多媒体数据压缩编码技术

合集下载

《多媒体技术》 第二讲 多媒体数据压缩技术(第1—2节)课堂笔记及练习题

《多媒体技术》 第二讲 多媒体数据压缩技术(第1—2节)课堂笔记及练习题

多媒体技术第二讲多媒体数据压缩技术(第1—2节)课堂笔记及练习题主题:第二讲多媒体数据压缩技术(第1—2节)学习时间: 4月4日--4月10日内容:第二讲多媒体数据压缩技术第一节多媒体数据和信息转换一、多媒体间的信息转换为了便于交流信息,需要对不同的媒体信息进行转换。

下表是部分媒体之间说明:*易**较困难***很困难二、多媒体数据文件格式多媒体文件的格式很多,下表介绍常用文件格式的特点和应用场合。

三、多媒体数据的信息冗余多媒体计算机系统主要采用数字化方式,对声音、文字、图形、图像、视频等媒体进行处理。

数字化处理的主要问题是巨大的数据量。

一般来说,多媒体数据中存在以下种类的数据冗余:1)空间冗余:一些相关性的成像结构在数字化图像中就表现为空间冗余。

2)时间冗余:两幅相邻的图像之间有较大的相关性,这反映为时间冗余。

3)信息熵冗余(编码冗余):信息熵是指一组数据所携带的信息量。

如果图像中平均每个像素使用的比特数大于该图像的信息熵,则图像中存在冗余,这种冗余称为信息熵冗余。

4)结构冗余:有些图像从大域上看存在着非常强的纹理结构,例如布纹图像和草席图像,我们说它们在结构上存在冗余。

5)知识冗余:有许多图像的理解与某些基础知识有较大的相关性。

这类规律性的结构可由先验知识和背景知识得到,我们称此类冗余为知识冗余。

6)视觉冗余:人类视觉系统对于图像场的任何变化,并不是都能感知的。

这类冗余我们称为视觉冗余。

7)其他冗余:例如由图像的空间非定常特性所带来的冗余。

以上所讲的是多媒体数据的信息冗余。

设法去掉信号数据中的冗余,就是数据压缩。

第二节常用的数据压缩技术一、数据压缩编码方法1)根据解码后数据与原始数据是否完全一致来进行分类:① 可逆编码(无失真编码),如Huffman编码、算术编码、行程长度编码等。

② 不可逆编码(有失真编码),常用的有变换编码和预测编码。

2)根据压缩的原理进行划分:① 预测编码:它是利用空间中相邻数据的相关性,利用过去和现在出现过的点的数据情况来预测未来点的数据。

多媒体信息编码技术的使用教程和算法原理

多媒体信息编码技术的使用教程和算法原理

多媒体信息编码技术的使用教程和算法原理多媒体信息编码技术是计算机科学和通信领域的重要研究方向,它涵盖了音频、视频、图像等多种形式的媒体数据的压缩、传输和解码等处理过程。

