微积分第一章的.ppt

合集下载

《大学文科数学》PPT课件

《大学文科数学》PPT课件
第一章 微积分
1.3 导数与微分
1
编辑ppt
1.3 导数与微分
主要教学内容: ➢ 导数与微分的概念,计算 ➢ 高阶导数 ➢ 隐函数的导数与微分 ➢ 分段函数的导数 ➢ 经济学函数的弹性 ➢ 用微分作近似计算 ➢ 二元函数的导数与微分
2
编辑ppt
1.3 导数与微分
导数的概念
1.曲线的切线斜率
导数是局部(点)概念,导函数是整体(定义域内)概念(本质上是点 的概念) 。但是“导函数”往往又简称为“导数”。
13
编辑ppt
1.3 导数与微分
例1.3.4 y = sinx的导数是(sinx)′= cosx, y =cosx 的导数是(cosx)′= − sinx .

同理可证, (cosx)′= − sinx .
(或可微),该极限称为函数y=f(x)在x0 点关于自变量x
的导数(或微商).记作
.因Δx =x−x0, x=
x0+Δx,故还有
“函数的平均变化率”是整体(区间)概念;“函数的变化率”是局部(点)概念。
7
编辑ppt
1.3 导数与微分
此时,曲线y =f(x) 在点(x0,f (x0) )的切线方程是
例1.3.2 设n是正整数,求幂函数y=xn在点x处的 导数.
解.因
特别,当n=1时,函数y=x在任意点x处的导数均
为1.
11
编辑ppt
1.3 导数与微分
例1.3.3 求曲线y=x3在点(2,8)处的切线方
程.
解.在上例中取n =3 可知函数y= x3 在点 x 处的导数为3x2,于是在点(2,8)处的切 线斜率是:y′(2)=3⋅22 =12,故曲线y=x3

《微积分(第四版)》第一章 函数

《微积分(第四版)》第一章 函数

分配律: A ( B C ) ( A B ) ( A C ) A ( B C ) ( A B ) ( A C )
对偶律: ABA B
A BAB
.
17
例1 证明对偶律 ABA B.
证明 设xAB,则xAB,
即 x A 且 x B , 于 是 x A 且 x B ,
因 此xA B,所 以 A B A B;
xA B
所 以 A BA B。
.
19
例2 证明 ABA B.
U
证明 对 任 意 的 x A B
A
x A 且 x B B
x A 且 x B
xA B
所 以 A BA B 。
.
20
例3 证明吸收律 A (AB )A.
证明 A(A B) (A U ) (A B ) A(UB) A U
A.
反 之 , 若 x A B, 即 xA且 xB, 也 即 x A 且 x B , 于 是 x A B,
从 而xAB,所 以 A B A B。
综 上 所 述 , A B A B 。
.
18
例1 证明对偶律 ABA B.
或证 对 任 意 的 xAB
xAB x A 且 x B
x A 且 x B
1、并集 A B {x |x A 或 x B }
U
A
B
例如,A{1,2,3}, B{3,4,5}, 则 A B {1 ,2 ,3 ,4 ,5 }
基本性质: A A B ,B A B
A A ,A U U ,A A A
.
13
2、交集 A B {x |x A 且 x B }
.
4
第一章 函 数
.
5
第一节 集合

