人教版-数学-八年级上册-《整式的乘法》典型例题

合集下载

人教版八年级上册数学第14章第1节整式的乘法习题(2)

人教版八年级上册数学第14章第1节整式的乘法习题(2)

人教版八年级上册数学第14章第1节整式的乘法习题1.1. 同底数幂的乘法1、计算:(1)x10· x=(2)10×102×104 =(3)x5·x ·x3=(4)y4·y3·y2·y =2、下面的计算对不对?如果不对,怎样改正?(1)b5· b5= 2b5()(2)b5 + b5 = b10()(3)x5·x5 = x25()(4)y5· y5 = 2y10()(5)c · c3 = c3()(6)m + m3 = m4()3、填空:(1)x5·()= x8(2)a ·()= a6(3)x · x3()= x7(4)x m·()=x3m4、计算:(1) x n · x n+1 (2) (x+y)3· (x+y)45、填空:(1) 8 = 2x,则 x = ;(2)8 × 4 = 2x,则 x = ;(3)3×27×9 = 3x,则 x = 。

6、计算(1)35(—3)3(—3)2 ( 2)—a(—a)4(—a)3(3 ) x p (—x)2p (—x)2p+1 (p 为正整数) (4)32×(—2)(n 为正整数)7、计算 (1)(2)(x —y)2(y —x)58、填空(1)3n+1=81若a =________(2)=________ (3)若,则n=_____(4)3100. (-3)101 =_________ 9.计算:(1)(2)(3)(4)2(2)n -3421(2)(2)(2)m n a b a b a b -++++)(11a a n n ----•28233n =•a a a a x x 4213--+•)(341x x x n n -••+-)()()(432m n m n n m ---•)(344y y y n n -••+-1.2. 幂的乘方一、选择题1.计算(x 3)2的结果是( )A.x 5B.x 6C.x 8D.x 92.计算(-3a 2)2的结果是( )A.3a 4B.-3a 4C.9a 4D.-9a 43.122)(--n x 等于( )A.14-n xB.14--n xC.24-n xD.24--n x 4.21)(--n a 等于( )A.22-n aB.22--n aC.12-n aD.22--n a5.13+n y 可写成( )A.13)(+n yB.13)(+n yC.n y y 3⋅D.1)(+n n y6.2)()(m m m a a ⋅不等于( )A.m m a )(2+B.m m a a )(2⋅C.22m m a+ D.m m m a a )()(13-⋅ 7.计算13(2014)n +等于( ) A.32014n + B.312014n + C.42014n + D.332014n + 8.若2139273m m ⨯⨯=,则m 的值为( )A.3B.4C.5D.6二、填空题1.-(a 3)4=_____.2.若x 3m =2,则x 9m =_____.3. n ·=______.4.,__________])2[(32=-___________)2(32=-;5.______________)()(3224=-⋅a a ,____________)()(323=-⋅-a a ;6.___________)()(4554=-+-x x ,_______________)()(1231=⋅-++m m a a ;7.___________________)()()()(322254222x x x x ⋅-⋅;8.若 3=n x , 则=n x 3________;9.若2,7x y a a ==,则2x y a +=________;10.如果23n x =,则34()n x =________.三、解答题1.计算:(-2x 2y 3)+8(x 2)2·(-x )2·(-y )32.已知273×94=3x ,求x 的值.3.已知a m =5,a n =3,求a 2m+3n 的值.4.若2x+5y-3=0,求432x y 的值5.试比较35555,44444,53333三个数的大小.14.1.2幂的乘方答案一、选择题:BC DA CCDB二、填空题:1、12a -;2、8;3、5n x -;4、64,-64;5、149,a a --6、0,55m a +-;7、12143x x -;8、9;9、28;10、729三、解答题1、解法一: 2= 2=(-x 9y 6n )2=(-x 9)2·(y 6n )2=x 18y 12n .解法二: 2=(-1)2·(x 3y 2n )6=(x 3)6·(y 2n )6=x 18y 12n .2、解:因为273×94=(33)3×(32)4=39×38=39+8=317,即3x =317,所以x=17.3、解:因为a m =5,a n =3,所以a 2m+3n =a 2m ·a 3n =(a m )2·(a n )3=52×33=25×27=675.4、解:253x y +=2525343222228x y x y x y +∴====5、解:因为35555=35×1111=(35)1111=2431111.44444=44×1111=(44)1111=2561111.53333=53×1111=(53)1111=1251111,又因为125<243<256,所以1251111<2431111<2561111,即53333<35555<44444.1.3. 积的乘方一、选择题1.下列计算错误的是( )A .a 2·a=a 3B .(ab )2=a 2b 2C .(a 2)3=a 5D .-a+2a=a2.计算(x 2y )3的结果是( )A .x 5yB .x 6yC .x 2y 3D .x 6y 33.计算(-3a 2)2的结果是( )A .3a 4B .-3a 4C .9a 4D .-9a 44.计算(-0.25)2010×42010的结果是( )A .-1B .1C .0.25D .440205.计算()2323xy y x -⋅⋅的结果是( )A .y x 105⋅B .y x 85⋅C .y x 85⋅-D .y x 126⋅6.若3915(2)8m m n a b a b +=成立,则( ) A .m=3,n=2 B .m=n=3 C .m=6,n=2 D .m=3,n=57.32220142323(2)(1)()2x y x y ----的结果等于( ) A .y x 10103 B .y x 10103- C .y x 10109 D .y x 10109-8.12[(1)]n n p +-等于( ) A .2n p B .2n p - C .2n p +- D .无法确定二、填空题1.计算:(2a )3=______.2.若a 2n =3,则(2a 3n )2=__ __.3.6927a b -=( )3.4.20132013(0.125)(8)-=_______.5.已知351515()x a b =-,则x=_______.6.(-0.125)2=_________.7.若232,3n n x y ==,则6()n xy =_______. 8.2013201220142() 1.5(1)3⨯⨯-=_______. 9.化简21223()(2)m n aa a +-所得的结果为_______. 10.若53,45n n ==,则20n 的值是_______.三、解答题1.计算:x 2·x 3+(x 3)22.计算:()100×(1)100×()2013×420143.已知x+3322336x x +-=,求x 的值.2312144.若877,8ab ==,用含,a b 的式子表示5656.5.已知n 是正整数,且32n x=,求3223(3)(2)n n x x +-的值.14.1.3积的乘方一、选择题:CDCB BACA二、填空题:1、38a;2、108;3、233a b-;4、-1;5、-ab;6、164;7、72;8、23;9、4288m na++-;10、15.三、解答题1、解:x2·x3+(x3)2=x2+3+x3×2=x5+x6.2、解:()100×(1)100×()2009×42010=××4=(×)100×(×4)2009×4=1×1×4=4.3、解:332 2336x x x++-=32232(2) (23)(6) 6632(2)7x xx xx xx+-+-∴⨯=∴=∴+=-∴=4、解:5656 56(78)=⨯565687787878(7)(8)a b=⨯=⨯=5、解:3223(3)(2)n nx x+-3232 9(3)(8)() 94844n nx x=⨯+-⨯=⨯-⨯=2312142332141.4. 整式的乘法1.4.1. 单项式与单项式、多项式相乘1、填空:(每小题7分,共28分)(1) (2一3+1)=_________; (2)3b(2b -b+1) =_____________;(3)(b +3b 一)(b)=_______;(4)(一2)(-x 一1) =_____. 2.选择题:(每小题6分,共18分)(1)下列各式中,计算正确的是 ( )A .(-3b+1)(一6)= -6+18b+6B .C .6mn(2m+3n -1) =12m 2n+18mn 2-6mnD .-b(一-b) =-b-b-b(2)计算(+1) -(-2-1)的结果为 ( )A .一一B .2++1C .3+D .3- (3)一个长方体的长、宽、高分别是2x 一3、3x 和x ,则它的体积等于 ( )A .2—3B .6x -3C .6-9xD .6x 3-93.计算(每小题6分,共30分)(1); (2);(3) (4)(2x 一3+4x -1)(一3x);(5). a a 2a a a 2a 34a 2a 23b 12a 2x 2x 12a a a 2a a ()232191313x y xy x y ⎛⎫--+=+ ⎪⎝⎭a a 2a a 3a 2a 2a 2a a a 2a a 2a a 2a a 2a a 2a 2x 2x 2x 2x 323(23)x y xy xy ⋅-222(3)x x xy y ⋅-+222(1)(4)4a b ab a b --+⋅-32x ()22213632xy y x xy ⎛⎫-+-- ⎪⎝⎭4.先化简,再求值.(每小题8分,共24分)(1) ;其中(2)m (m+3)+2m(m —3)一3m(m +m -1),其中m ;⑶4b(b -b +b)一2b (2—3b+2),其中=3,b=2. 22(1)2(1)3(25)x x x x x x -++--12x =-22252=a a 2a 2a a 2a 2a a a1.4.2.多项式与多项式相乘一、填空题(每小题3分,共24分)1.若=,则=______________.2.=__________,=__________.3.如果,则.4.计算: .5.有一个长mm ,宽mm ,高mm 的长方体水箱,这个水箱的容积是______________.6.通过计算几何图形的面积可表示一些代数恒等式(一定成立的等式),请根据右图写出一个代数恒等式是:________________.7.若,则的值为 .8.已知:A =-2ab ,B =3ab (a +2b ),C =2a 2b -2ab 2,3AB-=__________. 二、选择题(每小题3分,共24分) 9.下列运算正确的是( ).A .B .C .D .10.如果一个单项式与的积为,则这个单项式为( ). A . B . C . D . 11.计算的正确结果是( ).a b c x x x x 2008x c b a ++(2)(2)a b ab --2332()()a a --2423)(a a a x =⋅______=x (12)(21)a a ---=9104⨯3105.2⨯3610⨯2mm 3230123)x a a x a x a x =+++220213()()a a a a +-+AC 21236x x x =2242x x x +=22(2)4x x -=-358(3)(5)15a a a --=3ab -234a bc -14ac 214a c 294a c 94ac 233[()]()a b a b ++A .B .C .D .12.长方形的长为(a -2),宽为(3a +1) ,那么它的面积是多少?( ).A .B .C .D .13.下列关于的计算结果正确的是( ).A .B .C .D .14.下列各式中,计算结果是的是( ).A .B .C .D .15.下列各式,能够表示图中阴影部分的面积的是( ).① ② ③ ④A .只有①B .①和②C .①、②和③D .①、②、③、④16.已知:有理数满足,则的值为( ). A.1 B.-1 C. ±1 D. ±2三、解答题(共52分)17.计算:8()a b +9()a b +10()a b +11()a b +cm cm 2(352)a a cm --2(352)a a cm -+2(352)a a cm +-2(32)a a cm +-301300)2(2-+3003013003016012(2)(2)(2)(2)+-=-+-=-1301300301300222)2(2-=-=-+300300300301300301300222222)2(2-=⨯-=-=-+601301300301300222)2(2=+=-+2718x x +-(1)(18)x x -+(2)(9)x x -+(3)(6)x x -+(2)(9)x x ++()at b t t +-2at bt t +-()()ab a t b t ---2()()a t t b t t t -+-+0|4|)4(22=-++n n m 33m n(1) (2)18.解方程:19.先化简,再求值:(1),其中=-2.(2),其中=-3.20.一个长方形的长为2xcm ,宽比长少4cm ,若将长方形的长和宽都扩大3cm ,长方形比原来增大的面积是多少?拓广探索21.在计算时我们如果能总结规律,并加以归纳,得出数学公式, 一定会提高解题的速度,在解答下面问题中请留意其中的规律.(1)计算后填空: ; ;3243-ab c 2⎛⎫ ⎪⎝⎭()2232315x y-xy -y -4xy 426⎛⎫ ⎪⎝⎭2(10)(8)100x x x +-=-()()()2221414122x x x x x x ----+-x ()()()()5.0232143++--+a a a a a ()()=++21x x ()()=-+13x x(2)归纳、猜想后填空:(3)运用(2)猜想的结论,直接写出计算结果: .22.有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答下面的问题. 例 若=123456789×123456786, =123456788×123456787,试比较、的大小.解:设123456788=a ,那么,,∵=-2,∴x <y看完后,你学到了这种方法吗?再亲自试一试吧,你准行!问题:若=,=,试比较、的大小.()()()()++=++x x b x a x 2()()=++m x x 2x y x y ()()2122x a a a a =+=---()21y a a a a ==--()()222x y a a a a =-----x 20072007200720112007200820072010⨯-⨯y 20072008200720122007200920072011⨯-⨯x y 用这种方法不仅可比大小,也能解计算题哟!参考答案一、填空题1.2007 2.、 3.18 4.5. 6. 7.1 8.二、选择题9.D 10.A 11.B 12.A 13.C 14.B 15.D 16.B三、解答题(共56分)17.(1) (2) 18.,,∴.19.(1),8 (2),020.-=-==答:增大的面积是.21.(1)、 (2)、 (3) 拓广探索22.设20072007=,===-3, ===-3,∴=.2242a b ab -+12a -214a -16610⨯()ab a b a a 2222+=+32231638a b a b --3612278a b c -3324510323x y x y xy -++2281080100x x x x -+-=-220x =-10x =-324864x x x +--26a --(23)(21)x x +-2(24)x x -2(4623)x x x +--2(48)x x -2244348x x x x +--+123x -(123)x cm -232x x ++223x x +-a b +ab 2(2)2x m x m +++a x (4)(1)(3)a a a a +-++224(43)a a a a +-++y (1)(5)(2)(4)a a a a ++-++2265(68)a a a a ++-++x y。

人教版八年级数学上册《14.1整式的乘法》练习-带参考答案

人教版八年级数学上册《14.1整式的乘法》练习-带参考答案

人教版八年级数学上册《14.1整式的乘法》练习-带参考答案一、单选题1.下列计算中,正确的是()A.B.C.D.2.计算的结果为()A.1 B.-1 C.2 D.-23.计算:□,□内应填写()A.-10xy B.C.+40 D.+40xy4.长方形一边长为另一边比它小则长方形面积为()A.B.C.D.5.若,则的值是()A.-11 B.-7 C.-6 D.-56.已知,和,那么x,y,z满足的等量关系是()A.B.C.D.7.下列多项式中,与相乘的结果是的多项式是()A.B.C.D.8.若的展开式中常数项为-2,且不含项,则展开式中一次项的系数为()A.-2 B.2 C.3 D.-3二、填空题9..10.比较大小:11.若,则的值是.12.若与的乘积中不含x的一次项,则实数n的值为.13.如图,将两张边长分别为和的正方形纸片分别按图①和图②两种方式放置在长方形内(图①和图②中两张正方形纸片均有部分重叠),未被这两张正方形纸片覆盖的部分用阴影表示.若长方形中边,的长度分别为,n.设图①中阴影部分面积为,图②中阴影部分面积为,当时,的值为.三、解答题14.计算:(1)(2)15.已知,求:(1)的值;(2)的值.16.芳芳计算一道整式乘法的题:(2x+m)(5x﹣4),由于芳芳抄错了第一个多项式中m前面的符号,把“+”写成“﹣”,得到的结果为10x2﹣33x+20.(1)求m的值;(2)计算这道整式乘法的正确结果.17.若关于的多项式与的积为,其中,b,,d,e,f是常数,显然也是一个多项式.(1)中,最高次项为,常数项为;(2)中的三次项由,的和构成,二次项时由,和的和构成.若关于的多项式与的积中,三次项为,二次项为,试确定,的值.参考答案:1.C2.D3.D4.D5.A6.C7.B8.D9.10.<11.1812.313.14.(1)解:原式=(2)解:原式=15.(1)解:∵和.∴(2)解:∵∴.16.(1)解:由题意得所以解得(2)解:17.(1);(2)解:多项式与的积中,三次项为,二次项为由题意得:解得:故。

8年级数学人教版上册同步练习-整式的乘法(含答案解析)

8年级数学人教版上册同步练习-整式的乘法(含答案解析)