本篇文章将为读者介绍多媒体信息编码技术的使用教程和算法原理,旨在帮助读者了解多媒体编码的基本概念、常用算法和实际应用。

一、多媒体信息编码技术概述多媒体信息编码技术是将多媒体数据转化为数字信号的过程,以便于存储、传输和处理。

它的目标是在保证一定的质量下,尽量减小数据量,提高传输效率。

多媒体信息编码技术主要包括两个方面:压缩和解压缩。

压缩是将原始多媒体数据经过编码处理,将多媒体信号的冗余信息消去或者降低,从而减小数据量。

解压缩则是将压缩过的多媒体数据恢复成原始数据,以便于播放或处理。

压缩技术按照思想方法可以分为两大类:无损压缩和有损压缩。

无损压缩是指压缩过程中不损失任何原始数据,通过减少数据的冗余性来达到压缩的目的。

常用的无损压缩算法有哈夫曼编码、算术编码等。

有损压缩则是在压缩过程中会有一定的信息损失。

通过剔除对人类感知质量影响较小的信息,以更高的压缩率来换取较小的存储容量和传输带宽。

有损压缩常用的算法有离散余弦变换(DCT)和小波变换等。

二、音频编码技术音频编码技术是多媒体信息编码技术的一个重要分支。

它主要用于将模拟音频信号或数字音频信号转换为数字形式,并对其进行压缩和解压缩。

音频编码技术的算法原理通常包括以下几个基本步骤:采样、量化、编码和解码。

采样是将连续的模拟音频信号转换为离散的数字信号。

量化则是将采样得到的连续值映射为离散的数值。

编码是将量化过的数字音频信号进行编码压缩,常用的编码算法有自适应差分编码(ADPCM)、脉冲编码调制(PCM)、MP3等。

解码则是将压缩过的数字音频信号进行解码和恢复。

三、视频编码技术视频编码技术是将连续的视频信号转换为数字形式,并对其进行压缩和解压缩。

视频编码技术主要包括两个方面:运动估计和图像编码。

多媒体技术_多媒体数据压缩编码技术

多媒体技术_多媒体数据压缩编码技术

4.知识冗余
图像的理解与某些基础知识有关。 例:人脸的图像有同样的结构:嘴的上方有鼻子, 鼻子上方有眼睛,鼻子在中线上…… 知识冗余是模型编码主要利用的特性。
5.视觉冗余
人的视觉系统对图像场的敏感性是非均匀、 非线性的。 (1)对图像亮度和色差的敏感性相差很大 Y:U:V=8:4:4 或者Y:U:V=8:2:2 (2)随着亮度增加,视觉系统对量化误差的敏感 度降低。 (3)人的视觉系统把图像边缘和非边缘区域分开 处理。
第四章、多媒体数据压缩编码技术
本章要点
(1)多媒体数据压缩编码的重要性和分类。 (2)量化的基本原理和量化器的设计思想。 (3)常用压缩编码算法的基本原理及实现技术、 预测编码、变换编码、统计编码(Huffman编码、 算术编码)。 (4)静态图像压缩编码的国际标准(JPEG)原 理、实现技术,以及动态图像压缩编码国际标 准(MPRG)的基本原理。
4.2.2 标量量化器的设计
量化器的设计要求 通常设计量化器有下述两种情况: 1. 给定量化分层级数,满足量化误差最小。 2. 限定量化误差,确定分层级数,满足以尽 量小的平均比特数,表示量化输出。
量化方法有标量量化和矢 量量化之分,标量量化又可分 为,均匀量化、非均匀量化和 自适应量化。
(1)均匀量化
例如:从64个数中选出某一个数。可先问“是 否大于32?”消除半数的可能,这样只要6次就可选 出某数。 如果要选择的数是35,则过程如下: 1.大于/小于 32? 大 2.大于/小于 32+16=48? 小 3.大于/小于 48-8=40? 小 4.大于/小于 40-4=36? 小 5.大于/小于 36-2=34? 大 6.大于/小于 34+1=35 等
(4)混合编码

第6讲-多媒体数据压缩编码方法

第6讲-多媒体数据压缩编码方法

0
1
A 0
0 1 C
1 0 D 1 E
B
这幅图像的熵为: H(S)=(15/39) log2(39/15) + (7/39)log2(39/7) + (7/39)log2(39/7) + (6/39)log2(39/6) +(5/39)log2(39/5) = 2.1859 这说明每个符号可用2.1859位表示,39个象素需用85.25位。 编码中以N表示编码器输出码字的平均码长,用熵值衡量是 否最佳编码,即:当N>>H(S)有冗余,不是最佳;N< H(S),不 可能;N≈H(S)(N稍大于H(S)),是最佳编码。
S=(A,B,C,D,E) 符号 出现的次数(Pi) A 15(0.3846) B 7(0.1795) C 6(0.1538) D 6(0.1538) E 5(0.1282)
log2(1/pi) 1.38 2.48 2.70 2.70 2.96
分配的代码 需要位数 0 15 100 21 101 18 110 18 111 15
• 离散信源
S1, S2 , ..., Sn X p(S ), p(S ), ..., p(S ), 2 n 1
p ( Si ) 1
i 1
n
• 图像的信息熵
H ( X ) p( Si ) I ( Si ) p( Si ) log 2 p( Si ) 1
第6讲 多媒体数据压缩 和信息编码
内 容 提 要
多媒体数据压缩基本特征和方法
图像统计特性
无损数据压缩编码方法 有损数据压缩编码方法
多媒体数据压缩基本特征和方法
1.数据压缩的处理过程:
编码过程:对原始数据进行压缩,便于存储和传输。 解码过程:对压缩数据进行解压,恢复成可用数据。

