纯电动汽车电机及控制器
汽车电动汽车用电机及控制器布置规范
电动汽车用电机及控制器布置规范1范围本蟒准规定了电动汽车用电机及控制器(以下荷称电机及控制器)及其相关附件的布置形式和布置原则°本标准适应于本公司生产的混合动力、纯电动等所有新能源车型.2规范性引用文件下列文件对于本文件的应用是必不“少的。
凡是注日期的引用文件,仪所注日期的版本适用于本文件。
凡是不注日期的引用文件,其量新版本(包括所有的修改单)适用于本文件。
Q/OC JT108-2008整车二维数模装配间隙设计3术语和定义Q/OC TU08—2008界定的术语和定义适用于本标?(L4布置形式4-1分类电机及控制器布置可简单分为前丘、后置,控制器一般布置在电机正上方。
4.2纯电动汽车本公司研发的纯电动汽车的电机布置一段为前置,其布置形式如下二a)纯电动汽车电机前过,电机与减速器同轴布:a,与整车ZX平面垂直,如图1所示:b)貌电动汽车控制器前置.为了接线方便和缩近堆束长度,控制群布置在电机接战盒位置的正上•方与整车ZX平面垂直,如图2所示工图1前置电机布置形式I图2前亘控翻器布克形式]<3混合动力汽车混合动力汽车的电机布置M以前置也可以后置,其布置形式如下,El)混合动力汽车电机前置,电机与发动机同轴布置与整车ZX平面垂直,如图3所示:b)混合动力汽车控制楼而置,为了接线方便和筋短缓束长度,同时要避让发动机及其附件J控制器布置在电机上方与整车ZX平面垂直,如图4所示Fc)混合动力汽车电机及控制器后置,为了实现四强功能,发动机前置,电驱动桥后:B・电机及控制器后置,电机与旗速器同轴布丘修整车ZX平面垂直.图3前五电机布适形式n图4前置控制赤布置形式II图5后置电机布置形式对于电机、控制器及其附件的布置,底保证工作川配J井能灌足整车布置的需要和整车性能的发挥;应保证机舱与发动机、变速器,底盘之间布置和设计的合理也电机及控制器的通风散热.诏音隔热良好,与其他零部件最小间隙合理、拆卸方便F同时还要保证安装T艺性、有足热的刚度和强度.一般从以下几个方面进行布置考出r动、除占间隙要求工装配工艺性要求;雄脩方便性等要求:。
汇川纯电动五合一控制器()课件
物流车
适用于城市物流配送,满 足快递、餐饮等行业的短 途运输需求。
02
控制器工作原理
工作原理概述
汇川纯电动五合一控制器是电动 汽车的核心部件,负责控制车辆 的驱动系统、能源系统、辅助系
统等多个子系统。
该控制器通过采集车辆状态信息 和驾驶员操作信息,经过处理后 输出控制指令,实现对车辆各子
TH转速、电池电量、温度等,并 将数据传输给主控制器模块。
人机交互模块
负责与用户进行交互,包括显 示信息、接收用户输入等,提 供友好的人机界面。
通信模块
负责与其他设备或系统进行通 信,如与其他控制器、上位机 等设备进行数据传输和指令发
送。
05
控制器性能测试与验证
测试环境与方法
案例二:出租车应用
总结词
便捷、舒适、环保
详细描述
针对出租车行业的特点,汇川纯电动五合一控制器提供了定制化的解决方案,不仅提高了出租车的便捷性和舒适 性,还实现了环保出行,为城市的可持续发展做出了贡献。
案例三:共享单车应用
总结词
轻便、易用、节能
详细描述
在共享单车领域,汇川纯电动五合一控制器发挥了轻便、易用、节能等优势,提高了共享单车的骑行 体验和使用效率,为城市短途出行提供了更加便捷、环保的选择。
该控制器采用先进的电力电子技术和控制算法,实现了高效能、高可靠性和低成 本的电动汽车驱动解决方案。
产品特点
高集成度
汇川纯电动五合一控制器将五个核心部件集成在一个紧凑 的控制器盒中,减少了整车线束和接插件的数量,提高了 系统的可靠性和维修便利性。
安全可靠
具备过流保护、过压保护、欠压保护、过温保护等多重安 全保护功能,确保系统在各种工况下的稳定运行和可靠性 。
纯电动汽车整车控制器的构成、原理、功能说明
纯电动汽车整车控制器的构成、原理、功能说明整车控制器是电动汽车正常行驶的控制中枢,是整车控制系统的核心部件,是纯电动汽车的正常行驶、再生制动能量回收、故障诊断处理和车辆状态监视等功能的主要控制部件。
