N |12A x x =∈-<≤,{},,B x x ab a b A ==∈,则集合B 的非空真子集的个数为.11.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围为.12.已知集合{}1,2,3,4,5,6,7=M ,对它的非空子集A ,可将A 中的每一个元素k 都乘以()1k -再求和(如{}2,3,5A =,可求得和为:()()()2352131516⋅-+⋅-+⋅-=-,则对M 的所有非空子集执行上述求和操作,则这些和的总和是.三、解答题13.(1)已知集合{}20A x x =-≤≤或{|1B x x =<-或}4>x ,全集U =R .求A B 和()()U U A B ⋂痧.(2)已知集合(){},20A x y x y =-=,(){},350B x y x y =+-=,求A B ⋂并解释它的几何意义.14.已知集合{|3},{|2A x a x a B x x =≤≤+=<-或6}x >.(1)若A B =∅ ,求a 的取值范围;(2)若“x A ∈”是“x B ∈”的充分条件,求a 的取值范围.15.设{}222{40},2(1)10A x x x B x x a x a =+==+++-=,其中R x ∈,如果A B B = ,求实数a 的取值范围.16.“1a <”是“方程2210ax x ++=(0a ≠)有一个正根和一个负根”的条件;并证明.。
高一上学期第一次月考数学试卷(含答案解析)
高一上学期第一次月考数学试卷(含答案解析)第I 卷(选择题)一、单选题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合{0,1}A =,{|0}B x x =,则下列结论正确的是( ) A. {0}B ∈B. A B ⋂=∅C. A B ⊆D. A B R ⋃=2. 已知集合,{2,1,0,1,2,4}B =--,则A B ⋂=( ) A. {1,0,1,2}-B. {2,0,4}-C. {0,1,2}D. {0,1}3. 已知命题p :x R ∃∈,2 1.x x +则命题p 的否定是( ) A. x R ∃∈,21x x >+ B. x R ∃∈,21x x + C. x R ∀∈,21x x +D. x R ∀∈,21x x >+4. 已知a R ∈,则“2a >”是“4a >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件5. “A B ⊆“是“A B B ⋂=“的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件D. 既不充分也不必要条件6. 如果0a <,0b >,那么下列不等式中正确的是( )A.11a b< B. <C. 22a b <D. ||||a b >7. 已知集合M 满足{1,2}{1,2,3}M ⋃=,则集合M 的个数是( ) A. 1B. 2C. 3D. 48. 对于任意实数x ,不等式2(2)2(2)40m x m x ---+>恒成立,则m 的取值范围是( ) A. {|22}m m -<< B. {|22}m m -< C. {|2m m <-或2}m >D. {|2m m <-或2}m9. 已知a ,b R ∈,且0ab ≠,则在下列四个不等式中,不恒成立的是( )A.222a b ab +B.2b a a b+ C. 2()2a b ab +D. 222()22a b a b ++10. 设S 为实数集R 上的非空子集.若对任意x ,y S ∈,都有x y +,x y -,xy S ∈,则称S 为封闭集.下面是关于封闭集的4个判断:(1)自然数集N 为封闭集; (2)整数集Z 为封闭集;(3)若S 为封闭集,则一定有0S ∈; (4)封闭集一定是无限集.则其中正确的判断是( )A. (2)(3)B. (2)(4)C. (3)(4)D. (1)(2)第II 卷(非选择题)二、填空题(本大题共5小题,共25.0分)11. 已知函数21()ln log f x a x b x =+,若(2017)1f =,则1()2017f =______ . 12. 若0x >,则12x x+的最小值为______,此时x 的取值为______. 13. 一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是__________.14. 设2{|340}A x x x =+-=,{|10}.B x ax =-=若B A ⊆,则a 的值为______.15. 某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润(y 万元)与机器运转时间(x 年数,*)x N ∈的关系为21825.y x x =-+-则当每台机器运转______ 年时,年平均利润最大,最大值是______ 万元.三、解答题(本大题共6小题,共85.0分。
辽宁省沈阳市东北育才中学2024-2025学年高一上学期第一次月考(10月)数学试题(含解析)
东北育才高中2024-2025学年度上学期高一年级数学科第一次月考试卷时间:120分钟 满分:150分一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是正确的.1.已知集合,则中元素个数为( )A.2B.3C.4D.62.设集合,则集合的真子集的个数为( )A.3B.4C.15D.163.命题“,不等式”为假命题的一个必要不充分条件是( )A.B.C. D.4.设,则下列命题正确的是( )A.若,则B.若,则C.若则D.若,则5.若集合,若,则实数的取值范围是( )A.B.C.D.6.对于实数,当且仅当时,规定,则不等式的解集是()A. B.C. D.7.已知,则的最小值为( )(){}(){}*,,,,,8A x y x y y x B x y x y =∈≥=+=N ∣∣A B ⋂{}{}{}1,2,3,4,5,,,A B M xx a b a A b B ====+∈∈∣M x ∃∈R 2210ax x -+≤0a >1a >102a <<2a >,a b ∈R ,x y a b >>a x b y ->-a b >11a b<,x y a b >>ax by >a b >22a b >{}30,101x A xB x ax x ⎧⎫-===+=⎨⎬+⎩⎭∣B A ⊆a 13⎧⎫-⎨⎬⎩⎭1,13⎧⎫-⎨⎬⎩⎭10,3⎧⎫-⎨⎬⎩⎭10,,13⎧⎫-⎨⎬⎩⎭x ()1n x n n ≤<+∈N []x n =[]24[]36450x x -+<{28}xx ≤<∣31522xx ⎧⎫<<⎨⎬⎩⎭{}27xx ≤≤∣{27}x x <≤∣0,0,23x y x y >>+=23x yxy+A. B.8.方程至少有一个负实根的充要条件是( )A. B.C.D.或二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分,9.设均为非空集合,且满足,则下列各式中正确的是( )A. B.C.D.10.下列四个命题中正确的是( )A.由所确定的实数集合为B.同时满足的整数解的集合为C.集合可以化简为D.中含有三个元素11.已知关于的不等式的解集为,则下列结论正确的是()A. B.的最大值为C.的最小值为8 D.的最小值为三、填空题:本大题共3小题,每小题5分,共15分.12.的解集是__________.13.某班举行数学、物理、化学三科竞赛,每人至少参加一科,已知参加数学竞赛的有27人,参加物理竞赛的有25人,参加化学竞赛的有27人,其中同时只参加数学、物理两科的有10人,同时只参加物理、化学两科的有7人,同时只参加数学、化学两科的有11人,而参加数学、物理、化学三科的有4人,则全班共有__________人.3-11-1+2210ax x ++=01a <≤1a <1a ≤01a <≤0a <A B U 、、A B U ⊆⊆()U A B U ⋃=ð()()U U U A B B ⋂=ððð()U A B ⋂=∅ð()()U U A B U⋃=ðð(),a b a b ab+∈R {}2,0,2-240,121x x x +>⎧⎨+≥-⎩{}1,0,1,2-(){},3216,,x y x y x y +=∈∈N N ∣()()(){}0,8,2,5,4,26,3A aa a ⎧⎫=∈∈⎨⎬-⎩⎭N Z x ()()()2323100,0a m x b m x a b +---<>>11,2⎛⎫- ⎪⎝⎭21a b +=ab 1812a b +224a b +1222150x x -->14.已知关于的不等式(其中)的解集为,若满足(其中为整数集),则使得集合中元素个数最少时的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(本小题13分)已知集合为全体实数集,或.(1)若,求;(2)若,求实数的取值范围.16.(本小题15分)已知全集,集合,集合.(1)若,求实数的取值集合;(2)若集合,且集合满足条件__________(从下列三个条件中任选一个作答),求实数的取值集合.条件①是的充分不必要条件:②是的必要不充分条件:③,使得.17.(本小题15分)设,且.(1介于之间;(2)求;(3)你能设计一个比的吗?并说明理由.18.(本小题17分)对于二次函数,若,使得成立,则称为二次函数的不动点.(1)求二次函数的不动点:(2)若二次函数有两个不相等的不动点,且,求的最小值.x ()()2640mx m x --+<m ∈R A A B ⋂=Z Z B m U {2M xx =<-∣{}5},121x N x a x a >=+≤≤-∣3a =()U M N ⋃ðU N M ⊆ða U =R A x y ⎧⎪==⎨⎪⎩()(){}2440B x x m x m =---<∣B =∅m B ≠∅,A B m x A ∈x B ∈x A ∈x B ∈12,x A x B ∀∈∃∈12x x =10a >1a ≈21111a a =++12,a a 12,a a 2a 3a ()20y ax bx c a =++≠0x ∃∈R 2000ax bx c x ++=0x ()20y ax bx c a =++≠222y x x =+-()2221y x a x a =-++-12,x x 12,0x x >2112x x x x +19.(本小题17分)已知是非空数集,如果对任意,都有,则称是封闭集.(1)判断集合是否为封闭集,并说明理由:(2)判断以下两个命题的真假,并说明理由:命题:若非空集合是封闭集,则也是封闭集;命题:若非空集合是封闭集,且,则也是封闭集:(3)若非空集合是封闭集合,且为实数集,求证:不是封闭集.A ,x y A ∈,x y A xy A +∈∈A {}{}0,1,0,1BC ==-p 12,A A 12A A ⋃q 12,A A 12A A ⋂≠∅12A A ⋂A ,A ≠R R A R ð东北育才高中2024-2025学年度上学期高一年级数学科第一次月考答案【解析】1.解:在集合中,观察集合的条件,当是正整数且时,有等4个元素,则中元素个数为4个.故选C.2.解:由题意可知,集合,集合中有4个元素,则集合的真子集有个,故选C.3.解:命题“,不等式”为假命题,则命题“,不等式”为真命题,所以,解得,所以使得命题“,不等式”为假命题,则实数的取值范围为1,则命题“,不等式”为假命题的一个必要不充分条件是,故选:A.4.