2-1 数据压缩编码基本理论

2-1 数据压缩编码基本理论

3、算术编码
原理:根据信源不同符号概率的不同,分别 对应[0,1)中不同的区间,每个符号用对 应区间内的任意一个实数表示,这个实数 就是该符号对应的码字。 特点:只有算术运算,无论原数据位多长, 每次编码算法只处理一个数据符号,因此 编码效率高。
符号
00
01
10
11
例1
概率
初始区间
0.1
[0, 0.1)
3、算术编码
二、无损编码(统计编码、熵编码)
1、行程编码(run length code,RLC也叫游程编码) 压缩原始数据中相同的字节序列
例:原始字符串RTTTTTTTTABBBCDIU
行程编码将字符串变换为: R#8TABBBCDIU
将原来17个字符压缩为12个字符。
2、霍夫曼(Huffman)编码
自适应算术编码特点
自适应算术编码可以在编码过程中根据符 号出现的频繁程度,动态地修改分布概率, 因此不需要在编码前求出信源概率,但要 求编码器和解码器使用的概率模型一致。
三、有损编码
1、预测编码 2、子带编码
3、变换编码
4、矢量量化编码
5、其它编码
三、有损编码
1、预测编码
脉冲编码调制(pulse code modulation,PCM)
率;
(3)重复(1)和(2),直到概率和达到1为止; (4)将最后合并的元素作为树根,每个原始信 源作为树叶,构成一个编码二叉树;从树根到 树叶,对合并的两个分支分别赋予1和0;
(5)对每一符号写出从树根到信源点1、0序列
即为该符号的编码。
复习
数据可压缩的原因 数据压缩的种类 数据压缩的技术指标 无损压缩的常见技术:行程编码、霍夫曼 编码、算术编码