整车控制器包括硬件和软件两大组成部分,它的核心软件和程序一般由生产厂商研发,而汽车零部件供应商能够提供整车控制器硬件和底层驱动程序。
现阶段国外对纯电动汽车整车控制器的研究主要集中在以轮毂电机驱动的纯电动汽车。
对于只有一个电机的纯电动汽车通常不配备整车控制器,而是利用电机控制器进行整车控制。
国外很多大企业都能够提供成熟的整车控制器方案,如大陆、博世、德尔福等。
1整车控制器组成与原理纯电动汽车整车控制系统主要分为集中式控制和分布式控制两种方案。
集中式控制系统的基本思想是整车控制器独自完成对输入信号的采集,并根据控制策略对数据进行分析和处理,然后直接对各执行机构发出控制指令,驱动纯电动汽车的正常行驶。
集中式控制系统的优点是处理集中、响应快和成本低;缺点是电路复杂,并且不易散热。
分布式控制系统的基本思想是整车控制器采集一些驾驶员信号,同时通过CAN总线与电机控制器和电池管理系统通信,电机控制器和电池管理系统分别将各自采集的整车信号通过CAN总线传递给整车控制器。
整车控制器根据整车信息,并结合控制策略对数据进行分析和处理,电机控制器和电池管理系统收到控制指令后,根据电机和电池当前的状态信息,控制电机运转和电池放电。
分布式控制系统的优点是模块化和复杂度低;缺点是成本相对较高。
典型分布式整车控制系统示意图如下图所示,整车控制系统的顶层是整车控制器,整车控制器通过CAN总线接收电机控制器和电池管理系统的信息,并对电机控制器、电池管理系统和车载信息显示系统发送控制指令。
电机控制器和电池管理系统分别负责驱动电机和动力电池组的监控与管理,车载信息显示系统用于显示车辆当前的状态信息等。
典型分布式整车控制系统示意图下图为某公司开发的纯电动汽车整车控制器组成原理图。
纯电动汽车驱动系统的组成
纯电动汽车驱动系统的组成
驱动系统是电动汽车的核心,一般由控制器、功率转换器、驱动电机、机械传动装置和车轮组成。
其功用是将蓄电池组中的化学能以电能为中间媒介高效地转化为车轮动能,进而推动汽车行驶,并能在汽车制动及下坡时,实现再生制动(即将汽车动能吸收并转化为蓄电池化学能储存起来,从而增加续驶里程)。
驱动电机的作用是将动力电池的电能转化为机械能,通过传动装置驱动车轮,或由其直接驱动车轮。
电子控制器即电机调速控制装置,其作用是控制电机的电压或电流,完成电机的转矩和转向的控制,从而实现电动汽车变速和变向。
功率转换器用做DC—DC转换(直流一直流)和DC—AC转换(直流一交流)。
DC—DC 转换器又称直流斩波器,其作用是将蓄电池的直流电转换为电压可变的直流电,并将再生制动能量进行反向转换,用于直流电机驱动系统。
DC—AC转换器通常称为逆变器,其作用是将蓄电池的直流电转换为频率、电压均可调节的交流电,也能进行双向能量转换,用于交流电机驱动系统。
机械传动装置是将电机的转矩传给汽车传动轴或直接传给车轮(轮毂电机)。
相对于传动内燃机汽车,电动汽车的机械传动装置大大简化,故其机械效率得以提高。
电源系统包括蓄电池组、充电器和能量管理系统。
电源是制约电动汽车发展的主要因素,其应具有高的比能量(即能量密度)和比功率(即功率密度),以满足汽车的续驶里程和动力性的要求。
辅助系统包括辅助动力源、动力转向系统、导航、照明、刮水器、收音机和音响等,它们是汽车操纵性和乘坐舒适性的保证。
电动汽车控制器原理
电动汽车控制器原理
控制器是电动汽车中的核心设备之一,它通过调节电池与电动机之间的电流来控制电动汽车的速度和力度。
控制器的工作原理可以简单概括为以下几个步骤:
1. 接收信号:控制器通过接收来自油门踏板的信号,了解驾驶员的意图。
油门踏板的位置决定了控制器应该输出多少电流。
2. 电流控制:控制器接收到信号后,根据预设的算法,将信号转化为相应的电流输出。
这个过程实际上是一种电流放大器的操作,调整电流的大小和方向。
3. 电池管理:控制器还负责管理电池的使用情况,以保证电池长时间的使用寿命。
控制器会监测电池的电压和电流,根据情况采取相应的措施,例如过载保护、电池均衡等。
