红外弱小目标检测

合集下载

红外图像中弱小目标检测前跟踪算法研究综述概要

红外图像中弱小目标检测前跟踪算法研究综述概要

红外图像中弱小目标检测前跟踪算法研究综述概要红外图像在现代战争中发挥着越来越重要的作用,因为其具有隐蔽性和不受光照干扰的特点。

红外图像中的弱小目标检测和跟踪算法是目前研究的热点之一。

本文主要综述红外图像中弱小目标检测前跟踪算法的研究现状,包括传统算法、深度学习算法和集成算法。

传统算法传统的弱小目标跟踪算法主要包括卡尔曼滤波、粒子滤波、均值漂移等。

这些算法主要是针对静态场景下的目标跟踪,对于动态场景下的目标跟踪效果较差。

在红外图像中,目标的纹理和亮度变化较为复杂,所以传统算法在红外图像中跟踪效果不佳。

深度学习算法深度学习算法是近年来应用最广泛的目标跟踪算法之一。

深度学习算法能够自动学习特征,适用于复杂多变的目标跟踪环境。

在红外图像中,深度学习算法也取得了很好的效果。

常用的深度学习算法包括卷积神经网络(CNN)、循环神经网络(RNN)和长短记忆网络(LSTM)等。

由于这些算法的训练需要大量的标注数据,因此数据量不足时需要结合传统算法来进行跟踪。

集成算法集成算法是将多个跟踪算法集成到一起,以得到更好的跟踪效果。

目前常用的跟踪集成算法是基于多特征融合和多分类器融合的方法。

多特征融合包括将颜色、纹理、轮廓等多个特征融合在一起,使得跟踪算法更具鲁棒性。

多分类器融合则是同时使用多种分类器,如SVM、Adaboost等,对目标进行分类和跟踪。

总的来说,弱小目标检测前的跟踪问题是一个非常重要的研究方向。

虽然深度学习算法在红外图像中的跟踪效果良好,但是由于训练需要大量标注数据,因此在数据量不足的情况下需要结合传统算法进行跟踪。

集成算法也是近年来研究的热点之一,对跟踪效果的提高起到了重要作用。

《2024年复杂背景条件下的红外小目标检测与跟踪算法研究》范文

《2024年复杂背景条件下的红外小目标检测与跟踪算法研究》范文

《复杂背景条件下的红外小目标检测与跟踪算法研究》篇一一、引言随着红外成像技术的快速发展,红外小目标检测与跟踪技术在军事侦察、无人驾驶、夜视系统等领域得到了广泛应用。

然而,在复杂背景条件下,红外小目标的检测与跟踪仍然面临诸多挑战。

本文旨在研究复杂背景条件下的红外小目标检测与跟踪算法,以提高其准确性和鲁棒性。

二、红外小目标检测算法研究1. 背景建模背景建模是红外小目标检测的关键步骤。

在复杂背景下,背景建模需要考虑到多种因素,如动态背景、光照变化等。

常用的背景建模方法包括基于统计的背景建模和基于深度学习的背景建模。

其中,基于深度学习的背景建模能够更好地适应动态背景和光照变化,从而提高小目标的检测效果。

2. 小目标提取在背景建模的基础上,需要进行小目标的提取。

小目标提取的方法包括基于阈值的方法、基于边缘的方法等。

在复杂背景下,小目标可能受到噪声、遮挡等因素的影响,因此需要采用多种方法进行提取和融合,以提高准确性和鲁棒性。

3. 算法优化为了提高红外小目标检测的准确性和效率,需要针对不同场景和需求进行算法优化。

例如,可以采用多尺度滤波、形态学滤波等方法对图像进行预处理,以消除噪声和干扰;同时,可以利用机器学习和深度学习技术对算法进行训练和优化,以适应不同的场景和背景。

三、红外小目标跟踪算法研究1. 特征提取在红外小目标跟踪中,特征提取是关键步骤之一。

由于红外图像的特殊性,需要提取具有代表性的特征以进行目标的准确跟踪。

常用的特征包括颜色特征、形状特征、纹理特征等。

针对红外图像的特点,可以采用基于灰度特征或基于深度学习的特征提取方法。

2. 跟踪算法选择根据不同的应用场景和需求,需要选择合适的跟踪算法。

常用的跟踪算法包括基于滤波的方法、基于机器学习的方法和基于深度学习的方法等。

在复杂背景下,可以考虑采用多种算法进行融合和优化,以提高跟踪的准确性和鲁棒性。

3. 算法性能评估为了评估红外小目标跟踪算法的性能,需要进行实验验证和性能评估。

ft红外弱小目标检测算法

ft红外弱小目标检测算法

ft红外弱小目标检测算法说起红外弱小目标检测,咱们可能马上会想起那些科幻电影里的场景:夜晚,黑漆漆的天,突然一束光从远处射来,目标被精准地锁定。

看上去有点不可思议吧?但红外技术就是这样一个有点魔法般的存在,它能通过探测物体释放的热量来识别目标。

而所谓的“弱小目标”呢,就是那些在温度差异不大、比较难被察觉的物体,比方说,小小的无人机、隐身飞行器,甚至是远处的动物。

而“检测算法”呢,就是帮我们发现这些目标的秘密武器,虽然有些复杂,但并不意味着它就一定需要复杂的操作或者高大上的技术,实际上很多时候它就像是你身边的那个聪明的小伙伴,默默地为你提供帮助。

先说说红外图像。

你可以把红外图像想象成一张由热量信息构成的照片。

那种照片可不是一般的照片,它不需要光线,就像我们在漆黑的夜晚也能看到一样。

所以,红外探测器可以在夜晚甚至是雾霾天气中依然能看到物体。

这个就像你在一个漆黑的房间里,突然眼前亮起一盏夜视灯,你能清晰地看到平时看不见的东西。

但是,大家别忘了,红外图像和普通的光学图像不一样,它更像是“热量的地图”。

所以,弱小目标的检测其实就是在这张热量地图上,找到那些不显眼、很难察觉的“小点儿”。

说起来,这种检测并不简单。

你想,目标可能太小,目标与背景的温差也可能微乎其微,检测算法就得特别细心。

这些目标可能和周围环境几乎没有什么区别,感觉就像是找针掉在了大海里。

就拿无人机来说,飞得那么高,离得那么远,只有一小小的热源,在这片广阔的天地里怎么找到它呢?有些算法就像是个“侦探”,它得把整个“案件”摸清楚,仔细分析环境,再用最巧妙的办法把那个弱小的目标从复杂的背景中“抓出来”。

红外弱小目标的检测,不像咱们用肉眼看东西那么直接。

它有时会受到背景干扰,也就是说,周围的环境热量变化、温度波动,甚至是阳光照射下的物体都可能误导你。

有时候甚至就连算法本身都得经受住考验。

你想象一下,整个检测过程就像是在玩一场“寻宝”游戏,稍不注意就可能错失了目标。

《红外弱小目标识别与追踪算法研究》范文

《红外弱小目标识别与追踪算法研究》范文

《红外弱小目标识别与追踪算法研究》篇一一、引言随着红外技术的不断发展,红外成像系统在军事、安全、监控等领域得到了广泛应用。

然而,由于红外图像中目标通常呈现弱小特征,如信噪比低、对比度差等,使得红外弱小目标的识别与追踪成为一项具有挑战性的任务。

本文旨在研究红外弱小目标的识别与追踪算法,以提高红外图像中目标的检测和跟踪精度。

二、红外弱小目标的特点红外弱小目标在图像中通常表现为低亮度、小尺寸、信噪比低等特点。

这些特点使得传统目标检测与追踪算法在处理红外图像时面临诸多困难。

此外,由于目标运动的不确定性、背景的复杂性以及各种干扰因素的影响,使得红外弱小目标的识别与追踪更加复杂。

三、红外弱小目标识别算法研究针对红外弱小目标的识别问题,本文提出了一种基于多尺度特征融合的识别算法。

该算法通过融合不同尺度的特征信息,提高目标的表征能力,从而增强对弱小目标的识别效果。

具体而言,该算法首先利用多尺度卷积神经网络提取目标的多尺度特征;然后,通过特征融合技术将不同尺度的特征信息进行融合,形成更加丰富的目标表征;最后,利用分类器对融合后的特征进行分类,实现目标的识别。