《微积分》(上下册) 教学课件 01.第1章 函数、极限、连续 高等数学第一章第9-10节

《微积分》(上下册) 教学课件 01.第1章 函数、极限、连续 高等数学第一章第9-10节
12
定义 2 设函数 f ( x)在U(x0, )内有定义,如果
y
lim f (x) f (x ),
x x0
0
y f (x)
称函数 f ( x)在点 x 连续. 0
如 f ( x) x2,
0
x0
x
lim f ( x) lim x2 4 f (2),
x2
x2
f ( x) x2在x 2点连续.
说明 y f (x)在x x0点连续 下列三条同时成立 (1) f (x0)有定义;
(2) lim f (x)存在; xx0
(3)lim x x0
f
(x)
f (x0 ).
13
例1
试证函数
f
ห้องสมุดไป่ตู้
(
x)
x
sin1 x
,
0,
处连续.
证 lim x sin 1 0,
x0
x
又 f (0) 0, lim f ( x) f (0), x0
3、反函数函数的连续性
严格单调的连续函数必有严格单调的连续反函数. 例如, y sin x在[ , ]上单调增加且连续,
22 故 y arcsinx 在[1,1]上也是单调增加且连续.
同理 y arccosx 在[1,1]上单调减少且连续;
y arctanx, y arccot x 在(,)上单调且连续.
§1.9 无穷小量的比较与等价代换
例如, 当x 0时, x, x2,sin x, x2 sin 1 都是无穷小.
x2
lim 0,

x0 x
x x2比x要快得多;
察 各 极 限
lim sin x x0 x

教学课件微积分第三版

教学课件微积分第三版
称函数值f(x0)为函数f(x)在区间I上的最大值,
点x0为函数f(x)在区间I上的最大值点;若恒有
f(x0)≤f(x),则称函数值f(x0)为函数f(x)在区
间I上的最小值,点x0为函数f(x)在区间I上的最
小值点.
第一章 函数与极限
1.2 几何与经济方面函数关系式
1.几何方面函数关系式
(1)矩形面积S等于长x与宽u的积,即
又已知生产xkg产品的总成本为
1
C=C(x)=9x2+6x+100
所以每日产品全部销售后获得的总利润
1
1
L=L(x)=R(x)-C(x)= − 3 2 + 46x - 9 2 + 6x + 100
4
=- x2+40x-100(元)
9
1
由于产量x>0;又由于销售价格p>0,即46-3x>0,得到0<x<138,因而函数定
1.5 未定式极限
2.第二种基本情况
已知函数R(x)与S(x)中至少有一个含二次根式,当x→x0(有限值)时,
() 0
若R(x)→0且S(x)→0,则无理分式极限 lim
为 型未定式极限.
→0 () 0
解法:分子R(x)、分母S(x)同乘以它们的有理化因式,并注意到在
x→x0的过程中,恒有x-x0≠0,因而约去使得分子、分母同趋于零的
义域为0<x<138.
第一章 函数与极限
1.3 极限的概念与基本运算法则
定义1.8 已知数列
y1,y2,y3,y4,…,yn,…
当n→∞时,若一般项yn无限接近于常数A,则称当n→∞时数列yn的极
限为A,记作

微积分ppt讲课文档

微积分ppt讲课文档
数学中的每一个定理,不论验证了多少实例,只有当 它在逻辑上被严格证明时,才能在数学中
第四页,共66页。
成立. 在数学中要证明一个定理,必须是从条件和 已有的数学公式出发,用严谨的逻辑推理方法导出 结论.
(3)广泛的应用性
高等数学具有广泛的应用性. 例如,掌握了导数 概念及其运算法则,就可以用它来刻画和计算曲线的 切线斜率、曲线的曲率等等几何量;就可以用它来刻 画和计算速度、加速度、密度等等物理量;就可以用 它来刻画和计算产品产量的增长率、成本的下降率等 等经济量;……
③ 对应法则f , 使对 xX,有唯一确定的
yf(x)与之对应. (2) 对 xX,元素 x 的像y是唯一的; 而对 yRf ,元素 y 的原像不一定是唯一的; 映射 f 的值域 R f 是Y 的一个子集, 即Rf Y, 不一定 Rf Y.
第二十七页,共66页。
2. 几类重要映射 设映射 f : X Y. 若Rf Y,即Y 中任一元素y 都是X中某
第八页,共66页。
同学们要注意抓好学习的六个环节
高等数学这门课是同学们进入大学后的一门最 重要的基础课. 由于在教学方法上、在对学生能力 的培养目标上与中学时有很大的不同,因此,同学 们在一开始可能会感到有些不适应. 为了尽快适应 新的学习环境,要注意抓好以下六个学习环节.
(1)预习 为了提高听课效果,每次上课前应对教师要讲的
一个法则f , 使得对 xX,通过f , 在Y中有唯一
确定的元素 y 与之对应, 则称f 为 从 X 到 Y 的映
射 (或算子), 记作
f : XY,
并称y为x(在映射f下)的 像, 并记作 f (x), 即
yf(x), x称为y的 原像.
第二十五页,共66页。