第十四章 整式的乘法与因式分解14.1整式的乘法专题一 幂的性质1.下列运算中,正确的是( )A .3a 2-a 2=2B .(a 2)3=a 9C .a 3•a 6=a 9D .(2a 2)2=2a 4 2.下列计算正确的是( )A .3x ·622x x = B .4x ·82x x = C .632)(x x -=- D .523)(x x =3.下列计算正确的是( )A .2a 2+a 2=3a 4B .a 6÷a 2=a 3C .a 6·a 2=a 12D .( -a 6)2=a 12 专题二 幂的性质的逆用4.若2a =3,2b =4,则23a+2b 等于( ) A .7 B .12 C .432 D .1085.若2m=5,2n=3,求23m+2n的值.专题三 整式的乘法7.下列运算中正确的是( )A .2325a a a +=B .22(2)()2a b a b a ab b +-=--C .23622a a a ⋅=D .222(2)4a b a b +=+8.若(3x 2-2x +1)(x +b )中不含x 2项,求b 的值,并求(3x 2-2x +1)(x +b )的值.9.先阅读,再填空解题: (x +5)(x +6)=x 2+11x +30; (x -5)(x -6)=x 2-11x +30; (x -5)(x +6)=x 2+x -30; (x +5)(x -6)=x 2-x -30.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:________. (2)根据以上的规律,用公式表示出来:________. (3)根据规律,直接写出下列各式的结果:(a +99)(a -100)=________;(y -80)(y -81)=________.专题四 整式的除法 10.计算:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=________. 11.计算:236274319132)()(ab b a b a -÷-.12.计算:(a -b )3÷(b -a )2+(-a -b )5÷(a +b )4.状元笔记【知识要点】 1.幂的性质(1)同底数幂的乘法:nm n m a a a +=⋅ (m ,n 都是正整数),即同底数幂相乘,底数不变,指数相加.(2)幂的乘方:()m nmna a=(m ,n 都是正整数),即幂的乘方,底数不变,指数相乘.(3)积的乘方:()n n nab a b =(n 都是正整数),即积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘. 2.整式的乘法(1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加. (3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.3.整式的除法(1)同底数幂相除:m n m na a a -÷=(m ,n 都是正整数,并且m >n ),即同底数幂相除,底数不变,指数相减.(2)0a =1(a ≠0),即任何不等于0的数的0次幂都等于1.(3)单项式除以单项式:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(4)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加. 【温馨提示】1.同底数幂乘法法则与合并同类项法则相混淆.同底数幂相乘,应是“底数不变,指数相加”;而合并同类项法则是“系数相加,字母及字母的指数不变”.2.同底数幂相乘与幂的乘方相混淆.同底数幂相乘,应是“底数不变,指数相加”;幂的乘方,应是“底数不变,指数相乘”.3.运用同底数幂的乘法(除法)法则时,必须化成同底数的幂后才能运用上述法则进行计算. 4.在单项式(多项式)除以单项式中,系数都包括前面的符号,多项式各项之间的“加、减”符号也可以看成系数的符号来参与运算. 【方法技巧】1.在幂的性质中,公式中的字母可以表示任意有理数,也可以表示单项式或多项式. 2.单项式与多项式相乘,多项式与多项式相乘时,要按照一定的顺序进行,否则容易造成漏项或增项的错误.3.单项式与多项式相乘,多项式除以单项式中,结果的项数与多项式的项数相同,不要漏项.参考答案:1.C 解析:A 中,3a 2与-a 2是同类项,可以合并,3a 2―a 2=2a 2,故A 错误;B 中,(a 2)3=a 2×3=a 6,故B 错误;C 中,a 3•a 6=a 3+6=a 9,故C 正确;D 中,(2a 2)2=22(a 2)2=4a 4,故D 错误.故选C . 2.C 解析:3x ·2235x xx +==,选项A 错误;4x ·2246x x x +==,选项B 错误;23236()x x x ⨯-=-=-,选项C 正确;32236()x x x ⨯==,选项D 错误. 故选C .3.D 解析:A 中,22223a a a +=,故A 错误;B 中,624a a a ÷=,故B 错误;C 中,628a a a ⋅=,故C 错误. 故选D .4.C 解析:23a+2b =23a ×22b =(2a )3×(2b )2=33×42=432.故选C .5.解:23m+2n=23m·22n=(2m)3·(2n)2 =53·32=1125.7.B 解析:A 中,由合并同类项的法则可得3a+2a=5a ,故A 错误;B 中,由多项式与多项式相乘的法则可得22(2)()22a b a b a ab ab b +-=-+-=222a ab b --,故B 正确;C 中,由单项式与单项式相乘的法则可得232322a a a +⋅==52a ,故C 错误;D 中,由多项式与多项式相乘的法则可得222(2)44a b a ab b +=++,故D 错误. 综上所述,选B . 8.解:原式=3x 3+(3b -2)x 2+(-2b+1)x+b ,∵不含x 2项,∴3b -2=0,得. ∴(3x 2-2x+1)(x+23)=3x 3-2x 2+x+2x 2-43x+23=3x 3-13x+23.9.解:(1)观察积中的一次项系数、常数项与两因式中的常数项的关系是: 一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积; (2)根据以上的规律,用公式表示出来:(a+b )(a+c )=a 2+(b+c )a+bc ;(3)根据(2)中得出的公式得:(a+99)(a -100)=a 2-a -9900;(y -80)(y -81)=y 2-161y+6480. 10.-12x+3y -16解析:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=(3x 3y )÷(-6x 2y )-18x 2y 2÷(-6x 2y )+x 2y÷(-6x 2y )=-12x+3y -16.11.解:原式。

人教版八年级数学上《整式的乘法》基础练习

人教版八年级数学上《整式的乘法》基础练习

《整式的乘法》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)下列计算正确的是()A.a+a=a2B.(2a)3=6a3C.a3×a3=2a3D.a3÷a=a2 2.(5分)8x6÷x2的结果是()A.8x3B.x3C.x3D.8x43.(5分)若(x+4)(x﹣2)=x2+mx+n,则m、n的值分别是()A.2,8B.﹣2,﹣8C.2,﹣8D.﹣2,84.(5分)在下列计算中,正确的是()A.b3•b3=b6B.x4•x4=x16C.(﹣2x2)2=﹣4x4D.3x2•4x2=12x25.(5分)下列运算正确的是()A.a8÷a4=a2B.(a2)3=a6C.a2•a3=a6D.(ab2)3=ab6二、填空题(本大题共5小题,共25.0分)6.(5分)计算:(4a3﹣a3)•a2=.7.(5分)计算:(2x﹣4)(2x+1)=.8.(5分)计算(x﹣1)(2x+3)的结果是.9.(5分)(2x2﹣3x﹣1)(x+b)的计算结果不含x2项,则b的值为.10.(5分)计算:(3m﹣1)(2m﹣1)=.三、解答题(本大题共5小题,共50.0分)11.(10分)已知a+b=4,ab=3,求代数式(a+2)(b+2)的值.12.(10分)计算:x2(x﹣1)﹣x(x2+x﹣1)13.(10分)已知k≠0,将关于x的方程kx+b=0记作方程◇.(1)当k=2,b=﹣4时,方程◇的解为;(2)若方程◇的解为x=﹣3,写出一组满足条件的k,b值:k=,b=;(3)若方程◇的解为x=4,求关于y的方程k(3y+2)﹣b=0的解.14.(10分)某市有一块长为3a+b米,宽为2a+b米的长方形地块,规划部门计划将阴影部分进行绿化中间修建一座边长是(a﹣b)的正方形雕像.(1)请用含a,b的代数式表示绿化面积s;(2)当a=3,b=2时,求绿化面积.15.(10分)定义:一个多项式A乘以另一个多项式B化简得到新的多项式C,若C的项数比A的项数多不超过1项,则称B是A的“友好多项式”.特别地,当C的项数和A 相同时,则称B是A的“特别友好多项式”.(1)若A=x﹣2,B=x+3,那么B是否是A的“友好多项式”?请说明理由;(2)若A=x﹣2,B是A的“特别友好多项式”,①请举出一个符合条件的二项式B=.②若B是三项式,请举出一个符合条件的B,并说明理由;(3)若A是三项式,是否存在同样是三项式的B,使得B是A的“友好多项式”?若存在,请举例说明,若不存在,请说明理由.《整式的乘法》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)下列计算正确的是()A.a+a=a2B.(2a)3=6a3C.a3×a3=2a3D.a3÷a=a2【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2a,故A错误;(B)原式=8a3,故B错误;(C)原式=a6,故C错误;故选:D.【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.2.(5分)8x6÷x2的结果是()A.8x3B.x3C.x3D.8x4【分析】根据同底数幂的除法法则计算.【解答】解:8x6÷x2=8x4,故选:D.【点评】本题考查的是同底数幂的除法,同底数幂的除法法则:底数不变,指数相减.3.(5分)若(x+4)(x﹣2)=x2+mx+n,则m、n的值分别是()A.2,8B.﹣2,﹣8C.2,﹣8D.﹣2,8【分析】先根据多项式乘以多项式的法则展开,再合并,然后根据等于号两边对应项相等,可求m、n的值.【解答】解:∵(x+4)(x﹣2)=x2+2x﹣8,∴x2+2x﹣8=x2+mx+n,∴m=2,n=﹣8.故选:C.【点评】本题考查了多项式乘以多项式,解题的关键是找准对应项.4.(5分)在下列计算中,正确的是()A.b3•b3=b6B.x4•x4=x16C.(﹣2x2)2=﹣4x4D.3x2•4x2=12x2【分析】根据单项式乘单项式、同底数幂的乘法和积的乘方进行解答.【解答】解:A、b3•b3=b6,正确;B、x4•x4=x8,错误;C、(﹣2x2)2=4x4,错误;D、3x2•4x2=12x4,错误;故选:A.【点评】此题考查单项式乘单项式、同底数幂的乘法和积的乘方,关键是根据单项式乘单项式、同底数幂的乘法和积的乘方法则解答.5.(5分)下列运算正确的是()A.a8÷a4=a2B.(a2)3=a6C.a2•a3=a6D.(ab2)3=ab6【分析】根据同底数幂的除法的法则,同底数幂的乘法的法则,幂的乘方与积的乘方的性质解答即可.【解答】解:A、a8÷a4=a4,故选项A错误;B、(a2)3=a6,故B选项正确;C、a2•a3=a5,故选项C错误;D、(ab2)3=a3b6,故选项D错误;故选:B.【点评】本题考查了同底数幂的除法,同底数幂的乘法,幂的乘方与积的乘方,熟记法则是解题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)计算:(4a3﹣a3)•a2=3a5.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=4a5﹣a5,=3a5,故答案为:3a5【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.7.(5分)计算:(2x﹣4)(2x+1)=4x2﹣6x﹣4.【分析】直接利用多项式乘以多项式运算法则化简进而得出答案.【解答】解:(2x﹣4)(2x+1)=4x2﹣6x﹣4,故答案为:4x2﹣6x﹣4.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.8.(5分)计算(x﹣1)(2x+3)的结果是2x2+x﹣3.【分析】根据多项式乘多项式的法则计算即可.法则可表示为(a+b)(m+n)=am+an+bm+bn.【解答】解:(x﹣1)(2x+3)=2x2+x﹣3.故答案为:2x2+x﹣3.【点评】本题主要考查多项式乘多项式的法则,熟练掌握运算法则是解题的关键.9.(5分)(2x2﹣3x﹣1)(x+b)的计算结果不含x2项,则b的值为.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=2x3+2bx2﹣3x2﹣3bx﹣x﹣b由于不含x2项,∴2b﹣3=0,∴b=,故答案为:.【点评】本题考查整式的运算,解的关键是熟练运用整式的运算法则,本题属于基础题型.10.(5分)计算:(3m﹣1)(2m﹣1)=6m2﹣5m+1.【分析】根据多项式与多项式相乘的法则计算.【解答】解:(3m﹣1)(2m﹣1)=6m2﹣2m﹣3m+1=6m2﹣5m+1,故答案为:6m2﹣5m+1.【点评】本题考查的是多项式乘多项式,掌握多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加是解题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)已知a+b=4,ab=3,求代数式(a+2)(b+2)的值.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=ab+2a+2b+4,当a+b=4,ab=3时,∴原式=3+8+4=15.【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.12.(10分)计算:x2(x﹣1)﹣x(x2+x﹣1)【分析】去括号合并即可得到结果.【解答】解:原式=x3﹣x2﹣x3﹣x2+x=﹣2x2+x.【点评】考查了单项式乘多项式,单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.13.(10分)已知k≠0,将关于x的方程kx+b=0记作方程◇.(1)当k=2,b=﹣4时,方程◇的解为x=2;(2)若方程◇的解为x=﹣3,写出一组满足条件的k,b值:k=1,b=3;(3)若方程◇的解为x=4,求关于y的方程k(3y+2)﹣b=0的解.【分析】(1)代入后解方程即可;(2)只需满足b=3k即可;(3)介绍两种解法:方法一:将x=4代入方程◇:得,整体代入即可;方法二:将将x=4代入方程◇:得b=﹣4k,整体代入即可;【解答】解:(1)当k=2,b=﹣4时,方程◇为:2x﹣4=0,x=2.故答案为:x=2;(2)答案不唯一,如:k=1,b=3.(只需满足b=3k即可)故答案为:1,3;(3)方法一:依题意:4k+b=0,∵k≠0,∴.解关于y的方程:,∴3y+2=﹣4.解得:y=﹣2.方法二:依题意:4k+b=0,∴b=﹣4k.解关于y的方程:k(3y+2)﹣(﹣4k)=0,3ky+6k=0,∵k≠0,∴3y+6=0.解得:y=﹣2.【点评】本题考查了一元一次方程的解,熟练掌握解一元一次方程是关键.14.(10分)某市有一块长为3a+b米,宽为2a+b米的长方形地块,规划部门计划将阴影部分进行绿化中间修建一座边长是(a﹣b)的正方形雕像.(1)请用含a,b的代数式表示绿化面积s;(2)当a=3,b=2时,求绿化面积.【分析】(1)根据绿化面积=长方形地块的面积﹣正方形雕像的面积,列式计算即可,(2)把a=3,b=2带入(1)所求结果,计算后可得到答案.【解答】解:(1)根据题意得:长方形地块的面积=(3a+b)(2a+b)=6a2+5ab+b2,正方形雕像的面积为:(a﹣b)2=a2﹣2ab+b2,则绿化面积s=(6a2+5ab+b2)﹣(a2﹣2ab+b2)=5a2+7ab,即用含a,b的代数式表示绿化面积s=5a2+7ab,(2)把a=3,b=2代入s=5a2+7ab,s=5×32+7×3×2=87,即绿化面积为87平方米.【点评】本题考查多项式乘多项式,正确掌握整式乘法法则是解题的关键.15.(10分)定义:一个多项式A乘以另一个多项式B化简得到新的多项式C,若C的项数比A的项数多不超过1项,则称B是A的“友好多项式”.特别地,当C的项数和A 相同时,则称B是A的“特别友好多项式”.(1)若A=x﹣2,B=x+3,那么B是否是A的“友好多项式”?请说明理由;(2)若A=x﹣2,B是A的“特别友好多项式”,①请举出一个符合条件的二项式B=x+2.②若B是三项式,请举出一个符合条件的B,并说明理由;(3)若A是三项式,是否存在同样是三项式的B,使得B是A的“友好多项式”?若存在,请举例说明,若不存在,请说明理由.【分析】(1)根据多项式乘多项式的法则计算,根据“友好多项式”的定义判断;(2)①根据“特别友好多项式”的定义解答;②根据“特别友好多项式”的定义写出多项式,根据多项式乘多项式的法则证明;(3)根据“友好多项式”的定义写出多项式,根据多项式乘多项式的法则证明.【解答】解:(1)B是A的“友好多项式”,理由如下:(x﹣2)(x+3)=x2﹣2x+3x﹣6=x2+x﹣6,x2+x﹣6的项数比A的项数多不超过1项,则B是A的“友好多项式”;(2)①(x﹣2)(x+2)=x2﹣4,∴x+2是A的“特别友好多项式”;②(x﹣2)(x2+2x+4)=x3﹣2x2+2x2﹣4x+4x﹣8=x3﹣8,∴x2+2x+4是A的“特别友好多项式”;(3)存在,例如,a+b+c与a+b﹣c是“友好多项式”,理由如下:(a+b+c)(a+b﹣c)=(a+b)2﹣c2=a2+2ab+b2﹣c2,∴a+b+c与a+b﹣c是“友好多项式”.【点评】本题考查的是多项式乘多项式,掌握“友好多项式”的定义,多项式乘多项式的运算法则是解题的关键.。

人教版八年级数学上册整式的乘法(含知识点)

人教版八年级数学上册整式的乘法(含知识点)