四、红外弱小目标追踪算法研究在红外弱小目标的追踪方面,本文提出了一种基于区域协同的追踪算法。

该算法通过将目标区域与周围背景区域进行协同分析,提高对目标的跟踪精度。

具体而言,该算法首先利用红外图像中的局部信息,对目标区域进行初步定位;然后,通过分析目标区域与周围背景区域的关系,实现目标的精确跟踪;最后,利用卡尔曼滤波器对目标轨迹进行平滑处理,提高跟踪的稳定性。

五、实验与分析为了验证本文提出的红外弱小目标识别与追踪算法的有效性,我们进行了大量实验。

实验结果表明,基于多尺度特征融合的识别算法能够有效提高对红外弱小目标的识别率;而基于区域协同的追踪算法则能够在复杂背景下实现对目标的精确跟踪。

此外,我们还对两种算法的性能进行了比较和分析,结果表明本文提出的算法在识别与追踪精度、鲁棒性等方面均具有较好的性能。

红外图像中弱小目标检测技术研究

红外图像中弱小目标检测技术研究

红外图像中弱小目标检测技术研究红外图像中弱小目标检测技术研究摘要:随着红外图像技术日益发展和应用的广泛,红外图像中弱小目标的检测问题日益引起研究者的关注。

传统的目标检测方法在红外图像中表现出较差的性能,特别是在检测弱小目标时更为困难。

因此,本文对红外图像中弱小目标检测技术进行了深入研究,提出了一种基于深度学习的弱小目标检测方法,并进行了实验验证,证明了该方法的有效性和优越性。

第一章引言1.1 研究背景红外图像具有遥感、夜间监测等领域的广泛应用,然而在红外图像中,弱小目标的检测一直是一个具有挑战性的问题。

传统的目标检测方法在红外图像中无法准确地识别出目标,在弱小目标的检测问题上表现尤为明显。

1.2 研究目的本文旨在探索一种能够有效检测红外图像中弱小目标的技术方法,提高目标检测的准确性和鲁棒性。

第二章相关概念和理论2.1 红外图像红外图像是一种由红外辐射产生的图像,它记录了被物体辐射出的红外能量,常用于军事、医学、环境监测等领域。

2.2 弱小目标弱小目标是指在红外图像中大小较小、明暗度较低、形状不规则等特征明显弱于背景的目标,例如小型无人机、远程火炮等。

第三章弱小目标检测方法研究3.1 传统的目标检测方法传统的目标检测方法主要包括基于特征提取与分类器的方法,如Haar特征和SVM(支持向量机)方法等。

然而,这些方法对于红外图像中的弱小目标检测效果较差。

3.2 基于深度学习的弱小目标检测方法近年来,深度学习技术在图像处理领域取得了巨大的突破。

本文提出了一种基于深度学习的弱小目标检测方法。

该方法采用卷积神经网络(CNN)进行特征提取,并利用目标检测器进行目标的定位和分类。

实验结果表明,该方法在红外图像中检测弱小目标的准确率和鲁棒性较传统方法有明显提高。

第四章实验与结果分析本文在红外图像数据集上进行了实验,比较了传统的目标检测方法和基于深度学习的弱小目标检测方法的性能。

实验结果表明,本文提出的方法在检测弱小目标方面具有明显的优势,能够准确地定位和识别红外图像中的弱小目标。

基于张量分解的红外弱小目标检测算法研究

基于张量分解的红外弱小目标检测算法研究

基于张量分解的红外弱小目标检测算法研究红外遥感技术在军事、安防等领域中具有重要的应用价值。

在红外图像中,弱小目标的检测一直是一个具有挑战性的问题。

为了克服这个问题,许多基于张量分解的红外弱小目标检测算法被提出和研究。

红外弱小目标通常指的是红外图像中的低对比度、低亮度等目标。

由于受到红外图像采集设备的限制以及背景干扰的影响,直接从红外图像中提取目标非常困难。

因此,基于张量分解的红外弱小目标检测算法成为了解决这一问题的有效方法。

首先,需要了解什么是张量分解。

张量分解是一种多线性代数方法,用于将多维数据分解为低维子空间。

在红外图像中,将红外图像数据分解为局部特征空间可以提高目标的显著性,从而实现目标的检测。

基于张量分解的红外弱小目标检测算法通常包括以下几个步骤。

首先,对红外图像进行预处理。

预处理的目的是降低图像中的噪声以及增强目标的对比度。

常用的预处理方法包括直方图均衡化、滤波等。

然后,利用张量分解技术对预处理后的红外图像进行分解。

张量分解可以将原始红外图像分解为几个低维子空间,每个子空间对应一个特定的图像特征。

常用的张量分解方法包括SVD(奇异值分解)、Tucker分解等。

接下来,通过对分解后的子空间进行处理,提取目标特征。

通常采用一些特征提取方法,如局部二值模式(LBP)、主成分分析(PCA)等。

这些特征能够更好地描述目标的纹理和形状信息。

最后,采用目标检测算法对提取的特征进行分类和检测。

常用的目标检测算法有支持向量机(SVM)、卷积神经网络(CNN)等。

这些算法可以根据提取的特征判断目标是否存在,并给出目标的位置和类别。

在实际应用中,基于张量分解的红外弱小目标检测算法已经取得了一定的成果。

这些算法在红外图像中有效地提取了目标的显著性特征,对低对比度、低亮度等弱小目标的检测取得了较好的效果。

然而,基于张量分解的红外弱小目标检测算法仍然存在一些挑战和问题。

首先,由于红外图像中存在的复杂背景干扰和噪声,目标特征的提取和目标检测的准确性还有待进一步提高。

复杂背景下红外弱小目标检测算法研究

复杂背景下红外弱小目标检测算法研究

复杂背景下红外弱小目标检测算法研究复杂背景下红外弱小目标检测算法研究摘要:红外弱小目标检测在军事、安防、航空航天等领域具有重要应用价值。

然而,由于背景复杂多变、噪声干扰等因素的影响,红外弱小目标的检测成为一个具有挑战性的问题。

本文综述了当前红外弱小目标检测算法的研究进展,并提出了一种基于深度学习的红外弱小目标检测算法。

一、引言红外技术是一种通过检测物体辐射的热能来实现目标探测的非接触性技术。

然而,由于红外图像中目标的能量较小,且通常处于复杂背景中,如林地、建筑物、云层等,红外弱小目标的检测一直是一个具有挑战性的任务。

二、红外弱小目标检测算法的研究进展目前,红外弱小目标检测算法主要包括传统算法和深度学习算法两类。

1. 传统算法传统算法主要通过对红外图像的预处理、特征提取和目标检测三个步骤进行处理。

常用的预处理方法有背景平均法、自适应滤波法等,用于降低图像噪声和背景干扰。

特征提取方法通常包括峰值信噪比、能量、梯度等指标,用于表征目标的形状、纹理等特征。

目标检测方法包括阈值分割、形态学处理、模板匹配等,用于判断目标是否存在于图像中。

2. 深度学习算法近年来,深度学习算法在目标检测领域取得了突破性进展。

深度学习算法通过训练大规模数据集和深层网络模型,能够学习到更加丰富的特征表示。

在红外弱小目标检测中,常用的深度学习算法包括卷积神经网络(CNN)、循环神经网络(RNN)等。

这些算法通过对数据集的训练,能够学习到红外弱小目标的特征,从而提高检测的准确性和稳定性。

三、基于深度学习的红外弱小目标检测算法为了提高红外弱小目标检测的性能,在本文中提出了一种基于深度学习的算法。

该算法主要包括以下几个步骤:1. 数据预处理通过对红外图像进行预处理,如去噪、增强等,以提高图像的质量和目标的可见度。

2. 特征提取引入卷积神经网络(CNN)进行特征提取。

CNN通过多个卷积层和池化层,逐渐提取图像的特征表示,并通过全连接层进行分类和检测。

红外弱小目标检测技术研究

红外弱小目标检测技术研究

红外弱小目标检测技术研究红外弱小目标检测技术研究引言:随着红外技术的发展和应用的广泛,红外弱小目标检测成为了当前热门的研究领域之一。

红外弱小目标主要指的是在红外图像中相对于背景而言灰度值较低且尺寸较小的目标。

红外弱小目标的检测对于军事、安防、无人机等领域具有重要的应用价值。

本文就红外弱小目标检测技术的研究进展进行了探讨。

一、红外弱小目标的特点红外弱小目标的主要特点包括:目标尺寸小、灰度值低、背景复杂等。

相对于可见光图像,红外图像比较模糊,目标的轮廓不够清晰,目标和背景之间往往存在一定的灰度差异。

因此,红外弱小目标的检测面临着许多挑战。

二、红外弱小目标检测技术目前,关于红外弱小目标的检测技术主要包括以下几种:基于特征的方法、目标分割方法、模板匹配方法和深度学习方法等。

1. 基于特征的方法基于特征的方法是最早的红外弱小目标检测方法之一。