(计算机基础知识)多媒体数据的编码与处理

(计算机基础知识)多媒体数据的编码与处理

(计算机基础知识)多媒体数据的编码与处理多媒体数据的编码与处理多媒体数据的编码与处理是计算机基础知识中的重要一环。

随着科技的不断发展,多媒体应用越来越普及,对于多媒体数据的处理变得越来越关键,它涉及到视频、音频、图像等各种形式的数据处理。

本文将对多媒体数据的编码与处理进行探讨。

一、多媒体数据的编码原理多媒体数据的编码是将原始的音频、视频和图像等信号转化为数字化的数据形式,以便计算机可以对其进行处理和传输。

在编码过程中,首先需要对原始信号进行采样,然后利用数字信号处理的方法,将采样到的数据转化为二进制形式,最后进行压缩编码。

1. 音频数据的编码在音频数据的编码中,最常用的方法是脉冲编码调制(PCM),它将连续的模拟信号转化为离散的数字信号。

PCM通过对音频信号进行采样和量化,并使用不同的编码方式来表示不同的量化值,实现了音频数据的数字化。

2. 视频数据的编码视频数据的编码一般使用压缩编码技术,最为常见的是基于帧间压缩的视频编码标准,如MPEG系列。

这种编码方式首先对视频信号进行分解,将图像分解为一系列连续的帧,并通过对帧间差异进行压缩来减小数据量,从而实现视频数据的高效编码和传输。

3. 图像数据的编码对于图像数据的编码,最经典的方法是基于离散余弦变换(DCT)的JPEG编码。

JPEG编码将图像分割为8x8或16x16的小块,然后对每个小块进行DCT变换,并利用量化和熵编码来压缩图像数据,以减小文件大小,并实现高质量的图像显示和传输。

二、多媒体数据的处理方法多媒体数据的处理是对编码后的数据进行解码、编辑、处理和显示等操作,以满足不同应用需求。

以下是几种常见的多媒体数据处理方法:1. 数据解码在多媒体播放过程中,首先需要对编码后的数据进行解码。

解码过程是将压缩编码的数据还原为原始的音频、视频或图像数据的过程。

根据不同的编码方式,需要选择相应的解码算法和解码器进行解码处理。

2. 数据编辑多媒体数据的编辑是在完成解码后,对数据进行剪辑、合并、分割等操作,以满足用户对多媒体内容的需求。

多媒体数据压缩编码技术

多媒体数据压缩编码技术

线性预测编码(LPC)
通过对音频信号的线性预测系数进行编码,减少了数据冗余。
参数编码
倒谱系数编码(cepstrum)
利用音频信号的倒谱系数进行编码,倒谱系数描述了音频信号的短时谱特征,具有较好的鲁棒性和抗噪性能。
梅尔频率倒谱系数(MFCC)
在倒谱系数的基础上引入了人耳感知特性,通过对梅尔频率倒谱系数进行编码,提高了音频压缩编码的音质和抗噪性能。
基于人工智能的压缩编码技术
深度学习
通过自动提取多媒体数据的特征,减少数据冗余和信息损失,提高压缩效率。
特征提取
利用人工智能技术对压缩编码算法进行优化,提高压缩比和重建质量。
智能优化
利用区块链的去中心化特性,将多媒体数据分布式存储在多个节点上,保证数据安全和可靠。
分布式存储
通过区块链的加密算法对多媒体数据进行加密处理,防止数据泄露和篡改。
加密技术
利用智能合约对多媒体数据的压缩、传输、存储和分发进行自动化管理,降低运营成本和提高效率。
智能合约
基于区块链的压缩编码技术
即时传输
通过云计算的网络传输能力,实现多媒体数据的即时传输和实时播放,提高用户体验。
云端处理
将多媒体数据处理任务转移到云端进行,利用云计算的分布式计算和存储资源,提高处理效率和降低成本。
基于帧内预测的编码
01
运动补偿编码是一种利用视频序列中图像帧之间的运动信息进行预测编码的技术。它通过分析图像序列中相邻帧之间的运动向量和运动模式,对运动信息进行预测和补偿。
基于运列中相邻帧之间的冗余信息,提高压缩效率。它通常适用于动态场景,因为在动态场景下,相邻帧之间的像素值变化较大,运动信息更加明显。
混合编码
05
视频压缩编码技术

第四章 多媒体数据压缩编码技术

第四章 多媒体数据压缩编码技术

MPEG(Motion picture Experts Group) 是运动图像专家小组的英文缩写 MPEG标准主要有MPEG-l、MPEG-2、 MPEG-4和正在制定的MPEG-7等
多媒体数据压缩编码的国际标准
1.静态图像压缩编码的国际标准(JPEG)
– JPEG(Joint Photographic Experts Group
– JPEG专家组开发了两种基本的压缩算法: 采用以DCT为基础的有损压缩算法 采用以预测技术为基础的无损压缩算法
– 在JPEG标准中定义了四种编码模式: 顺序编码 累进编码 无失真编码 分层编码
多媒体数据压缩编码的国际标准
JPEG图像的压缩比与质量

JPEG在使用DCT进行有损压缩时,压缩比可 调整在压缩10~30倍后,图像效果仍然不错, 因此得到了广泛的应用。
(a) 原图
(b) 压缩效果图
图 d 四次小波变换编码的实验结果
预测编码
预测编码的基本原理 自适应预测编码 帧间预测编码

变换编码
变换编码不是直接对空域图像信号进行编码,而是 首先将空域图像信号映射变换到另一个正交矢量空间 (变换域或频域),产生一批变换系数,然后对这些 变换系数进行编码处理。变换编码是一种间接编码方 法,其中关键问题是在时域或空域描述时,数据之间 相关性大,数据冗余度大,经过变换在变换域中描述, 数据相关性大大减少,数据冗余量减少,参数独立, 数据量少,这样再进行量化,编码就能得到较大的压 缩比。目前常用的正交变换有:傅立叶 (Fouries)变换、 沃尔什(Walsh)变换、哈尔(Haar)变换、斜(Slant)变换、 余弦变换、正弦变换、K-L(Karhunen-Loeve)变换等。