《整式的乘法》同步测试一、选择题:1.下列各式中,正确的是()A.t2·t3 = t5 B.t4+t2 = t 6 C.t3·t4 = t12 D.t5·t5 = 2t52.下列计算错误的是()A.−a2·(−a)2 = −a4 B.(−a)2·(−a)4 = a6C.(−a3)·(−a)2 = a5 D.(−a)·(−a)2 = −a33.下列计算中,运算正确的个数是()①5x3−x3 = x3 ② 3m·2n = 6m+n③a m+a n = a m+n ④x m+1·x m+2 = x m·x m+3A.1 B. 2 C.3 D.44.计算a6(a2)3的结果等于()A.a11 B.a 12 C.a14 D.a365.下列各式计算中,正确的是()A.(a3)3 = a6 B.(−a5)4 = −a 20 C.[(−a)5]3 = a15 D.[(−a)2]3 = a6 6.下列各式计算中,错误的是()A.(m6)6 = m36 B.(a4)m = (a 2m) 2 C.x2n = (−x n)2 D.x2n = (−x2)n 7.下列计算正确的是()A.(xy)3 = xy3 B.(2xy)3 = 6x3y3C.(−3x2)3 = 27x5 D.(a2b)n = a2n b n8.下列各式错误的是()A.(23)4 = 212 B.(− 2a)3 = − 8a3C.(2mn2)4 = 16m4n8 D.(3ab)2 = 6a2b29.下列计算中,错误的是()A.m n·m2n+1 = m3n+1 B.(−a m−1)2 = a 2m−2C.(a2b)n = a2n b n D.(−3x2)3 = −9x610.下列计算中,错误的是( )A .(−2ab 2)2·(− 3a 2b)3 = − 108a 8b 7B .(2xy)3·(−2xy)2 = 32x 5y 5C .(m 2n)(−mn 2)2 =m 4n 4 D .(−xy)2(x 2y) = x 4y 311.下列计算结果正确的是( )A .(6ab 2− 4a 2b)•3ab = 18ab 2− 12a 2bB .(−x)(2x+x 2−1) = −x 3−2x 2+1C .(−3x 2y)(−2xy+3yz −1) = 6x 3y 2−9x 2y 2z 2+3x 2yD .(34a 3−12b)•2ab =32a 4b −ab 2 12.若(x −2)(x+3) = x 2+a+b ,则a 、b 的值为( )A .a = 5,b = 6B .a = 1,b = −6C .a = 1,b = 6D .a = 5,b = −6二、解答题:1.计算(1)(− 5a 3b 2)·(−3ab 2c)·(− 7a 2b);(2)− 2a 2b 3·(m −n)5·13ab 2·(n −m)2+13a 2(m −n)·6ab 2; (3) 3a 2(13ab 2−b)−( 2a 2b 2−3ab)(− 3a); (4)(3x 2−5y)(x 2+2x −3).2.当x = −3时,求8x 2−(x −2)(x+1)−3(x −1)(x −2)的值.3.把一个长方形的长减少3,宽增加2,面积不变,若长增加1,宽减少1,则面积减少6,求长方形的面积.4.(x+my−1)(nx−2y+3)的结果中x、y项的系数均为0,求3m+n之值.参考答案:一、选择题1.A说明:t4与t2不是同类项,不能合并,B错;同底数幂相乘,底不变,指数相加,所以t3·t4 = t3+4 = t7≠t12,C错;t5•t5 = t5+5 = t10≠2t5,D错;t2•t3 = t2+3 = t5,A 正确;答案为A.2.C说明:−a2·(−a)2 = −a2·a2 = −a2+2 = −a4,A计算正确;(−a)2·(−a)4 = a2·a4 = a2+4 = a6,B计算正确;(−a3)·(−a)2 = −a3·a2 = −a5≠a5,C计算错误;(−a)·(−a)2 = −a·a2 = −a3,D计算正确;所以答案为C3.A说明:5x3−x3 = (5−1)x3 = 4x3≠x3,①错误;3m与2n不是同底数幂,它们相乘把底数相乘而指数相加显然是不对的,比如m = 1,n = 2,则3m·2n = 31·22 = 3·4 = 12,而6m+n = 61+2 = 63= 216≠12,②错误;a m与a n只有在m = n时才是同类项,此时a m+a n = 2a m≠a m+n,而在m≠n时,a m与a n无法合并,③错;x m+1·x m+2 = x m+1+m+2 = x m+m+3 =x m·x m+3,④正确;所以答案为A.4.B说明:a6(a2)3 = a6·a2×3 = a6·a6 = a6+6 = a12,所以答案为B.5.D说明:(a3)3 = a3×3 = a9,A错;(−a5)4 = a5×4 = a20,B错;[(−a)5]3 = (−a)5×3 = (−a)15 = −a15,C错;[(−a)2]3 = (−a)2×3 = (−a)6 = a6,D正确,答案为D.6.D说明:(m6)6 = m6×6 = m36,A计算正确;(a4)m = a 4m,(a 2m)2 = a 4m,B计算正确;(−x n)2 = x2n,C计算正确;当n为偶数时,(−x2)n = (x2)n = x2n;当n为奇数时,(−x2)n = −x2n,所以D不正确,答案为D.7.D说明:(xy)3 = x3y3,A错;(2xy)3 = 23x3y3 = 8x3y3,B错;(−3x2)3 = (−3)3(x2)3 = −27x6,C错;(a2b)n = (a2)n b n = a2n b n,D正确,答案为D.8.C说明:(23)4 = 23×4 = 212,A 中式子正确;(− 2a)3 = (−2) 3a 3 = − 8a 3,B 中式子正确;(3ab)2 = 32a 2b 2 = 9a 2b 2,C 中式子错误;(2mn 2)4 = 24m 4(n 2)4 = 16m 4n 8,D 中式子正确,所以答案为C .9.D说明:m n ·m 2n+1 = m n+2n+1 = m 3n+1,A 中计算正确;(−a m −1)2 = a 2(m −1) = a 2m −2,B 中计算正确; (a 2b)n = (a 2)n b n = a 2n b n ,C 中计算正确;(−3x 2)3 = (−3)3(x 2)3 = −27x 6,D 中计算错误;所以答案为D .10.C说明:(−2ab 2)2·(− 3a 2b)3 = (−2) 2a 2(b 2)2·(−3)3(a 2)3b 3 = 4a 2b 4·(−27)a 6b 3 = − 108a 2+6b 4+3 = − 108a 8b 7,A 中计算正确;(2xy)3·(−2xy)2 = (2xy)3·(2xy)2 = (2xy)3+2 = (2xy)5 =25x 5y 5 = 32x 5y 5,B 中计算正确;(13m 2n)(− 13mn 2)2 =13m 2n(−13) 2m 2(n 2)2 =13m 2n·19m 2n 4 =127m 2+2n 1+4 =127m 4n 5,C 中计算错误;(−23xy)2(94x 2y) = (−23)2x 2y 2·94x 2y =49x 2y 2·94x 2y = x 4y 3,D 中计算正确,所以答案为C 11.D 说明:(6ab 2− 4a 2b)•3ab = 6ab 2·3ab − 4a 2b·3ab = 18a 2b 3− 12a 3b ,A 计算错误;(−x)(2x+x 2−1) = −x·2x+(−x)·x 2−(−x) = −2x 2−x 3+x = −x 3−2x 2+x ,B 计算错误;(−3x 2y)(−2xy+3yz −1) = (−3x 2y) • (−2xy)+(−3x 2y) •3yz−(−3x 2y) =6x 3y 2−9x 2y 2z+3x 2y ,C 计算错误;(34a 3−12b)•2ab = (34a 3) •2ab−(12b)•2ab =32a 4b −ab 2,D 计算正确,所以答案为D . 12.B说明:因为(x −2)(x+3) = x•x−2x+3x −6 = x 2+x −6,所以a = 1,b = −6,答案为B .二、解答题1.解:(1)(− 5a 3b 2)·(−3ab 2c)·(− 7a 2b) = [(−5)×(−3)×(−7)](a 3·a·a 2)(b 2·b 2·b)c = − 105a 6b 5c .(2)− 2a 2b 3·(m −n)5·13ab 2·(n −m)2+13a 2(m −n)·6ab 2= (−2·13)·(a 2·a)·(b 3·b 2)[(m −n)5·(m −n)2]+( 13·6)(a 2·a)(m −n)b 2 = −23a 3b 5(m −n)7+ 2a 3b 2(m −n).(3) 3a 2(13ab 2−b)−( 2a 2b 2−3ab)(− 3a) = 3a 2·13ab 2− 3a 2b+ 2a 2b 2· 3a −3ab· 3a = a 3b 2− 3a 2b+ 6a 3b 2− 9a 2b = 7a 3b 2− 12a 2b .(4)(3x 2−5y)(x 2+2x −3) = 3x 2·x 2−5y·x 2+3x 2·2x −5y·2x+3x 2·(−3)−5y·(−3) = 3x 4−5x 2y+6x 3−10xy −9x 2+15y= 3x 4+6x 3−5x 2y −9x 2−10xy+15y .2. 解:8x 2−(x −2)(x+1)−3(x −1)(x −2) = 8x 2−(x 2−2x+x −2)−3(x 2−x −2x+2)= 8x 2−x 2+x+2−3x 2+9x −6 = 4x 2+10x −4.当x = −3时,原式 = 4·(−3)2+10·(−3)−4 = 36−30−4 = 2.3. 解:设长方形的长为x ,宽为y ,则由题意有即解得xy = 36. 答:长方形的面积是36.4. 解:(x+my −1)(nx −2y+3) = nx 2−2xy+3x+mnxy −2my 2+3my −nx+2y −3= nx 2−(2−mn)xy −2my 2+(3−n)x+( 3m+2)y −3∵x 、y 项系数为0,∴得故 3m+n = 3·(−23)+3 = 1.人教版八年级数学上册必须要记、背的知识点第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n-·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)n-条对角线,把多边形分成(2)n-个三角形.②n边形共有(3)2n n-条对角线.第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相 重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一 个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这 条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫 做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做 底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一 对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上. ⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -.②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合. ④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对 等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯=⑵幂的乘方:()n m mn a a = ⑶积的乘方:()n n n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加.⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++⑷拆项法 ⑸添项法第十五章 分式一、知识框架 :二、知识概念:1.分式:形如A B,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭ 8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数)⑵()n m mn a a =(m n 、是正整数) ⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >) ⑸n n n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n n a a-=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。

人教版八年级数学上册整式的乘法 同步练习及答案1

人教版八年级数学上册整式的乘法 同步练习及答案1

一、选择题(每小题2分,共20分)1.1.化简2)2()2(a a a −−⋅−的结果是( )A .0B .22aC .26a −D .24a −2.下列计算中,正确的是( )A .ab b a 532=+B .33a a a =⋅C .a a a =−56D .222)(b a ab =−3.若)5)((−+x k x 的积中不含有x 的一次项,则k 的值是( )A .0B .5C .-5D .-5或54.下列各式中,从左到右的变形是因式分解的是( )A .a a a a +=+2)1(B .b a b a b a b a b a −+−+=−+−))((22B .)4)(4(422y x y x y x −+=− D .))((222a bc a bc c b a −+=+−5.如图,在矩形ABCD 中,横向阴影部分是矩形,另一阴影部分是平行四边行.依照图中标注的数据,计算图中空白部分的面积为(A .2c ac ab bc ++−B .2c ac bc ab +−−C .ac bc ab a −++2D .ab a bc b −+−22 6.三个连续奇数,中间一个是k ,则这三个数之积是( A .k k 43− B .k k 883− C .k k −34 D .k k 283−7.如果7)(2=+b a ,3)(2=−b a ,那么ab 的值是( )A .2B .-8C .1D .-18.如果多项式224y kxy x ++能写成两数和的平方,那么k 的值为( )A .2B .±2C .4D .±49.已知3181=a ,4127=b ,619=c ,则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a10.多项式251244522+++−x y xy x 的最小值为( )A .4B .5C .16D .25二、填空题(每小题2分,共20分)11.已知23−=a ,则6a = .12.计算:3222)()3(xy y x −⋅−= .13.计算:)1312)(3(22+−−y x y xy = . 14.计算:)32)(23(+−x x = .15.计算:22)2()2(+−x x = .16.+24x ( 2)32(9)−=+x .17.分解因式:23123xy x −= .18.分解因式:22242y xy x −+−= .19.已知3=−b a ,1=ab ,则2)(b a += .20.设322)2()1(dx cx bx a x x +++=−+,则d b += .三、解答题(本大题共60分)21.计算:(每小题3分,共12分)(1))311(3)()2(2x xy y x −⋅+−⋅−;(2))12(4)392(32−−+−a a a a a ;(3))42)(2(22b ab a b a ++−;(4)))(())(())((a x c x c x b x b x a x −−+−−+−−.22.先化简,再求值:(第小题4分,共8分)(1))1)(2(2)3(3)2)(1(−+++−−−x x x x x x ,其中31=x .(2)2222)5()5()3()3(b a b a b a b a −++−++−,其中8−=a ,6−=b .23.分解因式(每小题4分,共16分):(1))()(22a b b b a a −+−; (2))44(22+−−y y x .(3)xy y x 4)(2+−; (4))1(4)(2−+−+y x y x ;(5)1)3)(1(+−−x x ; (6)22222222x b y a y b x a −+−.24.(本题4分)已知41=−b a ,25−=ab ,求代数式32232ab b a b a +−的值.25.(本题5分)解方程:)2)(13()2(2)1)(1(2+−=++−+x x x x x .26.(本题5分)已知a 、b 、c 满足5=+b a ,92−+=b ab c ,求c 的值.27.(本题5分)某公园计划砌一个形状如图1所示的喷水池.①有人建议改为图2的形状,且外圆直径不变,只是担心原来备好的材料不够,请你比较两种方案,哪一种需要的材料多(即比较哪个周长更长)?②若将三个小圆改成n 个小圆,结论是否还成立?请说明.28.(本题5分)这是一个著名定理的一种说理过程:将四个如图1所示的直角三角形经过平移、旋转、对称等变换运动,拼成如图2所示的中空的四边形ABCD .(1)请说明:四边形ABCD 和EFGH 都是正方形;(2)结合图形说明等式222c b a =+成立,并用适当的文字叙述这个定理的结论.四、附加题(每小题10分,共20分)29.已知n 是正整数,且1001624+−n n 是质数,求n 的值.a ab b b G H F图1 图230.已知522++x x 是b ax x ++24的一个因式,求b a +的值.参考答案一、选择题1.C 2.D 3.B 4.D 5.B 6.A 7.C 8.D 9.A 10.C二、填空题11.4 12.879b a − 13.xy y x xy 36233−+− 14.6562−+x x 15.16824+−x x16.x 12− 17.)2)(2(3y x y x x −+ 18.2)(2y x −− 19.13 20.2三、解答题21.(1)xy y x 32+ (2)a a a 1335623+− (3)338b a −(4)ca bc ab x c b a x +++++−)(2222.(1)210−−x ,315− (2)22102010b ab a +−,40 23.(1))()(2b a b a +− (2))2)(2(+−−+y x y x (3)2)(y x +(4)2)2(−+y x (5)2)2(−x (6)))()((22b a b a y x −++24.原式=3254125)(22−=⎪⎭⎫ ⎝⎛⨯−=−b a ab 25.3−=x26.由5=+b a ,得b a −=5,把b a −=5代入92−+=b ab c ,得∴222)3(969)5(−−=−−=−+−=b b b b b b c .∵2)3(−b ≥0, ∴22)3(−−=b c ≤0.又2c ≥0,所以,2c =0,故c =0.27. ①设大圆的直径为d ,周长为l ,图2中三个小圆的直径分别为1d 、2d 、3d ,周长分别为1l 、2l 、3l ,由321321321)(l l l d d d d d d d l ++=++=++==πππππ. 可见图2大圆周长与三个小圆周长之和相等,即两种方案所用材料一样多.②结论:材料一样多,同样成立.设大圆的直径为d ,周长为l ,n 个小圆的直径分别为1d ,2d ,3d ,…,n d ,周长为1l ,2l ,3l ,…,n l ,由+++==321(d d d d l ππ…)n d ++++=321d d d πππ…n d π++++=321l l l …n l +.所以大圆周长与n 个小圆周长和相等,所以两种方案所需材料一样多.28.(1)在四边形ABCD 中,因为AB =BC =CD =DA =b a +, 所以四边形ABCD 是菱形. 又因为∠A 是直角, 所以四边形ABCD 是正方形.在四边形EFGH 中, 因为EF =FG =GH =HE =c , 所以四边形EFGH 是菱形. 因为∠AFE +∠AEF =90°,∠AFE =∠HED ,所以∠HED +∠AEF =90°,即∠FEH =90°,所以四边形EFGH 是正方形.(2)因为S 正方形ABCD =4S △AEF +S 正方形EFGH , 所以,22214)(c ab b a +⨯=+, 整理,得222c b a =+.这个定理是:直角三角形两条直角边的平方和等于斜边的平方.四、附加题29.)106)(106(100162224+−++=+−n n n n n n ,∵n 是正整数,∴1062++n n 与1062+−n n 的值均为正整数,且1062++n n >1.∵1001624+−n n 是质数,∴必有1062+−n n =1,解得3=n .30.设))(52(2224n mx x x x b ax x ++++=++,展开,得a ab b b G Hn x m n x m n x m x b ax x 5)52()52()2(23424++++++++=++. 比较比较边的系数,得⎪⎪⎩⎪⎪⎨⎧==++=+=+.5,52,052,02b n a m n m n m 解得2−=m ,5=n ,6=a ,25=b . 所以,31256=+=+b a .。

八年级数学上册 整式的乘法 人教版 (2)

八年级数学上册   整式的乘法   人教版 (2)

多项式除以单项式
例6 计算:(1) ( 4m2n16m n2)2m;
(2)( 3x2yxy21xy)(1xy) .
2
2
解:(1)原式= 4m2n2m( -16mn2) 2m = 2mn-8n2.
(2)原式= 3x2y ( -1xy) ( -xy2) ( -1xy) 1xy ( -1xy)
不是同底数的幂相除,需先将其转化为同底 数幂相除的形式,在转化的过程中要注意符号是 否改变.
单项式除以单项式
例5
计算:(1)(-5x4y6)÷
1 2
x
2
y
2

;
(2)(-3.6×1010)÷(-2×102)2;
(3)4a3m+1÷(-8a2m-1);
(解4):-24(m15)n4÷原(式-6=m-52n÷2)1÷x 412-2my6n-2 =2 -1.0x2y4.
计算单项式乘多项式时,符号的确定是关键,可把 单项式前及多项式各项前的“+”或“-”看成性质符号, 把单项式乘多项式的结果用“+”连接,最后写成省略 “+”的代数式和的形式.
多项式乘多项式
例3 计算:(1)(a+b)(a-b); (2)(a-b)(a2+ab+b2); (3)(-xy2+2x2yz2)(xy2z2-xy+1).
∵乘积中不含x2项和x3项,
p 3 0,
∴ q 3 p 8 0,
解得

p q

3, 1.
故p,q的值分别为3,1.
方法点拨 实际上,解答本题时可以不用把两个多项式直接
相乘,由于这两个多项式乘积中含x2的项可由因式中含 x2的项与常数项的积以及两因式中的一次项的积,再合 并同类项得到,而x3项只能是两个因式中含x2的项与含x 的项的积,再合并同类项得到.因此,只要找出有关项相 乘,再合并同类项,由题意列出方程或方程组求解即可.