该方法通过选取一些有效的特征,如颜色、纹理、形状等对红外图像进行分析和处理,以实现目标的检测。

然而,由于红外图像的模糊性和噪声影响,传统的特征提取方法在红外弱小目标检测中往往效果不佳。

2. 目标分割方法目标分割方法是通过对红外图像进行前景和背景分割,以实现目标的检测和定位。

这种方法首先对图像进行预处理,如灰度变换、滤波等,然后应用阈值分割或其他分割算法将目标从背景中提取出来。

然而,由于红外图像中目标和背景之间的灰度差异较小,目标分割往往困难,容易出现漏检和误检。

3. 模板匹配方法模板匹配方法是将预先得到的目标模板与待检测图像进行匹配,从而实现目标的检测和识别。

该方法通常需要事先收集一些目标的红外图像,并进行预处理提取出目标的模板,然后对新的红外图像进行模板匹配。

然而,模板匹配方法的主要问题是目标在红外图像中的灰度、形态、大小等差异较大,因此模板匹配的效果有限。

4. 深度学习方法近年来,深度学习方法在目标检测领域取得了显著的成果。

使用深度学习方法可以自动学习红外弱小目标的特征,避免了手工设计特征的繁琐过程。

基于形态成分稀疏表示的红外小弱目标检测

基于形态成分稀疏表示的红外小弱目标检测
证 明 了该 方 法 的 有 效 性 。
关键 词 : 小 弱 目标 检 测 ; 稀疏表示 ; 形 态成分分析 ; 自适 应 分 类 字典
中图分类号 : T P 3 9 1 . 4 文献标志码 : A
I nf r a r e d Di m Ta r g e t De t e c t i o n Ba s e d o n Mo r p h o l o g i c a l
A n e f f i c i e n t me t h o d b a s e d o n mo r p h o l o g i c a l c o mp o n e n t a n a l y s i s( MC A)wa s p r o p o s e d f o r i n f r a r e d d i m t a r g e t d e t e c t i o n i n t h i s p a p e r ,c o m—
基 于 形态 成 分 稀 疏 表 示 的 红 外 小 弱 目标检 测
李 正周 , 王会 改 , 刘 梅 , 丁 浩 , 金 钢
( 1重 庆 大 学 通 信 工 程 学 院 , 重庆 4 0 0 0 4 4 ; 2中 国 空 气 动 力 研 究 与 发 展 中心 , 四川 绵 阳 6 1 0 2 0 9 ) 6 2 1 0 0 0 ; 3中 国科 学 院 光 电技 术 研 究 所 , 成都
第3 3卷
第 4期
弹箭Biblioteka 与制导学

V0 1 . 3 3 No . 4 Au g 2 01 3
2 0 1 3年 8月
J o u r n a l o f P r o j e c t i l e s ,R o c k e t s ,Mi s s i l e s a n d Gu i d a n c e

红外弱小目标检测技术研究现状与发展趋势

红外弱小目标检测技术研究现状与发展趋势
复杂背景的低频部分为缓慢变化的背景,而高频 部分为弱小目标、随机噪声以及景象边缘等信号。 DBT方法首先对图像进行预处理,目的是抑制平缓变 化的背景。然后利用人工设定的阈值分割图像,获取 众多疑似目标。最后,在序列图像上进行目标确认。
目前对单帧图像的处理算法很多,一般可以分为 2大类:一类是空域滤波方法;另一类是频域滤波方 法。这2类算法的不同之处在于:前者是在空域上对 图像进行处理,后者是在频域上对图像进行处理。这 2类算法的相同之处为:从本质上来说它们都是通过 高通滤波抑制平缓变化的背景。
第37卷第l期 2015年1月
侯旺等:红外弱小目标检测技术研究现状与发展趋势
v01.37 NO.1
J粕.2015
争毫◆
(a0)
(bo)
图1 实际红外图像中的弱小目标及其三维强度图像
(a1)
(b1)
Fig.1 A small ta唱et in肌in触red imge and itS 3D intens时dis仃ibution
2)红外目标检测系统可以检测到雷达探测不到 的电磁隐身设备,而且它对飞行器尾焰敏感,可以探 测到雷达探测不到的低空飞行的巡航导弹,弥补了雷 达盲区。
3)红外目标检测系统可以在夜问工作,并且该 系统没有强辐射,有利于隐蔽。该系统体积小、重量 轻、机动性强、配置方便,非常有利于搭载在预警卫 星和无人机上。另外,红外检测系统可以产生比雷达 细节丰富,分辨率高的图像。
红外弱小目标检测算法可以分为2类:第一类是 基于单帧图像的跟踪前检测算法(Detect before Track,简记为DBT);第二类是基于序列图像的检测 前跟踪算法(Track be矗)re Detect,简记为TBD)MJ。 1.2红外弱小目标的跟踪前检测算法

红外弱小目标检测算法研究-2008

红外弱小目标检测算法研究-2008

Key Words: Infrared Targets Detection, Background Prediction, MHT
V
上海交通大学 学位论文原创性声明
本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研 究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他 个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人 和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本 人承担。
IV
Finally, software platform for IR detection and track is briefly introduced, and then it is used to evaluate the algorithms mentioned in this paper.
保密□,在 本学位论文属于 不保密√。 (请在以上方框内打“√” )
年解密后适用本授权书。
学位论文作者签名:俞志刚
指导教师签名:李建勋
日期: 2008 年 1
月 29 日
日期: 2008 年 1
月 29 日
第一章 绪论
1.1
课题背景及研究意义
红外成像技术是一种非接触式的测试技术,它可以方便地检测目标发出的不 可见热辐射。从二十世纪五十年代开始,红外成像技术被广泛应用于军事领域, 尤其是在红外成像制导、红外告警和红外侦察等方面。近年来,随着精确制导武 器的飞速发展,战争对武器系统的整体性能提出了更高的要求,在一些局部战争 中, 红外成像技术显示出巨大的威力, 被广泛的应用于各类战略导弹、 战术导弹、 巡航导弹等,成为国内、外可控武器系统的第二代制导技术。随着现代电磁隐身 技术、反辐射导弹的不断发展,使得现代战争体系中重要传感器之一— 雷达正 面临着日益严峻的挑战和威胁。 而红外作为一种被动探测技术, 相较于雷达而言, 具有隐蔽性好、分辨率高、抗电磁干扰和反隐身的能力强等优点,已经成为现代 防御系统和武器装备中除雷达外应用最多的探测技术, 已经成为军事领域中最具 有发展前途的技术之一。 红外成像技术是目前对各军兵种都非常有用的新型高科技,具有极强抗干扰 能力,而且在作战中不会产生各种辐射,隐蔽性好,生存能力强。红外成像探测 器可探测0.1 至0.05 度的温差,长波红外成像可穿透烟雾,分辨率高,空间分辨 能力更可达0.1 毫弧度。另外,红外成像不受低空工作时地面和海面的多路径效 应影响,低空导引精度很高,可直接攻击目标要害,具有多目标全景观察、追踪 及目标识别能力,可整合微处理器实现对目标的热成像智慧型化导引;具有良好 的抗目标隐形能力,现有的电磁隐形、点源非成像红外隐形技术对红外成像导引 均无效。 一直以来, 图像中弱小目标的检测问题是光学和红外图像领域的研究热点, 同时也是难点.有关红外图像中弱小目标的检测技术的研究应包括两个方面, 一 是从红外成像系统方面来研究;二是从信号处理算法来研究。前者主要集中在 探测器、光学系统和读出电路以及器件非均匀性校正的研究,主要目的是为了