微积分第一章

微积分第一章

高等数学教案、第一章 函数、极限与与连续本章将在分别研究数列的极限与函数的极限的基础上,讨论极限的一些重要性质以及运算法则,函数的连续性,闭区间上连续函数的性质。

具体的要求如下:1. 理解极限的概念(理解极限的描述性定义,对极限的N -ε、δε-定义可在学习过程中逐步加深理解,对于给出ε求N 或δ不作过高要求)。

2. 掌握极限四则运算法则。

3. 了解极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限。

4. 了解无穷小、无穷大及无穷小的阶的概念.能够正确运用等价无穷小求极限。

5。

理解函数在一点连续的概念,理解区间内(上)连续函数的概念。

6. 了解间断点的概念,会求函数的间断点并判别间断点的类型。

7. 了解初等函数的连续性和闭区间上连续函数的性质(最大、最小值定理、零点定理、介值定理)。

第一章共12学时,课时安排如下绪论 §1.1、函数 §1.2初等函数 2课时 §1。

4数列极限及其运算法则 2课时 §1.4函数极限及其运算法则 2课时 §1。

4两个重要极限 无穷小与无穷大 2课时 §1.4函数的连续性 2课时 第一章 习题课 2课时绪论数学:数学是研究空间形式和数量关系的一门学科,数学是研究抽象结构及其规律、特性的学科.数学具有高度的抽象性、严密的逻辑性和应用的广泛性。

关于数学应用和关于微积分的评价:恩格斯:在一切理论成就中,未必再有像17世纪下叶微积分的微积分的发现那样被看作人类精神的最高胜利了。

如果在某个地方我们看到人类精神的纯粹的和唯一的功绩,那就正是这里.华罗庚:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之迷,日用之繁,无处不用数学。

张顺燕:微积分是人类的伟大结晶,它给出了一整套科学方法,开创了科学的新纪元,并因此加强和加深了数学的作用。

……有了微积分,人类才有能力把握运动和过程;有了微积分,就有了工业革命,有了大工业生产,也就有了现代的社会。

经济数学基础微积分第一篇第一章--函数

经济数学基础微积分第一篇第一章--函数
关键是对函数f 记 x的号理解 : (1)f x0表示函f数 x在xx0处的值 ;
(2)自变量可以取一, 个还 数可 值以取 一个表达式。
例 31: . 给定 fx 函 x2数 x2,试计 f0,f(x2),f1x.
解: f(0)02022
f(x 2 ) (x 2 )2 (x 2 ) 2 x 4 x 2 2
给定 r2, 就有 S4;
给定 r3, 就有 S9;
例 y 如 fx x 2 : x 1
给定 x1, 就y有 f11;
给定 x1, 就y 有 f1 3 ;
【注y 意 f】 x
二. 求定义域
函数的定义域:是使函数有意义的 自变量x取值的全体。 也就是自变 量x允 许取值的范围。
确定函数定义域的三条基本要求: (1) 分式的分母不能为零。即若 y 1
【公 ln x式 kkln 】 x, lo : ax g kkloax g
【解】 1 fx lx n 2 2 lx n(x 0 ) g x 2 ln x(x 0 )
表达式不同,定义域不同 所以它们是不同的函数。
2 fx lx n 3 3 lx n ( x 0 )
g x 3 ln x(x 0 )
-3 -2
2
x
【练习1】
求函 f(x数 )lo2g (x1)
1 的定.义 x21
【解】 要使f(x) 有意义,必须有
x 1 0
x
2
1
0
xx11x10
xx
1 1

x
1
即: x1
公共部分
写成区间 (1, : )
【练习2】
求函f(x数 ) 1 3x的定.义 lnx(3)
【解】 要使f(x) 有意义,必须有

微积分(第一章)