4. 电机控制:最后,控制器将调整后的电流输出到电动汽车的电机中。
电机根据接收到的电流,转化为相应的力矩,推动车辆行驶。
总的来说,电动汽车控制器的原理就是根据驾驶员的意图,控制电池与电机之间的电流,从而实现对电动汽车的控制。
控制器通过精确的信号处理和电流调节,使得电动汽车能够平稳、高效地运行。
在此过程中,控制器还负责对电池进行管理,确保电池的安全和寿命。
纯电动汽车整车控制器(VCU)详细介绍
纯电动汽车整车控制器(VCU)详细介绍⼀、国外产品介绍:(1)丰⽥公司整车控制器丰⽥公司整车控制器的原理图如下图所⽰。
该车是后轮驱动,左后轮和右后轮分别由2个轮毂电机驱动。
其整车控制器接收驾驶员的操作信号和汽车的运动传感器信号,其中驾驶员的操作信号包括加速踏板信号、制动踏板信号、换档位置信号和转向⾓度信号,汽车的运动传感器信号包括横摆⾓速度信号、纵向加速信号、横向加速信号和4个车轮的转速信号。
整车控制器将这些信号经过控制策略计算,通过左右2组电机控制器和逆变器分别驱动左后轮和右后轮。
(2)⽇⽴公司整车控制器⽇⽴公司纯电动汽车整车控制器的原理图如下图所⽰。
图中电动汽车是四轮驱动结构,其中前轮由低速永磁同步电机通过差速器驱动,后轮由⾼速感应电机通过差速器驱动。
整车控制器的控制策略是在不同的⼯况下使⽤不同的电机驱动电动汽车,或者按照⼀定的扭矩分配⽐例,联合使⽤2台电机驱动电动汽车,使系统动⼒传动效率最⼤。
当电动汽车起步或爬坡时,由低速、⼤扭矩永磁同步电机驱动前轮。
当电动汽车⾼速⾏驶时,由⾼速感应电机驱动后轮。
(3)⽇产公司整车控制器⽇产聆风LEAF是5门5座纯电动轿车,搭载锂离⼦电池,续驶⾥程是160km。
采⽤200V家⽤交流电,⼤约需要8h可以将电池充满;快速充电需要10min,可提供其⾏驶50km的⽤电量。
⽇产聆风LEAF的整车控制器原理图如下图所⽰,它接收来⾃组合仪表的车速传感器和加速踏板位置传感器的电⼦信号,通过⼦控制器控制直流电压变换器DC/DC、车灯、除霜系统、空调、电机、发电机、动⼒电池、太阳能电池、再⽣制动系统。
(4)英飞凌新能源汽车VCU & HCU解决⽅案该控制器可兼容12V及24V两种供电环境,可⽤于新能源乘⽤车、商⽤车电控系统,作为整车控制器或混合动⼒控制器。
该控制器对新能源汽车动⼒链的各个环节进⾏管理、协调和监控,以提⾼整车能量利⽤效率,确保安全性和可靠性。
该整车控制器采集司机驾驶信号,通过CAN总线获得电机和电池系统的相关信息,进⾏分析和运算,通过CAN总线给出电机控制和电池管理指令,实现整车驱动控制、能量优化控制和制动回馈控制。
纯电动汽车电机及控制器课件
03
04
能量回收
在制动或滑行状态下,控制 器将电机转化为发电机,将 车辆的动能转化为电能并存 储在动力电池中,实现能量
的回收利用。
故障诊断与处理
控制器具备故障诊断功能, 能够实时监测车辆和电机的 运行状态,一旦发生故障, 立即采取相应的处理措施,
保障车辆的安全性。
控制器的硬件组成
电子控制单元(ECU)
清洁
定期清理电机表面灰尘、污垢,保持 电机散热良好。
检查绝缘
定期检查电机的紧固件,如螺栓、螺 母等,确保无松动。
控制器维护保养
控制器维护保养的重要性
控制器是纯电动汽车的“大脑”,负 责控制车辆运行,定期维护保养能够 确保其稳定、安全运行。
清洁
定期清理控制器表面灰尘、污垢,保 持散热良好。
检查连接线
控制器功能
蔚来的电机控制器能够实 现高效的能量回收,提高 车辆的续航能力。
技术特点
蔚来ES8的电机及控制器 采用了轻量化设计,有助 于降低整车重量,提高能 效。
奥迪e-tron电机及控制器介绍
电机类型
奥迪e-tron采用了永磁同步电机和异步电机的组 合,提供卓越的性能和续航里程。
控制器功能
奥迪的电机控制器能够实现精确的扭矩控制,提 供平稳的加速和行驶表现。
开关磁阻电机
开关磁阻电机是一种双凸极可变磁阻电机,通过改变绕组电 流的方向和大小来改变转子的旋转方向和速度。