解:A :令,则,故错误;B :令,则,故错误;C :令,则,故错误;D :因为,所以即,故正确;故选D.5.解:由题可知:.当时,显然不成立即,则满足;B 8x y +=A ,x y y x ≥()()()()1,7,2,6,3,5,4,4A B ⋂{}5,6,7,8M =M 42115-=x ∃∈R 2210ax x -+≤x ∀∈R 2210ax x -+>0Δ440a a >⎧⎨=-<⎩1a >x ∃∈R 2210ax x -+≤a a >x ∃∈R 2210ax x -+≤0a >1,3,2,0x y a b ==-==13a x b y -=<-=0,0a b ><11a b>0,1,1,0x y a b ==-==0ax by ==a a b >…22||a b >22a b >{}3031x A xx ⎧⎫-===⎨⎬+⎩⎭0a =10…B =∅B A ⊆当时,,由可得:;综上所述实数的取值范围为.故选C.6.解:由,根据的定义可知:不等式的解集是.故选A.7.解:因为,则,当且仅当时,即当,且,等号成立,故的最小值为故选B.8.当时,方程为有一个负实根,反之,时,则于是得;当时,,若,则,方程有两个不等实根,,即与一正一负,反之,方程有一正一负的两根时,则这两根之积小于,于是得,若,由,即知,方程有两个实根,0a ≠1B x x a ⎧⎫==-⎨⎬⎩⎭B A ⊆1133a a -=⇒=-a 10,3⎧⎫-⎨⎬⎩⎭[]24[]36450x x -+<[]()[]()232150x x ⇒--<[]31522x ⇒<<[]x []24[]36450x x -+<{28}xx <∣…0,0,23x y x y >>+=()22222322111x x y y x y x xy y x y xy xy xy y x +++++===+++=+…222x y =3x =-y =23x y xy+1+0a =210x +=12x =-12x =-0,a =0a =0a ≠Δ44a =-0a <Δ0>12,x x 1210x x a=<1x 2x 1a0,0a <0a <0a >Δ0≥01a <≤12,x x必有,此时与都是负数,反之,方程两根都为负,则,解得,于是得,综上,当时,方程至少有一个负实根,反之,方程至少有一个负实根,必有.所以方程至少有一个负实根的充要条件是.故选:9.解:因为,如下图所示,则,选项A 正确:,选项B 正确:,选项正确:,选项D 错误.故选ABC.10.解:分别取同正、同负和一正一负时,可以得到的值分别为,故A 正确;由得,12122010x x a x x a ⎧+=-<⎪⎪⎨⎪=>⎪⎩1x 2x 2210ax x ++=12,x x 1212Δ4402010a x x a x x a ⎧⎪=-≥⎪⎪+=-<⎨⎪⎪=>⎪⎩01a <≤01a <≤1a ≤2210ax x ++=2210ax x ++=1a ≤2210ax x ++=1a ≤CA B U ⊆⊆()U U U ,B A A B U ⊆⋃=ððð()()UUUA B B ⋂=ððð()U A B ⋂=∅ðð()()UUUA B A U ⋃=≠ððð,a b (),a b a b ab+∈R 2,2,0-240,121,x x x +>⎧⎨+≥-⎩22x -<≤所以符合条件的整数解的集合为,故B 正确;由,可以得到符合条件的数对有,故C 正确;当时,;当时,,当时,;当时,;当时,;当时,,所以集合含有四个元素,故D 错误,故选ABC.11.解:由题意,,且方程的两根为和,所以,所以,所以A 正确;因为,所以,可得,当且仅当时取等号,所以的最大值为B 正确;,当且仅当,即时取等号,所以的最小值为C 错误;,当且仅当时取等号,所以的最小值为,所以D 正确.故选ABD.12.解:由,,{}1,0,1,2-3216,,x y x y +=∈∈N N ()()()0,8,2,5,4,22a =666332a ==∈--N 1a =663331a ==∈--N 0a =662330a ==∈--N 1a =-66331a =∉-+N 2a =-6635a =∉-N 3a =-66136a ==∈-N A 2,1,0,3-30a m +>()()232310a m x b m x +---=1-12123111,12323b m a m a m--+=-⨯=-++32,231a m b m +=-=-21,a b +=0,0a b >>21a b +=≥18ab ≤122a b ==ab 1,8()121222255549b a a b a b a b a b ⎛⎫+=++=++≥+=+= ⎪⎝⎭22b a a b =13a b ==12a b+9,22222114(2)(2)22a b a b a b +=+≥+=122a b ==224a b +1222150x x -->2||2150x x ∴-->()()530x x ∴-+>解得:或(舍去),或,即所求的解集为,故答案为.13.解:设参加数学、物理、化学三科竞赛的人分别组成集合,各集合中元素的个数如图所示,则全班人数为.故答案为43.14.解:分情况讨论:当时,,解得;当时,,当且仅当解得或;当时,,当且仅当由,解得.因为,集合中元素个数最少,所以不符合题意;所以要使集合中元素个数最少,需要,解得.故答案为:.15.(本小题13分)5x >3x <-5x ∴<-5x >()(),55,∞∞--⋃+()(),55,∞∞--⋃+,,A B C 24510711443++++++=0m =()640x -+<{}4A xx =>-∣0m <()2266640,4m m x x m m m m ⎛⎫++-+>=+-<- ⎪⎝⎭…m =26{|m A x x m +=<4}x >-0m >2664m m m m+=+≥>m =()2640m x x m ⎛⎫+-+< ⎪⎝⎭264m A x x m ⎧⎫+⎪⎪=-<<⎨⎬⎪⎪⎩⎭A B ⋂=Z B 0m ≤B 265m m +≤23m ≤≤{}23mm ∣……【答案】解:(1)当时,,所以或,又或,所以或;(2)由题可得,①当时,则,即时,此时满足;②当时,则,所以,综上,实数的取值范围为.16.(本小题15分)【答案】解:(1)若,则,解得,所以实数的取值集合为(2)集合,集合,则此时,则集合,当选择条件①时,是的充分不必要条件,有 ,则,且不能同时取等,解得,所以实数的取值集合为当选择条件②时,是的必要不充分条件,有 ,则,且不能同时取等,解得,所以实数的取值集合为当选择条件③时,,使得,有,则,解得,所以实数的取值集合为3a ={}45N xx =≤≤∣U {4N x x =<∣ð5}x >{2M xx =<-∣5}x >()U {4M N x x ⋃=<∣ð5}x >{}U 25M xx =-≤≤∣ðN =∅121a a +>-2a <U N C M ⊆N ≠∅12112215a a a a +≤-⎧⎪+≥-⎨⎪-≤⎩23a ≤≤a {}3aa ∣…B =∅244m m =+2m =m {}2{}2200{45}A xx x x x =-++>=-<<∣∣B ≠∅2,m ≠2244(2)0m m m +-=->{}244B xm x m =<<+∣x A ∈x B ∈A B 24445m m ≤-⎧⎨+≥⎩1m <-m (),1∞--x A ∈x B ∈B A 24445m m ≥-⎧⎨+≤⎩11m -<≤m (]1,1-12,x A x B ∀∈∃∈12x x =A B ⊆24445m m ≤-⎧⎨+≥⎩1m ≤-m (],1∞--17.(本小题15分)【答案】解:(1)证明:.之间.(2比.(3)令,则比.证明如下:由(2.故比18.(本小题17分)【答案】解:(1)由题意知:,,解得,所以,二次函数的不动点为和1.(2)依题意,有两个不相等的正实数根,即方程有两个不相等的正实数根,所以,解得,所以,所以))12111101a a a a ⎫=-⋅--=<⎪+⎭12a a 、11a --1a -2a ∴1a 32111a a =++3a 2a 32a a -=--3a 2a 222x x x +-=()()120x x ∴-+=122,1x x =-=222y x x =+-2-()2221x a x a x -++-=()22310x a x a -++-=()2Δ(3)810a a =+-->12302a x x ++=>1a >12102a x x -⎛⎫=> ⎪⎝⎭121231,22a a x x x x +-+==()222121221121212122x x x x x x x x x x x x x x +-++==,当且仅当,即时等号成立,所以的最小值为6.19.(本小题17分)【答案】(1)解:对于集合,因为,所以是封闭集;对于集合,因为,所以集合不是封闭集;(2)解:对命题:令,则集合是封闭集,但不是封闭集,故错误;对于命题:设,则有,又因为集合是封闭集,所以,同理可得,所以,所以是封闭集,故正确;(3)证明:假设结论成立,设,若,矛盾,所以,所以有,设且,否则,所以有,矛盾,故假设不成立,原结论成立,证毕.()()()22231(1)41162132121212a a a a a a a a a +⎛⎫-+ ⎪-+-+++⎝⎭===---1822621a a -=++≥=-1821a a -=-5a =1221x x x x +{}0B =000,000B B +=∈⨯=∈{}0B ={}1,0,1C =-()112,112,C C -+-=-∉+=∉{}1,0,1C =-p {}{}122,,3,A xx k k A x x k k ==∈==∈Z Z ∣∣12,A A 12A A ⋃q ()12,a b A A ∈⋂1,a b A ∈1A 11,a b A ab A +∈∈22,a b A ab A +∈∈()()1212,a b A A ab A A +∈⋂∈⋂12A A ⋂2a A a A ∈⇒∈2R ()a A a A -∈⇒-∈R ðða A -∈0a a A -+=∈2R R b A b A ∈⇒∈ððR b A -∈ð2()b A b A -∈⇒-∈R 0b b A -+=∈ð。
高一数学上学期第一次月考试题含解析