微积分(第一章)

f ( x) g ( x) h( x)
函数的积 f g : ( f g )(x) f ( x) g ( x), x D f f f ( x) , x D, g ( x) 0 函数的商 : ( )(x) g g ( x) g 例 设函数 f ( x) 的定义域为 (l , l ),证明必存在 (l , l ) 上的偶函数 g ( x) 和奇函数 h( x) ,使得
构成了 R f 到 X 上的一个映射,称为 f 的逆映射,记为 f 1 1 其定义域为 D ,值域为 R Rf X 。 f f
1
第一章 函数
§2 映射与函数
设有如下两个映射
g : X U1 , x u g ( x) f : U 2 Y , u y f (u)


g f f g ( ,称 f g )(x) f [ g ( x)] 对复合函数 为中间变量,其中
为自变量。 f g
u g ( x)
x Df g
第一章 函数
§3 复合函数与反函数
初等函数
把函数 F ( x) 3arcsin 分成几个简单函数的复合。 例2
例1
1 x 2
则称 f 为单射 ,如果映射 f 满足 R f Y ,则称 f 为满 射;如果映射 f 既是单射,又是满射,则称 f 为双射(又 称一一对应)。
第一章 函数
§2 映射与函数
二 、 逆映射与复合映射
设 f : A B 是单射,对应关系 g : R f X y x( f ( x) y )
和 F ( x) lg sin tan x
设有函数 y f (u) u 和 u ( x) a x , 考察 a 1 , a 1 时 y f [ ( x)] 是否为复合函数。

微积分课件-经管类(吴赣昌 中国人民大学)第一章第一节 函数

微积分课件-经管类(吴赣昌 中国人民大学)第一章第一节  函数

例7 设函数f(x)是周期为T的周期函数,试求函数f(ax+b) 的周期,其中a,b常数,且a>0。
解:
T f (ax b ) f (ax b T ) f a (x ) b a
所以函数f(ax+b)的周期为T/a
五、数学建模——函数关系的建立
1.依题意建立函数关系
例5 证明函数y
x
1x
在( 1, )上是单调增加函数。
3. 奇偶性
设函数 y = f (x) 的定义域 Df 关于坐标原点对称, 若x
Df , 有f (x ) = f ( x ) 成立, 则称 f ( x ) 为偶函数; x Df ,
有f (x ) = f ( x ) 成立, 则称 f ( x ) 为奇函数; 奇函数的图形关于坐标原点对称, 偶函数的图形关于 y 轴对称. 在关于坐标原点对称的区间 I 内: 两个偶 (奇) 函数之和仍是一偶 (奇) 函数. 两个偶 (奇) 函数之积均为一个偶函数.
实数的连续性:实数点能铺满整个数轴,而不会留下任何空隙,即实数与 数轴上的点成一一对应关系。
常用数集: N 表示全体正整数的集合;Z 表示全体整数的集合; Q 表示全体有理数的集合;R 表示全体实数的集合; C 表示全体复数的集合..
(1)有限区间
(2)无限区间
[a , ) x a x ;[ , b ) x x b .
y O M y
x
m O
x
有上界 在区间 I 上:
有下界
f (x)有界 f (:
2
x x 1
2
在( , )上是有界的。
x 1 2 x ,
1 f (x ) 2 x 1 2