第十四章 整式乘法运算训练(必考)2021-2022学年人教版八年级数学上册

第十四章  整式乘法运算训练(必考)2021-2022学年人教版八年级数学上册

第十四章整式乘法运算训练(必考)考点1 幂的运算1.根据题意,完成下列问题.(1)若2m=8,2n=32,求22m﹣n的值;(2)已知2x+3y﹣3=0,求4x•8y的值;(3)已知2x+2•5x+2=103x﹣3,求x的值.2.先化简,再求值:(1)已知a m=2,a n=3,求a m+n的值.(2)已知:x+2y+1=3,求3x×9y×3的值.3.(1)若x m=2,x n=3.求x m+2n的值.(2)若2×8x×16x=222,求x的值.4.已知(a m)n=a2,22m÷22n=26.(1)求mn和m﹣n的值;(2)求m2+n2﹣mn的值.5.计算:(1)(﹣3)2+(π﹣3)0﹣|﹣5|+(1﹣2)2021;(2)(﹣2xy)2+(x2y)3÷(﹣x4y).(3)(﹣2x3y)2•(﹣x2y2)(4)a10÷a4﹣(﹣2a2)3﹣3a2•2a4.6.(1)已知3×9m×27m=311,求m的值.(2)已知2a=3,4b=5,8c=5,求8a+c﹣2b的值.考点2 整式的乘法运算1.计算:(1)﹣3x2(2x﹣4y)+2x(x2﹣xy)(2)(3x+2y)(2x﹣3y)﹣3x(3x﹣2y).2.计算:(x+2)(2x﹣3)+(10x3﹣12x)÷(﹣2x).3.计算:(8x2y3﹣6x3y2z)÷2x2y2.4.若(x2+3mx﹣)(x2﹣3x+n)的积中不含有x与x3项.(1)求m2﹣mn+n2的值;(2)求代数式(﹣18m2n)2+(9mn)2+(3m)2014n2016的值.5.若(x﹣3)(x2+px)的结果不含x2项,求p的值.5.若的积中不含x项与x2项.(1)求p、q的值;(2)求代数式p2019q2020的值.6.在计算(2x+a)(x+b)时,甲错把b看成了6,得到结果是:2x2+8x﹣24;乙错把a看成了﹣a,得到结果:2x2+14x+20.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.7.马同学与虎同学两人共同计算一道题:(x+m)(2x+n).由于马同学抄错了m 的符号,得到的结果是2x2﹣7x+3,虎同学漏抄第二个多项式中x的系数,得到的结果是x2+2x﹣3.请你求出m、n的值.8.芳芳计算一道整式乘法的题:(2x+m)(5x﹣4),由于芳芳抄错了第一个多项式中m前面的符号,把“+”写成“﹣”,得到的结果为10x2﹣33x+20.(1)求m的值;(2)计算这道整式乘法的正确结果.。

人教版八上数学第十四章整式的乘法与因式分解复习(知识点、典型例题)课件

人教版八上数学第十四章整式的乘法与因式分解复习(知识点、典型例题)课件
(3) (-2xy-1)(2xy-1) =1-2xy2
=(-1)2-(2xy)2 =1-4x2y2
填空:
(1)(a __3_)2 a2 6a _9__ (2)(2x _5__)2 4x2 _2_0x_ 25 (3)a2 b2 (a b)2 __2a_b__ (4)(x y)2 __4_x_y__ (x y)2
(2) 先化简,再求值:
(a2 -2b2) (a+2b) -2ab(a-b)
其中
a=1,b=
1 2
.
公式的 反向使用
amn am n an m
已知10a=4,1 0b=7,求下列各式的值 (1)1 02a3b (2)1 02a 103b
公式的 反向使用
(ab)n = an·bn(m,n都是正整数) 反向使用: an·bn = (ab)n
= abc mmm
你找到了 多项式除以单项式的规律 吗?
多项式除以单项式, 先把这个多项式的每一项分别除以单项式, 再把所得的商相加。
例题
例题解析
例3 计算:
(2)原式= =
xy2 (1 xy)
2
2 y
(1)(-2a4b3c)3÷(-8a4b5c) =a8b4c2
(2)(6x2y3)2÷(3xy2)2 =4x2y2
幂的乘方
a a ( m ) n = mn
整 式
积的乘方
( ab
n
)=
an b n
的 乘
单项式的乘法
4a2x5 ·(-3a3bx2)

单项式与多项式相乘 m(a+b)= ma+mb
多项式的乘法(a+b)(m+n)= am+an+bm+bn

人教版八年级数学上册《14.1 整式的乘法》练习题-附参考答案

人教版八年级数学上册《14.1 整式的乘法》练习题-附参考答案

人教版八年级数学上册《14.1 整式的乘法》练习题-附参考答案一、选择题1.计算a3•a2的结果是()A.2a5B.a5C.a6D.a92.计算(x3)5的结果是()A.x2B.x8C.x15D.x163.已知2x+y=3,则4x×2y的值为()A.2 B.4 C.8 D.164.计算(−13)2021×32020的结果是()A.−3B.3 C.−13D.135.已知a=355,b=444,c=533则a、b、c的大小关系为()A.c<a<b B.c<b<a C.a<b<c D.a<c<b 6.如果(2x+m)与(x+3)的乘积中不含x的一次项,那么m的值为()A.﹣6 B.﹣3 C.0 D.17.下列计算正确的是()A.x10÷x2=x5B.(x3)2÷(x2)3=xC.(15x2y﹣10xy2)÷5xy=3x﹣2y D.(12x3﹣6x2+3x)÷3x=4x2﹣2x8.设(x m−1y n+2)(x5m y2)=x5y7,则(−12m)n的值为()A.−18B.−12C.1 D.12二、填空题9.已知33x+1=81,则x=.10.计算:(x−1)2⋅x3=.11.已知(a n b m+2)3=a6b15,则m n=.12.计算(x+3)(x+4)−2(x+6)的结果为.13.已知(x+4)(x﹣9)=x2+mx﹣36,则m的值为三、解答题14.计算:(1)(a2)3⋅(a2)4÷(a2)5;(2)(x-4y)(2x+3y)(3)[(3x+4y)2−3x(3x+4y)]÷(−4y)(4)(−7x2y)(2x2y−3xy3+xy);15.已知n是正整数,且,求的值.16.在计算(x+a)(x+b)时,甲把错b看成了6,得到结果是:x2+8x+12;乙错把a看成了-a,得到结果:x2+x−6.(1)求出a,b的值;(2)在(1)的条件下,计算(x+a)(x+b)的结果.17.学习了《整式的乘除》这一章之后,小明联想到小学除法运算时,会碰到余数的问题,那么类比多项式除法也会出现余式的问题.例如,如果一个多项式(设该多项式为A)除以的商为,余式为,那么这个多项式是多少?他通过类比小学除法的运算法则:被除数=除数×商+余数,推理出多项式除法法则:被除式=除式×商+余式.请根据以上材料,解决下列问题:(1)请你帮小明求出多项式A;(2)小明继续探索,如果一个多项式除以3x的商为,余式为,请你根据以上法则求出该多项式参考答案1.B2.C3.C4.C5.A6.A7.C8.A9.110.x11.912.x2+5x x+x213.-514.(1)解:(a2)3⋅(a2)4÷(a2)5=a6·a8÷a10=a14÷a10=a4(2)解:(x-4y)(2x+3y)=2x2−8xy+3xy−12y2=2x2−5xy−12y2(3)解:[(3x+4y)2−3x(3x+4y)]÷(−4y)=(9x2+24xy+16y2−9x2−12xy)÷(−4y)=(12xy+16y2)÷(−4y)=−3x−4y(4)解:(−7x2y)(2x2y−3xy3+xy)=−14x4y2+21x3y4−7x3y215.解:原式∵∴=9×4+[-8×4]=416.(1)解:由甲计算得:(x+a)(x+6)=x2+8x+12∴6a=12∴a=2;代入乙的式子,得(x−2)(x+b)=x2+x−6∴−2b=−6∴b=3.(2)解:(x+2)(x+3)=x2+3x+2x+6=x2+5x+6.17.(1)解:由题意得;(2)解:由题意可得该多项式为:。

新人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试(答案解析)(1)

新人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试(答案解析)(1)

一、选择题1.若2x y +=,1xy =-,则()()1212x y --的值是( )A .7-B .3-C .1D .92.下列运算正确的是( ) A .()23636a =B .()()22356a a a a --=-+ C .842x x x ÷=D .326326x x x ⋅=3.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52-B .52C .5D .-54.已知25y x -=,那么()2236x y x y --+的值为( ) A .10B .40C .80D .2105.若3a b +=,1ab =,则()2a b -的值为( ) A .4B .5C .6D .76.下列运算中,正确的个数是( )①2352x x x +=;②()326x x =;③03215⨯-=;④538--+= A .1个 B .2个 C .3个 D .4个 7.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( ) A .6163m n - B .6323m n - C .383m n - D .6169m n - 8.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( ) A .a b c >>B .b c a >>C .c a b >>D .a c b >>9.下列各式中,正确的是( ) A .2222x y yx x y -+= B .22445a a a += C .()2424m m --=-+D .33a b ab +=10.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:-a b ,x y -,x y +,+a b ,22x y -,22a b -分别对应下列六个字:通、爱、我、昭、丽、美、现将()()222222xy a x y b ---因式分解,结果呈现的密码信息可能是( )A .我爱美丽B .美丽昭通C .我爱昭通D .昭通美丽11.已知()()22113(21)a b ab ++=-,则1b a a ⎛⎫- ⎪⎝⎭的值是( ) A .0B .1C .-2D .-112.下列运算正确的是( ) A .428a a a ⋅=B .()23624a a =C .6233()()ab ab a b ÷=D .22()()a b a b a b +-=+二、填空题13.若231m n -=,则846m n -+=________.14.对于有理数a ,b ,定义min{,}a b 的含义为:当a b <时,min{,}a b a =;当a b >时,min{,}a b b =.例如:min{1,22}-=-,min{3,1}1-=-.已知min{21,}21a =,min{21,}b b =,且a 和b 是两个连续的正整数,则a+b =_____.15.关于x 的一次二项式mx +n 的值随x 的变化而变化,分析下表列举的数据 x 011.52 mx +n-3 -1 01若mx +n =17,线段AB 的长为x ,点C 在直线AB 上,且BC =12AB ,则直线AB 上所有线段的和是_____________.16.计算:()()299990.045⎡⎤⨯-⎣⎦的结果是______.17.已知香蕉,苹果,梨的价格分别为a ,b ,c (单位:元/千克)、用20元正好可以买三种水果各1千克:买1千克香蕉,2千克苹果,3千克梨正好花去42元,若买b 千克香需w 元,则w =___________.(结果用含c 的代数式表示) 18.若2x y a +=,2x y b -=,则22x y -的值为____________. 19.分解因式3225a ab -=____.20.若6x y +=,3xy =-,则2222x y xy +=_____.三、解答题21.(1)计算:()()()()23232121a a a a a -++-+-(2)分解因式:244xy xy x -+22.图1是一个长为2a 、宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于________.(2)观察图2,请你写出下列三个代数式2()a b +,2()a b -,ab 之间的等量关系为________.(3)运用你所得到的公式,计算:若m 、n 为实数,且3=-mn ,4m n -=,试求m n +的值.(4)如图3,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设8AB =,两正方形的面积和1226S S +=,求图中阴影部分面积. 23.(1)23235ab a b ab (2)23233x xxx24.图1是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于______; (2)请用两种不同的方法求图2中阴影部分的面积. ①________________; ②__________________.(3)观察图2你能写出2()m n +,2()m n -,mn 三个代数式之间的等量_____________.(4)运用你所得到的公式,计算若知8,7a b ab +==,求-a b 和22a b -的值.(5)用完全平方公式和非负数的性质求代数式222431832x x y y ++-+的最小值.25.计算:(1)2(1)(1)(2)x x x +--+ (2)(34)(34)x y x y -++- 26.先化简,再求值:()()()()()32333b a b a a b a b b a a ---+---÷-⎡⎤⎣⎦,其中212025a b ⎛⎫-+-= ⎪⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值. 【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7; 故选:A . 【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.2.B解析:B 【分析】分别根据同底数幂的除法法则,同底数幂的乘方法则,多项式乘以多项式法则以及单项式乘以单项式法则逐一判断即可. 【详解】 解:A. ()23633a a =,故本选项不符合题意;B .()()22356a a a a --=-+,正确,故本选项符合题意; C .844x x x ÷=,故本选项不合题意; D .325326x x x ⋅=,故本选项不合题意. 故选:B . 【点睛】本题主要考查了整式的乘除运算,熟记相关的运算法则是解答本题的关键.3.B解析:B 【分析】把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值. 【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项, ∴5-2a=0,∴a=52. 故选B . 【点睛】本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.4.B解析:B所求式子变形后,将已知等式变形代入计算即可求出值. 【详解】 25y x -=∴ 25x y -=-()2236x y x y --+()()2=322x y x y ---=()()2535--⨯- =25+15 =40 故选:B 【点睛】此题主要考查整体代入的思想,还考查代数式求值的问题,是一道基础题.5.B解析:B 【分析】由3a b +=结合完全平方式即可求出22a b +的值,再由222()2a b a b ab -=+-,即可求出结果. 