智才艺州攀枝花市创界学校内蒙古锡林郭勒盟第HY 学二零二零—二零二壹高一数学上学期第一次月考试题〔含解析〕一、单项选择题〔本大题一一共12小题,每一小题5分,一共60分〕 1.集合2{|}A x x x ==,{1,,2}B m =,假设A B ⊆,那么实数m 的值是〔〕A.2B.0C.0或者2D.1【答案】B 【解析】 【分析】 求得集合{0,1}A =,根据A B ⊆,即可求解,得到答案.【详解】由题意,集合2{|}{0,1}A x x x ===,因为A B ⊆,所以0m =,应选B.【点睛】此题主要考察了集合交集运算,其中解答中熟记集合的包含关系的运算是解答的关键,着重考察了运算与求解才能,属于根底题.2.在区间(0,+∞)上不是增函数的函数是〔〕 A.21y x =+B.231y x =+C.2y x=D.221y x x =++【答案】C 【解析】 【详解】A 选项在R 上是增函数;B选项在(],0-∞是减函数,在[)0,+∞是增函数;C选项在(),0,(0,)-∞+∞是减函数;D选项221721248y x x x ⎛⎫=++=++ ⎪⎝⎭在1,4⎛⎤-∞- ⎥⎝⎦是减函数,在1,4⎡⎫-+∞⎪⎢⎣⎭是增函数;应选C. 【点睛】对于二次函数断定单调区间通常要先化成2()(0)y a x m n a =-+≠形式再断定.当0a >时,单调递减区间是(],m -∞,单调递减区间是[),m +∞;0a <时,单调递减区间是[),m +∞,单调递减区间是(],m -∞.3.以下哪一组函数相等〔〕A.()f x x =与()2x g x x=B.()2f x x =与()4g x =C.()f x x =与()2g x =D.()2f x x =与()g x =【答案】D 【解析】 【分析】根据相等函数的要求依次判断两个函数的定义域和解析式是否一样,从而可求得结果. 【详解】A 选项:()f x 定义域为R ;()g x 定义域为:{}0x x ≠∴两函数不相等B 选项:()f x 定义域为R ;()g x 定义域为:{}0x x ≥∴两函数不相等C 选项:()f x 定义域为R ;()g x 定义域为:{}0x x ≥∴两函数不相等D 选项:()f x 与()g x 定义域均为R ,且()()2g x x f x ===∴两函数相等此题正确选项:D【点睛】此题考察相等函数的判断,关键是明确两函数相等要求定义域和解析式都一样,属于根底题. 4.集合{}2|3280Mx x x =--≤,{}2|60N x xx =-->,那么M N ⋂为〔〕A.{|42x x -≤<-或者37}x <≤B.{|42x x -<≤-或者37}x ≤<C.{|2x x ≤-或者3}x >D.{|2x x <-或者3}x ≥【答案】A 【解析】 【分析】利用一元二次不等式的解法化简集合{}2|3280M x x x =--≤,{}2|60N x xx =-->,根据集合交集的定义求解即可. 【详解】∵由{}2|3280Mx x x =--≤,所以{}|47M x x =-≤≤, 因为{}2|60N x x x =-->,所以{|2N x x =<-或者3}x >,∴{}|47{|2MN x x x x ⋂=-≤≤⋂<-或者3}x >{|42x x =-≤<-或者37}x <≤.应选A .点睛:研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,此题本质求满足属于集合M 且属于集合N 的元素的集合.5.2,0()(1),0x x f x f x x >⎧=⎨+≤⎩,那么44()()33f f +-的值等于〔〕A.2-B.4C.2D.4-【答案】B 【解析】【详解】2,0()(1),0x x f x f x x >⎧=⎨+≤⎩,448()2333f ∴=⨯=,44112()(1)()(1)()33333f f f f f ∴-=-+=-=-+=24233=⨯=,4484()()43333f f ∴+-=+=,应选B.考点:分段函数.6.()f x =A.3(,]2-∞ B.3[,)2+∞ C.(,1]-∞ D.[2,)+∞【答案】D 【解析】 【分析】先求解定义域,然后结合二次函数的对称轴判断增区间. 【详解】因为2320x x -+≥,所以(][),12,x ∈-∞+∞;又因为232y x x =-+的对称轴为:32x =,且322<,所以增区间为[)2,+∞, 应选:D.【点睛】此题考察复合函数的单调性,难度一般.对于复合函数的单调性问题,在利用“同増异减〞的方法判断的同时也要注意到定义域问题. 7.以下对应关系是A 到B 的函数的是()A.A=R,B={x|x>0}.f:x y=|x|→B.2,,:A Z B N f x y x +==→=C.A=Z,B=Z,f:x y →=D.[]{}1,1,0,:0A B f x y =-=→=【答案】D 【解析】 【分析】根据函数的定义,即可得出结论.【详解】对于A 选项:A =R ,B ={x |x >0},按对应关系f :x →y =|x |,A 中的元素0在B 中无像,∴f :x →y =|x |不是从A 到B 的函数;对于B 选项:A =Z ,B N +=,f :x →y =x 2,A 中的元素0在B 中无像,∴f :x →y =|x |不是从A 到B 的函数;对于C 选项:A =Z ,B =Z ,f :x →y =f :x →y =A 到B 的函数;对于D 选项:A =[﹣1,1],B ={0},f :x →y =0,A 中的任意元素在B 中有唯一元素对应,∴f :x →y =0是从A 到B 的函数. 应选D.【点睛】此题考察函数的定义,考察学生分析解决问题的才能,正确理解函数的定义是关键.8.函数()212f x x =+,那么f 〔x 〕的值域是 A.1{|}2y y ≤ B.1{|}2y y ≥C.1{|0}2y y <≤D.{|0}y y >【答案】C 【解析】 【分析】根据不等式的性质,求得函数的值域.【详解】由于220,22xx ≥+≥,故211022x <≤+,故函数的值域为1|02y y ⎧⎫<≤⎨⎬⎩⎭,应选C. 【点睛】本小题主要考察函数值域的求法,考察不等式的性质,属于根底题. 9.函数(1)f x +的定义域为[2,3]-,那么(21)f x -的定义域为〔〕A.[]-1,4B.5[0,]2C.[5,5]-D.[3,7]-【答案】B 【解析】 【分析】 由函数(1)f x +的定义域为[2,3]-,得到1[1,4]x +∈-,令1214x -≤-≤,即可求解函数(21)f x -的定义域,得到答案.【详解】由题意,函数(1)f x +的定义域为[2,3]-,即[2,3]x ∈-,那么1[1,4]x +∈-,令1214x -≤-≤,解得502x ≤≤,即函数(21)f x -的定义域为5[0,]2,应选B.【点睛】此题主要考察了抽象函数的定义域的计算,其中解答中熟记抽象函数的定义域的求解方法是解答的关键,着重考察了推理与运算才能,属于根底题. 10.不等式20ax x c -+>的解集为{}21,x x -<<那么函数2y ax x c =++的图像大致为〔〕A. B.C. D.【答案】C 【解析】 【分析】利用根与系数的关系x 1+x 2=−b a ,x 1•x 2=c a结合二次函数的图象可得结果【详解】由题知-2和1是ax 2-x+c=0的两根, 由根与系数的关系知-2+1=1a ,,−2×1=c a,∴a=-1,c=2, ∴2y ax x c =++=-x 2+x+2=-〔x-12〕2+94,应选C【点睛】此题考察了一元二次不等式的解法和二次函数的图象,以及一元二次方程根与系数的关系.一元二次不等式,一元二次方程,与一元二次函数的问题之间可互相转化,也表达了数形结合的思想方法. 11.函数2228(0)y x ax a a =-->,记0y ≤的解集为A ,假设()1,1A -⊆,那么a 的取值范围〔〕A.1,2⎡⎫+∞⎪⎢⎣⎭ B.1,4⎡⎫+∞⎪⎢⎣⎭C.11,42⎛⎫⎪⎝⎭D.11,42⎡⎤⎢⎥⎣⎦【答案】A 【解析】 【分析】因为2228(2)(4)--=+-x ax a x a x a ,且24a a -<,所以解集[]2,4A a a =-;然后根据()1,1A -⊆,得不等式组2141a a -≤-⎧⎨≥⎩,可得a 的取值范围。
雅礼中学2023-2024学年高一上学期第一次月考数学试题(解析版)
(时量:120分雅礼中学2023年上学期高一第一次月考数学答案钟分值:150分)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“200,1x x ∃∈≠R ”的否定是()A.2,1x x ∀∈=RB.2,1x x ∀∉=RC.200,1x x ∃∈=R D.200,1∃∉=x x R 【答案】A 【解析】【分析】由特称命题的否定是全称命题,可得出答案.【详解】根据特称命题的否定是全称命题,可知命题“200,1x x ∃∈≠R ”的否定是“2,1x x ∀∈=R ”.故选:A.2.设集合A 含有2-,1两个元素,B 含有1-,2两个元素,定义集合A B ,满足1x A ∈,2x B ∈且12x x A B ∈e ,则A B 中所有元素之积为()A.8- B.16- C.8D.16【答案】C 【解析】【分析】根据集合A B 的定义先求出集合A B ,然后再把集合中所有元素相乘即可求解.【详解】由题意{}2,1A =-,{}1,2B =-,由集合A B 的定义可知,集合A B 中有以下元素:①()212-⨯-=,②224-⨯=-,③()111⨯-=-,④122⨯=,根据集合中元素满足互异性去重得{}4,1,2A B =--e ,所以A B 中所有元素之积为()4128-⨯-⨯=.故选:C.3.若函数()31y f x =+的定义域为[]2,4-,则()y f x =的定义域是()A.[]1,1- B.[]5,13- C.[]5,1- D.[]1,13-【答案】B 【解析】【分析】根据函数()31y f x =+中[]2,4x ∈-,即可得出[]315,13x +∈-,即可选出答案.【详解】因为函数()31y f x =+的定义域为[]2,4-,即24x -≤≤所以53+113x -≤≤所以()y f x =的定义域是[]5,13-故选:B.【点睛】本题考查隐函数的定义域,属于基础题.解本题的关键在于正确理解函数的定义域是x 的取值范围与同一个函数其括号里面的取值范围一样.4.下列命题正确的是()A.“a b >”是“22a b >”的充分条件B.“a b >”是“22a b >”的必要条件C.“a b >”是“22ac bc >”的充分条件D.“a b >”是“22ac bc >”的必要条件【答案】D 【解析】【详解】解:对于A :由a b >推不出22a b >,如0a =,1b =-满足a b >,但是22a b <,故A 错误;对于B :由22a b >推不出a b >,如1a =-,0b =满足22a b >,但是a b <,即a b >不是22a b >的必要条件,故B 错误;对于C :由a b >推不出22ac bc >,当0c =时220ac bc ==,故C 错误;对于D :若22ac bc >,则20c ≠,即20c >,所以a b >,即a b >是22ac bc >的必要条件,故D 正确;故选:D5.用C (A )表示非空集合A 中的元素个数,定义A *B =()()()()()()()(),,C A C B C A C B C B C A C A C B ⎧-≥⎪⎨-<⎪⎩若A ={1,2},B ={x |(x 2+ax )·(x 2+ax +2)=0},且A *B =1,设实数a 的所有可能取值组成的集合是S ,则C (S )等于()A.1B.3C.5D.7【答案】B 【解析】【分析】根据题意可得()1C B =或()3C B =,进而讨论a 的范围,确定出()C B ,最后得到答案.【详解】因为()2C A =,*1A B =,所以()1C B =或()3C B =,由20x ax +=,得120,x x a ==-,关于x 的方程220x ax ++=,当=0∆时,即a =±()3C B =,符合题意;当0>∆时,即a <-或a >0,-a 不是方程220x ax ++=的根,故()4C B =,不符合题意;当<0∆时,即a -<<时,方程220x ax ++=无实根,若a =0,则B ={0},()1C B =,符合题意,若0a -<<或0a <<,则()2C B =,不符合题意.所以{0,S =-,故()3C S =.故选:B .【点睛】对于新定义的问题,一定要读懂题意,一般理解起来不难,它一般和平常所学知识和方法有很大关联;另外当<0∆时,容易遗漏a =0时的情况,注意仔细分析题目.6.