红外图像中弱小目标检测技术研究

红外图像中弱小目标检测技术研究

红外图像弱小目标检测技术研究1、本文概述随着技术的不断进步,红外成像技术已成为现代军事、航空航天、民用安全等领域不可或缺的重要工具。

特别是在夜间或弱光条件下,红外成像技术以其独特的成像方法实现了对目标的清晰观察和识别。

在实际应用中,红外图像往往含有大量的噪声和干扰,使得弱目标的检测异常困难。

研究红外图像弱小目标检测技术具有重要的现实意义和应用价值。

本文旨在探索红外图像弱小目标检测技术的相关理论和方法。

我们将分析红外图像的特征,以了解红外图像中弱小目标的特征和困难。

我们将回顾现有的弱目标检测算法,包括基于滤波的方法、基于背景抑制的方法和基于多帧融合的方法等,并分析其优缺点和适用场景。

接下来,我们将提出一种基于深度学习的弱目标检测算法,该算法通过从红外图像中提取和分类深度特征来实现对弱目标的精确检测。

我们将通过实验验证所提出算法的有效性,并将其与其他算法进行比较,为红外图像弱小目标检测技术的发展提供参考和启示。

2、红外图像弱小目标检测技术综述红外图像弱小目标检测技术是识别、提取和跟踪复杂背景下弱目标的重要技术。

由于红外图像中弱目标的信噪比低、对比度低、体积小、运动轨迹不确定等特点,其检测成为一项极具挑战性的任务。

近年来,随着红外成像技术和信号处理技术的快速发展,红外图像中的弱小目标检测技术也受到了广泛的关注和研究。

红外图像弱小目标检测技术的核心在于如何有效地从复杂背景中提取目标信息。

这通常涉及多个阶段,如图像预处理、对象增强、对象提取和对象跟踪。

在图像预处理阶段,主要目的是去除图像中的噪声,提高图像质量,为后续的目标检测提供良好的基础。

在目标增强阶段,使用直方图均衡和对比度增强等各种算法来提高目标与背景之间的对比度,从而突出目标信息。

在目标提取阶段,采用阈值分割、边缘检测、形态学处理等方法从增强图像中提取目标区域。

在目标跟踪阶段,通过滤波算法、匹配算法等实现对目标的连续跟踪。

目前,在红外图像中微弱小目标的检测方面取得了重大进展。

红外小目标检测 报告

红外小目标检测 报告

红外小目标检测方法概述1110540103 李方舟1.什么是红外小目标?关于小目标”的定义,目前没有统一的定论。

一般认为,当红外成像的距离较远时,在成像平面上只占几个或几十个像素的面积,表现为点状或斑点状,对比度和信噪比较低的目标,即可称之为小目标。

2.为什么要进行红外小目标检测?红外成像具有距离远,隐蔽性高,抗干扰能力强,穿透烟尘,雾以及阴霾的能力强,可全天候,全时间工作等优点。

因此被广泛应用于监视侦察以及导航等军事领域,成为现代精确制导武器的主要技术之一。

在尽可能远的距离上检测并跟踪到敌方目标,以争取在有利的时机发动攻击。

是决定现代战争胜负的重要因素。

距离越远,目标成像面积越小,图象质量越差,对目标的检测和跟踪越困难。

因此,研究小目标的检测和跟踪方法,对提高红外成像系统的作用距离,有着非常重要的意义。

目标检测作为寻的制导系统中的前端处理环节,是精确制导中最为关键和核心的组成部分。

只有及时检测到目标,才能保证如目标的如目标跟踪等后续工作的正常进行。

基于此原因,在红外凝视成像的图像序列中进行目标检测具有相当的难度,几乎所有的小目标检测法都致力于增强图像的信噪比,积累目标能量,以提高目标检测能力。

3.红外小目标检测方法分析对于红外目标的检测问题,目标的一些先验信息,如目标的形状、大小,目标灰度变化在时间上的连续性,以及目标运动轨迹的连续性等是有效分割目标和噪声的关键。

目标检测方法根据这些特性的使用顺序不同,可分为两大类:先检测后跟踪( D e t e c t B e f o r e T r a c k ,D B T )方法和先跟踪后检测( T r a c k B e f o r e D e t e c t ,T B D )方法。

3.1 DBT检测方法基于先检测后跟踪的目标检测技术属于一类经典的红外目标检测。

该类方法分为两步:首先根据目标形状,强度等特性,在单帧图像中检测出候选目标,然后根据实际需要,在分割后的二值化图形序列中,通过序列图像投影到目标轨迹。

红外弱小目标检测技术研究

红外弱小目标检测技术研究

红外弱小目标检测技术研究随着科技的发展,红外弱小目标检测技术在军事、安防等领域的应用愈发重要。

红外弱小目标指的是红外场景中,与背景差异小且信号弱的目标,例如人、车、无人机等。

由于红外场景中的目标往往不容易被肉眼观察到,传统的目标检测方法往往失效,因此红外弱小目标检测技术的研究具有重要的现实意义。

红外弱小目标检测技术的研究需要解决的一个核心问题是目标的检测和跟踪。

目标检测的关键在于通过红外图像中的特征信息,将目标与背景进行分离。

这个过程可以分为两个步骤:特征提取和目标定位。

特征提取是将目标从红外图像中提取出来的关键步骤,目前常用的方法有灰度共生矩阵法、小波变换法、相关滤波法、深度学习法等。

这些方法可以通过对图像的纹理、形状、频谱等特征进行分析,来提取目标的特征信息。

目标定位则是通过特征提取的结果,确定目标在图像中的位置。

红外弱小目标的跟踪是指在目标检测的基础上,通过连续的帧图像进行目标的路径追踪。

目标跟踪的关键问题是如何在连续的帧中找到目标,并且保持目标的标识不变。

目前,常用的目标跟踪方法有帧间相似度法、光流法、粒子滤波法等。

这些方法可以通过对目标的运动轨迹、形状变化等信息进行分析,来实现目标的准确跟踪。

除了目标检测和跟踪之外,红外弱小目标检测技术还需要解决的一个问题是目标的识别。

目标的识别是指在检测出目标之后,通过对目标的特征进行进一步分析,确定目标的类别。

目前,常用的目标识别方法有模板匹配法、特征提取法、深度学习法等。

这些方法可以通过对目标的外形、纹理、颜色等特征进行分析,来提取出目标的特征信息,并将其与预先训练好的模型进行比对,从而确定目标的类别。

总之,红外弱小目标检测技术的研究对于提高红外图像处理的能力,提升军事、安防等领域的监控效果具有重要的意义。

这种技术不仅可以实现对红外弱小目标的准确检测和跟踪,还可以通过目标的识别,对目标的类别进行判断和分析。

未来,随着深度学习等技术的进一步发展,红外弱小目标检测技术还将得到更加广泛和深入的应用。

红外弱小目标检测算法综述

红外弱小目标检测算法综述

红外弱小目标检测算法综述红外弱小目标检测算法是一种应用于特定领域的有效的图像处理技术,这种技术可以有效地检测出红外图像中被称为“弱小目标”的图像特征,进而提供重要的信息服务。