开关磁阻电机具有结构简单、可靠性高、维护成本低等特点 ,但噪音较大,且对控制精度要求较高。
03
纯电动汽车控制器原理及功 能
控制器的基本原理
控制器是纯电动汽车的“大脑”,通过接收来自驾驶员的 操作指令和车辆状态信号,经过处理后控制电机输出,实 现车辆的驱动和能量回收。
纯电动汽车电机驱动系统的工作原理
纯电动汽车电机驱动系统的工作原理
纯电动汽车电机驱动系统是指将电能转化为机械能以驱动汽车去运动的系统。
纯电动汽车电机驱动系统大体上可以分为驱动电机、调速器、控制器和驱动电池四部分组成,下面结合四个部分的功能介绍其工作原理。
驱动电机是纯电动汽车电机驱动系统的核心,它将外部输入的电能转化成机械能,并将其发挥出来驱动汽车行驶。
驱动电机一般有永磁电机和调速电机两种,其中永磁电机可以提供一个固定的转速输出,而调速电机则可以通过改变电路中的控制信号来改变驱动电机的输出转速。
控制器作为纯电动汽车电机驱动系统的控制中心,它根据驾驶者的操作,通过调整电子信号,对驱动电机的转速、对应的汽车速度及控制方向等进行控制,使汽车正常行驶。
此外,调速器也起着特殊的作用,它实现了驱动电机和控制器之间的联系,它通过改变输入信号来影响电机的控制,使控制器能够控制和调节电机的输出功率、转速和扭矩等指标。
最后是驱动电池,它将外部输入的电能转换成电流供给给驱动电机使用,一般分为铅酸电池和镍氢电池两种。
综上所述,纯电动汽车电机驱动系统是把外部电力转换成机械能驱动汽车的系统,其核心部件有驱动电机、控制器、调速器和电池,它们之间会相互联系,控制器根据驾驶者的操作来调节电机的输出功率,电机把电能转换成机械能来驱动汽车,电池为驱动电机提供能源,整个系统共同协调,从而实现汽车的正常行驶和操控。
2电动汽车用电机控制器功能及产品介绍
4
产品介绍
命名规则
4
产品介绍
匹配选型
✓ 电压等级: 低压平台(72v、96v、144v)、336v、540v ✓ 峰值电流大小: IGBT(英飞凌):150A、200A、450A、600A、900A ✓ 电机峰值转速: 我司产品支持峰值600Hz ✓ 编码器类型: 旋转变压器、增量编码器 ✓ 电机温度传感器类型: PT100、PT1000、NTC
4
产品介绍
4.1商用车产品
10以上纯电动压铸五合一 TM驱动器 + EPS驱动器 + KYJ驱动器+ DCDC + 高压仓 (电除霜、电加热、电空调端子)
对外型号: IEVD169-54Z150BL 主要参数:
电压:400V-750vDC 电流:TM额定285A,峰值580A/60s
电动汽车用电机控制器功能及产品介绍
目录
1 系统拓扑图 2 整车控制策略介绍 3 电机控制器功能介绍 4 产品介绍
目录
1 系统拓扑图
电动汽车的电气控制单元主要由整车控制器、电机控制器、电池管理器、 仪表控制器组成,根据电机控制器的控制方式不同,一般可以分为含整车 控制器的系统和不含整车控制器的系统。
4
产品介绍
4.1 乘用车产品
2.2kw辅驱控制器
对外型ห้องสมุดไป่ตู้:IEVD133-40Z2.2GN 主要参数:
电压:220V-420vDC(标称电压336V) 电流:额定6A,峰值12A/60s 箱体:压铸铝机箱 防护等级:IP67 冷却方式:自然冷却 尺寸: 225(mm)*190(mm)*76(mm) 可以匹配的电机有直流无刷、永磁同步及异步电机。
8、定速巡航功能:驾驶员启用定速巡航功能之后,电机控制器由转 矩控制模式切换到速度控制模式,根据设定的巡航车速控制电机运行, 输出转矩自动调节,匹配负载转矩。此时,驾驶员不用踩油门踏板就 自动地保持车速,使车辆以固定的速度行驶。采用了定速巡航功能, 当在高速公路上长时间行车后,驾驶员就不用再去控制油门踏板,减 轻了疲劳,同时减少了不必要的车速变化,可以提高电池的续航里程。
纯电动汽车的peu工作原理
纯电动汽车的peu工作原理纯电动汽车的PEU工作原理随着环保意识的增强和汽车技术的不断发展,纯电动汽车作为一种零排放的交通工具,正逐渐受到人们的关注和青睐。