函数[]y x =在数学上称为高斯函数,也叫取整函数,其中[]x 表示不大于x 的最大整数,如[1.5]1,[2.3]3,[3]3=-=-=.那么不等式24[]12[]50x x -+≤成立的充分不必要条件是()A.15[,22B.[1,2]C.[1,3)D.[1,3]【答案】B 【解析】【分析】先解不等式,再结合充分条件和必要条件的定义求解即可.【详解】因为24[]12[]50x x -+≤,则[]()[]()21250x x --≤,则[]1522x ≤≤,又因为[]x 表示不大于x 的最大整数,所以不等式24[]12[]50x x -+≤的解集为:13x ≤<,因为所求的时不等式24[]12[]50x x -+≤成立的充分不必要条件,所以只要求出不等式24[]12[]50x x -+≤解集的一个非空真子集即可,选项中只有[1,2]⫋[)1,3.故选:B .7.已知1,0,0x y y x +=>>,则121x x y ++的最小值为()A.54B.0C.1D.22【答案】A 【解析】【分析】根据“1”技巧,利用均值不等式求解.【详解】1x y += ,12x y ∴++=,1(1)11221441x y x y x x y x y +++∴+=++++,0,0y x >> ,10,041y x x y +∴>>+,111152144144x y x x y x y +∴+=++≥+++,当且仅当141y x x y +=+,即23x =,13y =时等号成立,故选:A8.黎曼函数()R x 是由德国数学家黎曼发现并提出的,在高等数学中有着广泛的应用,()R x 在[]0,1上的定义为:当q x p =(p q >,且p ,q 为互质的正整数)时,()1R x p=;当0x =或1x =或x 为()0,1内的无理数时,()0R x =.已知a ,b ,[]0,1a b +∈,则()注:p ,q 为互质的正整数()p q >,即q p为已约分的最简真分数.A.()R x 的值域为10,2⎡⎤⎢⎥⎣⎦B.()()()R a b R a R b ⋅≥⋅C.()()()R a b R a R b +≥+ D.以上选项都不对【答案】B 【解析】【分析】设q A x x p ⎧⎫==⎨⎩⎭,(p q >,且p ,q 为互质的正整数),B ={x |x =0或x =1或x 是[0,1]上的无理数},然后对A 选项,根据黎曼函数()R x 在[]0,1上的定义分析即可求解;对B 、C 选项:分①a A ∈,b A ∈;②a B ∈,b B ∈;③a A b B ∈⎧⎨∈⎩或a Bb A ∈⎧⎨∈⎩分析讨论即可.【详解】解:设q A x x p ⎧⎫==⎨⎬⎩⎭,(p q >,且p ,q 为互质的正整数),B ={x |x =0或x =1或x 是[0,1]上的无理数},对A 选项:由题意,()R x 的值域为1110,,,,,23p ⎧⎫⎨⎬⎩⎭,其中p 是大于等于2的正整数,故选项A 错误;对B 、C 选项:①当a A ∈,b A ∈,则()()()R a b R a R b +≤+,()()()R a b R a R b ⋅≥⋅;②当a B ∈,b B ∈,则()()()R a b R a R b +=+,()()()R a b R a R b ⋅≥⋅=0;③当a A b B ∈⎧⎨∈⎩或a B b A ∈⎧⎨∈⎩,则()()()R a b R a R b +≤+,()()()R a b R a R b ⋅≥⋅,所以选项B 正确,选项C 、D 错误,故选:B.【点睛】关键点点睛:本题解题的关键是牢牢抓住黎曼函数()R x 在[]0,1上的定义去分析.二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.若不等式20ax bx c -+>的解集是(1,2)-,则下列选项正确的是()A.0b <且0c >B.0a b c -+>C.0a b c ++> D.不等式20ax bx c ++>的解集是{|21}x x -<<【答案】ABD 【解析】【分析】根据一元二次不等式的解集可判断出a 的正负以及,,a b c 的关系,由此可判断各选项的对错.【详解】因为20ax bx c -+>的解集为()1,2-,解集属于两根之内的情况,所以a<0,又因为0420a b c a b c ++=⎧⎨-+=⎩,所以2b ac a =⎧⎨=-⎩;A .0,20b a c a =<=->,故正确;B .因为()11,2∈-,所以0a b c -+>,故正确;C .因为解集为()1,2-,所以0a b c ++=,故错误;D .因为20ax bx c ++>即为2220ax ax a +->,即220x x +-<,解得()2,1x ∈-,故正确;故选:ABD.10.命题:p x ∃∈R ,2220x x m ++-<为假命题,则实数m 的取值可以是()A.1- B.0 C.1D.2【答案】ABC 【解析】【分析】先求出命题为真命题时实数m 的取值范围,然后利用补集思想求出命题为假命题时m 的取值范围,由此可得出合适的选项.【详解】若命题:p x ∃∈R ,2220x x m ++-<为真命题,则()2Δ242440m m =--=->,解得1m >,所以当命题:p x ∃∈R ,2220x x m ++-<为假命题时,1m £,符合条件的为A 、B 、C 选项.故选:A BC.11.设a ,b 为两个正数,定义a ,b 的算术平均数为()2a bA a b +=,,几何平均数为()G a b =,,则有:()(),,G a b A a b ≤,这是我们熟知的基本不等式.上个世纪五十年代,美国数学家D .H .Lehmer 提出了“Lehmer 均值”,即()11,p pp p p a b L a b a b--+=+,其中p 为有理数.如:()0.50.50.50.50.5,11a b L a b a b --+==+.下列关系正确的是()A.()()0.5,,L a b A a b ≤ B.()()0,,L a b G a b ≥C.()()21,,L a b L a b ≥D.()()1,,n n L a b L a b +≤【答案】AC 【解析】【分析】根据新定义逐个选项代入,化简后根据基本不等式与柯西不等式判断即可.【详解】A :()()0.5,,112a bL a b A a b +===,故A 对;B:001102(,)(,)a b ab L a b G a b a b a b --+==≤++,故B 错;C :()222,a b L a b a b+=+,()1,2a b L a b +=,而()()()()()22222222222222122,1,22a b a b L a b a b a b L a b a b ab a b aba b +++++===≥+++++,故C 对;D :由柯西不等式,()()()()()112111112211(,)1(,)n n n n n n n n n n n n n n n n n n n n a b a b a b a b L a b a b a b L a b a b a b a b++++--+--+++++==≥=++++,故D 错.故选:AC.12.已知集合{}20,0x x ax b a ++=>有且仅有两个子集,则下面正确的是()A.224a b -≤B.214a b+≥C.若不等式20x ax b +-<的解集为()12,x x ,则120x x >D.若不等式2x ax b c ++<的解集为()12,x x ,且124x x -=,则4c =【答案】ABD 【解析】【分析】根据集合{}20,0x x ax b a ++=>子集的个数列方程,求得,a b 的关系式,对A ,利用二次函数性质可判断;对B ,利用基本不等式可判断;对CD ,利用不等式的解集及韦达定理可判断.【详解】由于集合{}20,0x x ax b a ++=>有且仅有两个子集,所以2240,4a b a b ∆=-==,由于0a >,所以0b >.A ,()22224244a b b b b -=-=--+≤,当2,b a ==时等号成立,故A 正确.B ,21144a b b b +=+≥=,当且仅当114,,2b b a b ===时等号成立,故B 正确.C ,不等式20x ax b +-<的解集为()12,x x ,120x x b =-<,故C 错误.D ,不等式2x ax b c ++<的解集为()12,x x ,即不等式20x ax b c ++-<的解集为()12,x x ,且124x x -=,则1212,x x a x x b c +=-=-,则()()22212121244416x x x x x x a b c c -=+-=--==,4c ∴=,故D 正确,故选:ABD三、填空题:本大题共4小题,每小题5分,共20分.13.已知111f x x ⎛⎫=⎪+⎝⎭,那么f (x )的解析式为________.【答案】()(0,1)1xf x x x x=≠≠-+.【解析】【分析】用1x代换已知式中的x ,可得,注意x 有取值范围.【详解】解:由111f x x ⎛⎫=⎪+⎝⎭可知,函数的定义域为{x |x ≠0,x ≠﹣1},用1x代换x ,代入上式得:f (x )=111x+=1x x +,故答案为:()(0,1)1xf x x x x=≠≠-+.【点睛】本题考查求函数解析式,掌握函数这定义是解题关键.求解析式时要注意自变量的取值范围.14.设集合{43}M xx =-<<∣,={+2<<21,}N x t x t t -∈R ∣,若M N N ⋂=,则实数t 的取值范围为____________.【答案】(],3-∞【解析】【分析】由M N N ⋂=可知N M ⊆,讨论N =∅与N ≠∅,即可求出答案.【详解】因为M N N ⋂=,所以N M ⊆,当N =∅时:2213t t t +≥-⇒≤,满足题意;当N ≠∅时:+2<21>34+262132t t t t t t t --≤⇒≥--≤≤⎧⎧⎪⎪⎨⎨⎪⎪⎩⎩,无解;所以实数t 的取值范围为(],3-∞.故答案为:(],3-∞15.已知函数()2f x x =-,()()224R g x x mx m =-+∈,若对任意[]11,2x ∈,存在[]24,5x ∈,使得()()12g x f x =,则m 的取值范围______.【答案】54⎡⎢⎣【解析】【分析】由题意可判断(){}(){},12,45y y g x x y y f x x =≤≤⊆=≤≤,由此求出()[]2,3f x ∈,可得相应不等式恒成立,转化为函数最值问题,求解即可.【详解】由题意知(){}(){},12,45y y g x x y y f x x =≤≤⊆=≤≤;当[]4,5x ∈时,()[]2,3f x ∈,故()()224R g x x mx m =-+∈需同时满足以下两点:①对[]1,2x ∀∈时,()2243g x x mx =-+≤∴12m x x≥+恒成立,由于当[]1,2x ∀∈时,1y x x=+为增函数,∴1522,24m m ≥+∴≥;②对[]1,2x ∀∈时,()2242g x x mx =-+≥,∴22m x x≤+恒成立,由于2x x+≥2x x =,即[1,2]x =时取得等号,∴2m m ≤∴≤∴54m ⎡∈⎢⎣,故答案为:54⎡⎢⎣16.若,a b R ∈,且22231a ab b +-=,则22a b +的最小值为_______.