在红外图像中,弱小目标是指具有较低热能或光强度、较小视场大小、较低对比度和较低空间分辨率等特性的目标物体。

由于红外弱小目标的特征较为细微,因此,常规的图像处理方法对它们的检测效果较差,而运用红外弱小目标检测算法则可以显著提高识别效果。

红外弱小目标检测算法可以分为基于统计的方法、基于学习的方法和基于模板匹配的方法三大类。

基于统计的方法是利用非线性滤波器、概率密度函数和后验概率等统计分析手段,对红外图像进行处理,以提取其中的弱小目标特征,并将它们进行提取和分类。

基于学习的方法则是利用支持向量机(SVM)、神经网络(NN)和深度学习等机器学习技术,通过与已知的真实目标进行学习,从而实现对弱小目标的检测。

基于模板匹配的方法是利用图像模板匹配算法,将已知的模板图像与待检测的红外图像进行对比,以发现其中的弱小目标。

随着研究者对红外弱小目标检测算法的设计不断深入,许多改进的算法也被提出,如基于特征点的算法、基于多尺度特征的算法、基于深度学习的算法等。

这些算法都是对前面提到的基本算法进行了改进和优化,以提高红外弱小目标检测的准确性和实时性。

基于特征点的算法主要是利用红外图像的细节特征,如纹理、轮廓和光强等,提取出红外图像中的特征点,然后利用这些特征点进行弱小目标的检测。

基于多尺度特征的算法则是利用多尺度的红外特征,构建多尺度的特征模型,并将其与图像进行对比,从而实现弱小目标的检测。

基于深度学习的算法则是利用深度学习技术,构建一个多层次的特征模型,并将其用于红外图像的分类和检测,从而提高弱小目标的检测精度和可靠性。

总之,红外弱小目标检测算法是一种有效的图像处理技术,旨在有效地检测红外图像中的弱小目标特征,为后续应用提供重要信息服务。

在现代研究中,基于统计、基于学习以及基于模板匹配的算法都被提出,而且随着算法的不断改进,许多改进的算法也被提出,以提高红外弱小目标检测的准确性和实时性。

红外弱小目标检测技术综述

红外弱小目标检测技术综述

㊀第52卷第2期郑州大学学报(理学版)Vol.52No.2㊀2020年6月J.Zhengzhou Univ.(Nat.Sci.Ed.)Jun.2020收稿日期:2019-12-04基金项目:国家自然科学基金项目(61903340);河南省教育厅重点项目(19A413002);河南省博士后科研项目(001701002);河南省青年人才托举工程项目(2020HYTP028)㊂作者简介:任向阳(1992 ),男,河南漯河人,博士研究生,主要从事图像处理㊁红外弱小目标检测研究,E-mail:xyren199201@;通信作者:马天磊(1989 ),男,河南新乡人,讲师,主要从事图像处理㊁红外弱小目标检测研究,E-mail:tlma@㊂红外弱小目标检测技术综述任向阳,㊀王㊀杰,㊀马天磊,㊀朱晓东,㊀白㊀珂,㊀王佳奇(郑州大学电气工程学院㊀河南郑州450001)摘要:随着红外探测技术的不断发展,对探测距离的要求越来越高,红外弱小目标检测技术已成为国内外红外探测领域的研究重点㊂简介了红外弱小目标检测的背景及意义;重点综述了目前在红外弱小目标检测领域中各类典型方法的研究现状及最新进展;给出了几种不同类型的红外弱小目标检测方法的实验对比;最后对红外弱小目标检测技术的研究进行总结和展望㊂关键词:红外弱小目标;目标检测;红外图像;检测性能中图分类号:TP391.4㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀文章编号:1671-6841(2020)02-0001-21DOI :10.13705/j.issn.1671-6841.20195570㊀引言自然界中,物体温度高于绝对零度时,都会持续向外界辐射红外波段能量[1-2]㊂物体具有越高的温度,则其向外辐射的红外能量就越大[1,3]㊂红外探测技术就是以红外目标监测系统为载体,利用被检测目标与背景之间红外辐射的差异实现目标检测和识别[4]㊂与传统的主动雷达成像以及可见光成像等探测技术相比,红外探测技术具有一系列的独特优势:1)红外探测技术隐蔽性好㊂主动雷达成像探测需要向外界发射电磁波而容易暴露自身的信息,红外成像探测则属于被动探测,不需要向外界发送信号㊂2)红外探测技术可以全天候工作㊂可见光成像探测器只能在白天进行探测工作,而红外成像探测器不受白天夜晚的限制,可实现昼夜工作㊂3)红外探测技术抗干扰能力强㊂主动雷达成像探测的效率容易受到目标表面隐形吸波材料的吸收而削弱;可见光成像探测很容易被云层㊁烟雾等因素干扰,并且容易被不同的伪装手段欺骗㊂随着雷达隐形技术以及伪装技术的发展,主动雷达成像探测与可见光成像探测往往难以满足一些实际的探测需求,而红外成像探测则可以更好地穿透烟雾㊁云层等干扰,并且有一定识别伪装目标的能力,同时不会被各种雷达隐形吸波材料所影响㊂因此,红外探测技术可以对传统探测手段进行有效补充甚至可以替代传统的探测技术㊂随着红外探测技术的发展,该技术已在不同的领域中得到广泛应用[4-6]㊂在民用领域,已被广泛地应用于火灾预警[7-8]㊁气体泄漏检测[9-10]㊁医学特征识别[11-12]㊁农业生产[13-15]等方面㊂而在更为重要的军事领域,红外探测技术已被广泛应用于侦察㊁制导㊁预警等方面[16-19]㊂例如:美国的天基红外预警系统和国防支援计划导弹预警卫星系统[20]㊁俄罗斯的 凤凰 系统㊁荷兰等国的 天狼星 系统[21]㊁以色列的 云雀 无人侦察机㊁美国的 全球鹰 无人侦察机[22]等均使用到了红外探测技术[23]㊂对于红外探测系统来说,当被检测目标与探测器之间的距离达到十几甚至几十公里时,在大气扰动㊁光学散射和衍射等外界因素的影响下,经过光学系统成像后,红外图像中的目标呈现 弱 和 小 的特征㊂此时红外探测已进入红外弱小目标探测的范围㊂其中 弱 这个特征主要是目标的信噪比以及目标与背景的对比度较低; 小 这个特征则主要是目标在整幅红外图像上所占有的像素数少㊂因此,在检测过程中,由于弱小目标尺寸比较小,不具有相应的形状以及纹理特征,同时在实际场景中,复杂多变的云㊁建筑物㊁海面等郑州大学学报(理学版)第52卷干扰物的面积较大,导致被检测的小目标很容易会被复杂的场景形成的杂波所淹没[3]㊂此外,目前红外弱小目标检测方法的稳健性㊁鲁棒性㊁实时性还不能完全满足不同应用背景的需求㊂因此,红外弱小目标检测技术成为近年来在民用和军事领域里的研究热点之一[4]㊂1㊀红外弱小目标检测技术的研究现状红外弱小目标检测技术是红外探测系统的关键技术之一,是红外探测领域的研究热点[24-26]㊂国内外有许多的相关机构开展了红外弱小目标检测技术的研究工作,并取得了丰硕的研究成果[26-28]㊂同时,有许多国内外的刊物和会议也经常发表和探讨一些弱小目标检测技术的研究成果[27-30]㊂1.1㊀红外弱小目标成像的数学模型在红外成像的过程中,由于受大气散射㊁折射㊁镜头污染㊁光学散焦㊁镜头变形等影响,远距离目标被红外探测器接收时,信号强度表现为弱小的特点[5]㊂根据国际光学工程学会(society of photo-optical instrumenta-tion engineers,SPIE)的定义,把面积不大于9pixelˑ9pixel大小的红外目标称为红外小目标[1,3,4]㊂如图1所示,图1(a)为一幅真实场景的红外图像,该图像的大小为256pixelˑ318pixel㊂为了能够清晰地显示小目标,对该图像中弱小目标的局部区域进行放大,并调节其对比度,图1(b)为弱小目标及其邻域的放大图,其大小为31pixelˑ31pixel㊂图1(c)代表弱小目标及其邻域的三维分布图㊂通过观察可知:图中弱小目标为中心对称㊁向四周辐射的形状,与二维高斯函数非常相似㊂很多学者都使用二维高斯函数对弱小目标进行建模[1,3,4],模型为f T(x,y)=A㊃exp{-12[(x-xcϑx)2+(y-y cϑy)2]},式中:ϑx和ϑy为横向和纵向的尺度参数;A为目标的灰度幅值;fT(x,y)为该弱小目标的空间分布灰度函数;(x c,y c)为红外小目标的空间坐标㊂图1㊀实际红外图像中的弱小目标及其三维强度图Figure1㊀A small target in an infrared image and its3D intensity