微积分1 函数概念

微积分1 函数概念
《微积分》(第三版) 教学课件
首页 上一页 下一页 结束
第一章 函 数
一、函数概念
二、函数的几种简单性质
三、初等函数
《微积分》(第三版) 教学课件
首页
上一页
下一页
ห้องสมุดไป่ตู้
结束
一、函数概念
(一)函数的定义
(二)定义域的确定 (三)函数的分类 (四)分段函数 (五)反函数
《微积分》(第三版) 教学课件
首页
上一页
设某种商品销售总收益为y销售量为x单价为a售总收益是x的函数yax反之对每一个给定的销售总收益y可由yax确定出销售量x首页上一页下一页结束微积分第三版教学课件五反函数1定义114反函数设函数yfx的定义域为d值域为z如果对于每个yz存在唯一是一个定义在z上的函数记为称为yfxxd的反函数函数yfx与函数xfy互为反函数2矫形由于习惯上自变量用表示因变量用表示将互换得到矫形反函数注
(五)反函数
引例:设某种商品销售总收益为y 销售量为x 单价为a 则销 售总收益是x的函数 yax 反之 对每一个给定的销售总收益y 可由yax确定出销售量x y x a 此时,销售量 x是销售收益 y的函数 我们称上述两个函数互为反函数
《微积分》(第三版) 教学课件
《微积分》(第三版) 教学课件
首页
上一页
下一页
结束
(三)函数的分类
根据对应规则的表现形式,我们把函数分类如下:

表格法:对应规则由表格表示
图示法:对应规则由图像表示
解析法:对应规则由解析式表示
解析式 函数

显函数: 若y=f(x),称为显函数. 隐函数: 若y由方程F(x,y)=0确定,称y是x的隐函数. 参数方程: 若x、y通过第三个变量联系 x=h(t),

《微积分(应用型)》教学课件 第一章

《微积分(应用型)》教学课件 第一章
定义1. 1. 3 设 y 是 u的函数 y = f ( u ),而 u 又是 x的函数 u = φ ( x ),且 φ ( x ) 的值域与y = f ( u )的定义域的交集非空,那么, y 通过中间变量 u 成为 x的函数, 我们把这个函数称为是由函数 y = f ( u )与 u = φ ( x )复合而成的复合函数,记作 y = f [ φ ( x )].
1. 2. 2 函数的极限

(1)函数的图形如图
1-5
所示.从图形可知,当
x
时,y
1
1 x2
1;当
x
时,
y
1
1 x2
1.因此,当
|
x
|
无限增大时,函数
y
1
1 x2
无限地接近于常数
1,即
lxim
1
1 x2
1.
(2)函数的图形如图 1-6 所示.从图形可知,当 x 时, y 3x ;当 x
1. 1 初等函数回顾
【本节导引】
某软件公司开发出一种图书管理软件,前期投入的 研发及广告宣传费用为100000元,且 每售出一套软件, 软件公司还需支付安装调试费用300元.设总费用为 y 元,销售套数为 x 套, 请列出 y 与 x 之间的函数关系式.
1. 1. 1 函数的概念
定义1. 1. 1 设 x 和 y 是两个变量, D 是一个给定的数集,如果对于每个 x ∈D ,变量 y 按 照确定的法则总有唯一的数值与其对应,则称 y 是 x的函数,记作 y = f ( x ).
(1)对于分式函数,规定:分母不能为零,例如, y = x -1/ x +1, x ≠-1; (2)对于偶次根号下的变量,规定:不能小于零,例如, y = x -1, x ≥1; (3)对于对数函数 y =log ax ,规定:底数 a >0且 a ≠1,真数 x >0; (4)对于正切函数 y =t an x ,规定: x ≠ k π+π /2, k ∈Z; (5)对于余切函数 y =c o t x ,规定: x ≠ k π, k ∈Z; (6)对于反正弦函数 y =a r c s i n x 和反余弦函数 y =a r c c o s x ,规定:-1≤ x≤1.