多媒体数据压缩编码技术概述

多媒体数据压缩编码技术概述

多媒体数据压缩编码技术概述多媒体数据压缩编码技术是一种通过减少或去除冗余数据来减小多媒体文件的存储空间或传输带宽的过程。

这些技术广泛应用于图像、音频和视频等各种形式的多媒体数据。

下面将对多媒体数据压缩编码技术的主要方法进行概述。

1. 无损压缩编码:无损压缩编码技术可以将多媒体数据压缩到较小的大小,而不会丢失原始数据。

该技术通过利用多媒体数据中的冗余和统计特性来实现压缩效果。

其中,哈夫曼编码、算术编码和Lempel-Ziv编码等是常用的无损压缩编码方法。

2. 有损压缩编码:有损压缩编码技术可以在一定程度上丢失原始数据,并将其转换为较小的文件大小。

这种压缩方法适用于某些多媒体数据,如音频和视频等,因为人类的感知系统对这些数据中的一些细微变化不太敏感。

有损压缩编码方法包括离散余弦变换(DCT)、小波变换、运动补偿和预测编码等。

3. 基于上下文的压缩编码:这种压缩编码技术利用多媒体数据内部的上下文信息来实现更高的压缩效果。

上下文信息包括像素点的位置、颜色和周围像素点的关系等。

基于上下文的编码方法有助于提高压缩比,并减少信号的失真。

包括了一些流行的基于上下文的压缩编码算法,如JPEG(图像)、MP3(音频)和H.264/AVC(视频)。

4. 神经网络压缩编码:近年来,神经网络技术在多媒体数据压缩编码领域取得了显著的进展。

这些技术利用深度学习的方法来学习多媒体数据中的复杂模式,并使用这些模式进行压缩编码。

神经网络压缩编码方法通常能够在保持较高视觉和听觉质量的同时,实现更高的压缩比。

综上所述,多媒体数据压缩编码技术是一种通过减少或去除冗余数据来减小多媒体文件的存储空间或传输带宽的过程。

该技术涵盖了无损压缩编码、有损压缩编码、基于上下文的压缩编码和神经网络压缩编码等方法。

这些技术在多媒体数据领域发挥着重要的作用,帮助人们有效地处理和传输大量的多媒体数据。

5. 图像压缩编码技术:图像压缩编码技术是多媒体数据压缩编码中的一个重要领域。

计算机多媒体编码和解码技术

计算机多媒体编码和解码技术

计算机多媒体编码和解码技术随着计算机技术的飞速发展,人们通过计算机来获取、传输和处理多媒体数据的需求越来越大。

计算机多媒体编码和解码技术就是为满足这种需求而产生的,它使得计算机系统能够有效地处理和存储各种多媒体数据,如图像、音频、视频等。

一、多媒体编码技术1.压缩技术多媒体数据占据的空间较大,需要采用压缩技术来缩小数据的体积。

常用的压缩技术有有损压缩和无损压缩两种。

无损压缩是指压缩后的数据可以完全还原成压缩前的数据,不会损失任何信息,如文件压缩中的zip和rar格式。

而有损压缩则是在保证压缩后的数据可以被人类接受的情况下,去掉了一定的数据量,压缩后的数据不能完全还原成原始数据,但这部分信息对于人类的感知无关紧要,如视频和音频编码中的H.264和MP3格式。

2.图像编码图像编码是指将图像从实际场景中获取到的一串数字转换为可存储或可传输的二进制数据的过程。

最常用的图像编码方式是JPEG格式,它采用有损压缩来减小数据量,同时保证图像质量不失真。

在JPEG压缩中,图像被分成8x8的小块,对每个小块进行离散余弦变换和量化,然后用哈夫曼编码来压缩数据。

此外还有PNG格式,它采用无损压缩,具有无损和可透明两种属性。

3.音频编码音频编码是指将声音信号压缩为数字信号的过程。

常见的音频编码方式有MP3、AAC、WMA等。

其中MP3采用了有损压缩技术,在保证音频质量的前提下,将音频数据压缩到较小的体积。

AAC是一种先进的音频编码技术,可以提供更好的音频质量和更高的压缩比。

4.视频编码视频编码是指将视频信号压缩为数字信号的过程,以实现对视频数据进行存储、传输和处理。

目前常用的视频编码标准有H.264、VP8、AV1等。

其中H.264是最为普及的编码格式之一,也是目前流媒体和视频传输领域中广泛使用的编码格式。

二、多媒体解码技术多媒体解码技术是指将经过编码处理的音频、视频、图像等数据恢复为原始格式的过程。

解码的过程与编码相反,需要按照特定的算法进行解压和反向转换。

第二章 多媒体数据压缩技术

第二章 多媒体数据压缩技术

的一个间隔,信息越长,编码表示它的间隔就
越小,表示这一间隔所需的二进制位就越多。 2、编码方法:后一个编码字符是在前面编码字符 的范围内,利用原概率分配区间重新求解该编 码字符的范围。
33
2.2.2 常用无损压缩算法
3、编码过程举例:假设信源符号为{a,e,i,o,u},
这些符号的概率分别为{ 0.2, 0.3, 0.1, 0.2, 0.2 },根据这些概率可把间隔[0, 1)分成5个子 间隔(如下图): 字符 概率 范围 a 0.2 e 0.3 i 0.1 o 0.2 u 0.2
概述
(1)数据压缩研究主要集中于图像和视频信号的压缩 (2)数据压缩是以一定的质量损失为代价, 质量损失 一般都是在人眼允许的误差范围之内。 (3)压缩处理过程:

编码过程:将原始数据经过编码进行压缩,以便存 储与传输; 解码过程:对编码数据进行解码,还原为可以使用 的数据。
18

2.1
概述
四、衡量数据压缩技术的指标
第二章 多媒体数据压缩技术
2.1
概述
2.2
常用的数据压缩技术
1
2.1 概述
一、为什么要进行数据压缩
1. 多媒体信息数据量大
例:对语音信号来说(20HZ—4KHZ) 依据采样定理,设数字化精度为8bit,则1秒
数据量为:
4k 2 8b 64kb
2
2.1 概述
对动态图像信息来说,采用代表光强、色彩和饱 和度的YIQ彩色空间,如果带宽分别为: 4.2MHZ、1.5MHZ、0.5MHZ,则1秒钟数据量为:
(1)第一个字符e被编码时: rangelow=0.2, rangehigh=0.5 low=low+range*rangelow = 0+1*0.2=0.2, high=low+range*rangehigh=0+1*0.5=0.5 Range=high-low=0.5-0.2=0.3 此时分配给e的范围为[0.2,0.5)

多媒体信息处理的关键技术

多媒体信息处理的关键技术

7.1.3 多媒体信息处理的关键技术1.多媒体数据压缩/解压缩技术多媒体数据压缩技术是多媒体技术中的核心技术。

随着多媒体技术在计算机以及网络中的广泛应用,多媒体信息中的图像、视频、音频信号都必须进行数字化处理,才能应用到计算机和网络上。

但是这些多媒体信息数字化后的数据量非常庞大,给多媒体信息的存储、传输、处理带来了极大的压力。

因此,必须对数据进行压缩编码。

2.多媒体数据存储技术如何实现多媒体大容量信息的存储是多媒体技术的关键。

目前海量存储设备有磁带机、光盘机、硬盘机、存储卡等。

3.多媒体专用芯片技术专用芯片是多媒体计算机硬件的关键器件。

为了实现音频、视频信号的快速压缩、解压缩和播放处理,需要大量的快速计算,而且图像的绘制、生成、合并、特殊效果等处理也需要大量的计算。

多媒体计算机专用芯片可归纳为两种类型:一种是固定功能的芯片;另一种是可编程的数字信号处理器(DSP)芯片。

专用芯片可用于多媒体信息的综合处理,如图像的特效、图形的生成和绘制、提高音频信号处理速度等。

7.1.4 多媒体计算机系统的构成1. 多媒体计算机系统多媒体计算机系统是指能综合处理多媒体信息,使信息之间能建立联系,并具有交互性的完整的计算机系统。

多媒体计算机与其他具有声音、影像播放功能的电视机、录像机等家用电器的根本区别在于多媒体计算机具有信息集成、交互等特有的功能。

多媒体计算机系统一般由多媒体硬件系统和多媒体软件系统组成。

按照MPC的标准,多媒体计算机包含5个基本单元:主机、CD-ROM驱动器、声卡、音箱和Windows操作系统。

MPC4要求在普通微机的基础上增加以下四类软、硬件设备,以便将PC机升级成MPC。

2.多媒体计算机的硬件系统从处理的流程来看,一个功能较齐全的多媒体计算机系统包括输入设备、计算机主机、输出设备、存储设备几个部分(见图7.1)。

除了普通PC的部件之外,多媒体计算机最基本的硬件是音频卡(Audio Card,简称声卡)、CD-ROM和视频卡(Video Card)3.多媒体计算机的软件系统多媒体软件系统按功能可分为系统软件和应用软件。