纯电动汽车的PEU(Power Electronics Unit)是其核心部件之一,它起着控制和管理电能的重要作用。
本文将从纯电动汽车的PEU工作原理进行详细介绍。
PEU是纯电动汽车中的电力电子系统,主要由电动机控制器、直流/交流变换器和高压直流/直流变换器组成。
它的主要功能是将储存在电池中的直流电能转换为交流电能供电给电动机,并且通过控制电机的转速和扭矩来实现车辆的运行。
电池组是纯电动汽车的能量来源,它将储存的直流电能提供给PEU。
电池组的电压一般较高,通常为数百伏特,而电动机需要的电压一般较低,通常为几十伏特,因此需要PEU进行电压转换。
高压直流/直流变换器就是负责将电池组的高压直流电能转换为电动机所需的低压直流电能。
变换器通常采用硅控整流器和继电器等电力元器件,通过调整开关的状态来控制电流的流向和电压的大小。
直流/交流变换器是PEU的另一个重要组成部分。
它的主要作用是将低压直流电能转换为电动机所需的交流电能。
直流/交流变换器通常采用三相桥式逆变器,通过逆变器中的硅控开关来实现电能的转换。
逆变器根据电机的工作要求,输出相应频率和幅值的交流电信号,控制电机的转速和扭矩。
电动机控制器是PEU中最关键的部分,它负责控制电动机的运行。
电动机控制器根据车辆的驾驶需求,通过接收来自车辆控制系统的信号,对电动机进行精确的控制和调节。
控制器通过调整直流/交流变换器和高压直流/直流变换器的工作状态,使得电动机能够以适当的转速和扭矩运行。
同时,电动机控制器还负责对电池组的电流、电压和温度等进行监测和保护。
纯电动汽车的PEU工作原理可以简单概括为:电池组提供高压直流电能,经高压直流/直流变换器降压后供给直流/交流变换器,再经过直流/交流变换器将电能转换为交流电能供给电动机,最后由电动机控制器对电动机进行精确控制和调节。
电动汽车电机控制器硬件功能安全
电动汽车电机控制器硬件功能安全纯电动或混动动⼒汽车上的电机控制器MCU(Motor Control Unit),其主要功能就是将电池的⾼压直流电,转换为交流电,来驱动电机运⾏。
作为电动汽车传动链上的重要⼀环,如果MCU 失效,直接威胁到⼈员的⽣命安全。
这就是所谓的功能安全问题,国际上也有相关的ISO 26262标准,国内对应的是GBT 34590。
现在功能安全话题很热门,出门交流不谈功能安全,就显得⾃⼰外⾏⼀样。
那什么是功能安全?⽤⼈话解释就是,电⼦器件组成的MCU,在⼯作过程中,如果任何软硬件出了问题,产⽣的后果都不应该威胁到⼈⾝安全。
如上图所⽰,MCU的主要作⽤就是⽤⽮量控制驱动电机运⾏,要实现⽮量控制就要检测电机电流、电池电压和电机转⼦位置等信号。
另外MCU通过CAN通讯来接收VCU的指令、反馈本⾝的运⾏状态。
通常硬件设计和功能安全相关的⽬标有两个:1、降低随机失效(器件⽼化)和系统失效(⼈为设计);2、如果出现随机失效后,系统能达到安全状态,同时尽量消除系统失效。
可以这样简便但不严谨的来区分随机失效和系统失效,随机失效就是找不到根本原因的、不可复现的,系统失效是能复现的、能找到根本原因的。
降低随机失效通常的原则是监控、冗余、分散、诊断等。
消除系统失效通常的原则是跟踪设计需求、模块化设计等,主要是加强设计流程的管理。
安全状态MCU如果失效后,希望其能进⼊⼀种安全的状态,在安全状态下,MCU不会损坏,同时电机不会产⽣⾮预期的转矩。
电动汽车上MCU控制的电机通常是永磁电机,永磁电机是感性负载,⽽且⾼速下有危险的反电动势存在,所以MCU故障后,并不能仅仅通过IGBT开路来达到安全的状态。
常⽤的安全状态有如下两种:a. 主动短路ASC(Active short circuit)通过同时开通三相桥的全部上管或全部下管,将电机的三相绕组短路。
电机短路后,反电动势不会影响MCU的直流端,⾼压安全。
但电机会有短路电流,通常情况下该电流不会超过电机的峰值电流,短时间不会影响电机和MCU的发热。
纯电动汽车控制系统
纯电动汽车控制系统