【详解】 ∵3a b +=,∴22()3a b +=,即2229a ab b ++=, 将1ab =代入上式得:229217a b +=-⨯=. ∵222()2a b a b ab -=+-, ∴2()725a b -=-=. 故选:B . 【点睛】本题考查代数式求值以及因式分解.熟练利用完全平方式求解是解答本题的关键.6.A解析:A 【分析】①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算. 【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的; ∵()326x x =,∴②是正确的;∵032112-1=1⨯-=⨯,∴③是错误的; ∵53-5+3=-2--+=,∴④是错误的; 综上所述,只有一个正确, 故选:A. 【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.7.B解析:B 【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可求出a 和b ,再利用单项式乘以单项式计算结果即可. 【详解】 解:由题意可得:2328a b a b b -=⎧⎨+=⎩, 解得:72a b ==,,则这两个单项式分别为:3163m n -,316m n , ∴它们的积为:3163166323?3m n m n m n -=-, 故选:B . 【点睛】本题主要考察同类项的概念、单项式乘以单项式,掌握同类项的概念是解题的关键.8.B解析:B 【分析】由552a =,443b =,334c =,比较5432,3,4的大小即可. 【详解】解:∵555112=(2)a =,444113(3)b == ,333114(4)c == ,435342>> ,∴411311511(3)(4)(2)>>,即b c a >>, 故选B . 【点睛】本题考查了幂的乘方的逆运算及数的大小的比较,解题的关键是熟练掌握幂的乘方运算法则.9.A解析:A 【分析】根据同类项的定义与单项式的乘法法则,分别判断分析即可.解:A.2222x y yx x y -+=,故A 正确;B.22245a a a +=,故B 不正确;C.-2(m-4)=-2m+8,故C 不正确;D.3a 与b 不是同类项,不能合并,故D 不正确. 故选A. 【点睛】本题考查了合并同类项与单项式的乘法、去括号与添括号.注意,去括号时,如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.10.C解析:C 【分析】将式子先提取公因式再用平方差公式因式分解可得:(x 2-y 2)a 2-(x 2-y 2)b 2=(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ),再结合已知即可求解. 【详解】解:(x 2-y 2)a 2-(x 2-y 2)b 2 =(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ), 由已知可得:我爱昭通, 故选:C . 【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求解是解题的关键.11.D解析:D 【分析】先对()()22113(21)a b ab ++=-进行变形,可以解出a ,b 的关系,然后在对1b a a ⎛⎫- ⎪⎝⎭进行因式分解即可. 【详解】∵()()22113(21)a b ab ++=-, ∴2222163a b a b ab +++=-,22222440a b ab a b ab +-+-+=,()()2220a b ab -+-=,∴a b =,2ab =,∴1121bb a ab a a⎛⎫-=-=-=-⎪⎝⎭ 故选:D .本题主要考查了因式分解的应用,在解题时要注意符号变换,同时掌握正确的运算是解答本题的关键.12.B解析:B 【分析】根据同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式依次计算判断. 【详解】A 、426a a a ⋅=,故该项错误;B 、()23624a a =,故该项正确;C 、4624()()ab ab a b ÷=,故该项错误;D 、22()()a b a b a b +-=-,故该项错误; 故选:B . 【点睛】此题考查整式的计算法则,正确掌握整式的同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式是解题的关键.二、填空题13.6【分析】将原式化为再整体代入即可【详解】解:∵∴原式==8-2×1=6故答案为:6【点睛】本题考查了求代数式的值把某一部分看成一个整体是解题的关键解析:6 【分析】将原式化为82(23)m n --,再整体代入即可. 【详解】解:∵231m n -=,∴原式=82(23)m n --=8-2×1=6. 故答案为:6. 【点睛】本题考查了求代数式的值,把某一部分看成一个整体是解题的关键.14.9【分析】根据新定义得出ab 的值再求和即可【详解】解:∵min{a}=min{b}=b ∴<ab <又∵a 和b 为两个连续正整数∴a=5b=4则a+b=9故答案为:9【点睛】本题主要考查了算术平方根和实数解析:9 【分析】根据新定义得出a ,b 的值,再求和即可.解:∵min{21,a}=21,min{21,b}=b,∴21<a,b<21,又∵a和b为两个连续正整数,∴a=5,b=4,则a+b=9.故答案为:9.【点睛】本题主要考查了算术平方根和实数的大小比较,正确得出a,b的值是解题关键.15.20或30【分析】把表格中的前两对值代入求出m与n的值即可求出x的值然后把x的值代入求解即可【详解】解:由表格得x=0时m0+n=-3∴n =-3;x=1时m1+(-3)=-1∴m=2;∵mx+n解析:20或30【分析】把表格中的前两对值代入求出m与n的值,即可求出x的值,然后把x的值代入求解即可.【详解】解:由表格得x=0时,m⋅0+n=-3,∴n=-3;x=1时,m⋅1+(-3)=-1,∴m=2;∵mx+n=17,∴2x-3=17,∴x=10,当点C在线段AB上时,∵BC=1AB,2∴BC=1×10=5,2∴AC+AB+BC=20;当点C在点B右侧时,∵BC=1AB,2∴BC=1×10=5,2∴AC+AB+BC=30.故答案为20或30.【点睛】此题考查了代数式求值和线段的和差计算,熟练掌握运算法则是解本题的关键.16.1【分析】根据积的乘方的逆运算和幂的乘方计算即可【详解】解:原式故答案为:1【点睛】本题考查了积的乘方的逆运算和幂的乘方熟练掌握法则是解题的关键解析:1 【分析】根据积的乘方的逆运算和幂的乘方计算即可 【详解】解:原式()()()()99992999999990.0450.04250.110425⎡⎤⨯-⨯⨯⎣===⎦==故答案为:1 【点睛】本题考查了积的乘方的逆运算和幂的乘方,熟练掌握法则是解题的关键17.【分析】根据题意得:通过计算得到b 和c 的关系式;再将b 和c 的关系式代入到得a 和c 的关系式经计算即可得到答案【详解】根据题意得:∴∴∴∴故答案为:【点睛】本题考查了三元一次方程组整式运算的知识;解题的解析:222644c c -+-【分析】根据题意得:20a b c ++=,2342a b c ++=,通过计算得到b 和c 的关系式;再将b 和c 的关系式代入到20a b c ++=,得a 和c 的关系式,经计算即可得到答案. 【详解】根据题意得:20a b c ++=,2342a b c ++= ∴204223a b c b c =--=-- ∴222b c =-∴20202222a b c c c c =--=-+-=- ∴()()2222222644w a b c c c c =⨯=--=-+-故答案为:222644c c -+-. 【点睛】本题考查了三元一次方程组、整式运算的知识;解题的关键是熟练掌握三元一次方程组、整式乘法运算的性质,从而完成求解.18.【分析】应用平方差把多项式因式分解再整体代入即可【详解】解:把代入原式=故答案为:【点睛】本题考查了运用平方差公式因式分解和整体代入求值能够熟练运用平方差把多项式因式分解并整体代入求值是解题的关键解析:4ab . 【分析】应用平方差把多项式22x y -因式分解,再整体代入即可. 【详解】解:22()()x y x y x y -=+-,把2x y a +=,2x y b -=代入,原式=224a b ab ⨯=,故答案为:4ab .【点睛】本题考查了运用平方差公式因式分解和整体代入求值,能够熟练运用平方差把多项式因式分解并整体代入求值,是解题的关键.19.a (a+5b )(a-5b )【分析】首先提取公因式a 进而利用平方差公式分解因式得出答案【详解】解:a3-25ab2=a (a2-25b2)=a (a+5b )(a-5b )故答案为:a (a+5b )(a-5b )解析:a (a+5b )(a-5b )【分析】首先提取公因式a ,进而利用平方差公式分解因式得出答案.【详解】解:a 3-25ab 2=a (a 2-25b 2)=a (a+5b )(a-5b ).故答案为:a (a+5b )(a-5b ).【点睛】本题考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题的关键. 20.【分析】先将原式因式分解得再整体代入即可求出结果【详解】解:∵∴原式故答案是:【点睛】本题考查因式分解解题的关键是熟练运用因式分解和整体代入的思想求值解析:36-【分析】先将原式因式分解得()2xy x y +,再整体代入即可求出结果.【详解】解:()22222x y xy xy x y +=+, ∵6x y +=,3xy =-,∴原式()23636=⨯-⨯=-.故答案是:36-.【点睛】本题考查因式分解,解题的关键是熟练运用因式分解和整体代入的思想求值.三、解答题21.(1)10;(2)()22x y -【分析】(1)根据整式的乘法公式及运算法则即可求解;(2)先提取x ,再根据完全平方公式即可因式分解.【详解】(1)解:原式222366941a a a a a =-+++-+10=()2解:原式()244x y y =-+()22x y =-.【点睛】此题主要考查整式的运算与因式分解,解题的关键是熟知整式的运算法则及因式分解的方法.22.(1)44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)2或2-;(4)192. 【分析】(1)直接写出边长:长边减短边=a-b ,进而可得周长; (2)根据阴影正方形的面积=大正方形的面积-4个长方形的面积解答,或利用大正方形的面积=阴影方形的面积+4个长方形的面积解答,或利用4个长方形的面积=大正方形的面积-阴影方形的面积解答;(3)根据22()()4a b a b ab +=-+求解即可;(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,然后把8x y +=的两边平方求解即可.【详解】解:(1)由图可知,阴影部分正方形的边长为:a-b ,∴阴影部分的正方形的周长等于44a b -或者4()a b -,故答案为:44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或(22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)∵3=-mn ,4m n -=,∴222()()444(3)16124m n m n mn +=-+=+⨯-=-=,∴2m n +=±,∴m n +的值为2或2-.(4)设AC x =,BC y =,则21S x =,22S y =, 由1226S S +=可得,2226x y +=,而8x y AB +==, 而12S xy =阴影部分,∵8x y +=,∴22264x xy y ++=,又∴2226x y +=,∴238xy =, ∴13819242S xy ===阴影部分, 即,阴影部分的面积为192. 【点睛】本题主要考查完全平方公式的几何背景,利用图形的面积是解决此题的关键,利用数形结合的思想,注意观察图形.23.(1)10615a b ;(2)23221x x -- 【分析】(1)先算乘方,再确定符号,把系数,相同字母分别相乘除即可;(2)先利用多项式乘以多项式和平方差公式计算,然后去括号合并同类项.【详解】解:(1)23235ab a b ab 24935a b a b ab1175a b ab10615a b =; (2)23233x xx x 23233x xx x 2222369x x x x2222129x x x 23221x x .【点睛】本题主要考查了整式的混合运算,熟悉相关计法是解题的关键.24.(1)m-n ;(2)①(m-n )2;②(m+n )2-4mn ;(3)(m-n )2=(m+n )2-4mn ;(4)6a b -=±,22a b -=±48;(5)3【分析】(1)根据阴影部分正方形的边长等于小长方形的长减去宽解答;(2)从整体与局部两个思路考虑解答;(3)根据大正方形的面积减去阴影部分小正方形的面积等于四个长方形的面积解答; (4)根据()()224a b a b ab -=+-,可得a-b 的值,再根据22a b -=()()a b a b +-求出22a b -的值;(5)利用完全平方公式将原式变形为()()2221333x y ++-+,再根据非负数的性质可求出最小值为3.【详解】解:(1)由图可知,阴影部分小正方形的边长为:m-n ;(2)根据正方形的面积公式,阴影部分的面积为(m-n )2,还可以表示为(m+n )2-4mn ;(3)根据阴影部分的面积相等,(m-n )2=(m+n )2-4mn ;(4)∵8,7a b ab +==,∴()()224a b a b ab -=+-=2847-⨯=36, ∴6a b -=±,若6a b -=,则22a b -=()()a b a b +-=86⨯=48,若6a b -=-,则22a b -=()()a b a b +-=()86⨯-=-48;(5)222431832x x y y ++-+=22242318273x x y y +++-++=()()2221333x y ++-+∵()2210x +≥,()2330y -≥, ∴()()2221333x y ++-+≥3,即最小值为3. 【点睛】本题考查了完全平方公式的几何背景,准确识图,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键.25.(1)3x +;(2)229816-+-x y y .【分析】(1)先分别利用完全平方公式和多项式乘多项式运算法则计算,再去括号、合并同类项即可得到结果;(2)原式变形后,运用平方差公式和完全平方公式计算即可求出结果.【详解】计算:⑴ 原式2221(2)x x x x =++-+-22212x x x x =++--+3x =+,(2)原式[3(4)][3(4)]x y x y =--+-229(4)x y =--229816=-+-x y y .【点睛】本题主要考查了整式的混合运算,掌握运算法则及灵活运用乘法公式是解题的关键. 26.4a b -,85【分析】先算乘法,再合并同类项,最后算除法,代入求出即可.【详解】解:()()()()()32333b a b a a b a b b a a ---+---÷-⎡⎤⎣⎦ ()()22223293ab b a ab b a a =--++-÷-()()23123ab a a =-÷-4a b =- ∵212025a b ⎛⎫-+-= ⎪⎝⎭ ∴1=02a -,2=05b - 解得:12a =,25b = ∴原式1284255=⨯-= 【点睛】 本题考查了整式的混合运算和求值的应用,主要考查学生的化简能力和计算能力,注意运算顺序.。