经济数学基础--微积分第一章

经济数学基础--微积分第一章

解 u , v 分别是中间变量,故 y u2 tan 2v tan 2x2 .
经济应用数学基础——微积分
第一章 第二节 第 12 页
极 限 的 概 念
极限的概念
• 1.2.1 数列的极限 • 1.2.2 函数的极限
经济应用数学基础——微积分
第一章 第二节


1 数列的极限
的 概

先给出数列的定义:在某一对应规则下,当 n(n N ) 依次取 1, 2, 3, , n, 时,对应的实
函数的自变量 x 是指 x 的绝对值无限增大,它包含以下两种情况: (1) x 取正值,无限增大,记作 x ; (2) x 取负值,它的绝对值无限增大(即 x 无限减小),记作 x .
定义1.2.3 : 如果当 x 无限增大(即 x )时,函数 f (x) 无限趋近于一个确定
的常数 A ,那么就称 f (x) 当 x 时存在极限 A ,称数 A为当 x 时函数 f (x) 的极限,
径.在上述领域中除去领域的中心点 a
称为点 a
的去心
领域,记为
0
U(a,
),
0
即 U(a,) x 0 x a , 如右图所示.
第 19 页
经济应用数学基础——微积分
第一章 第二节 极 限 的 概 念
注意:
在定义中,“设函数 f (x) 在点 x0 的某个去心领域内有定义”反映我们关心的 是函数 f (x) 在点 x0 附近的变化趋势,而不是 f (x) 在 x0 这一孤立点的情况.在定义 极限lim f (x) 时, f (x) 有没有极限,与f (x) 在点 x0 是否有定义并无关系.
例1.1.3 求函数 y 4x 1 的反函数. 解 由v 4x 1 ,可解得 x y 14 . 交换 x 和 y 的次序,得 y 14(x 1) ,

高等数学微积分教学ppt(2)

高等数学微积分教学ppt(2)
2、自变量趋于无穷大时函数的极限
本节内容 :
二、函数的极限
1、自变量趋于有限值时函数的极限
1).
时函数极限的定义
引例. 测量正方形面积.
面积为A )
边长为
(真值:
边长
面积
直接观测值
间接观测值
任给精度 ,
要求
确定直接观测值精度 :
定义1 . 设函数
在点
的某去心邻域内有定义 ,

时, 有
1.幂函数
2.指数函数
3.对数函数
4.三角函数
正弦函数
余弦函数
正切函数
余切函数
正割函数
余割函数
5.反三角函数
幂函数,指数函数,对数函数,三角函数和反三角函数统称为基本初等函数.
四. 初等函数
由常数及基本初等函数
否则称为非初等函数 .
例如 ,
并可用一个式子表示的函数 ,
例6. 求
解:
利用定理 4 可知
说明 : y = 0 是
的渐近线 .
内容小结
1). 无穷小与无穷大的定义
2). 无穷小与函数极限的关系
Th1
3). 无穷小与无穷大的关系
Th3
4). 无穷小的运算法则
Th4
Th5
二、 函数的间断点
一、 函数连续性的定义
函数的连续性与间断点
第一章
可见 , 函数
分析基础
函数
极限
连续
— 研究对象
— 研究方法
— 研究桥梁
函数、极限与连续
第一章
二、函数
一、集合
第一节
函数
元素 a 属于集合 M , 记作