纯电动汽车控制系统主要包括:车辆行驶控制器(即主控制器ECU)、电机控制ECU、电池控制ECU和CAN总线监控单元。
主控制器相当于纯电动汽车的大脑,它起到控制全局的作用。
主控制器ECU接收汽车上传感器的信息,经A/I转换后计算,编码为CAN报文,发送到总线上控制其它节点的工作。
同时,将一些整车相关信息(车速、电池容量、踏板位置等信息)在组合仪表上显示出来。
其中最核心的是通过传感器的输入值与系统当前状态及汽车工况等条件计算出合适的电机扭矩值,指挥电机正常工作。
电机控制ECU的主要工作是以主控制器发送扭矩值为输入值,采用双闭环控制来调速电机,使电机控制在需要的转速下。
还可以根据电机的温度变化控制电机的冷却水泵和冷却风扇,从而有效地调节电机的温度,从而有效地调节电机的温度。
纯电动车的电池是由十几块单体电池成组供电的,并保证在不供电时电池不成组。
由于单个电池性能差异,电池控制ECU控制电池充放电过程中的均衡性,保证电池性能。
同时,还提供给主控器电池的信息及电池充放电能量最大值。
CAN总线监控单元主要对总线上传输的数据进行实时监控、实时记录和实时报警,还提供离线分析功能及纯电动汽车调试阶段对主控制器主要计算参数进行标定的功能。
纯电动汽车-电机及控制器ppt课件
.
2.0.3 基本组成
6. 安全保护系统 高压安全 动力电池组具有高压直流电,必须设置安全保护系 统,确保驾驶员、乘员和维修人员在驾驶、乘坐和 维修时的安全。 故障处理 必须配备电气装置的故障自检系统和故障报警系统, 在电气系统发生故障时自动控制EV不能起动等,及 时防止事故的发生。
.
2.0.3 基本组成
电动机替代发动机。 仍然采用内燃机汽车的传动系统,包括离合器、变 速器、传动轴和驱动桥等总成。 有电动机前置、驱动桥前置(F-F),电动机前置、驱 动桥后置(F-R)等各种驱动模式。 结构复杂,效率低,不能充分发挥电动机的性能。
M—电动机 C—离合器 GB—变速器 D—差速器
.
.
经典汽车设计理论推导车辆行驶平 衡方程
.
2.0.4 关键技术
2. 动力电池组的选择与特性 3. 减速器传动比的确定
由于电动机的转速高,不能直接驱动车辆的车轮, 通常在驱动系统中采用大速比的减速器或2档变速器。 作用:减速、增扭 减速器或变速器中不设置倒档齿轮,倒车是靠电动 机的反转来实现。
浅谈纯电动汽车驱动电机及控制系统
浅谈纯电动汽车驱动电机及控制系统纯电动汽车驱动电机及控制系统是纯电动汽车最重要的组成部分之一。
顾名思义,这个系统由两个主要组成部分组成——电动汽车的驱动电机和电机控制器。
如果说油车的发动机和变速器是油车的心脏,那么电动汽车的驱动电机和控制系统就可以说是电动汽车的心脏。
以下将详细介绍驱动电机及控制系统的概念,种类、结构、工作原理和发展趋势。
一、驱动电机的概念驱动电机是指电动汽车中负责电能转化为机械能,并将车辆推动的电动机。
它是纯电动汽车最重要的动力源。
驱动电机有很多种类,其中最常见的是异步电机和永磁同步电机。
异步电机与传统的交流电动机相似,但它的结构更为简单,并且由于其转速受电源频率的限制,因此已经被淘汰。
永磁同步电机则是最常见的驱动电机类型之一,由于其具有高效率、高功率因数、高转矩密度和较小的转子惯量,因此在纯电动汽车中被广泛采用。
二、控制系统的概念控制系统是指负责控制驱动电机正常工作的系统。
它由控制器、传感器组成。
控制器是控制电机运转的“智能大脑”,是纯电动汽车中最重要的部分之一。
它不仅负责控制电机的启动、停止和转速,还将车速信息、加速度信息、电池电压信息等反馈给其他控制系统完成整车系统的协同控制。
三、纯电动汽车驱动电机的结构纯电动汽车驱动电机的结构大致分为电机电器、轴承端盖、轴承、转子、定子几部分。
其中,电机电器也称为电机本体,由定子、转子等组成。
定子通常由铜线绕制成线圈,线圈由垫片、断路器、导体等构成。
转子由永磁体和导体组成,永磁体是负责产生相应磁场的重要部分。
四、驱动电机和控制系统的工作原理纯电动汽车驱动电机和控制系统的工作原理首先需要知道的是,驱动电机是一种交流电动机,其转矩与电机电流的平方成正比。