第4章 多媒体数据压缩技术

第4章 多媒体数据压缩技术
行程长度编码是指将一系列的重复值(如像素值) 由一个单独的值和一个计数值代替的编码方法。行 程长度编码是一种无损压缩编码方法,它是视频压 缩编码中最简单、但十分常见的方法 。
如上图的行程长度编码可写为:白8黑5白3黑8白6……
2023/4/20
Multimedia Technology & Application
2023/4/20
Multimedia Technology & Application
24
4.2 静态图像的压缩标准JPEG
4.2.1 JPEG标准简介 4.2.2 JPEG标准中的主要技术 4.2.3 JPEG标准的压缩过程 4.2.4 JPEG2000
2023/4/20
Multimedia Technology & Application
8
方式3:不等长编码
考查字符串中不同字符出现的概率并对其重新定义一 个编码字如表4.2所示:
则其编码的总长度为:8×1+4×3×3+2×4×2=60(bit)
2023/4/20
Multimedia Technology & Application
9
4.1.3 常用的数据压缩方法
1.行程长度(也称游程长度编码)
2023/4/20
Multimedia Technology & Application
19
5.熵编码
2) 熵编码实例——哈夫曼编码
算法可描述为: (1) 对图像中出现的不同像素值进行概率统计,得到n个不同概率的信 息符号。 (2) 按符号出现的概率由大到小、由上到下排列。 (3) 对两个最低概率符号分别以二进制0、1赋值。 (4) 两最低概率相加后作为一个新符号的概率重新置入符号序列中。 (5) 对概率按从大到小重新排列。 (6) 重复(2)~(5),直到只剩下两个概率符号的序列。 (7) 分别以二进制0、1赋值后,以此为根结点,沿赋值的顺序的逆序依 次写出该路径上的二进制代码,得到哈夫曼编码。

多媒体数据压缩编码技术

多媒体数据压缩编码技术

三、图像冗余度和编码效率
根据香农信息保持编码定理,假设某无干扰信息源旳熵值为H(x),假如能找到一种编码措施,其编码平均长度 存在一种下限,这个下限是信源信息熵H(x),即最佳信息保持编码旳平均码长无限接近信源熵值。若原始图像平均码长为 ,则
为灰度级i相应旳码长, 为灰度级i出现旳概率。图像旳冗余度可定义为:
第四节 数据压缩编码旳国际原则
一、静态图像压缩编码原则——JPEG 二、运动图像压缩编码原则——MPEG
一、静态图像压缩编码原则——JPEG
(一)JPEGJPEG(Joint Photographic Expert Grout)原则是由IS0旳联合摄影教授组制定旳,1986年成立教授组,1992年完毕旳原则,简称JPEG原则,用于静止图像压缩编码原则。该原则合用于多种辨别率和格式旳连续色调图像旳压缩,可将24位单帧彩色图像,压缩到2位而依然具有很好旳图像质量。
图像旳压缩与解码 图像数据一般旳都存在多种信息旳冗余,如空间冗余、信息熵冗余、视觉冗余、构造冗余等。想方法去掉多种冗余,保存真正有用旳信息,就是图像压缩。把信号进行压缩旳过程常称为图像编码,恢复原图像旳过程常称为解码。
图像压缩领域常用旳编码有: 1. 信息保持编码:主要应用于图像数字存储方面。要求:无失真编码。 2. 保真度编码 :主要应用于数字电视技术和静止图像通信方面。要求:在确保保真度旳条件下允许一定旳失真。 3. 特征提取 :主要应用于某些图像辨认和分析技术中,要求:对需要旳特征信息进行编码,就能够压缩图像数据。
二、医学数据压缩
医学图像压缩得以实施旳两个主要根据: 医学图像旳统计特征和人类视觉特征 1. 利用图像本身固有旳统计特征来降低原始医学图像数据中旳冗余信息,采用某种编码措施减小原始图像文件旳大小。 2.因为人类旳视觉系统能从极为杂乱旳图像中抽象出有意义旳信息,并以非常精炼旳信息形式传到大脑,而且视觉系统对图像中旳不同部分旳敏感程度是不同旳,能够利用人类旳视觉特征清除医学图像中对信息传播和整合影响小旳部分,获取较大旳压缩比。

常用工具软件 多媒体数据压缩及编码技术

常用工具软件  多媒体数据压缩及编码技术

常用工具软件多媒体数据压缩及编码技术在计算机获取原始的声音、图形图像以及视频影像时,其数据量是十分庞大的。

如果数据不进行压缩处理,存放该数据文件时将十分困难,并且即使存储下来也是比较浪费存储介质的。

例如,一张600MB的光盘也只能存储几十秒的真彩视频影像。

因此,用户需要对所获取的声音、图形图像以及视频影像数据进行压缩。

其压缩主要包含下列两种方法。

●无损压缩多媒体原始信源数据存在大量的冗余,如动态视频图像帧内像素之间的空间相关性和帧与帧之间的时间相关性都很大,故而原始信源数据有很多的冗余,采用去掉冗余的压缩方法。