高等数学(微积分学)教学课件

高等数学(微积分学)教学课件

三、两个重要极限
重要极限Ⅰ lim sin x 1 x0 x
它可以拓展为 lim sin[ f (x)] 1 f (x)0 f (x)
sin 2x
例:lim x 2x
1
1 cos x
lim
x0
x2
lim
x0
2 sin 2 x 2
4 x2 4
lim
1
sin
x 2
x0 2 x
2
2
1 2
判断:lim sin x 1
叫做因变量.
数集 D 称为这个函数的定义域.
全体函数值的集合称为函数的值域.
2. 函数的表示法
解析法(公式法):用解析表达式(或公式)表示函数关系.
y x 1
表格法:用列表的方法来表示函数关系.
x123456789 y 1 4 9 16 25 36 49 64 81
图示法:用平面直角坐标系 xoy 上的曲线来表示函数关系.
x
x
1 0
x
x
1
1
1 lim( x0 1
x
)
1 x
x
lim
x0
(1 (1
x) x
1
x) x
lim x0
(1 x) x
1 (1)
[1 (x)] x
e e1
e2
一类特殊极限
若f
(x)
a0 xm a1xm1 a2 xm2 b0 xn b1xn1 b2 xn2
am1x am bn1x bn
x 果对于定义区间的任意点 , 恒有 f (x) f (x) , 则称f (x)
为 D 内的偶函数;如果恒有 f (x) f (x) , 则称 f (x)为D

高数微积分第一章

高数微积分第一章

U (a, ) { x a x a }.


a
a
a
x
点a的去心的邻域, 记作U 0 (a, ).
U 0 (a, ) { x 0 x a }.
a的右邻域U (a, ) { x | 0 x a };
a的左邻域U (a, ) { x | x a 0}.
x
o
x
在自变量的不同变化范围中,对应法则用不同 的式子来表示的函数,称为分段函数。
例如, 2 x 1, x 0 f ( x) 2 x 1, x 0
y x2 1
y 2x 1
1, 0 x 1 例5:设f ( x ) , 求函数 f ( x 3)的定义域. 2, 1 x 2
(3) 狄利克雷函数
1 当x是有理数时 y D( x ) 0 当x是无理数时
y
1
• o 无理数点 有理数点
x
(4) 取最值函数
y max{f ( x ), g( x )}
y
f ( x) g( x )
y min{f ( x ), g( x )}
y
f ( x) g( x )
o
例4:求函数y log ( x 1) (16 x 2 )的定义域.
解:16 x 2 0,
x 1 0, x 1 1,
x 4 x 1 x 2
1 x 2及2 x 4,
即定义域为 1,2) (2,4). (
2、函数表示法 解析法(公式法),表格法,图示法 3、几个特殊函数 (1) 符号函数
A
AB
B
(4)并集:A B x | x A或x B 。

第一章 基础概念与练习 (《微积分》PPT课件)