控制器发出开机指令之后,电机通过转子和定子间的转换相互作用产生旋转力,推动车辆运动。
控制器负责电能的传输和电机的控制,可以提高电池使用时间,最大化驱动电机的效能。
随着技术的不断发展,纯电动汽车驱动电机和控制系统也在不断地升级改进。
纯电动汽车整车控制器(TAC)
整车控制器实物图如图二所示。
性能指标:1)工作环境温度:-30℃—+80℃2)相对湿度:5%~93%3)海拔高度:不大于3000m4)工作电压:18VDC—32VDC5)防护等级:IP65功能指标:1)系统响应快,实时性高2)采用双路CAN总线(商用车SAE J1939协议)3)多路模拟量采样(采样精度10位);2路模拟量输出(精度12位) 4)多路低/高端开关输出5)多路I/O输入6)关键信息存储7)脉冲输入捕捉8)低功耗,休眠唤醒功能该项目使用的INFINEON的物料清单:IPG20N06S2L-65xxxxxx发表于2012-5-23 11:27:45 |只看该作者||整车控制器(VMS,vehicle management Syetem),即动力总成控制器。
是整个汽车的核心控制部件,它采集加速踏板信号、制动踏板信号及其他部件信号,并做出相应判断后,控制下层的各部件控制器的动作,驱动汽车正常行驶。
作为汽车的指挥管理中心,动力总成控制器主要功能包括:驱动力矩控制、制动能量的优化控制、整车的能量管理、CAN网络的维护和管理、故障的诊断和处理、车辆状态监视等,它起着控制车辆运行的作用。
因此VMS的优劣直接影响着整车性能。
纯电动汽车整车控制器(Vehicle Controller)是纯电动汽车整车控制系统的核心部件,它对汽车的正常行驶,再生能量回收,网络管理,故障诊断与处理,车辆的状态与监视等功能起着关键的作用。
与各部件控制器的动态控制相比,整车控制器属于管理协调型控制。
整个车辆系统采用一体化集成控制与分布式处理的车辆控制系统的体系结构,各部件都有独立的控制器,整车控制器对整个系统进行能量管理及各部件的协调控制。
为满足系统数据交换量大,实时性、可靠性要求高的特点,整个分布式控制系统之间采用CAN总线进行通讯。
整车控制器主要由控制器主芯片,Flash存储器和RAM存储器及相关电路组成,控制器主芯片的输出与Flash存储器和RAM存储器的输入相连。
简述纯电动汽车整车控制器控制逻辑
纯电动汽车整车控制器是电动汽车的关键部件之一,负责控制电动汽车的动力传动系统、能量管理系统以及车辆各部分的协调运行。
整车控制器的控制逻辑关乎着电动汽车的性能、能效和安全性。
下面将从控制逻辑的设计原则、各部分功能模块的控制逻辑和控制逻辑的效能优化等方面简述纯电动汽车整车控制器的控制逻辑。
一、控制逻辑的设计原则纯电动汽车整车控制器的控制逻辑设计要满足以下几个原则:1. 安全性原则:控制逻辑设计应确保车辆在各种工况下能够保持稳定、安全的运行。
2. 效能原则:控制逻辑设计应确保车辆在各种工况下能够保持最佳的能效。
3. 灵活性原则:控制逻辑设计应确保车辆在不同工况下能够有良好的响应能力和适应能力。
二、功能模块的控制逻辑整车控制器包括能量管理系统、动力传动系统和车辆管理系统等功能模块。
各功能模块的控制逻辑如下:1. 能量管理系统的控制逻辑:能量管理系统负责管理电池的充放电过程、能量回收过程和能量分配过程。
其控制逻辑主要包括电池状态估计、SOC控制、能量管理策略等。
2. 动力传动系统的控制逻辑:动力传动系统负责驱动电动汽车的电机进行运转。
其控制逻辑主要包括电机转速控制、电机扭矩控制、换挡控制等。
3. 车辆管理系统的控制逻辑:车辆管理系统负责监测车辆各部分的状态,并根据需要进行控制。
其控制逻辑主要包括车载通信、车辆监测、车载诊断等。
三、控制逻辑的效能优化控制逻辑的效能优化是整车控制器设计的重要环节。
控制逻辑的效能优化包括控制算法的优化、参数的优化和系统的协同优化等方面。
1. 控制算法的优化:通过不断改进控制算法,提高整车控制器的响应速度和控制精度,使车辆在各种工况下都能保持最佳的运行状态。