【答案】514【解析】【分析】根据a 2+2ab ﹣3b 2=1得到(a +3b )(a ﹣b )=1,令x =a +3b ,y =a ﹣b ,用x ,y 表示a ,b ,然后代入a 2+b 2,利用均值不等式求解.【详解】由a 2+2ab ﹣3b 2=1得(a +3b )(a ﹣b )=1,令x =a +3b ,y =a ﹣b ,则xy =1且a 34x y +=,b 4x y-=,所以a 2+b 2=(34x y +)2+(4x y -)222525184x y ++=≥,当且仅当x 2=,y 25=时取等号.故答案为514.【点睛】本题主要考查均值不等式的应用,还考查了转化求解问题的能力,属于中档题.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.(其中第17题10分,18~22题每题12分,共70分)17.已知全集U =R ,集合502x A x x ⎧⎫-=≤⎨⎬-⎩⎭,{}11,B x a x a a =-<<+∈R .(1)当2a =时,求()()U UA B ⋂痧;(2)若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围.【答案】(1)()(){1U UA B x x ⋂=≤痧或}5x >(2){}34a a ≤≤【解析】【分析】(1)当2a =时,求出集合A 、B ,利用补集和交集的定义可求得集合()()U U A B ⋂痧;(2)分析可知,BA ,利用集合的包含关系可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.【小问1详解】因为{}50252x A x x x x ⎧⎫-=≤=<≤⎨⎬-⎩⎭,当2a =时,{}13B x x =<<,因为全集U =R ,则{2U A x x =≤ð或}5x >,{1U B x x =≤ð或}3x ≥,因此,()(){1U U A B x x ⋂=≤痧或}5x >.【小问2详解】易知集合{}11,B x a x a a =-<<+∈R 为非空集合,因为x A ∈是x B ∈的必要不充分条件,则BA ,所以,1215a a -≥⎧⎨+≤⎩,解得34a ≤≤.因此,实数a 的取值范围是{}34a a ≤≤.18.已知a ,b ,c 均为正实数,且1a b c ++=.(1)求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥⎪⎪⎪⎝⎭⎝⎭⎝;(2)求111a b c++的最小值.【答案】(1)证明见解析(2)9【解析】【分析】(1)根据111111111++++++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫---=---⎪⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭a b c a b c a b c a b c a b c 结合基本不等式即可得证;(2)根据111a b c a b c a b c a b c a b c++++++++=++结合基本不等式即可得解.【小问1详解】原式111a b c a b c a b c a b c ++++++⎛⎫⎛⎫⎛⎫=--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭()()()b c a c a b abc+++=abc≥8abc abc=8=.当且仅当13a b c ===是取等号,所以1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭;【小问2详解】原式a b c a b c a b c a b c++++++=++3b a c a c b a b a c b c ⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3≥2339=⨯+=.当且仅当13a b c ===是取等号,所以111a b c++的最小值为9.19.已知x >0,y >0,且2x +8y -xy =0,求:(1)xy 的最小值;(2)x +y 的最小值..【答案】(1)64(2)18【解析】【分析】(1)利用基本不等式构建不等式即可得结果;(2)将28x y xy +=变形为分式型281y x +=,利用“1”的代换和基本不等式可得结果.【小问1详解】∵0x >,0y >,280x y xy +-=,∴28xy x y =+≥=,当且仅当28x y =时取等号,8≥∴64xy ≥,当且仅当416x y ==时取等号,故xy 的最小值为64.【小问2详解】∵28x y xy +=,则281y x+=,又∵0x >,0y >,∴2828()()101018x y x y x y y x y x +=++=++≥+=,当且仅当212x y ==时取等号,故x y +的最小值为18.20.济南市地铁项目正在加火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,列车的发车时间间隔t (单位:分钟)满足220t ≤≤,经市场调研测算,列车载客量与发车时间间隔t 相关,当1020t ≤≤时列车为满载状态,载客量为500人,当210t ≤<时,载客量会减少,减少的人数与(10)t -的平方成正比,且发车时间间隔为2分钟时的载客量为372人,记列车载客量为()p t .(1)求()p t 的表达式,并求当发车时间间隔为5分钟时,列车的载客量;(2)若该线路每分钟的净收益为)()8265660p t Q t t -=-(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大,并求出最大值.【答案】(1)2300+402,2<10()=500,1020t t t p t t -≤≤≤⎧⎨⎩;450(2)发车时间间隔为4分钟时,每分钟的净收益最大为132元.【解析】【分析】(1)由题设,有2()500(10)p t k t =--且(2)=372p ,求k 值,进而写出其分段函数的形式即可.(2)由(1)写出()Q t 解析式,讨论210t ≤<、1020t ≤≤求最大值即可.【小问1详解】由题设,当210t ≤<时,令2()500(10)p t k t =--,又发车时间间隔为2分钟时的载客量为372人,∴2(2)500(102)372p k =--=,解得=2k .∴2300+402,2<10()=500,1020t t t p t t -≤≤≤⎧⎨⎩,故=5t 时,2(5)5002(105)450p =-⨯-=,所以当发车时间间隔为5分钟时,列车的载客量为450人.【小问2详解】由(1)知:25626016,2<10()=134460,1020t t t Q t t t--≤-≤≤⎧⎪⎪⎨⎪⎪⎩,∵210t ≤<时,()260132Q t ≤-当且仅当=4t 等号成立,∴210t ≤<上max ()(4)132Q t Q ==,而1020t ≤≤上,()Q t 单调递减,则max ()(10)74.4Q t Q ==,综上,时间间隔为4分钟时,每分钟的净收益最大为132元.21.已知二次函数22y ax bx =++(a ,b 为实数)(1)若1x =时,1y =且对()2,5x ∀∈,0y >恒成立,求实数a 的取值范围;(2)若1x =时,1y =且对[]2,1a ∀-,0y >恒成立,求实数x 的取值范围.【答案】(1)3a >-(2)117117,44⎛⎫-+ ⎪ ⎪⎝⎭【解析】【分析】(1)由题意求出1b a =--可得()2120y ax a x =-++>对()2,5x ∀∈恒成立,分离参数,即得2max 2x a x x -⎛⎫> ⎪-⎝⎭,令()20,3t x =-∈,则可得()123f t t t=++,利用基本不等式即可求得答案;(2)由题意()212y ax a x =-++,变更主元:令a 为主元,视x 为参数,则()()220g a x x a x =-+->,对[]2,1a ∀∈-恒成立,由此可得不等式组,即可求得答案.【小问1详解】将1x =,1y =代入得1,1a b b a +=-∴=--∴()2120y ax a x =-++>对()2,5x ∀∈恒成立,即()22a x x x ->-对()2,5x ∀∈恒成立,当()2,5x ∈时,由于2y x x =-在()2,5上单调递增,故22220x x ->->,∴2max2x a x x -⎛⎫> ⎪-⎝⎭,()2,5x ∀∈,令()20,3t x =-∈,则()()()2213232223t t f t t t t t t t ===≤=-+++-+++,当且仅当2t t=,即()0,3t =时等号成立,∴3a >-【小问2详解】由题意()()21,12b a y ax a x =-+∴=-++,变更主元:令a 为主元,视x 为参数,令()()22g a x x a x =-+-,对[]2,1a ∀∈-,()()220g a x x a x =-+->恒成立,故只需()()()2222220120g x x x g x x x ⎧-=-++->⎪⎨-=--+->⎪⎩,即2222020x x x ⎧--<⎨-<⎩,解得11711711,,4444x x x ⎧⎛⎫<<+⎪∴∈ ⎪⎨ ⎪⎝⎭⎪<<⎩.22.已知函数()f x =,()g x =.(1)求函数()f x 的定义域和值域;(2)已知a 为非零实数,记函数()()()x x h f g x a =-的最大值为()m a ,求()m a .【答案】(1)[]0,2,2⎤⎦(2)12,02112(),22222a a a m a a a a a ⎧⎛⎫⎪-<≠ ⎪⎪⎝⎭⎪⎛⎪=+≤≤ ⎨ ⎝⎭⎪⎛⎫> ⎪ ⎪⎝⎭⎩且【解析】【分析】(1)根据根式的概念可得()f x 定义域,再计算()22f x =+求解可得()f x 值域;(2)令2t ⎤=⎦,设函数()22a F t t t a =-++,2t ⎤∈⎦,再根据二次函数对称轴与区间的位置关系分类讨论求解即可.【小问1详解】定义域:[]00,220x x x ≥⎧⇒∈⎨-≥⎩,()222f x x x =+=+-+2=+当[]0,2x ∈时,()[]2110,1x --+∈,∴()[]()22,4,0f x f x ∈≥,∴()2f x ⎤∈⎦;【小问2详解】()h x =-2t ⎤=+⎦,则22222t t -=+,设()22222t a F t t a t t a -=-=-++,2t ⎤∈⎦,1°若a<0,此时二次函数对称轴10t a=<<()()max 2F t F =2a =-.2°若0a >,此时对称轴:10t a =>,①当12a >即102a <<时,开口向下,则()()max 2F t F =2a =-;12a ≤≤即122a ≤≤,对称轴1t a =,开口向下,则()max 1F t F a ⎛⎫= ⎪⎝⎭12a a =+,③1a <即2a >时,开口向下,()max F t F==综上:12,02112(),22222a a a m a a a a a ⎧⎛⎫⎪-<≠ ⎪⎪⎝⎭⎪⎛⎫⎪=+≤≤ ⎪⎨ ⎪⎝⎭⎪⎛⎫>⎪ ⎪⎝⎭⎩且.。
高一数学上学期第一次月考试题附答案
已知 A = {x | x ∈ R, x2 + (m + 2)x + 1 = 0} , B={x|x 是正实数},若 A B = ∅ ,求实数 m 的取值范围.