【精品讲义】人教版 八年级数学(上) 专题14.1 整式的乘法(知识点+例题+练习题)含答案

【精品讲义】人教版 八年级数学(上) 专题14.1  整式的乘法(知识点+例题+练习题)含答案

第十四章 整式的乘法与因式分解14.1 整式的乘法一、同底数幂的乘法一般地,对于任意底数a 与任意正整数m ,n ,a m ·a n =()m aa a a ⋅⋅⋅个·()n aa a a ⋅⋅⋅个=()m n aa a a +⋅⋅⋅个=m n a +.语言叙述:同底数幂相乘,底数不变,指数__________.【拓展】1.同底数幂的乘法法则的推广:三个或三个以上同底数幂相乘,法则也适用.m n p a a a ⋅⋅⋅=m n pa +++(m ,n ,…,p 都是正整数).2.同底数幂的乘法法则的逆用:a m +n =a m ·a n (m ,n 都是正整数). 二、幂的乘方1.幂的乘方的意义:幂的乘方是指几个相同的幂相乘,如(a 5)3是三个a 5相乘,读作a 的五次幂的三次方,(a m )n 是n 个a m 相乘,读作a 的m 次幂的n 次方. 2.幂的乘方法则:一般地,对于任意底数a 与任意正整数m ,n ,()=mn mm n m m m m m mmn n a a a a a a a +++=⋅⋅⋅=个个.语言叙述:幂的乘方,底数不变,指数__________.【拓展】1.幂的乘方的法则可推广为[()]m n p mnpa a =(m ,n ,p 都是正整数).2.幂的乘方法则的逆用:()()mn m n n m a a a ==(m ,n 都是正整数). 三、积的乘方1.积的乘方的意义:积的乘方是指底数是乘积形式的乘方.如(ab )3,(ab )n 等.3()()()()ab ab ab ab =⋅⋅(积的乘方的意义)=(a ·a ·a )·(b ·b ·b )(乘法交换律、结合律)=a 3b 3.2.积的乘方法则:一般地,对于任意底数a ,b 与任意正整数n ,()()()()=n n nn an bn ab ab ab ab ab a a a b b b a b =⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅个个个.因此,我们有()nn nab a b =.语言叙述:积的乘方,等于把积的每一个因式分别__________,再把所得的幂相乘. 四、单项式与单项式相乘法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别__________,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.1.只在一个单项式里含有的字母,要连同它的指数写在积里,注意不要把这个因式遗漏. 2.单项式与单项式相乘的乘法法则对于三个及以上的单项式相乘同样适用. 3.单项式乘单项式的结果仍然是单项式.【注意】1.积的系数等于各项系数的积,应先确定积的符号,再计算积的绝对值. 2.相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算. 五、单项式与多项式相乘法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积__________.用式子表示:m (a +b +c )=ma +mb +mc (m ,a ,b ,c 都是单项式).【注意】1.单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同,可以以此来检验在运算中是否漏乘某些项.2.计算时要注意符号问题,多项式中每一项都包括它前面的符号,同时还要注意单项式的符号. 3.对于混合运算,应注意运算顺序,有同类项必须合并,从而得到最简结果. 六、多项式与多项式相乘1.法则:一般地,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积__________.2.多项式与多项式相乘时,要按一定的顺序进行.例如(m +n )(a +b +c ),可先用第一个多项式中的每一项与第二个多项式相乘,得m (a +b +c )与n (a +b +c ),再用单项式乘多项式的法则展开,即 (m +n )(a +b +c )=m (a +b +c )+n (a +b +c )=ma +mb +mc +na +nb +nc . 【注意】1.运用多项式乘法法则时,必须做到不重不漏.2.多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积. 七、同底数幂的除法 同底数幂的除法法则:一般地,我们有m n m n a a a -÷=(a ≠0,m ,n 都是正整数,并且m >n ). 语言叙述:同底数幂相除,底数不变,指数__________.【拓展】1.同底数幂的除法法则的推广:当三个或三个以上同底数幂相除时,也具有这一性质,例如:m n p m n p a a a a --÷÷=(a ≠0,m ,n ,p 都是正整数,并且m >n +p ). 2.同底数幂的除法法则的逆用:m n m n a a a -=÷(a ≠0,m ,n 都是正整数,并且m >n ). 八、零指数幂的性质 零指数幂的性质:同底数幂相除,如果被除式的指数等于除式的指数,例如a m ÷a m ,根据除法的意义可知所得的商为1.另一方面,如果依照同底数幂的除法来计算,又有a m ÷a m =a m -m =a 0. 于是规定:a 0=1(a ≠0).语言叙述:任何不等于0的数的0次幂都等于__________. 【注意】1.底数a 不等于0,若a =0,则零的零次幂没有意义. 2.底数a 可以是不为零的单顶式或多项式,如50=1,(x 2+y 2+1)0=1等. 3.a 0=1中,a ≠0是极易忽略的问题,也易误认为a 0=0. 九、单项式除以单项式单项式除以单项式法则:一般地,单项式相除,把系数与同底数幂分别__________作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.单项式除以单项式法则的实质是将单项式除以单项式转化为同底数幂的除法运算,运算结果仍是单项式. 【归纳】该法则包括三个方面:(1)系数相除;(2)同底数幂相除;(3)只在被除式里出现的字母,连同它的指数作为商的一个因式.【注意】可利用单项式相乘的方法来验证结果的正确性. 十、多项式除以单项式多项式除以单项式法则:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商__________.【注意】1.多项式除以单项式是将其化为单项式除以单项式问题来解决,在计算时多项式里的各项要包括它前面的符号.2.多项式除以单项式,被除式里有几项,商也应该有几项,不要漏项. 3.多项式除以单项式是单项式乘多项式的逆运算,可用其进行检验.一、相加 二、相乘 三、乘方四、相乘五、相加六、相加七、相减八、1九、相除十、相加1.同底数幂的乘法(1)同底数幂的乘法法则只有在底数相同时才能使用. (2)单个字母或数字可以看成指数为1的幂.(3)底数不一定只是一个数或一个字母,也可以是单项式或多项式.计算m 2·m 6的结果是A .m 12B .2m 8C .2m 12D .m 8【答案】D【解析】m 2·m 6=m 2+6=m 8,故选D .计算-(a -b )3(b -a )2的结果为A .-(b -a )5B .-(b +a )5C .(a -b )5D .(b -a)5【答案】D【解析】-(a-b )3(b -a )2=(b -a )3(b -a )2=(b -a )5,故选D .2.幂的乘方与积的乘方(1)每个因式都要乘方,不能漏掉任何一个因式.(2)要注意系数应连同它的符号一起乘方,尤其是当系数是-1时,不可忽略.计算24()a 的结果是A .28aB .4aC .6aD .8a【答案】D【解析】24()a =248a a ⨯=,故选D .下列等式错误的是A .(2mn )2=4m 2n 2B .(-2mn )2=4m 2n 2C .(2m 2n 2)3=8m 6n 6D .(-2m 2n 2)3=-8m 5n 5【答案】D【解析】A .(2mn )2=4m 2n 2,该选项正确; B .(-2mn )2=4m 2n 2,该选项正确; C .(2m 2n 2)3=8m 6n 6,该选项正确;D .(-2m 2n 2)3=-8m 6n 6,该选项错误.故选D .3.整式的乘法(1)单顶式与单顶式相乘,系数是带分数的一定要化成假分数,还应注意混合运算的运算顺序:先乘方,再乘法,最后加减.有同类顶的一定要合并同类顶.(2)单顶式与多顶式相乘的计算方法,实质是利用分配律将其转化为单项式乘单项式.计算:3x 2·5x 3的结果为A .3x 6B .15x 6C .5x 5D .15x 5【答案】D【解析】直接利用单项式乘以单项式运算法则,得3x 2·5x 3=15x 5.故选D .下列各式计算正确的是A .2x (3x -2)=5x 2-4xB .(2y +3x )(3x -2y )=9x 2-4y 2C .(x +2)2=x 2+2x +4D .(x +2)(2x -1)=2x 2+5x -2【答案】B【解析】A 、2x (3x -2)=6x 2-4x ,故本选项错误; B 、(2y +3x )(3x -2y )=9x 2-4y 2,故本选项正确; C 、(x +2)2=x 2+4x +4,故本选项错误;D 、(x +2)(2x -1)=2x 2+3x -2,故本选项错误.故选B .4.同底数幂的除法多顶式除以单项式可转化为单项式除以单顶式的和,计算时应注意逐项相除,不要漏项,并且要注意符号的变化,最后的结果通常要按某一字母升幂或降幂的顺序排列.计算2x 2÷x 3的结果是 A .xB .2xC .x -1D .2x -1【答案】D【解析】因为2x 2÷x 3=2x -1,故选D .计算:4333a b a b ÷的结果是 A .aB .3aC .abD .2a b【答案】A【解析】因为43334333a b a b a b a --÷==.故选A .计算:22(1510)(5)x y xy xy --÷-的结果是A .32x y -+B .32x y +C .32x -+D .32x --【答案】B【解析】因为2221111121(1510)(5)3232x y xy xy xyx y x y ------÷-=+=+.故选B .5.整式的化简求值(1)化简求值题一般先按整式的运算法则进行化简,然后再代入求值.(2)在求整式的值时,代入负数时应用括号括起来,作为底数的分数也应用括号括起来.先化简,再求值:2[()(4)8]2x y y x y x x -+--÷,其中8x =,2018y =.【解析】原式222(248)2x xy y xy y x x =-++--÷2(28)2x xy x x =+-÷142x y =+-. 当8x =,2018y =时,原式182018420182=⨯+-=.1.计算3(2)a -的结果是 A .38a -B .36a -C .36aD .38a2.下列计算正确的是 A .77x x x ÷=B .224(3)9x x -=-C .3362x x x ⋅=D .326()x x =3.如果2(2)(6)x x x px q +-=++,则p 、q 的值为 A .4p =-,12q =- B .4p =,12q =- C .8p =-,12q =-D .8p =,12q =4.已知30x y +-=,则22y x ⋅的值是 A .6B .6-C .18D .85.计算3n ·(-9)·3n +2的结果是 A .-33n -2B .-3n +4C .-32n +4D .-3n +66.计算223(2)(3)m m m m -⋅-⋅+的结果是 A .8m 5B .–8m 5C .8m 6D .–4m 4+12m 57.若32144m nx y x y x ÷=,则m ,n 的值是 A .6m =,1n = B .5m =,1n = C .5m =,0n =D .6m =,0n =8.计算(-x )2x 3的结果等于__________. 9.(23a a a ⋅⋅)³=__________.10.3119(1.210)(2.510)(410)⨯⨯⨯=__________. 11.计算:(a 2b 3-a 2b 2)÷(ab )2=__________.12.若1221253()()m n n m a b a b a b ++-= ,则m +n 的值为__________. 13.计算:(1)21(2)()3(1)3x y xy x -⋅-+⋅-; (2)23(293)4(21)a a a a a -+--. (3)(21x 4y 3–35x 3y 2+7x 2y 2)÷(–7x 2y ).14.先化简,再求值:(1)x (x -1)+2x (x +1)-(3x -1)(2x -5),其中x =2; (2)243()()m m m -⋅-⋅-,其中m =2-.15.“三角”表示3xyz ,“方框”表示-4a b d c .求×的值.16.下列运算正确的是A .326a a a ⨯=B .842a a a ÷=C .3(1)33a a --=-D .32911()39a a =17.计算5642333312(3)2a b c a b c a b c ÷-÷,其结果正确的是A .2-B .0C .1D .218.计算:(7)(6)(2)(1)x x x x +---+=__________. 19.如果1()()5x q x ++展开式中不含x 项,则q =__________. 20.已知:2x =3,2y =6,2z =12,试确定x ,y ,z 之间的关系.21.在一次测试中,甲、乙两同学计算同一道整式乘法:(2x +a )(3x +b ),由于甲抄错了第一个多项式中的符号,得到的结果为6x 2+11x -10;由于乙漏抄了第二个多项式中的系数,得到的结果为2x 2-9x +10. (1)试求出式子中a ,b 的值;(2)请你计算出这道整式乘法的正确结果.22.(2019•镇江)下列计算正确的是A .236a a a ⋅=B .734a a a ÷=C .358()a a =D .22()ab ab =23.(2019•泸州)计算233a a ⋅的结果是A .54aB .64aC .53aD .63a24.(2019•柳州)计算:2(1)x x -=A .31x -B .3x x -C .3x x +D .2x x -25.(2019•天津)计算5x x ⋅的结果等于__________. 26.(2019•绥化)计算:324()m m -÷=__________. 27.(2019•乐山)若392m n ==,则23m n +=__________. 28.(2019•武汉)计算:2324(2)x x x -⋅. 29.(2019•南京)计算:22()()x y x xy y +-+.1.【答案】A【解析】33(2)8a a -=-,故选A . 2.【答案】D【解析】A 、76x x x ÷=,故此选项错误; B 、224(3)9x x =-,故此选项错误; C 、336x x x ⋅=,故此选项错误; D 、326()x x =,故此选项正确, 故选D . 3.【答案】A【解析】已知等式整理得:x 2-4x -12=x 2+px +q ,可得p =-4,q =-12,故选A .4.【答案】D【解析】∵x +y -3=0,∴x +y =3,∴2y ·2x =2x +y =23=8.故选D .5.【答案】C【解析】3n ·(-9)·3n +2=-3n ·32·3n +2=-32n +4,故选C .6.【答案】A【解析】原式=4m 2·2m 3=8m 5,故选A .7.【答案】B 【解析】因为33121444m n m n x y x y x y x --÷==,所以32m -=,10n -=,5m =,1n =,故选B . 8.【答案】x 5【解析】根据积的乘方以及同底数幂的乘法法则可得:(-x )2x 3=x 2·x 3=x 5.故答案为:x 5. 9.【答案】a 18【解析】(23a a a ⋅⋅)³=(6a )³=a 18.故答案为:a 18. 10.【答案】241.210⨯【解析】原式=1.2×103×(2.5×1011)×(4×109)=12×1023=1.2×1024.故答案为:1.2×1024. 11.【答案】1b -【解析】(a 2b 3-a 2b 2)÷(ab )2=(a 2b 3-a 2b 2)÷a 2b 2=a 2b 3÷a 2b 2-a 2b 2÷a 2b 2=1b -.故答案为:1b -. 12.【答案】2【解析】(a m +1b n +2)(a 2n –1b 2m )=a m +1+2n –1·b n +2+2m =a m +2n ·b n +2m +2=a 5b 3, ∴25223m n n m +=++=⎧⎨⎩, 两式相加,得3m +3n =6,解得m +n =2,故答案为:2.13.【解析】(1)原式=2x 2y +3xy -x 2y=x 2y +3xy .(2)原式=6a 3-27a 2+9a -8a 2+4a=6a 3-35a 2+13a .(3)原式=21x 4y 3÷(–7x 2y )–35x 3y ÷(–7x 2y )+7x 2y 2÷(–7x 2y )=–3x 2y 2+5xy –y .14.【解析】(1)原式=x 2-x +2x 2+2x -6x 2+17x -5=(x 2+2x 2-6x 2)+(-x +2x +17x )-5=-3x 2+18x -5.当x =2时,原式=19.(2)原式=-m 2·m 4·(-m 3)=m 2·m 4·m 3=m 9.当m =-2时,则原式=(-2)9=-512.15.【解析】由题意得×=(3mn ·3)×(–4n 2m 5) =[]526333(4)()()36m m n n m n ⨯⨯-⋅⋅⋅=-.16.【答案】C【解析】A 、2326a a a ⨯=,故本选项错误;B 、844a a a ÷=,故本选项错误;C 、()3133a a --=-,正确;D 、32611()39a a =,故本选项错误, 故选C .17.【答案】A【解析】因为5642333352363341312(3)222a b c a b c a b c ab c ------÷-÷=-=-,故选A . 18.【答案】2x -40【解析】原式=(x 2+x -42)-(x 2-x -2)=2x -40.故答案为:2x -40.19.【答案】15- 【解析】1()()5x q x ++=211()55x q x q +++,由于展开式中不含x 的项,∴105q +=,∴15q =-.故答案为:15-.20.【解析】因为2x =3,所以2y =6=2×3=2×2x =2x +1, 2z =12=2×6=2×2y =2y +1.所以y =x +1,z =y +1.两式相减,得y -z =x -y ,所以x +z =2y .21.【解析】(1)由题意得:(2x -a )(3x +b )=6x 2+(2b -3a )x -ab ,(2x +a )(x +b )=2x 2+(a +2b )x +ab , 所以2b -3a =11①,a +2b =-9②,由②得2b =-9-a ,代入①得-9-a -3a =11,所以a =-5,2b =-4,b =-2.(2)由(1)得(2x +a )(3x +b )=(2x -5)(3x -2)=6x 2-19x +10.22.【答案】B【解析】A 、a 2·a 3=a 5,故此选项错误;B 、a 7÷a 3=a 4,正确;C 、(a 3)5=a 15,故此选项错误;D 、(ab )2=a 2b 2,故此选项错误,故选B .23.【答案】C【解析】23533a a a ⋅=,故选C .24.【答案】B【解析】23(1)x x x x -=-,故选B .25.【答案】6x【解析】56⋅=x x x ,故答案为:6x .26.【答案】2m【解析】原式64642m m m m ÷-===,故答案为:m 2.27.【答案】4【解析】∵23=9=32=m n n ,∴2233339224+=⨯=⨯=⨯=m n m n m n ,故答案为:4.28.【解析】2324(2)x x x -⋅=668x x -67x =.29.【解析】22()()x y x xy y +-+322223x x y xy x y xy y =-++-+ 33x y =+.。

人教版八年级上册数学《整式的乘法》整式的乘法与因式分解说课复习(单项式与单项式相乘)

人教版八年级上册数学《整式的乘法》整式的乘法与因式分解说课复习(单项式与单项式相乘)

(2) (- 4x) (2x2+3x-1)
解:原式=(- 4x) •2x2+(- 4x)•3x+(- 4x)•(-1) = - 8x3- 12x2+4x
(3) ab ( ab2 - 2ab)
解:原式= a2b3–2 a2b2 单项式与多项式相乘时,分两个阶段: ①按乘法分配律把乘积写成单项式与单项式乘积的代数和的形式; ②单项式的乘法运算。
(7)-5a3b2c·3a2b=-15a5b3c (8)a3b·(-4a3b)=-4a6b2 (9)(-4x2y)·(-xy)=4x3y2 (10)2a3b4(-3ab3c2)=-6a4b7c2 (11)-2a3·3a2=-6a5 (12)4x3y2·18x4y6=72x7y8
2.计算:(-a)2 ·a3 ·(-2b)3 -(-2ab)2 ·(-3a)3b
谢 谢 观 看!
4.若n为正整数,x3n=2,2x2n ·x4n+x4n ·x5n的值。
解:2x2n ·x4n+x4n ·x5n =2x6n+x9n =2(x3n)2+(x3n)3 =2×22+23 =8+8 =16
∴原式的值等于16。
5 已知1 (x2 y3 )m • (2xyn1)2 x4 • y9 , 4
情境引入 x
mx
1 8
x
x
3x 4
1 8
x
mx
第一幅的面积是 x(mx)
这是两个单项式相乘, 结果可以表达得更简
第二幅的面积是 (mx)( 3 x ) 单些吗?
4
光的速度约为3×105千米/秒,太阳光照射到
地球上需要的时间大约是5×102秒,你知道地
球与太阳的距离约是多少千米吗?

人教版数学八年级上册:14.1.4 整式的乘法 同步练习(附答案)

人教版数学八年级上册:14.1.4 整式的乘法  同步练习(附答案)