distribution 在红外弱小目标检测中,根据对小目标检测时进行图像处理所需数据量的差异,可将这些检测方法分为两大类,即基于单帧的检测方法和基于多帧的检测方法[31]㊂基于单帧的弱小目标检测方法通过处理单帧图像来检测目标,并从单帧检测结果中给出目标存在与否的判决;基于多帧的弱小目标检测方法则同时处理多帧图像,将多帧图像全部处理后,给出目标存在与否的判决结果[32-33]㊂本文以这两类方法为主线,介绍其中的代表性检测方法㊂1.2㊀基于单帧图像的弱小目标检测方法基于单帧图像的弱小目标检测方法主要利用单帧图像的空间信息对小目标进行检测㊂现有的基于单帧图像的弱小目标检测方法主要分为三种:第一种是从目标角度出发,根据目标和周围背景在单帧红外图像中的灰度㊁结构等特征差异,设计检测算子,直接提取目标[34];第二种是从图像背景角度出发,采用相应方法抑制图像的背景,从而实现弱小目标的检测[35-36];第三种是基于图像数据结构的方法,这种方法主要是通过查找低维子空间结构以及使用预设的超完整字典来显示数据结构,从而实现小目标的检测[37-38]㊂本文主要针对几种比较有代表性的单帧检测方法进行介绍㊂1.2.1㊀基于目标特征的弱小目标检测方法㊀基于目标特征的弱小目标检测方法是根据目标和其邻域在单帧红外图像中的特征差异,设计不同方法凸显小目标并抑制背景杂波,从而实现弱小目标的检测㊂23㊀第2期任向阳,等:红外弱小目标检测技术综述1)基于视觉对比机制的弱小目标检测方法基于视觉对比机制的弱小目标检测方法是近几年才出现的一种新颖的弱小目标检测方法㊂由于人类的视觉系统(human visual system,HVS)在处理目标检测任务时表现出非常良好的鲁棒性[39-42],所以,有关视觉系统中的一些理论机制也被引入到弱小目标检测中来[43-44]㊂在此类方法中,视觉对比机制较多地被用于研究弱小目标检测[45]㊂对比机制一般被认为是信号在某个局部区域中存在信息差异,如小目标与其邻域之间存在着各种不同的差异㊂在人类视觉系统中,这些差异对于认知外界事物具有非常重要的意义[46]㊂根据小目标灰度强于邻域灰度的特征,Chen等[47]基于视觉对比机制提出了一种局部对比测量方法(local contrast measure,LCM)㊂该方法主要是利用小目标的灰度值一般会比邻域的灰度值更大一些的特点㊂此后,Han等[48]发现LCM存在过增强噪声点的现象,并提出了一种改进的局部对比测量方法(improved LCM,ILCM)㊂该方法采用了HVS大小自适应过程和注意力转移机制,有效地降低了噪声点过增强现象的发生,但该方法容易把小目标变得平滑㊂为了较好地保留小目标的形状,王晓阳等[49]提出一种区域局部对比度方法,该方法利用了图像信息熵和局部相似性等信息,对小目标的原始形状保留效果较好,但在复杂场景中,区域局部对比度方法不是非常有效㊂为了提高在复杂场景的检测率,Qin等[50]提出了一种新颖的局部对比度测量(novel local con-trast measure,NLCM)方法㊂不同于ILCM使用近似于小目标尺寸的滑动窗口,NLCM使用尺寸大于小目标的局部区域作为滑动窗口,这更有利于在复杂场景中增强目标和背景的对比度㊂为了进一步提高方法的检测性能,Du等[51]提出了一种同质加权局部对比度测量方法(homogeneity-weighted local contrast measure, HWLCM)㊂该方法能够充分利用中心和周围区域的局部对比特征以及周围区域的加权均匀性特征㊂这些特征的使用有利于增强目标强度和抑制复杂背景㊂由于LCM方法被提出时间并不是很长,仍有许多学者对该类方法进行研究和改进[52-56],例如:多尺度块的对比测量(multiscale patch-based contrast measure,MPCM)[52]㊁多尺度局部同质测度(multiscale local contrast measure,MLCM)方法[53]㊁相对局部对比测量(relative local contrast measure,RLCM)方法[54]㊁局部差异量度(local difference measure,LDM)[55]㊁改进的LCM[56],等等㊂在计算局部对比度时,LCM及其改进方法大多使用的是比率形式定义㊂这些方法先计算图像中某局部中心与其邻域之间的比率作为增强因子,然后将增强因子与局部中心值的乘积作为局部对比度[54]㊂除了上述使用比率形式定义计算局部对比度的方法之外,许多方法还使用了差异形式定义,即使用图像中的某局部中心以及邻域之间的差异结果作为局部对比度[57-58]㊂这类方法中较为典型的是由Kim等[59]提出的拉普拉斯-高斯算子(Laplacian of Gaussian,LoG)㊂该算子可以有效地提高被检测弱小目标与其周围区域之间的对比度,从而实现目标的检测㊂针对该方法在具有比较复杂的背景杂波时容易产生虚警的问题,一种局部定向LoG算子被提出[60]㊂该方法首先将LoG滤波器分解为具有4个方向的局部LoG滤波器;然后使用局部LoG滤波器生成的内核对图像进行卷积;最后,通过最小滤波器获得最终的空间滤波图像㊂这种方法可以有效地提高检测率并消除云边缘带来的虚警㊂此外Shao等[61]在结合形态学操作的基础上,对LoG算子进行改进,也取得了良好的小目标检测结果㊂2)基于局部强度和梯度的弱小目标检测方法基于局部强度和梯度的弱小目标检测方法是受到小目标在图像分布中呈现高斯形状的启发,从强度和梯度的角度对小目标的局部属性进行描述,以增强目标并抑制图像中的杂波[62]㊂在红外图像中,小目标像素的灰度值大于其局部相邻像素的值;另外,小目标可使用二维高斯函数模拟,二维高斯函数形成标量场,其梯度场表现为梯度向量指向中心的特点,同理,小目标具有灰度标量场,其梯度场也表现为梯度向量指向目标中心的特点㊂这两个属性分别被认为是局部强度属性和局部梯度属性㊂均匀背景可以通过使用局部强度属性来抑制,因为它们的强度值几乎相同;对于具有强边缘的背景,它们的梯度方向通常是一致的,不同于分布中目标的梯度㊂基于这两个属性,通过计算原始红外图像局部强度和梯度(local intensity and gradient, LIG)图,可以实现目标增强和杂波抑制㊂1.2.2㊀基于背景特征的弱小目标检测方法㊀根据背景抑制方式的不同,基于背景特征的弱小目标检测方法主要分为两类:基于空域滤波的方法和基于变换域滤波方法㊂1)基于空域滤波的方法首先通过估计图像的背景信号,然后利用原始图像与估计得到的图像背景进行4郑州大学学报(理学版)第52卷差分运算,最后在差分图像中使用阈值分割方法实现弱小目标的检测㊂其中实现图像背景估计的步骤如下:首先在图像中取每个像素点对应的局部区域,然后利用此局部区域上的灰度信息对该像素点的背景强度值进行估计,最后对图像上所有的像素点进行遍历从而获取图像背景的预测图㊂传统基于空域滤波的方法有最大中值\最大均值(max-mean\max-median)滤波器的方法[63]㊁二维最小均方(two-dimensional least mean square,TDLMS)滤波器的方法[64-67]㊁数学形态学方法[68-71]㊁双边滤波器[72-73]㊁高通模板滤波方法[3-4]㊁中值滤波方法[3-4]等等㊂A)Max-mean\max-median方法是一种非线性的滤波方法,该方法在中值滤波方法的基础上,对图像进行滤波后再进行差分运算[63]㊂在处理过程中,当被处理的像素点在目标上时,使用max-mean\max-median 方法所获得的背景预测值近似于该像素点邻域的平均信号强度值㊂而在图像中目标点的信号强度值和其邻域的平均强度值之间具有较大的差异,于是,在原图和预测的背景图进行差分运算后该像素点会具有较大的响应值㊂当被处理的像素点在平缓变化的背景上时,用max-mean\max-median方法所获得的背景预测值与该像素点的灰度值两者之间非常接近,在原图和预测的背景图进行差分运算后该像素点对应的响应值较小㊂当像素点位于景象边缘时,使用max-mean\max-median方法获得的背景预测值为景象边缘上的平均强度值,所以该像素点的强度值与预测值的差异很小,进行差分运算后该像素点对应的响应值也很小㊂因此,max-mean\max-median方法不仅对被检测图像上起伏的背景信号能够有效进行抑制,还可以有效地抑制图像边缘具有的纹理信息,这些抑制有利于后续的弱小目标检测㊂B)1988年,Hadhoud等将应用于一维信号处理领域的LMS(least