(22)(本小题满分 10 分) 已知 p:|1- x − 1 |≤2,q:x2-2x+1-m2≤0(m>0)的解集依次为 A、B,
3 且(CUB) (CUA)。求实数 a 的取值范围。
(18)(本小题满分 8 分)
已知集合 P = {y | y = −x2 + 2x + 5, x ∈ R} , Q = {y | y = 3x − 4, x ∈ R} , 求PQ,PQ.
(19)(本小题满分 10 分)
已知 A= {x | −2 < x ≤ 5} ,=B {x | 2m −1 ≤ x ≤ m +1},且 A B = B ,
-N)等于( ).
A. M N
B. M N
C.M
D.N
第Ⅱ卷(非选择题 共 72 分)
考生注意事项: 请在.答.题.纸.上.书.写.作.答.,.在.试.题.卷.上.书.写.作.答.无.效...
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.把答案填在答题纸的相应
位置.
(13)设集合 A = {x | (x − 2)2 ≤ 4} ,B={1,2,3,4},则 A B =__________.
A. −16 ≤ a < 0
B. a > −16 C. −16 < a ≤ 0
)
D. a < 0
(9)已知 M 有 3 个真子集,集合 N 有 7 个真子集,那么 M∪N 的元素个数为( )
A.有 5 个元素
2024-2025学年高一上第一次月考数学试卷附答案解析(9月份)
2024-2025学年高一上第一次月考数学试卷(9月份)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x∈N|1<x<6},B={x|4﹣x>0},则A∩B=()A.{2,3,4}B.{2,3}C.{2}D.{3}2.(5分)下列说法正确的是()A.∅∈{0}B.0⊆N C.D.{﹣1}⊆Z3.(5分)命题“∀x∈(0,1),x3<x2”的否定是()A.∀x∈(0,1),x3>x2B.∀x∉(0,1),x3≥x2C.∃x0∈(0,1),D.∃x0∉(0,1),4.(5分)“a>b”是“a2>b2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)若集合A={x|2mx﹣3>0,m∈R},其中2∈A且1∉A,则实数m的取值范围是()A.B.C.D.6.(5分)满足集合{1,2}⫋M⊆{1,2,3,4,5}的集合M的个数是()A.6B.7C.8D.157.(5分)设集合A={x|1<x≤2},B={x|x<a},若A⊆B,则实数a的取值范围是()A.{a|a<1}B.{a|a≤1}C.{a|a>2}D.{a|a≥2}8.(5分)已知集合A={1,2},B={0,2},若定义集合运算:A*B={z|z=xy,x∈A,y∈B},则集合A*B 的所有元素之和为()A.6B.3C.2D.0二、选择题:本题共3小题,每小题6分,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,有选错的得0分,部分选对的得部分分。
(多选)9.(6分)已知命题p:x2﹣4x+3<0,那么命题p成立的一个充分不必要条件是()A.x≤1B.1<x<2C.x≥3D.2<x<3(多选)10.(6分)集合A={x|ax2﹣x+a=0}只有一个元素,则实数a的取值可以是()A.0B.C.1D.(多选)11.(6分)设S是实数集R的一个非空子集,如果对于任意的a,b∈S(a与b可以相等,也可以不相等),都有a+b∈S且a﹣b∈S,则称S是“和谐集”,则下列命题中为真命题的是()A.存在一个集合S,它既是“和谐集”,又是有限集B.集合{x|x=3k,k∈Z}是“和谐集”C.若S1,S2都是“和谐集”,则S1∩S2≠∅D.对任意两个不同的“和谐集”S1,S2,总有S1∪S2=R三、填空题:本题共3小题,每小题5分,共15分。
河北衡水市安平中学2024-2025学年高一上学期9月第一次月考数学试卷(含解析)
安平中学2024-2025学年第一学期第一次月考高一年级数学试题一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则A .B .C .D .22.命题“”的否定是A .B .C .D .3.满足的集合的个数A .4B .8C .15D .164.已知,且,,,则取值不可能为A. B. C. D. 5.已知,,若,则A. 2 B. 1 C. D. 6.若则一定有A .B .C .D .7.命题“,”为真命题的一个充分不必要条件是A . B . C . D .8.某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数的最大值是A. 6B. 5C. 7D. 8二、选择题:本题共3小题,每小题6分,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得部分分,有选错的得0分。
9.下面命题正确的是{}2,1,0,1,3M =--{}32N x x =-≤≤M N ⋂={}2,1,0,1--∅{}2,1,1--0x x x ∃∈+R ,<0x x x ∃∈+R ,≤0x x x ∃∈+R ,≥0x x x ∀∈+R ,<0x x x ∀∈+R ,≥{}{}11234A ⊆⊆,,,Z a ∈{(,)|3}A x y ax y =-≤(2,1)A ∈(1,4)A -∉a 1-012{}1,,A x y ={}21,,2B x y =A B =x y -=14230,0,a b c d >><<a b c d >a b c d <a b d c >a b d c<{}21≤≤∈∀x x x 20x a -≤4a ≥5a ≥4a ≤5a ≤A .“”是“”的充分不必要条件B .“”是“二次方程有一正根一负根”的充要条件C .“且”是“”的充要条件D .设,则“”是“”的必要不充分条件10.下列四个命题中正确的是A .若,则B .若,则C .若,则D .若,则11.已知集合,,且,,则下列判断正确的是A .B .C .D .三、填空题:本题共3小题,每小题5分,共15分。
高一数学学期第一次月考试卷(附答案)
高一数学学期第一次月考试卷(附答案)选择题1. 下列哪一个选项不是数学中常用的数集?A. 自然数集B. 实数集C. 正整数集D. 有理数集答案:C2. 若集合A = {1, 2, 3},集合B = {2, 3, 4},则A ∩ B = ?A. {2, 3}B. {1, 2, 3}C. {2, 3, 4}D. {4}答案:A3. 简化:$3 \times a \times 5$答案:$15a$填空题1. 若 $\frac{5}{6} x - \frac{1}{4} = \frac{3}{5} x - \frac{1}{2}$,则x = ?答案:$\frac{9}{20}$2. 若函数 $f(x) = ax^2 + bx - c$ 的图像开口朝上,且在x = 2处有最小值-3,则a = ?, b = ?, c = ?答案:a = 1, b = -8, c = -13解答题1. 解方程 $\frac{3}{5} (2x - 1) = \frac{1}{3} (4 - x)$解答:首先两边同时乘以15消去分数,得到:$9(2x - 1) = 5(4 - x)$ 进行分配和合并:$18x - 9 = 20 - 5x$移项:$23x = 29$最后得到解答:$x = \frac{29}{23}$2. 若正方形ABCD的边长为3cm,点E为AB边的中点,连线DE与BC交于点F,求线段DF的长度。
解答:由于ABCD是正方形,所以AD平行于BC。
由于E是AB边上的中点,所以AE = EB = 1.5cm。
由三角形相似性质可知,$\frac{AE}{AD} = \frac{DF}{DC}$。
将已知值代入,得到:$\frac{1.5}{3} = \frac{DF}{3}$化简得到:$DF = 1.5$cm以上为高一数学学期第一次月考试卷及答案。
高一上学期第一次月考数学试卷(附带答案)
高一上学期第一次月考数学试卷(附带答案)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.单选题。
(本题共8小题,共40分,每小题只有一个正确选项。
)1.直线√3x -y +2=0的倾斜角是( )A.150°B.120°C.60°D.30°2.过点P (﹣2,m )和Q (m ,4)的直线斜率等于1,那么m 的值等于( )A.1或3B.1C.4D.1或43.直线l 经过直线x -2y+4=0和直线x + y -2=0的交点,且与直线x+3y+5=0垂直,则直线l 的方程为( )A.3x -y+2=0B.3x+y+2=0C.x -3y+2=0D.x+3y+2=04.已知直线l 1:mx+y -1=0,l 2:(4m -3)x+my -1=0,若l 1⊥l 2,则实数m 的值为( )A.0B.12C.2D.0或125.对于圆C :x 2+y 2-4x+1=0,下列说法正确的是( )A.点4(1,﹣1)在圆C 的内部B.圆C 的圆心为(﹣2,0)C.圆C 的半径为3D.圆C 与直线y=3相切6.在平面直角坐标系xOy 中,以点(0,1)为圆心且与直线x -y -1=0相切的圆的标准方程为( )A.(x -1)2+y 2=4B.(x -1)2+y 2=1C.x 2+(y -1)2=√2D.x 2+(y -1)2=27.已知直线l 1:x+2y+t 2=0,l 2:2x+4y+2t -3=0,则当l 1与l 2间的距离最短时,求实数t 的值为( )A.1B.12C.13D.28.已知点A(2,﹣3),B(﹣3,﹣2),若直线l:mx+y -m -1=0与线段AB 相交,则实数m 的取值范围是( )A.[﹣34,4]B.[15,+∞)C.(﹣∞,﹣34]∪[4,+∞)D.[﹣4,34]二.多选题.(每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,错选的得0分。
高一上册数学第一次月考试卷及答案
高一上册数学第一次月考试卷及答案高一上册数学第一次月考试卷及答案一、选择题(每小题5分,共60分)1.在① ≠ ② ≠ ③ ≠ ④四个关系中,错误的个数是()A。
1个B。