第一章  基础概念与练习 (《微积分》PPT课件)
A={3,4,5},B={1,3,6},那么 AC BC _____
5. 下列给出的四个集合中,表示空集的是( )
A {0}
B {(x,y)|y2 =-x2 , x∈R,y∈R}
C {x|2x2+3x+2=0, x∈N}
D {x| sinx+cosx = 2 , x∈R}
6. 设全集I为R,函数f(x) = sinx , g(x) = cosx , M = {x | f(x) = 0}, N = {x | g(x) = 0}, 则:集合 {x | f(x) g(x) ≠ 0} =( )
y
f (x)
g( x)
x o
y min{ f ( x), g( x)}
y
f (x)
g( x)
x o
在自变量的不同变化范围中, 对应法则用不同的 式子来表示的函数,称为分段函数.
例如,
2x 1,
f
(
x)
x
2
1,
x0 x0
y x2 1
y 2x 1
例1
解 当 x 800时,y 0
当800 x 1300时, y 0.05(x 800) 0.05x 40
4. 余集: 研究某一问题时所考虑的对象的全体 称为全集,用 I 表示;把差集 I \ A 特别称为余 集或补集,记作Ac .
5. 运算规律:
①交换律: A B B A , A B B A ; ②结合律: A (B C ) ( A B) C
A(B C) (A B)C ③分配律: A (B C ) ( A B) ( A C )
f 1 :B A x y arccos x
2.复合映射:
g :X U1 x u g(x)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sinx为奇函数,cosx为偶函数,它们都是周期为
2π的周期函数,定义域都为(-∞,+∞),值域为[-
1,+1].
y tan x sin x cos x
y cot x cos x sin x
(正切函数) (余切函数)
tan x 与cot x 都是奇函数、周期为π周期函
数,定义域分别为: tan x 定义域为{x|x∈R, x kπ π ,k为整数} 2 cot x定义域为{x|x∈R,x≠kπ ,k为整数}
y sec x 1 cos x
y csc x 1 sin x
(正割函数) (余割函数)
(六)、反三角函数
1、反正弦函数:y= arcsin x 将y=sin x在 [ π , π ] 上的反函数定义为反正弦函
22 数 , 记 为 y=arcsin x, 其 定 义 域 为 [ - 1,1], 值 域
22 记 为 y=arctan x, 其 定 义 域 为 ( - ∞ ,+∞), 值 域
为( π , π ). 22
4、反余切函数 : y=arccot x 将y=cot x 在(0,π)内反函数定义为反余切函数,记 为y=arccot x,其定义域为(-∞,+∞),值域为(0,π) .
二、常用的三角函数公式
第二节、基本初等函数的图象及其基本特征
(一)、常量函数:y=C(C为常数) 常量函数的图形是一条与x轴平行的直线.
(二)、幂函数: y x (是常数)
1、常见的几个幂函数的图形:
2、幂函数与分式、根式有如下关系:
幂函数表示 分式表示 根式表示
1
x
m n
(m,
n为正整数)
m
xn
m
x n (m, n为正整数)
是常数
在指数函数 y ax 中,底是常数 a ,指数
为自变量
(四)、 对数函数:y=loga x (a为常数,a>0且a≠0)
1、对数函数的定义域为(0,+∞),值域为(-∞,+∞).
2、0<a<1时,对数函数loga x是单调减少函数; a>1时,对数函数logax是单调增加函数.
3、对数函数 y loga x 和指数函数 y ax 互为反函数,它们的图象关于 y x 对称。
2、cos 2 cos2 sin2 2cos2 1
3、sin2 1 cos 2
2
1 2sin 2
4、cos2 1 cos 2
2
(三)、积化和差 sin cos 1 [sin( ) sin( )]
2 cos cos 1 [cos( ) cos( )]
2
sin sin 1 [cos( ) cos( )]
2
(四)、特殊三角函数值表:
0
6
4
3
2
sin 0
1
2
3
1
2
2
2
cos 1
3
2
1
0
2
2
2
tan 0
3
1
3
3
cot
1 3
3
0
3
3
2
2
0
1
0
1
0
1
0
0
0
4、(1)以10为底的对数函数记为y=lg x,
称为常用对数函数;
(2)以e为底的对数函数记为y=ln x,
称为自然对数函数. (注:e 2.7182818 )
(3)下面是两个常用的恒等式:
logaxln lnFra bibliotekx a
(换底公式)
a x exln a
(五)、三角函数 y=sin x (正弦函数) y=cos x (余弦函数)
1
n xm
n xm
例如:幂函数转换成分式、根式:
2
x3 3 x2 ,
x2
1 x2
(三)、指数函数: y=ax ( a为常数,a>0且a≠1) 1、指数函数的定义域为(-∞,+∞),值域为(0,+∞).
2、0<a<1时,y=ax为单调减少函数; a>0时,y=ax为单调增加函数.
3、指数函数与幂函数的区别: 在幂函数 y x 中,底数为自变量,指数
为[ π , π ]. 22
2、反余弦函数: y=arccos x 将y=cosx在 [0, π] 的反函数定义为反余弦函数,记 为y=arccosx,其定义域为[-1,1],值域为 [0, π].
3、反正切函数: y=arctan x 将y=tan x在( π , π )内的反函数定义为反正切函数,
(一)、同角三角函数关系公式:
1、
tan
sin cos

cot
cos s in
2、 csc 1 , sec 1 , cot 1
sin
cos
tan
3、 sin2 cos2 1, 1 tan2 sec2 , 1 cot2 csc2
(二)、倍角公式的几种表示形式:
1、sin 2 2sin cos
相关文档
最新文档