mean square)方法扩展到二维信号处理领域,提出TDLMS方法[64],并应用于图像去噪以及图像增强㊂考虑到该方法在图像处理领域具有较好的性能,因此该方法被一些学者引入到弱小目标检测中㊂TDLMS方法是一种自适应迭代的方法,该方法首先根据输入图像的内容对模板参数进行自动计算,在每一次迭代过程中求取预测的背景图像与期望图像两者之间的差异并得到误差函数;然后判断误差函数与设定阈值之间的大小,当误差函数数值小于阈值时,停止迭代,并输出经过该方法预测得到的背景图像㊂很多学者在不同特征区域的选取以及模板更新步长参数的自适应确定等方面对这种方法进行了改进[65],例如Bae等[66]为了在背景和小目标区域中自适应地调整步长,通过使用小目标邻域图像块预测像素的方差,来计算与自适应区域相关的非线性步长,该方法取得了较好的检测效果㊂此外,张世璇等[67]提出了一种由背景去除与目标提取构成的两层TDLMS滤波器,该方法根据图像的统计参数对步长的大小自适应调整,并迭代得到最优的TDLMS滤波器权值㊂C)1964年Matheron和Serra提出数学形态学(mathematical morphology,MM)的方法,并将该方法应用到了图像分析领域[68]㊂数学形态学方法是一种基于集合理论和几何学的非线性滤波方法㊂数学形态学运算基于两个基本操作:腐蚀和膨胀㊂这两个基本的操作在原始图像和结构元素构成的集合上进行㊂最常用的数学形态学方法是顶帽变换(top-hat transformation,Top-hat)方法[69],该方法首先构造合适的结构元素;然后利用形态学开运算滤除小于结构元素的亮奇异点,同时利用形态学闭运算滤除小于结构元素的暗奇异点,最后使用原始图像与预测的背景图像进行差分处理,得到包含残差和弱小目标的图像㊂在经典的Top-hat方法的基础上,有许多改进的方法被提出,Zhou等[70]设计了一种由系列Top-hat滤波器构成的连续Top-hat滤波器方法,该方法中Top-hat滤波器的结构元素逐渐减小㊂之后,Deng等[71]考虑到自适应结构元素对于Top-hat方法的重要性,提出了一种基于量子遗传方法的自适应Top-hat结构元素优化方法,该方法能够实现更稳定的小目标检测性能㊂D)1998年Tomasi等提出双边滤波器(bilateral filter)的方法,并用于图像去噪㊂由于该方法具有良好的红外图像背景估计能力,被学者们广泛地应用于弱小目标检测领域[72]㊂双边滤波器主要由灰度域滤波核和空间域滤波核这两个不同的高斯滤波核构成㊂在空间域中,滤波核根据像素之间的欧氏距离,对离中心像素更近的像素赋予更大的权重;在灰度域中,滤波核根据像素灰度值之差,与中心像素值更接近的像素赋予更大的权重㊂不同于传统的滤波方法仅仅考虑不同像素在空间位置中的分布,双边滤波方法不仅对像素的空间位置分布进行考虑,还对图像中像素的灰度分布特征进行考虑㊂因此,这种方法能够具有很好的红外图像背景估计性能,并且对于图像背景边缘的特点也有很好的保存性能㊂考虑到该类方法的特点,Bae等[73]提出了一种新颖的基于双边滤波器的目标检测方法,该方法首先根据像素四个方向的边缘分量判断是否存在潜在的小目标;如果判断的结果是存在潜在的小目标,则使用双边滤波器方法对小目标进行模糊处理;之5㊀第2期任向阳,等:红外弱小目标检测技术综述后将原始的红外图像与通过双边滤波器方法得到的预测图像进行差分处理,从而实现对小目标信号的提升㊂2)相比于具有较低计算复杂度的空域滤波的方法,变换域方法计算复杂度较高㊂但是近年来随着相关计算设备性能的提升,一些基于变换域滤波的方法也在工程实践中被证明具有良好的背景抑制性能[74]㊂基于变换域滤波的方法首先使用相应的变换方法获取红外图像的变换域信息,然后在变换域中处理获取的信息,最后使用逆变换的方法将变换域中的图像变换至空间域,从而得到相应的结果㊂A)经典的频域滤波方法首先通过傅立叶变换方法[75]将图像变换到频域中,然后在保护目标相关特征的同时,对其进行高通滤波㊂最后,经过逆变换获得背景抑制后的红外图像㊂这种方法可以有效地抑制变化比较缓慢的背景,同时能够保留弱小目标㊁景象边缘以及图像中的随机噪声㊂常见的频域弱小目标检测方法主要有理想高通滤波[76]㊁巴特沃斯高通滤波[77]等㊂B)小波变换滤波方法考虑到红外图像中背景对应的辐射强度小于目标区域对应的辐射强度,同时弱小目标与周围背景灰度不连续㊂因此,在检测小目标的过程中,小目标可以被认为是红外图像的高频部分,而图像的背景则可以被认为是红外图像的低频部分,基于此可以使用小波变换的方法分离红外图像中的高频部分和低频部分,然后分别处理两个不同的部分,从而实现图像信噪比的提升以及对弱小目标的检测[78]㊂常见的小波变换滤波方法主要有基于Countourlet变换的方法㊁基于非下采样轮廓波变换的方法等[4]㊂除了上面几类基于背景特征的检测方法之外㊂随着非局部均值滤波方法(non-local means denoising, NLM)在图像去噪领域取得的优异效果,该方法被引入到了小目标检测领域中[79-80]㊂NLM的主要思想是使用与评估像素具有相似邻域结构的像素加权平均值来替换评估像素[79]㊂基于NLM的方法使用相同的原理来寻找相似的局部块,并对图像背景进行估计㊂在这类方法中,非局部检测(detection by NL-means, D-NLM)是一种典型的方法,该方法首先寻找图像的相似块,并根据分析忽略相似块中两个最不相似的像素来修改距离度量以便在存在小目标的情况下稳健地估计图像背景㊂在D-NLM的基础上,文献[81]提出一种基于块匹配和三维滤波以及高斯混合匹配滤波器(detection by block matching and three-dimensional filtering and Gaussian mixture matched filter,DBM3D+GMMF)的方法,该方法基于块匹配和三维滤波方法的输出值来估计图像背景的均值[82-83],并结合高斯混合匹配滤波器,最终有效地对红外图像的背景进行估计,成功提取了红外弱小目标㊂1.2.3㊀基于图像数据结构的弱小目标检测方法㊀传统的基于单帧图像的弱小目标检测的基本思路是认为被检测的红外图像由小目标㊁背景以及噪声三个部分组成,通过设计不同的方法实现增强目标信号或者抑制背景和噪声,进而实现弱小目标的检测㊂基于图像数据结构的弱小目标检测方法则主要是根据红外图像中目标的稀疏性和背景的低秩性等不同的结构特点,实现目标图像和背景图像的分离㊂近来,这些基于图像数据结构的方法引起了越来越多的关注[84]㊂基于图像数据结构的方法通常利用以下两种方式来对小目标进行检测[85-86]㊂1)在查找低秩子空间结构的方法中,代表性的是基于红外图像块(infrared patch-image,IPI)模型的方法[87]㊂该方法中,小目标被认为是一个稀疏分量,同时背景被认为是一个低秩分量㊂通过分析图像中背景㊁噪声以及小目标的特点,IPI模型可以表示为min B,T B ∗+λ T 1+12μ I-B-T 2F,式中:I代表红外图像对应的矩阵;T代表小目标矩阵;B代表背景矩阵;λ和μ为给定的参数㊂在该方法中,对小目标的检测被转换成从数据矩阵中恢复两个分量的过程㊂但是IPI方法并未考虑当红外图像背景是较复杂的异构背景的情况㊂此时,单独的子空间很难有效地表示图像中复杂的异构背景㊂为此,Wang等[88]设计了一种稳定多子空间学习(stable multi-subspace learning,SMSL)的方法,该方法将图像的异构背景数据看作是一种多子空间的结构,并提出了一种学习多子空间策略的模型,有效地实现了对小目标的检测,该模型可以表示为min D,a,T㊀ a row-1+λ T 1+12μ I-Dα-T 2F,s.t.㊀D T D=I k㊀∀i,式中:D=[D1,D2, ,D k]表示背景数据空间;α=[α1,α2, ,αk]表示系数;λ和μ为给定的参数;k是子空间维度㊂。