14.1.4 整式的乘法 第1课时 单项式与单项式相乘基础题 1.计算:(1)2x 4·x 3= ; (2)(-2a)·(14a 3)= .2.计算:2a·ab =( )A .2abB .2a 2bC .3abD .3a 2b3.计算:(1)2x 2y·(-4xy 3z); (2)5a 2·(3a 3)2.4.一个直角三角形的两直角边的长分别是2a 和3a ,则此三角形的面积是 ;当a =2时,这个三角形的面积等于 .5.某市环保局欲将一个长为2×103 dm ,宽为4×102 dm ,高为8×10 dm 的长方体废水池中的满池废水注入正方体储水池净化,求长方体废水池的容积.6.计算:(x 2y)2·3xy 2z = . 7.计算:-12x 5y 2·(-4x 2y)2= .中档题 8.计算:(1)(-3x 2y)2·(-23xyz)·34xz 2; (2)(-4ab 3)(-18ab)-(12ab 2)2.9.先化简,再求值:2x 2y·(-2xy 2)3+(2xy)3·(-xy 2)2,其中x =4,y =14.10.已知(-2ax b y 2c )(3x b -1y)=12x 11y 7,求a +b +c 的值.第2课时单项式与多项式相乘基础题1.计算2x(3x2+1)的结果是( )A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x 2.下列计算正确的是( )A.(-2a)·(3ab-2a2b)=-6a2b-4a3b B.(2ab2)·(-a2+2b2-1)=-4a3b4C.(abc)·(3a2b-2ab2)=3a3b2-2a2b2 D.(ab)2·(3ab2-c)=3a3b4-a2b2c3.要使x(x+a)+3x-2b=x2+5x+4成立,则a,b的值分别为( ) A.a=-2,b=-2 B.a=2,b=2 C.a=2,b=-2 D.a=-2,b=2 4.计算:(1)(2xy2-3xy)·2xy;(2)(-23a2b2)(-32ab-2a);(3)-2ab(ab-3ab2-1);(4)(34a n+1-b2)·ab.5.化简求值:3a(a2-2a+1)-2a2(a-3),其中a=2.6.若一个长方体的长、宽、高分别为2x,x,3x-4,则长方体的体积为( ) A.3x3-4x2B.6x2-8x C.6x3-8x2D.6x3-8x 7.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写( )A.3xy B.-3xy C.-1 D.18.一个拦水坝的横断面是梯形,其上底是3a2-2b,下底是3a+4b,高为2a2b,要建造长为3ab的水坝需要多少土方?9.计算:2xy2(x2-2y2+1)=.10.计算:-2x(3x2y-2xy)=.中档题11.要使(x2+ax+5)(-6x3)的展开式中不含x4项,则a应等于( )A .1B .-1C.16D .012.定义三角表示3abc ,方框表示xz +wy ,则×的结果为(B)A .72m 2n -45mn 2B .72m 2n +45mn 2C .24m 2n -15mn 2D .24m 2n +15mn 213.计算:(1)x 2(3-x)+x(x 2-2x); (2)(-12ab)(23ab 2-2ab +43b +1);(3)-a(a 2-2ab -b 2)-b(ab +2a 2-b 2).14.已知ab 2=-1,求(-ab)(a 2b 5-ab 3-b)的值.15.某学生在计算一个整式乘3ac 时,错误地算成了加上3ac ,得到的答案是3bc -3ac -2ab ,那么正确的计算结果应是多少?16.一条防洪堤坝,其横断面是梯形,上底长a 米,下底长(a +2b)米,坝高12a 米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米? 综合题17.已知|2m -5|+(2m -5n +20)2=0,求-2m 2-2m(5n -2m)+3n(6m -5n)-3n(4m -5n)的值.第3课时 多项式与多项式相乘基础题1.计算(2x -1)(5x +2)的结果是( )A .10x 2-2B .10x 2-5x -2C .10x 2+4x -2D .10x 2-x -22.填空:(2x -5y)(3x -y)=2x·3x +2x· +(-5y)·3x +(-5y)· = . 3.计算:(1)(2a +b)(a -b)= ;(2)(x -2y)(x 2+2xy +4y 2)= . 4.计算:(1)(3m -2)(2m -1); (2)(3a +2b)(2a -b);(3)(2x -3y)(4x 2+6xy +9y 2); (4)a(a -3)+(2-a)(2+a).5.先化简,再求值:(x -5)(x +2)-(x +1)(x -2),其中x =-4.6.若一个长方体的长、宽、高分别是3x -4,2x -1和x ,则它的体积是( )A .6x 3-5x 2+4xB .6x 3-11x 2+4xC .6x 3-4x 2D .6x 3-4x 2+x +4 7.如图,为参加市里的“灵智星”摄影大赛,小阳同学将同学们参加“义务献爱心”活动的照片放大为长为a 厘米,宽为34a 厘米的长方形形状,又精心在四周加上了宽2厘米的装饰彩框,那么小阳同学的这幅摄影作品照片占的面积是 平方厘米.8.我校操场原来的长是2x 米,宽比长少10米,现在把操场的长与宽都增加了5米,则整个操场面积增加了 平方米. 9.计算(a -2)(a +3)的结果是( )A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +610.下列多项式相乘的结果为x2+3x-18的是( )A.(x-2)(x+9) B.(x+2)(x-9) C.(x+3)(x-6) D.(x-3)(x+6) 11.计算:(1)(x-3)(x-5)=;(2)(x+4)(x-6)=.12.若(x+3)(x+a)=x2-2x-15,则a=.13.计算:(1)(x+1)(x+4);(2)(m+2)(m-3);(3)(y-4)(y-5);(4)(t-3)(t+4).14.计算:(x-8y)(x-y)=.中档题15.已知(x+1)(x-3)=x2+ax+b,则a,b的值分别是( )A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3D.a=2,b=-3 16.已知(4x-7y)(5x-2y)=M-43xy+14y2,则M=.17.已知ab=a+b+1,则(a-1)(b-1)=2.18.计算:(1)(a+3)(a-2)-a(a-1);(2)(-7x2-8y2)·(-x2+3y2);(3)(3x-2y)(y-3x)-(2x-y)(3x+y).19.先化简,再求值:(a+3)(4a-1)-2(3+a)(2a+0.5),其中a=1.20.求出使(3x+2)(3x-4)>9(x-2)(x+3)成立的非负整数解.综合题21.小思同学用如图所示的A ,B ,C 三类卡片若干张,拼出了一个长为2a +b 、宽为a +b 的长方形图形.请你通过计算求出小思同学拼这个长方形所用A ,B ,C 三类卡片各几张(要求:所拼图形中,卡片之间不能重叠,不能有空隙),并画出他的拼图示意图.第4课时 整式的除法基础题1.计算x 6÷x 2的结果是( )A .x 2B .x 3C .x 4D .x 82.下列计算结果为a 6的是( )A .a 7-aB .a 2·a 3C .a 8÷a 2D .(a 4)23.计算:(-2)6÷25= . 4.计算:(1)(-a)6÷(-a)2; (2)(-ab)5÷(-ab)3.5.若3x =10,3y =5,则3x -y = . 6.已知:5x =36,5y =3,求5x -2y 的值.7.计算:23×(π-1)0=23.8.(钦州中考)计算:50+|-4|-2×(-3). 9.计算8x 8÷(-2x 2)的结果是(C)A .-4x 2B .-4x 4C .-4x 6D .4x 610.(黔南中考)下列运算正确的是(D)A .a 3·a =a 3B .(-2a 2)3=-6a 5C .a 3+a 5=a 10D .8a 5b 2÷2a 3b =4a 2b11.计算:(1)2x 2y 3÷(-3xy); (2)10x 2y 3÷2x 2y ; (3)3x 4y 5÷(-23xy 2).12.计算(6x 3y -3xy 2)÷3xy 的结果是( )A .6x 2-yB .2x 2-yC .2x 2+yD .2x 2-xy13.计算:(1)(x 5y 3-2x 4y 2+3x 3y 5)÷(-23xy); (2)(6x 3y 4z -4x 2y 3z +2xy 3)÷2xy 3.14.计算:310÷34÷34= . 中档题15.下列说法正确的是( )A .(π-3.14)0没有意义B .任何数的0次幂都等于1C .(8×106)÷(2×109)=4×103D .若(x +4)0=1,则x ≠-416.已知8a 3b m ÷8a n b 2=b 2,那么m ,n 的取值为( )A .m =4,n =3B .m =4,n =1C .m =1,n =3D .m =2,n =317.如果x m =4,x n =8(m ,n 为自然数),那么x 3m -n = . 18.已知(x -5)x =1,则整数x 的值可能为 . 19.计算:(1)(-25a 2b 4)÷(-14ab 2)÷(-10ab); (2)-32a 4b 5c÷(-2ab)3·(-34ac);(3)(23n 3-7mn 2+23n 5)÷23n 2; (4)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3.20.一颗人造地球卫星的速度为2.88×109 m/h,一架喷气式飞机的速度为1.8×106 m/h,这颗人造地球卫星的速度是这架喷气式飞机的速度的多少倍?21.先化简,再求值:(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=1,y=-3.综合题22.如图1的瓶子中盛满水,如果将这个瓶子中的水全部倒入图2的杯子中,那么你知道一共需要多少个这样的杯子吗?(单位:cm)参考答案:14.1.4 整式的乘法 第1课时 单项式与单项式相乘1.(1)2x 7;(2)-12a 4.2.B3.(1)解:原式=[2×(-4)](x 2·x)·(y·y 3)·z=-8x 3y 4z. (2)5a 2·(3a 3)2. 解:原式=5a 2·9a 6 =45a 8. 4.12.5.解:(2×103)×(4×102)×(8×10)=6.4×107(dm 3).答:长方体废水池的容积为6.4×107 dm 3. 6.3x 5y 4z . 7.-8x 9y 4.8.(1)(-3x 2y)2·(-23xyz)·34xz 2;解:原式=9x 4y 2·(-23xyz)·34xz 2=-92x 6y 3z 3.(2)(-4ab 3)(-18ab)-(12ab 2)2.解:原式=12a 2b 4-14a 2b 4=14a 2b 4.9.解:原式=-2x 2y·8x 3y 6+8x 3y 3·x 2y 4=-16x 5y 7+8x 5y 7 =-8x 5y 7.当x =4,y =14时,原式=-12.10.解:∵(-2ax b y 2c )(3x b -1y)=12x 11y 7,∴-6ax 2b -1y 2c +1=12x 11y 7.∴-6a =12,2b -1=11,2c +1=7. ∴a =-2,b =6,c =3.∴a +b +c =-2+6+3=7.第2课时 单项式与多项式相乘1.C 2.D 3.C 4.计算:(1)(2xy 2-3xy)·2xy ; 解:原式=2xy 2·2xy -3xy·2xy =4x 2y 3-6x 2y 2.(2)(-23a 2b 2)(-32ab -2a);解:原式=(-23a 2b 2)·(-32ab)+(-23a 2b 2)·(-2a)=a 3b 3+43a 3b 2.(3)-2ab(ab -3ab 2-1);解:原式=-2ab·ab +(-2ab)·(-3ab 2)+(-2ab)×(-1) =-2a 2b 2+6a 2b 3+2ab. (4)(34a n +1-b2)·ab. 解:原式=34a n +1·ab -b 2·ab=34a n +2b -12ab 2. 5.解:原式=3a 3-6a 2+3a -2a 3+6a 2=a 3+3a.当a =2时,原式=23+3×2=14. 6.C 7.A8.解:12(3a 2-2b +3a +4b)·2a 2b·3ab =9a 5b 2+9a 4b 2+6a 3b 3.答:需要(9a 5b 2+9a 4b 2+6a 3b 3)土方. 9.2x 3y 2-4xy 4+2xy 2. 10.-6x 3y +4x 2y .12.B13.(1)x 2(3-x)+x(x 2-2x);解:原式=3x 2-x 3+x 3-2x 2=x 2.(2)(-12ab)(23ab 2-2ab +43b +1); 解:原式=(-12ab)·23ab 2+(-12ab)·(-2ab)+(-12ab)·43b +(-12ab)×1 =-13a 2b 3+a 2b 2-23ab 2-12ab. (3)-a(a 2-2ab -b 2)-b(ab +2a 2-b 2).解:原式=-a 3+2a 2b +ab 2-ab 2-2a 2b +b 3=-a 3+b 3.14.解:原式=-a 3b 6+a 2b 4+ab 2=-(ab 2)3+(ab 2)2+ab 2.当ab 2=-1时,原式=-(-1)3+(-1)2+(-1)=1.15.解:依题意可知,原来正确的那个整式是(3bc -3ac -2ab)-3ac =3bc -6ac -2ab.所以正确的计算结果为:(3bc -6ac -2ab)·3ac =9abc 2-18a 2c 2-6a 2bc.16.解:(1)防洪堤坝的横断面积为:12[a +(a +2b)]×12a =14a(2a +2b) =(12a 2+12ab)(平方米). (2)堤坝的体积为:(12a 2+12ab)×100 =(50a 2+50ab)(立方米).17.解:由题意知2m -5=0,①2m -5n +20=0,②由①,得m =52. 将m =52代入②,得n =5. 原式=-2m 2-10mn +4m 2+18mn -15n 2-12mn +15n 2=2m 2-4mn.当m =52,n =5时, 原式=2×(52)2-4×52×5=-752.第3课时 多项式与多项式相乘1.D2.(-y);(-y);6x 2-17xy +5y 2.3.(1)2a 2-ab -b 2;(2)x 3-8y 3.4.(1)(3m -2)(2m -1);解:原式=6m 2-3m -4m +2=6m 2-7m +2.(2)(3a +2b)(2a -b);原式=6a 2-3ab +4ab -2b 2=4a 2+ab -2b 2.(3)(2x -3y)(4x 2+6xy +9y 2);解:原式=8x 3+12x 2y +18xy 2-12x 2y -18xy 2-27y 3=8x 3-27y 3.(4)a(a -3)+(2-a)(2+a).解:原式=a 2-3a +4+2a -2a -a 2=-3a +4.5.解:原式=x 2-3x -10-(x 2-x -2)=x 2-3x -10-x 2+x +2=-2x -8.当x =-4时,原式=-2×(-4)-8=0.6.B7.(34a 2+7a +16). 8.(20x -25).9.B10.D11.(1)x 2-8x +15;(2)x 2-2x -24.12.-5.13.(1)(x +1)(x +4);解:原式=x 2+5x +4.(2)(m +2)(m -3);解:原式=m 2-m -6.(3)(y -4)(y -5);解:原式=y 2-9y +20.(4)(t -3)(t +4).解:原式=t 2+t -12.14.x 2-9xy +8y 2.15.B16.20x 2.17.2.18.(1)(a +3)(a -2)-a(a -1);解:原式=a 2-2a +3a -6-a 2+a=2a -6.(2)(-7x 2-8y 2)·(-x 2+3y 2);解:原式=7x 4-21x 2y 2+8x 2y 2-24y 4=7x 4-13x 2y 2-24y 4.(3)(3x -2y)(y -3x)-(2x -y)(3x +y).解:原式=3xy -9x 2-2y 2+6xy -6x 2-2xy +3xy +y 2=-15x 2+10xy -y 2.19.解:原式=4a 2-a +12a -3-2(6a +1.5+2a 2+0.5a)=4a 2+11a -3-(12a +3+4a 2+a)=-2a -6.当a =1时,原式=-8.20.解:原不等式可化为9x 2-12x +6x -8>9x 2+27x -18x -54,即15x <46.解得x <4615. ∴非负整数解为0,1,2,3.21.解:因为(2a +b)(a +b)=2a 2+3ab +b 2,所以所用A ,B ,C 三类卡片分别为3张,1张,2张,图略(图不唯一).第4课时 整式的除法1.C2.C3.2.4.(1)(-a)6÷(-a)2;解:原式=(-a)4=a 4.(2)(-ab)5÷(-ab)3.解:原式=(-ab)2=a 2b 2.5.2.6.解:∵5x =36,5y =3,∴5x-2y =5x ÷52y =5x ÷(5y )2=36÷9=4.7.23. 8.解:原式=1+4+6=11.9.C10.D11.(1)2x 2y 3÷(-3xy);解:原式=-23xy 2. (2)10x 2y 3÷2x 2y ;解:原式=5y 2.(3)3x 4y 5÷(-23xy 2). 解:原式=-92x 3y 3. 12.B13.(1)(x 5y 3-2x 4y 2+3x 3y 5)÷(-23xy); 解:原式=x 5y 3÷(-23xy)-2x 4y 2÷(-23xy)+3x 3y 5÷(-23xy) =-32x 4y 2+3x 3y -92x 2y 4. (2)(6x 3y 4z -4x 2y 3z +2xy 3)÷2xy 3.解:原式=6x 3y 4z÷2xy 3-4x 2y 3z÷2xy 3+2xy 3÷2xy 3=3x 2yz -2xz +1.14.9.15.D16.A17.8.18.0,6,4.19.(1)(-25a 2b 4)÷(-14ab 2)÷(-10ab); 解:原式=-425b. (2)-32a 4b 5c÷(-2ab)3·(-34ac); 解:原式=-3a 2b 2c 2.(3)(23n 3-7mn 2+23n 5)÷23n 2; 解:原式=n -212m +n 3.(4)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3.解:原式=3x 2y 3-2y -4xy 2.20.解:(2.88×109)÷(1.8×106)=(2.88÷1.8)×(109÷106)=1.6×103=1 600.答:这颗人造地球卫星的速度是这架喷气式飞机的速度的1 600倍.21.解:原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2.当x =1,y =-3时,原式=-12+3×(-3)2=-1+27=26.22.解:[π(12a)2h +π(12×2a)2H]÷[π(12×12a)2×8] =(14πa 2h +πa 2H)÷ 12πa 2 =12h +2H. 答:需要(12h +2H)个这样的杯子.。

人教版初中八年级数学上册第十四章《整式的乘法与因式分解》经典习题(含答案解析)

人教版初中八年级数学上册第十四章《整式的乘法与因式分解》经典习题(含答案解析)