2个C。
3个D。
4个2.已知全集 U,集合 A,B,C,那么集合A∩B∩C 的补集是()A.U-B-CB.A∪B∪CC.U-A∪B∪CD.A∩B∩C3.已知集合 A={x|x2},则A∩B 的元素个数是()A.0B.1C.∞D.不确定4.函数 f(x)在 R 上为减函数,则实数的取值范围是()A.(-∞,a]B.(-∞,a)C.[a,∞)D.(a,∞)5.集合 A、B 各有两个元素,A∩B 有一个元素 x,若集合A、B 同时满足:(1)x>0,(2)A∪B 的元素和小于 5,则满足条件的 A、B 的组数为()A。
0B。
1C。
2D。
36.函数 f(x)=x^2-4x+3 的递减区间是()A。
(-∞,1]B。
[1,2]C。
[2,+∞)D。
[1,+∞)7.设 A、B 是两个非空集合,定义 A 与 B 的差集为 A-B={x|x∈A且x∉B},则 A-(B-A) 等于()A。
A∩BB。
A∪BC。
A-BD。
B-A8.若函数f(x)=√(x-1) 的定义域是[1,∞),则函数 g(x)=f(3-x) 的定义域是()A.(-∞,2]B.(-∞,3)C.[0,∞)D.[1,∞)9.不等式 x^2-2x+1<0 的解集是空集,则实数 x 的范围为()A.x∈RB.x∈(0,1)C.x∈(1,2)D.x∈(2,3)10.若函数 f(x)在 [a,b] 上为增函数,则实数的取值范围为()A.[f(a),f(b)]B.(f(a),f(b))C.[f(b),f(a)]D.(f(b),f(a))11.设集合 A={1,2,3},B={4,5},且 A、B 都是集合C={1,2,3,4,5} 的子集合,如果把 A、B 叫做集合的“长度”,那么集合的“长度”的最小值是()A。
高一上学期第一次月考数学试卷
高一数学上学期第一次月考试题第I卷(选择题)一、单选题(本大题共8小题,共40.0分)1.若A、B是全集I的真子集,则下列四个命题:①A∩B=A;,是x∈A的必要不充分条件.其中与命题A⊆B等价的有()A. 1个B. 2个C. 3个D. 4个2.命题“∃x∈R,x2+2x+2<0”的否定是()A. ∃x∈R,x2+2x+2≥0B. ∃x∈R,x2+2x+2>0C. ∀x∈R,x2+2x+2≥0D. ∀x∉R,x2+2x+2>03.已知t>0,则y=t2−4t+1t的最小值为()A. −2B. 12C. 1D. 24.设a∈R,若关于x的不等式x2−ax+1≥0在1≤x≤2上有解,则()A. a≤2B. a≥2C. a≤52D. a≥525.已知非零实数a,b满足a>b,则下列不等式一定成立的是()A. a+b>0B. a2>b2C. 1a <1bD. a2+b2>2ab6.已知集合,B={x|3<x<22},且A∩B=A,则实数a的取值范围是()A. (−∞,9]B. (−∞,9)C. [2,9]D. (2,9)7.对于实数x,“|x|<1”是“x<1”的()条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要8.已知实数a>0,b>0,且9a+b=ab,若不等式a+b≥−x2+2x+18−m对任意实数x恒成立,则实数m的取值范围为()A. [3,+∞)B. (−∞,3]C. (−∞,6]D. [6,+∞)二、多选题(本大题共4小题,共20.0分)9.已知a>0,b>0,则下列说法不正确的有()A. 1a−b >1aB. 若a+b≥2,则ab≥1C. 若a+b≥2,则ab≤1D. a3+b3≥a2b+ab210.下列命题为真命题的是()A.B. a2=b2是a=b的必要不充分条件C. 集合{(x,y)|y=x2}与集合{y|y=x2}表示同一集合D. 设全集为R,若A⊆B,则∁R B⊆∁R A11.设集合M={x|x=6k+1,k∈Z},N={x|x=6k+4,k∈Z},P={x|x=3k−2,k∈Z},则下列说法中正确的是()A. M=N⫋PB. (M∪N)⫋PC. M∩N=⌀D. ∁P M=N12.给定数集M,若对于任意a,b∈M,有a+b∈M,且a−b∈M,则称集合M为闭集合,则下列说法中不正确的是()A. M={−4,−2,0,2,4)为闭集合B. 正整数集是闭集合C. M={n|n=3k,k∈Z)为闭集合D. 若集合A1,A2为闭集合,则A1∪A2也为闭集合第II卷(非选择题)三、单空题(本大题共2小题,共10.0分)13.已知不等式(a−3)x2+2(a−3)x−6<0对一切x∈R恒成立,则实数a的取值范围_______.14.已知集合A={x|x2−6x+8=0},B={x|mx−4=0},且B∩A=B,则实数m所取到的值构成的集合C=,则A∪C=.四、解答题(本大题共8小题,共96.0分)15.在①A∩B=A,②A∩(∁R B)=A,③A∩B=⌀这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合A={x|a−1<x<2a+3},B={x|x2−2x−8≤0}.(1)当a=2时,求A∪B;(2)若_______________,求实数a的取值范围.注:如果选择多个条件分别解答按第一个解答计分.16.已知集合A={x|0<ax+1≤5},集合B={x|−1<x≤2}.2(1)若A⊆B,求实数a的取值范围;(2)若B⊆A,求实数a的取值范围;(3)A、B能否相等?若能,求出a的值;若不能,试说明理由.17.设全集为实数集R,A={x|−1≤x<4},B={x|−5<x<2},C={x|1−2a<x<2a}.(1)若C=⌀,求实数a的取值范围;(2)若C≠⌀,且C⊆(A∩B),求实数a的取值范围.18.设y=mx2+(1−m)x+m−2.(1)若不等式y≥−2对一切实数x恒成立,求实数m的取值范围;(2)在(1)的条件下,求m2+2m+5的最小值;m+1(3)解关于x的不等式mx2+(1−m)x+m−2<m−1(m∈R).19.已知定义在R上的函数f(x)=x2+(x−2)a−3x+2(其中a∈R).(1)若关于x的不等式f(x)<0的解集为(−2,2),求实数a的值;(2)若不等式f(x)−x+3≥0对任意x>2恒成立,求a的取值范围.20.已知集合A={x|x2+2x−3<0},集合B={x||x+a|<1}.(1)若a=3,求A∩B和A∪B;(2)设命题p:x∈A,命题q:x∈B,若p是q成立的必要不充分条件,求实数a的取值范围.21.设集合A={|xx2+2x−3<0},集合B={|x−a−1<x<−a+1}.(1)若a=3,求A∪B和A∩B;(2)设命题p:x∈A,命题q:x∈∁R B,若q是p成立的必要不充分条件,求实数a的取值范围.22.已知m>0,n>0,关于x的不等式x2−mx−20<0的解集为{x|−2<x<n}.(1)求m,n的值;(2)正实数a,b满足na+mb=2,求15a +1b的最小值.答案和解析1.【答案】B【解析】【分析】本题主要考查了集合的包含关系的判断及应用,考查集合的基本运算,考查了Venn图的应用,属于中档题.根据集合的交集、并集、补集的定义结合Venn图判断集合间的关系,从而求出结论.【解答】解:由A⊆B得Venn图,①A∩B=A⇔A⊆B; ②A∪B=A⇔B⊆A; ③A∩(∁I B)=⌀⇔A⊆B; ④A∩B=I,与A、B是全集I的真子集矛盾,不可能存在;⑤x∈B是x∈A的必要不充分条件⇔A⫋B;故和命题A⊆B等价的有①③共2个,故选:B2.【答案】C【解析】【分析】本题考查存在量词命题的否定,属于基础题.根据存在量词命题的否定为全称量词命题,即可求出结果.【解答】解:因为存在量词命题的否定为全称量词命题, 所以命题“∃x ∈ R ,x 2+2x +2<0”的否定是: ∀x ∈ R ,x 2+2x +2≥0. 故选C .3.【答案】A【解析】 【分析】本题主要考查利用基本不等式求最值,属于基础题.对原式进行化简,利用基本不等式求最值即可,注意等号取得的条件. 【解答】 解:t >0,则 y =t 2−4t+1t=t +1t−4≥2√t ·1t−4=−2,当且仅当t =1t ,即t =1时,等号成立, 则y =t 2−4t+1t的最小值为−2.故选A .4.【答案】C【解析】 【分析】本题主要考查了含参一元二次不等式中参数的取值范围,属于中档题. 根据题意得不等式对应的二次函数f (x )=x 2−ax +1的图象开口向上,分别讨论三种情况即可.【解答】解:由题意得:二次函数f (x )=x 2−ax +1的图象开口向上, 当,满足题意,当{Δ>0f(1)≥0或 f(2)≥0,解得a <−2或2<a ≤52, 当,满足题意,综上所述:a⩽52.故选C.5.【答案】D【解析】【分析】本题考查不等关系,不等式性质,是基础题.通过给变量取特殊值,举反例来说明某个命题不正确,利用不等式性质证明命题正确即可.【解答】解:对于A,令a=−1,b=−2,故A错误,对于B,a2−b2=(a+b)(a−b),符号不确定,故B错误,对于C,令a=1,b=−2,故C错误,对于D,∵a>b,a2+b2−2ab=(a−b)2>0,∴a2+b2>2ab,故D正确.故选D.6.【答案】B【解析】【分析】本题考查了描述法、交集的定义及运算,子集的定义,分类讨论的思想,考查了计算能力.根据A∩B=A可得出A⊆B,从而可讨论A是否为空集:A=⌀时,a+1>3a−5;A≠⌀时,{a+1≤3a−5 a+1>33a−5<22,解出a的范围即可.【解答】解:∵A∩B=A,∴A⊆B,且A={x|a+1≤x≤3a−5},B={x|3<x<22},∴①A=⌀时,a+1>3a−5,解得a<3,满足题意;②A≠⌀时,{a+1≤3a−5 a+1>33a−5<22,解得3≤a<9,∴综上得,实数a的取值范围是(−∞,9).故选:B.7.【答案】A【解析】【分析】本题考查充分条件、必要条件的判断,要注意准确理解概念和方法,属于基础题.双向推理,即从左右互推进行判断即可得解.【解答】解:当|x|<1时,显然有x<1成立,但是由x<1,未必有|x|<1,如x=−2<1,但|x|>1,故“|x|<1”是“x<1”的充分不必要条件;故选:A.8.【答案】A【解析】【分析】本题考查恒成立问题,考查利用基本不等式求最值,训练了分离变量法求字母的取值问题,是中档题.利用基本不等式求得a+b的最小值,把问题转化为m≥f(x)恒成立的类型,求解f(x)的最大值即可.