单帧红外图像弱小目标检测算法研究

单帧红外图像弱小目标检测算法研究

摘要利用红外成像实现自动目标检测、识别与跟踪是现代军事武器装备的主要技术发展方向。

红外传感器受到大气热辐射和作用距离远以及探测器噪声等因素的影响,用其探测到的目标在红外图像上多呈现为对比度低的弱小目标,甚至为点目标,并且淹没在噪声中。

因而,红外图像弱小目标的检测是军用武器系统中的关键技术之一,是提高武器系统性能的关键。

另一方面,红外图像弱小目标探测在民用方面应用也很广泛,如天文观测、粒子碰撞、森林预警以及遥感等。

因此,红外图像弱小目标的检测具有较大的实践意义。

本文通过对预处理、目标检测等常用算法的系统分析,总结出了一些有益的结论。

并针对红外图像掠海小目标信噪比低,且易受到水天线和背景杂波干扰的特点,提出了一种红外图像弱小目标的检测方案。

该方法的特点是:首先采用中值滤波来减小噪声,并提出了差方和算法,用以抑制背景噪声并对目标增强;再采用了图像行扫描法有效地滤除水天线;最后通过弱化背景边缘和自适应阈值分割等综合算法得到候选小目标。

最后在DAM6416P图像处理平台上,通过硬件编程、调试了该目标检测算法,实验结果表明该算法达到了较好的效果,具有较高的实用性。

本课题的研究基本达到了预期目标,对于进一步开发高性能的目标检测系统奠定了基础。

关键词:小目标差方和算法行扫描阈值分割ABSTRACTMaking use of infrared image to realize the automatic target examination, recognition and tracking is the main development direction in equipments of modern military weapons. Because infrared sensor is easily affected by atmosphere hot radiation, long distance and sensor noise, the detected targets in infrared images often present like dim targets, even like point targets, and drowned in noise. The dim targets detection in infrared images is one of the key techniques in military weapon system. On the other hand, dim targets detection in infrared image is also widely used in public, such as the astronomy prognosticates, particle collision, forest early warning and remote sensing etc. So the dim targets detection in infrared image has big practical value.This paper has a systemic research on the common algorithm of pre-processing and targets detection, summarized out some useful results. And considering the IR target’s characteristics such as low signal-to-noise ratio, and factor that the targets near the horizon are disturbed by the background edge clutters, an improved method is presented to solve the problems in this paper. At first, noise is reduced by median filtering. Secondly, the DQS (Difference Quadratic Sum) algorithm is presented to restrain the background noise and enhance the targets. Thirdly, the horizon is filtered by line scanning and the background edge is suppressed. Then, after image threshold segmentation, the suspicious targets are extracted. Finally, the emulation experimental result is gained by programming and hardware debugging on the DAM6416P platform. And the result shows that the dim targets detection algorithm achieves a high availability and reliability in dim targets detection.At present, these researches in this paper achieves anticipative objects, and are the basis of developing the high performance targets extraction system in the future.Key words: dim targets DQS algorithm line scanningthreshold segmentation独创性声明本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(a)为原图,(b)为傅立叶变换的幅值图,(c)为直方图。原图是从 录像带上采集的,估计是在录像或放像时引入了强烈的色噪声,体现在 图像上是强烈的网纹。从(b)上可以看到网纹在图像中是强烈的高频 成分。从(c)上可以看到,灰度的整体分布也近似于正态分布的形状 ,但形成了明显的双峰。
1.2 红外弱小目标和背景特性分析
X方向位置
260 240 220 200 180 160 140
0
(c)直方图
20 40 60 80 100 120
Y 方 向位 置
(d)为目标所在水平方向的灰 度分布
(e)为目标所在垂直方向的灰
度分布
红外弱小目标图像2
灰 度值 灰 度值
(a)原图
(b)目标所在 位置的局部
180
放大图
160
140
120
100
80
60
40
20 0
20 40 60 80 100 120
X方向位0 160 140 120 100
80 60 40 20
0 0
20 40 60 80 100 120 140
Y方向位置
(e)为目标所在垂直方向的灰
度分布
2.基于局域背景预测的红外弱小目标检测方法
1.1.1 约翰逊噪声
• 约翰逊噪声也叫热噪声,它是由于在红外探测器 等阻性材料中电子的热运动所引起的。
• 约翰逊噪声电流的分布:
P i
(2
i ) e 2 1/ 2 (i 2 / 2iJN2 )
JN
其中:P i 为探测器电流的概率分布。
i为探测器电流。
iJN 2为约翰逊噪声电流的均方值。
约翰逊噪声电流的概率分布
1.1.5 1/f噪声
• 1/f噪声是红外探测器低频部分的一种电流噪声。 顾名思义,1/f噪声与频率成反比。
• 1/f噪声和产生-复合噪声都来自表面势垒层。 HgCdTe红外探测器的这一噪声只表现在低频部分 ,当频率高于一定频率f0(转折频率)时,与其 它噪声相比可忽略不计。
1.1.6 色噪声
• 有时候系统在电路系统或视频处理的其它环节有可能引入 强噪声,这种噪声一般为色噪声。
对由电荷载流子的密度变化而引起的噪声进行分 析必须考虑以下几个方面:
• 入射光子轰击探测器的速率。 • 由入射光子引起的、电子产生的量子效率η。 • 所产生电子的存在周期。
1.1.4 光子噪声
• 在前面的散粒噪声和产生-复合噪声讨论中,都假 设了入射光子的能量是常数。然而,在探测器中 入射光子的强度可能是波动的,这样就带来了光 子噪声,由光子噪声所引起的电流波动将会在的 探测器的输出中发现。
• 2.1 背景预测的基本模型 • 2.2 基本背景预测算法 • 2.3 最佳权重背景预测算法 • 2.4 最大化背景模型和最相似背景模型 • 2.5目标像素的聚类合并方法
2.1 背景预测的基本模型
目标的信噪比和 对比度较大,背 景单一,噪声较 小
目标的对比度较 小,背景为空中 云背景,但背景 起伏较小,噪声 也较小
最基本的背景预测模型为:
Y (m, n) Wj (l, k)X 0 (m l, n k) l,k S j
• 小目标标准: • 一是,在图像中目标的几何尺寸小到无法提取任
何形状信息,只是一个亮点或亮斑; • 二是在图像上的几何尺寸在6×6(或总象素不超
过30个)以下。
红外弱小目标图像1
灰 度值
灰 度值
(a)原图
260 240
(b)目标所在 位置的局部 放大图
220
200
180
160
140 0
20 40 60 80 100 120
局域背景预测方法
• 图像中的任何一个像素点,如果是属于背景中的 点,那么它的灰度值一定可以用周围区域的象素 点的灰度值来预测,也就是说, 它跟周围的某些 点是属于同一背景的,或者说,它的灰度值与周 围象素点的灰度值相关性较强。而对于属于目标 上的象素点,它的灰度值与周围象素点的灰度值 相关性较差,在图像局部会形成一个或几个“异 常点”。利用这样的差异来分离目标与背景是背 景预测方法的出发点。
图像中存在两 个目标,属于 多目标的情况, 背景较为单一, 噪声较小
背景为空背景, 起伏较为强烈, 图像中有明显的 扫描线噪声
目标在云背景中, 目标局部对比度相 对较低。
背景复杂,为地 面背景
图像中存在强 烈的噪声,目 标的信噪比和 对比度都较低, 该噪声可能是 由探测器或电 路系统带来的
在背景中存在 其它的人造干 扰物体
分为:入射光子激发出的散粒噪声 热激发产生的散粒噪声
1.1.3 产生-复合噪声
• 产生-复合噪声存在于光导型探测器中。光导 型探测器的基本原理是当入射光子的达到一定能 量时,会引起电荷载流子从一个能量级跃迁到另 一个能量级。结果,所造成的电子、空穴就改变 了材料的电导率,探测器的电导率是与电荷载流 子的空间密度成比例的,因此空穴和电子数量的 波动会导致电导率的波动。在恒定电压的条件下 就可以引起探测器输出电流的波动,这样就带来 了产生-复合噪声。
红外弱小目标检测
1.红外目标、背景和噪声分析 2.基于局域背景预测的红外弱小目标检测方法 3.红外序列图像中的弱小目标检测 4.红外弱小目标的检测性能分析
1.1噪声分析
噪声从广义上讲,是不需要的信号成份,也就是不希望得 到的信号成份。 *约翰逊噪声 *散粒噪声 *产生-复合噪声 *光子噪声 *1/f噪声 *色噪声
1.1.2 散粒噪声
• 散粒噪声是由于光电子的离散性所带来的。散粒 噪声只会发生在光电探测器(photovoltaic)中。
• 因为光电真空二极管探测器和光电二极管探测 器的电子产生都需要克服一个能量阻力,这样就 说明了两种探测器散粒噪声的产生具有相同的过 程,因此下面将只讨论光电真空二极管探测器的 散粒噪生。
• 光子噪声的特性是近似与散粒噪声和产生-复合噪 声相同的。
4 光子噪声
• 由入射光子能量W的改变所激发出的电子数量K 的概率密度函数如下:
P(K ) 0P(K,W , )P(W )dW
• 其中P(W)是入射光子能量的概率密度函数。应 该注意到,尽管前面讨论的散粒噪声和产生-复 合噪声展现出P(K,W,τ)服从泊松分布(在极限情 况下服从高斯分布),但在一般情况下上述分布 并不服从泊松分布或高斯分布。
相关文档
最新文档