一、选择题1.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解D解析:D【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.【详解】解:①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解.故选:D .【点睛】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义.2.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =( )A .1B .2C .5D .7D 解析:D【分析】 由题意竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),即可解出n =5,从而求出m 值即可.【详解】解:由题意得竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),整理得n =5,则有m ﹣3+4=﹣3+1+5,解得m =2,∴m +n =5+2=7,故选:D .【点睛】此题主要考查列一元一次方程解决实际问题,理解题意,找出等量关系是解题关键. 3.已知3a b -=、4b c -=、5c d -=,则()()a c d b --的值为( )A .7B .9C .-63D .12C 解析:C【分析】由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,然后整体代入求解即可.【详解】解:由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,∴()()()7963a c d b --=⨯-=-;故选C .【点睛】本题主要考查求代数式的值,关键是根据题意利用整体思想进行求解.4.下列多项式中,不能用完全平方公式分解因式的是( )A .214m m ++ B .222x xy y -+- C .221449x xy y -++D .22193x x -+ C 解析:C【分析】直接利用完全平方公式分解因式得出答案.【详解】 A 、222111(44)(2)444m m m m m ++=++=+能用完全平方公式分解因式,不符合题意; B 、222222(2)()x xy y x xy y x y -+-=--+=--能用完全平方公式分解因式,不符合题意;C 、221449x xy y -++不能用完全平方公式分解因式,符合题意;D 、2222111(69)(3)9399x x x x x -+=-+=-能用完全平方公式分解因式,不符合题意; 故选:C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握完全平方公式是解本题的关键. 5.下列运算正确的是( )A .3m ·4m =12mB .m 6÷m 2= m 3(m≠0)C .236(3)27m m -=D .(2m+1)(m-1)=2m 2-m-1D解析:D【分析】利用同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式的运算法则计算即可判断.【详解】A 、 347·m m m =,该选项错误;B 、624m m m ÷=,该选项错误;C 、236(3)27m m -=-,该选项错误;D 、(()221)121m m m m +-=--,该选项正确; 故选:D .【点睛】本题考查了同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式,熟练掌握运算法则是解题的关键.6.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( )A .a b c >>B .b c a >>C .c a b >>D .a c b >> B解析:B【分析】由552a =,443b =,334c =,比较5432,3,4的大小即可.【详解】解:∵555112=(2)a =,444113(3)b == ,333114(4)c == ,435342>> , ∴411311511(3)(4)(2)>>,即b c a >>,故选B .【点睛】本题考查了幂的乘方的逆运算及数的大小的比较,解题的关键是熟练掌握幂的乘方运算法则.7.下列计算正确的是( )A .()222x y x y +=+B .()32626m m =C .()2224x x -=-D .()()2111x x x +-=- D 解析:D【分析】根据完全平方公式,平方差公式和积的乘方公式分别判断即可.【详解】A. ()2222x y x xy y +=++,故原选项错误;B.()32628m m =,故原选项错误;C.()22244x x x -=-+,故原选项错误;D. ()()2111x x x +-=-,故选项正确.故选:D .【点睛】本题考查完全平方公式,平方差公式和积的乘方公式.熟记公式是解题关键.8.下列各多项式中,能用平方差公式分解因式的是( )A .21x -+B .21x +C .21x --D .221x x -+ A 解析:A【分析】根据平方差公式:两个数平方的差,等于这两个数的和与差的平方解答.【详解】A 、21x -+,能用平方差公式分解因式;B 、21x +,不能用平方差公式分解因式;C 、21x --,不能用平方差公式分解因式;D 、221x x -+,不能用平方差公式分解因式;故选:A .【点睛】此题考查平方差公式:22()()a b a b a b -=+-,掌握公式中多项式的特点是解题的关键.9.若()()()248(21)2121211A =+++++,则A 的末位数字是( )A .4B .2C .5D .6D 解析:D【分析】在原式前面加(2-1),利用平方差公式计算得到结果,根据2的乘方的计算结果的规律得到答案.【详解】 ()()()248(21)2121211A =+++++=()()()248(21)(21)2121211-+++++=()()()2248(21)2121211-++++=()()448(21)21211-+++ =()88(21)211-++ =162,∵2的末位数字是2,22的末位数字是4,32的末位数字是8,42的末位数字是6,52的末位数字是2,,∴每4次为一个循环,∵1644÷=,∴162的末位数字与42的末位数字相同,即末位数字是6,故选:D .【点睛】此题考查利用平方差公式进行有理数的简便运算,数字类规律的探究,根据2的乘方末位数字的规律得到答案是解题的关键.10.下列各式计算正确的是( )A .5210a a a =B .()428=a aC .()236a b a b =D .358a a a += B解析:B【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断.【详解】解:A 、a 5•a 2=a 7,此选项计算错误,故不符合题意;B 、(a 2)4=a 8,此选项计算正确,符合题意;C 、(a 3b )2=a 6b 2,此选项计算错误,故不符合题意;D 、a 3与a 5不能合并,此选项计算错误,故不符合题意.故选:B .【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则. 二、填空题11.因式分解()()26x mx x p x q +-=++,其中m 、p 、q 都为整数,则m 的最大值是______.5【分析】根据整式的乘法和因式分解的逆运算关系按多项式乘以多项式法则把式子变形然后根据pq 的关系判断即可【详解】解:∵(x +p)(x +q)=x2+(p+q )x+pq=x2+mx-6∴p+q=mpq=解析:5【分析】根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.【详解】解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx-6∴p+q=m ,pq=-6,∴pq=1×(-6)=(-1)×6=(-2)×3=2×(-3)=-6,∴m=-5或5或1或-1,∴m 的最大值为5,故答案为:5.【点睛】此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.12.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式()35f x mx nx =++,当3x =时,多项式的值为()32735f m n =++,若()36f =,则()3f -的值为__________.4【分析】由得到整体代入求出结果【详解】解:∵∴即∴故答案是:4【点睛】本题考查代数式求值解题的关键是掌握整体代入求值的思想解析:4【分析】由()36f =得到2731m n +=,整体代入()32735f m n -=--+求出结果.【详解】解:∵()36f =,∴27356m n ++=,即2731m n +=,∴()()327352735154f m n m n -=--+=-++=-+=.故答案是:4.【点睛】本题考查代数式求值,解题的关键是掌握整体代入求值的思想.13.因式分解269x y xy y -+-=______.-y (x-3)2【分析】提公因式-y 再利用完全平方公式进行因式分解即可;【详解】解:-x2y+6xy-9y=-y (x2-6x+9)=-y (x-3)2故答案为:-y (x-3)2;【点睛】本题考查了因式解析:-y (x-3)2【分析】提公因式-y ,再利用完全平方公式进行因式分解即可;【详解】解:-x 2y+6xy-9y=-y (x 2-6x+9)=-y (x-3)2,故答案为:-y (x-3)2;【点睛】本题考查了因式分解的方法,掌握提公因式法、公式法是正确解答的关键.14.若26x x m ++为完全平方式,则m =____.9【分析】完全平方式可以写为首末两个数的平方则中间项为x 和积的2倍即可解得m 的值【详解】解:根据题意是完全平方式且6>0可写成则中间项为x 和积的2倍故∴m=9故答案填:9【点睛】本题是完全平方公式的【分析】 完全平方式可以写为首末两个数的平方()2x m +,则中间项为x 和m 积的2倍,即可解得m 的值.【详解】解:根据题意,26x x m ++是完全平方式,且6>0,可写成()2x m +,则中间项为x 和m 积的2倍,故62x x m =,∴m =9,故答案填:9.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意中间项的符号,避免漏解.15.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是:__________;(请选择正确的一个)A .2222()a ab b a b -+=-B .22()()a b a b a b -=+-C .2()a ab a a b +=+(2)应用:利用所选(1)中等式两边的等量关系,完成下面题目:若46x y +=,45x y -=,则221664x y -+的值为__________.B ;【分析】(1)先求出图1中剩余部分的面积为a2-b2再求出图2中图形的面积即可列得等式;(2)利用平方差公式分解因式后代入求值即可【详解】(1)图1中边长为a 的正方形的面积为:a2边长为b 的正方解析:B ; 94(1)先求出图1中剩余部分的面积为a 2-b 2,再求出图2中图形的面积即可列得等式; (2)利用平方差公式分解因式后代入求值即可.【详解】(1)图1中,边长为a 的正方形的面积为:a 2,边长为b 的正方形的面积为:b 2,∴图1中剩余部分面积为:a 2-b 2,图2中长方形的长为:a+b ,长方形的宽为:a-b ,∴图2长方形的面积为:(a+b )(a-b ),故选:B ;(2)∵46x y +=,45x y -=,∴221664x y -+=(4)(4)64x y x y +-+=6564⨯+=94,故答案为:94.【点睛】此题考查几何图形中平方差公式的应用,利用平方差公式进行计算,掌握平方差计算公式是解题的关键.16.如图所示,在这个运算程序当中,若开始输入的x 是2,则经过2021次输出的结果是________.4【分析】根据第一次输出的结果是1第二次输出的结果是6…总结出每次输出的结果的规律求出2021次输出的结果是多少即可【详解】解:把x=2代入得:2÷2=1把x=1代入得:1+5=6把x=6代入得:6解析:4【分析】根据第一次输出的结果是1,第二次输出的结果是6,…,总结出每次输出的结果的规律,求出2021次输出的结果是多少即可.【详解】解:把x=2代入得:2÷2=1,把x=1代入得:1+5=6,把x=6代入得:6÷2=3,把x=3代入得:3+5=8,把x=8代入得:8÷2=4,把x=4代入得:4÷2=2,把x=2代入得:2÷2=1,以此类推,∵2021÷6=336…5,∴经过2021次输出的结果是4.故答案为:4.【点睛】本题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.17.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第6个图形需要黑色棋子的个数是______,第n 个图形需要的黑色棋子的个数是______.(n 为正整数)【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3第二个图形需要黑色棋子的个数为3×4-4第三个图形需要黑色棋子的个数为4×5-5依此类推可得第n 个图形需要黑色棋子的个数为计算可得答案解析:()2n n +【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3,第二个图形需要黑色棋子的个数为3×4-4,第三个图形需要黑色棋子的个数为4×5-5,依此类推可得第n 个图形需要黑色棋子的个数为()()()122n n n ++-+,计算可得答案.【详解】解:观察图形可得:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子2×3-3个,第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子3×4-4个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子4×5-5个,按照这样的规律下去:则第n 个图形需要黑色棋子的个数是()()()()1222n n n n n ++-+=+,∴当n=6时,()26848n n +=⨯=;故答案为48;()2n n +.【点睛】本题主要考查图形规律及整式乘法的应用,关键是根据图形得到一般规律,然后问题可求解.18.若2249x mxy y -+是一个完全平方式,则m =______【分析】利用完全平方公式的结构特征判断即可确定出m 的值【详解】∵是一个完全平方式∴故答案为:【点睛】本题考查了完全平方公式的简单应用明确完全平方公式的基本形式是解题的关键解析:12±【分析】利用完全平方公式的结构特征判断即可确定出m 的值.【详解】∵2249x mxy y -+是一个完全平方式,∴22312m =±⨯⨯=±.故答案为:12±.【点睛】本题考查了完全平方公式的简单应用,明确完全平方公式的基本形式是解题的关键. 19.计算:32(2)a b -=________.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.【详解】32(2)a b -=624a b ,故答案为:624a b .【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.20.已知22m mn -=,25mn n -=,则22325m mn n +-=________.31【分析】由然后把代入求解即可【详解】解:由题意得:∴把代入得:原式=;故答案为31【点睛】本题主要考查代数式的值及整式的加减关键是对于所求代数式进行拆分然后整体代入求解即可解析:31【分析】由()()222232535m mn n m mn mn n+-=-+-,然后把22m mn -=,25mn n -=,代入求解即可.【详解】解:由题意得: ()()222232535m mn n m mn mn n +-=-+-,∴把22m mn -=,25mn n -=代入得:原式=325531⨯+⨯=;故答案为31.【点睛】本题主要考查代数式的值及整式的加减,关键是对于所求代数式进行拆分,然后整体代入求解即可. 三、解答题21.(1)因式分解:()222224x y x y +- (2)计算:()()()233323a b a b a b a b ⎡⎤----++÷-⎣⎦解析:(1)()()22x y x y -+;(2)9a【分析】 (1)先用平方差公式进行因式分解,然后再用完全平方公式进行因式分解;(2)整式的混合运算,注意先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的.【详解】解:(1)()222224x y x y +- =()()222222x y xyx y xy +-++ =()()22x y x y -+(2)()()()233323a b a b a b a b ⎡⎤----++÷-⎣⎦=()222296923a ab b b a a b ⎡⎤++--÷-⎣⎦ =2222(96+9)23a ab b b a a b ++-÷-=2(186)23a ab a b +÷-=933a b b +-=9a【点睛】本题考查因式分解和整式的混合运算,掌握运算法则正确计算是解题关键.22.图1是一个长为2a 、宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于________.(2)观察图2,请你写出下列三个代数式2()a b +,2()a b -,ab 之间的等量关系为________.(3)运用你所得到的公式,计算:若m 、n 为实数,且3=-mn ,4m n -=,试求m n +的值.(4)如图3,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设8AB =,两正方形的面积和1226S S +=,求图中阴影部分面积.解析:(1)44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)2或2-;(4)192. 【分析】(1)直接写出边长:长边减短边=a-b ,进而可得周长; (2)根据阴影正方形的面积=大正方形的面积-4个长方形的面积解答,或利用大正方形的面积=阴影方形的面积+4个长方形的面积解答,或利用4个长方形的面积=大正方形的面积-阴影方形的面积解答;(3)根据22()()4a b a b ab +=-+求解即可;(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,然后把8x y +=的两边平方求解即可.【详解】解:(1)由图可知,阴影部分正方形的边长为:a-b ,∴阴影部分的正方形的周长等于44a b -或者4()a b -,故答案为:44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或(22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)∵3=-mn ,4m n -=,∴222()()444(3)16124m n m n mn +=-+=+⨯-=-=,∴2m n +=±,∴m n +的值为2或2-.(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,而8x y AB +==, 而12S xy =阴影部分, ∵8x y +=,∴22264x xy y ++=,又∴2226x y +=,∴238xy =,∴13819242S xy ===阴影部分, 即,阴影部分的面积为192. 【点睛】本题主要考查完全平方公式的几何背景,利用图形的面积是解决此题的关键,利用数形结合的思想,注意观察图形.23.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++ 请用以上方法解决下列问题:(计算过程要有竖式)(1)计算:()()3223102x x x x +--÷- (2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值.解析:(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.24.材料:数学兴趣一小组的同学对完全平方公式进行研究:因2()0a b -≥,将左边展开得到2220a ab b -+≥,移项可得222a b ab +≥.(当且仅当a b =时,取“=”)数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m ,n ,都存在2m n mn +≥m n =时,取“=”)并进一步发现,两个非负数m ,n 的和一定存在着个最小值.根据材料,解答下列问题:(1)22(3)(4)x y +≥________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭________(0x >);(2)求312(0)4x x x+>的最小值; (3)已知2x >,当x 为何值时,代数式43201036x x ++-有最小值?并求出这个最小值.解析:(1)24xy ,2;(2)6;(3)83x =,最小值为2020 【分析】(1)根据阅读材料可得结论; (2)根据阅读材料介绍的方法即可得出结论;(3)把已知代数式变形为4(36)201636x x -++-,再利用阅读材料介绍的方法即可得出结论.【详解】解:(1)∵0x >,0y >∴22(3)(4)x y +≥23424x y xy ⨯⨯=∵0x > ∴221x x ⎛⎫+≥ ⎪⎝⎭122x x ⨯⨯= 故答案为:24xy ,2(2)∵0x >时,12x ,34x 均为正数,∴31264x x +≥= ∴3124x x+的最小值是6 (3)当2x >时,3x ,36x -,436x -均为正数 ∴43201036x x ++-4(36)2016201636x x =-++≥-2016=2020= 当43636x x -=-时,即8433x =或(舍去)时,有最小值, ∴当83x =时,代数式43201036x x ++-的最小值是2020.【点睛】此题主要考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.25.已知2,3x y a a ==,求23x y a +的值解析:108【分析】首先根据已知条件可得a 2x 、a 3y 的值,然后利用同底数幂的乘法运算法则求出代数式的值.【详解】 解:2,3x y a a ==,∴()()23232323108x y xy a a a +=⨯=⨯=. 【点睛】 本题主要考查了幂的乘方和同底数幂的乘法,利用性质转化为已知条件的形式是解题的关键.26.因式分解:(1)322242a a b ab -+(2)4481x y -解析:(1)22()a a b -;(2)22((3)(3)9)x y x y x y +-+.【分析】(1)先提公因式2a ,再利用完全平方公式进行分解222a ab b -+,即可得出结果;(2)原多项式先利用平方差公式分解为2222(9)(9)x y x y +-,再次利用平方差公式对229x y -进行分解即可.【详解】解:(1)322242a a b ab -+222(2)a a ab b =-+22()a a b =-,(2)4481x y -2222(9)(9)x y x y =+-22(93(3))()x y x y x y =+-+.【点睛】本题考查了因式分解,掌握因式分解的基本方法并能结合多项式的特点准确分解是解题的关键.27.如果2()()41x m x n x x ++=+-.①填空:m n +=______,mn =______.②根据①的结果,求下列代数式的值:(1)225m mn n ++;(2)2()m n -.解析:①4,−1;②(1)13;(2)20【分析】①据多项式乘多项式的运算法则求解即可;②根据完全平方公式计算即可.【详解】①∵(x +m )(x +n )=x 2+(m +n )x +mn =x 2+4x−1,∴m +n =4,mn =−1.故答案为:4,−1;②(1)m 2+5mn +n 2=(m +n )2+3mn =42+3×(−1)=16−3=13;(2)(m−n )2=(m +n )2−4mn =42−4×(−1)=16+4=20.【点睛】本题主要考查了完全平方公式以及多项式乘多项式,熟记相关公式与运算法则是解答本题的关键.28.如图,在长8cm ,宽5cm 的长方形塑料板的四个角剪去4个边长为 cm x 的小正方形,按折痕做一个无盖的长方体盒子,求盒子的容积(塑料板的厚度忽略不计).解析:()32342640cm x x x -+ 【分析】这个盒子的容积=边长为8-2x,5-2x 的长方形的底面积乘高 x ,把相关数值代入即可.【详解】解:由题意,得()()8252x x x --()24016104x x x x =--+()242640x x x =-+3242640x x x =-+,答:盒子的容积是()32342640cm x x x -+.【点睛】本题主要考查单项式乘多项式,多项式乘多项式,解决本题的关键是找到表示长方体容积的等量关系.。

人教版八年级数学上册整式的乘法

人教版八年级数学上册整式的乘法
ac5·bc2是单项式ac5与bc2相乘,我们可以利用乘 法交换律、结合律及同底数幂的运算性质来计算:
ac5·bc2=(a·b)·(c5·c2)=abc5+2=abc7. 一般地,单项式与单项式相乘,把它们的系数、 同底数幂分别相乘,对于只在一个单项式里含有的字 母,则连同它的指数作为积的一个因式.
即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
我们也可以先分别求原来绿地和新增绿地的面积,再求它们的和,即为
教学目标 1. 掌握正整数幂的乘、除运算性质, 2. 能用代数式和文字语言正确地表述这些性质, 并能运用它们熟练地进行运算. 3. 掌握单项式乘(或除以)单项式、多项式乘( 或除以)单项式以及多项式乘多项式的法则及其几何 含义. 4. 并运用单项式乘(或除以)单项式、多项式乘 (或除以)单项式以及多项式乘多项式的法则进行运 算.
∵ 4a2x3·3ab2=12a3b2x3 , ∴ 12a3b2x3 ÷3ab2=4a2x3. 上面的商式4a2x3 的系数4=12÷3,a 的指数2=3 -1,b的指数0=2-2,而b0=1,x 的指数3=3-0. 一般地,单项式相除,把系数与同底数幂分别相
除作为商的因式,对于只在被除式里含有的字母,则 连同它的指数作为商的一个因式.
一般地,单项式与多项式相乘,就是用单项式去 乘多项式的每一项,再把所得的积相加.
例5 计算:
(1)(-4x2)(3x+1);
(2)(
2 3
ab2-2ab)· 12
ab .
解:(1)(-4x2)(3x+1)
=(-4x2)(3x)+(-4x2)×1
=(-4×3)(x2·x)+(-4x2);
=-12x3-4x2;
=12a3÷3a -6a2÷3a +3a÷3a

人教版八年级数学上册整式的乘法与多项式合并讲解与习题一

人教版八年级数学上册整式的乘法与多项式合并讲解与习题一

人教版八年级数学上册整式的乘法与多项
式合并讲解与习题一
整式是由常数项、变量项及它们的和与差构成的代数式。

在八
年级数学上册中,我们研究了整式的乘法和多项式的合并。

首先我们来了解整式的乘法。

整式的乘法就是将两个整式相乘,得到一个新的整式。

乘法的过程中,我们需要将各个项按照指数从
小到大排列,并合并相同的项。

在乘法中,要特别注意以下几点:
1. 常数项相乘得到常数;
2. 两个变量的幂相乘,指数相加;
3. 多项式与多项式相乘,将每个项相乘再相加。

接下来,我们来讲解多项式的合并。

多项式的合并就是将同类
项进行合并,得到一个简化后的多项式。

合并的过程中,我们需要
将各个项按照指数从大到小排列,并合并相同的项。

在合并中,要
特别注意以下几点:
1. 同类项相加得到同类项;
2. 合并时需要根据指数的大小进行排序。

下面是一些题,供大家练:
1. 计算以下整式的乘积:(3x + 5) * (2x - 4)
2. 化简以下多项式:3x^2 + 2x^2 - 6x^3 + 4x - 7x^2 + 5
希望通过本文档的讲解和习题的练习,你能够更加熟练地掌握整式的乘法和多项式的合并。

《整式的乘法》典型例题

《整式的乘法》典型例题

《整式的乘法》典型例题
例1 计算:
(1)
(2)
(3)
解:(1)原式
(2)原式
(3)原式
说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.
例2 计算题:
(1);(2).
分析:(1)中单项式为 ,多项式里含有,,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.
解:(1)原式
(2)
说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.
例3 化简
(1);
(2).
分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号和,再去中括号.
解:(1)原式
(2)原式
例4 求值:,其中.
解:原式
《整式的乘法》典型例题当时,
说明:求值问题,应先化简,再代入求值.
例5 设,求的值.
分析:由已知条件,显然,再将所求代数式化为的形式,整体代入求解.解:
说明:整体换元的数学方法,关键是识别转化整体换元的形式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《整式的乘法》典型例题
例1 计算:
(1)
(2)
(3)
解:(1)原式
(2)原式
(3)原式
说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.
例2 计算题:
(1);(2).
分析:(1)中单项式为,多项式里含有,,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.
解:(1)原式
(2)
说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.
例3 化简
(1);
(2).
分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号和,再去中括号.
解:(1)原式
(2)原式
例4 求值:,其中.
解:原式
当时,
说明:求值问题,应先化简,再代入求值.
例5 设,求的值.
分析:由已知条件,显然,再将所求代数式化为的形式,整体代入求解.
解:
说明:整体换元的数学方法,关键是识别转化整体换元的形式.。

相关文档
最新文档