【解答】解:∵9a+b=ab,∴1a +9b=1,且a,b为正数,∴a+b=(a+b)(1a+9b)=10+ba+9ab⩾10+2√ba⋅9ab=16;当且仅当ba =9ab,即a=4, b=12时,(a+b)min=16;若不等式a+b≥−x2+2x+18−m对任意实数x恒成立,则16≥−x2+2x+18−m对任意实数x恒成立,即m≥−x2+2x+2对任意实数x恒成立,∵−x2+2x+2=−(x−1)2+3⩽3,∴m≥3,故选:A.9.【答案】ABC【解析】【分析】本题考查了不等式性质,灵活运用不等式的性质是解决本题的关键,属于中档题.由题意和不等式的性质,逐个选项验证即可.【解答】解:对于A,若a>0,b>0,且a<b,则a−b<0,则1a−b <1a,故选项A说法不正确;对于B,若a=1.9,b=0.1,则满足a+b≥2,而ab=0.19,不满足ab≥1,故选项B 说法不正确;对于C,若a=3,b=2,满足a+b⩾2,,而ab=6不满足ab≤1,故选项C说法不正确;对于D,已知a>0,b>0,则(a3+b3)−(a2b+ab2)=a3+b3−a2b−ab2=a2(a−b)+b2(b−a)=(a−b)(a2−b2)=(a+b)(a−b)2⩾0,当a=b时,等号成立,故选项D成立.故选ABC.10.【答案】ABD【解析】【分析】本题考查了真假命题的判定,必要条件、充分条件与充要条件的判断,考查了集合的相等,子集的定义,属于中档题.根据必要条件、充分条件与充要条件的判断、集合的相等及子集的定义逐项判断即可.【解答】解:对于A,当x=0时,x2⩽1,故A是真命题;对于B,当a2=b2时,则a=±b,当a=b时,则a2=b2,则a2=b2是a=b的必要不充分条件,故B是真命题;对于C,集合{(x,y)∣y=x2}与集合{y|y=x2}不表示同一集合,前者为点集,后者为数集,故C是假命题;对于D,根据子集定义,A⊆B时,集合A中元素,全都在集合B中,不在集合B中的元素一定不会在集合A中,当x∈∁R B时,就是x在集合R内,不在集合B中,故x一定不在集合A中,不在集合A中就一定在集合A的补集内,故x∈∁R A,D正确.故选ABD.11.【答案】CD【解析】【分析】本题主要考查了集合的含义、集合的交集、并集、补集运算、集合间的关系,属于中档题.根据集合的意义及集合运算分析解答.【解答】解:集合M表示所有被6除余数为1的整数,集合N表示所有被6除余数为4的整数,所以M不等于N,又因为被6除余数分为0,1,2,3,4,5六类,A选项错误,C选项正确;因为M∪N={x|x=6k+1,k∈Z}∪{x|x=6k+4,k∈Z}={x|x=6k+1或x=6k+4,k∈Z}所以M∪N={x|x=2k·3+1或x=(2k+1)·3+1,k∈Z}={x|x=3m+1,m∈Z},因为P={x|x=3k−2,k∈Z}={x|x=3(n+1)−2,n∈Z}={x|x=3n+1,n∈Z},所以M∪N=P,所以,所以B选项错误,D选项正确,故选CD.12.【答案】ABD【解析】【分析】本题考查集合中的新定义问题,考查分析问题、解决问题的能力,属于中档题.根据闭集合的定义,对选项进行逐一判断,可得出答案.【解答】解:A.当集合M={−4,−2,0,2,4}时,2,4∈M,而2+4∉M,所以集合M不为闭集合.B.设a,b是任意的两个正整数,当a<b时,a−b<0不是正整数,所以正整数集不为闭集合.C.当M={n|n=3k,k∈Z}时,设a=3k1,b=3k2,k1,k2∈Z,则a+b=3(k1+k2)∈M,a−b=3(k1−k2)∈M,k1,k2∈Z,所以集合M是闭集合.D.设A 1={n|n=3k,k∈Z},A2={n|n=2k,k∈Z}由C可知,集合A1,A2为闭集合,2,3∈A1∪A2,而2+3∉A1∪A2,此时A1∪A2不为闭集合.所以说法中不正确的是ABD故选ABD.13.【答案】(−3,3]【解析】解:由题意,a =3时,不等式等价于−6<0,显然恒成立。
高一上学期第一次月考数学试题(含答案解析)
高一上学期第一次月考数学试题(含答案解析)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、单选题(本大题共14小题,共56.0分。
在每小题列出的选项中,选出符合题目的一项)1. 设集合A={1,2,3,4},B={−1,0,2,3},C={x∈R|−1≤x<2},则(A∪B)∩C=( )A. {−1,1}B. {0,1}C. {−1,0,1}D. {2,3,4}2. 命题“∀x∈R,x2−2x+1≥0”的否定是( )A. ∃x∈R,x2−2x+1≤0B. ∃X∈R,x2−2x+1≥0C. ∃x∈R,x2−2x+1<0D. ∀x∈R,x2−2x+1<03. 已知集合A={x|−1≤x<4,x∈Z),则集合A中元素的个数为( )A. 3B. 4C. 5D. 64. 已知集合A={x||x|≥2},B={x|x2−3x>0},则A∩B=( )A. ⌀B. {x|x>3,或x≤−2}C. {x|x>3,或x<0}D. {x|x>3,或x≤2}5. 已知p:sinα=√33,q:cos2α=13,则p是q的( )A. 充分不必要条件B. 必要不充分条件C. 充分条件D. 既不充分也不必要条件6. 若M⊆U,N⊆U,且M⊆N,则( )A. M∩N=NB. M∪N=MC. ∁U N⊆∁U MD. ∁U M⊆∁U N7. 已知集合A={x|x<1},B={x|0≤x≤2},则A∩B=( )A. {x|0≤x<1}B. {x|1<x≤2}C. {x|x<1}D. {x|x≤2}8. 设b>a>0,c∈R,则下列不等式中不一定成立的是( )A. a12<b12B. 1a −c>1b−c C. a+2b+2>abD. ac2<bc29. 满足关系{1,2}⊆A⊆{1,2,3,4,5}的集合的个数是( )A. 4B. 6C. 8D. 910. 若关于x的不等式ax2+bx−1>0的解集是{x|1<x<2},则不等式bx2+ax−1<0的解集是( )A. {x|−1<x<23} B. {x|x<−1或x>23}C. {x|−23<x<1} D. {x|x<−23或x>1}11. 已知集合A={x|x2+x−6=0},B={x|mx+1=0},且B⊆A,则实数m=( )A. {0,12,−13} B. {−12,13} C. {12,−13} D. {0,−12,13}12. 使不等式1+1x>0成立的一个充分不必要条件是( )A. x>0B. x>−1C. x<−1或x>0D. −1<x<013. 已知命题“∃x∈R,4x2+(a−2)x+14<0”是假命题,则实数a的取值范围是( )A. (−∞,0)B. [0,4]C. [4,+∞)D. (0,4)14. 已知a,b∈R,a2+b2=15−ab,则ab最大值是( )A. 15B. 12C. 5D. 3第II卷(非选择题)二、填空题(本大题共6小题,共24.0分)15. 已知a∈R,b∈R,若集合{a,ba,1}={a2,a−b,0},则“a2017+b2018”的值为______.16. 当x<−1时,f(x)=x+1x+1的最大值为______.17. 已知集合A={0,1,2},则集合A的子集共有______个.18. 已知集合A={x|−1<x<2},B={x|−1<x<m+1},若x∈A是x∈B成立的一个充分不必要条件,则实数m的取值范围是______.19. 已知{x|ax2−ax+1<0}=⌀,则实数a的取值范围为.20. 已知正数x,y满足x+y=5,则1x+1+1y+2的最小值为______.三、解答题(本大题共4小题,共40.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一上学期数学第一次月考试卷
一、单选题
1. 已知集合M={x∈N|x2-1=0},则有()
A .
B .
C .
D .
0,
2. 下列函数中,在其定义域内既为奇函数且又为增函数的是()
A .
B .
C .
D .
3. 下列各组函数中,表示同一函数的是()
A . 与
B . 与
C . 与
D . 与
4. 满足条件集合的子集个数是()
A . 15
B . 8
C . 7
D . 16
5. 设函数,则的值为()
A . -2
B . -1
C . 1
D . 2
6. 某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是()
A .
B .
C .
D .
7. 集合,则
是()
A .
B .
C .
D .
8. 函数的单调递增区间是()
A .
B .
C .
D .
9. 已知集合,,若
,则实数的取值范围是()
A .
B .
C .
D .
10. 若关于的不等式的解集为
,其中,为常数,则不等式
的解集是()
A .
B .
C .
D .
11. 若函数的定义域为,值域为
,则的取值范围是()
A .
B .
C .
D .
12. 设函数是定义在上的增函数,则实数取值范围()
A .
B .
C .
D .
二、填空题
13. 若,则=________.
14. 已知函数y=f(x)的定义域是[0,4],则函数的定义域是________.
15. 方程组的解组成的集合为________.
16. 已知函数满足关系:,则
的大小关系为________
三、解答题
17. 已知集合A={x|x<-1,或x>2},B={x|2p-1≤x≤p+3}.
(1)若p= ,求A∩B;
(2)若A∩B=B,求实数p的取值范围.
18.
(1)求函数的值域;
(2)已知,求的解析式.
19. 函数是定义在上的奇函数,且
(1)求函数的解析式;
(2)用定义证明: 在上是增函数;
(3)解不等式:
20. 已知函数,且.
(1)求m的值,并用分段函数的形式来表示;
(2)在如图给定的直角坐标系内作出函数的草图(不用列表描点);
(3)由图象指出函数的单调区间.
21. 经过市场调查,超市中的某种小商品在过去的近40天的日销售量(单位:件)与价格(单位:元)为时间(单位:天)的函数,且日销售量近似满足
,价格近似满足.
(1)写出该商品的日销售额(单位:元)与时间()的函数解析式并用分段函数形式表示该解析式(日销售额=销售量商品价格);
(2)求该种商品的日销售额的最大值和最小值.
22. 若是定义在上的增函数,且
.
(1)求的值;
(2)若,解不等式.。