2. 参数的优化:对整车控制器的各种参数进行优化调整,确保整车控制器在各种工况下都能有最佳的性能表现。
3. 系统的协同优化:通过整车控制器各功能模块之间的协同优化,提高车辆的能效和安全性。
纯电动汽车整车控制器的控制逻辑设计是电动汽车技术创新的重要组成部分,对整车性能、能效和安全性起着关键作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章纯电动汽车
2.0.3基本组成
2.0.3基本组成
◇
◇EV发展的症结在于电池
◇
2.0.3基本组成
铅酸电池
◇技术成熟,成本低
◇比能量和比功率低
2.0.3基本组成
镍—氢电池
锂离子电池
◇比能量和比功率高
◇需要复杂的电池管理系统和温
度控制系统
成本高
2.0.3基本组成
飞轮电池超级电容器
充电和放电方便迅速处于研制阶段
2.0.3基本组成
高压电源
◇155~380V高压直流电
◇电机
◇空压机油泵
真空泵
低压电源
12V或24V低压
电仪表、照明和信
号装置
2.0.3基本组成
◇对动力电池组充电与放电时的电流、电压、放电深度、再生制动反馈电流、电池温度等进行控制
◇
保持各个单体电池间的一
致性
高效率充电装
置和快速充电装置
地面充电器、车载充电器、接触式充电器或
感应充电器
2.0.3基本组成
驱动EV行驶
直流电动机交流电动机永磁电动机开关磁阻
电动机
◇电动机
实现再生制动
延长EV行驶里程
◇
可靠的制动性能
2.0.3基本组成
对动力电池组的管理和对电动
机的控制
对整个动力电池组—功率转换器—驱动电动机系统进行监控
2.0.3基本组成
车身流线型降低空气阻力系数
◇减轻整车质量采用
轻质材料
◇还要有足
够的空间存放动力电池组
2.0.3基本组成
2.0.3基本组成
操
作简单化和规范化
机电一体
化控制
提高电池的比能量和比功率
提高电动机和驱动系统的效率
流线型车身降低迎风面积和空气阻力
系数
车身和底盘的轻量化
低滚动阻力轮胎
再生制动
2.0.4关键技术
良好的转矩—转速特性
恒转矩区恒
功率区
2.0.4关键技术
采用大速比的减速器或2档变速器
减速、增扭
不设置倒档倒车是靠电动
机的反转来实现
2.0.4关键技术
延长续驶里程
◇续驶里程指电动汽车从动力蓄电池全充满状态开始
到标准规定的试验结束时所走过的里程。
◇《电动汽车能量消耗
率和续驶里程试验方法》
2.0.4关键技术
◇高比能量的电池
◇减少行驶能量损耗
◇减少辅助系统的电能消耗
◇
等尽量降低
G, f 和 C
2.0.5 发展趋势
小型化、个性化、家庭化和休闲化
2.1电动汽车驱动系统
2.1.1组成和结构形式
控制装置
动力电池组驱动电动机
驱动系统
◇
◇
◇
◇
◇
◇
2.1.2传统的驱动系统
电动机替代发动机
采用内燃机汽车的传动系统
结构复杂,效率低,不能充分发挥电动机的性能。
2.1.1组成和结构形式
控制装置
动力电池组驱动电动机
驱动系统
◇
◇
◇
◇
◇
◇
2.1.2传统的驱动系统
电动机替代发动机
采用内燃机汽车的传动系统
结构复杂,效率低,不能充分发挥电动机的性能。
经典汽车设计理论推导车辆行驶平
衡方程
驱动方程
主要部件选型
设计纯电动汽车首先要进行选型设计,除了车型选
主要部件选型
电机功率的选择将对电动汽车的动力性和经济性有
主要部件选型
主要部件选型
主要部件选型
电机及其控制器
电动汽车用电动机的基本要求
电动汽车用的电动机的基本要求、要有较大范围的调速功能,在低速时具有较
年美国通用汽车公司向重庆电机厂定购电动汽车用交流感应电机时,提出的电机必须满足的转矩特性
电机及其控制技术
控制结构图
直流电机一标准斩波驱动系
2.2.3 直流电机
◇ ◇
串励
2.2.3 直流电机
控制装置简单效率较低质量大体积大可靠性低
PWM
2.2.4感应电机
◇
◇
效率高结构简单可靠体积小
重量轻
2.2.5永磁电机
高质量比功率高效率
控制系统复杂成本高
永磁同步电机驱动系。