●有损压缩利用人的视觉对于边缘急剧变化不敏感和对图像的亮度信息敏感、对颜色分辨率弱的特点以及听觉只能听到20Hz~20KHz等特征实现数据压缩,舍弃一些非主要的细节,从而使由压缩数据恢复的图像、声音仍有令人满意的质量的方法。

数据压缩技术的研究已经有许多年了,从PCM编码理论开始,到现在的ADPCM、JPEG、MPEG-1、MPEG-2、H.261等,已经产生了多种针对不同用途的压缩算法、实现手段和相关的数字硬件及软件。

目前,被国际社会广泛认可和应用的通用压缩编码标准大致有如下4种。

●H.261编码由CCITT(国际电报电话咨询委员会)通过的用于音频视频服务的视频编码解码器(也称Px64标准),它使用两种类型的压缩:一帧中的有损压缩(基于DCT)和用于帧间压缩的无损编码,并在此基础上使编码器采用带有运动估计的DCT和DPCM(差分脉冲编码调制)的混合方式。

这种标准与JPEG及MPEG标准间有明显的相似性,但关键区别是它是为动态使用设计的,并提供完全包含的组织和高水平的交互控制。

●JPEG编码JPEG(全称是Joint Photogragh Coding Experts Group(联合照片专家组))是一种基于DCT 的静止图像压缩和解压缩算法,它由ISO(国际标准化组织)和CCITT(国际电报电话咨询委员会)共同制定,并在1992年后被广泛采纳后成为国际标准。

浅谈多媒体数据压缩技术中的几种编码方法

浅谈多媒体数据压缩技术中的几种编码方法

浅谈多媒体数据压缩技术中的几种编码方法【摘要】本文首先分析了数据压缩的可能性和分类,介绍了编码的分类,详细阐述了常用的几种信源编码的编码方法,最后对几种编码方法进行了总结。

【关键词】数据压缩;信道编码;编码方法0 引言21世纪的人类社会是信息化的社会,数字化后的信息,尤其是数字化的视频和音频信息具有数据海量性,它给数据的存储和传输带来较大的困难,成为人类有效地获取和使用信息的瓶颈问题之一。

现如今,媒体元素种类繁多、构成复杂,即数字计算机所要处理、传输和存储等对象为数值、文字、语言、音乐、图形、动画、静态图像和电视视频图像等多种媒体元素,并且使他们在模拟量和数字量之间进行自由转换、信息吞吐、存储和传输。

目前,虚拟现实技术要实现逼真的三维空间、3D立体声效果和在实境中进行仿真交互,带来的突出的问题是媒体元素数字化后数据量大得惊人,致使海量数据存储与传送电视信号数字化后的庞大数据量成为了多媒体信息传送面临的最大难题,数据压缩是解决问题的重要途径。

1 多媒体数据压缩的可能性及分类1.1 数据压缩的可能性经研究发现,与音频数据一样,图像数据中存在着大量的冗余,通过去除那些冗余数据可以极大地降低原始图像数据量,从而解决图像数据量巨大的问题。

图像数据压缩技术就是研究如何利用图像数据的冗余性来减少图像数据量的方法。

因此,进行图像压缩研究的起点是研究图像数据的冗余性。

常见的主要数据冗余有:(1)空间冗余:在静态图像中有一块表面颜色均匀的区域,在这个区域中所有点的光强和色彩以及色饱和度都相同,具有很大的数据冗余,这种冗余称为空间冗余。

(2)时间冗余:电视图像、动画等序列图片,当其中物体有位移时,后一帧的数据与前一帧的数据有许多共同的地方,即数据不需要全部传输,这些共同的地方则是冗余,这种冗余称为时间冗余。

(3)结构冗余:在有些图像的纹理区,图像的像素值存在着明显的分布模式。

例如,方格状的地板图案等,称此为结构冗余。

多媒体编码及压缩标准

多媒体编码及压缩标准

多媒体编码及压缩标准
在当今数字化信息时代,多媒体技术已经成为人们日常生活中不可或缺的一部分。

无论是视频、音频还是图像,它们都是多媒体的重要组成部分。

然而,由于多媒体数据量庞大,为了更好地存储、传输和展示,就需要对其进行编码和压缩。

本文将就多媒体编码及压缩标准进行探讨。

首先,我们来谈谈多媒体编码。

多媒体编码是将原始的多媒体数据转换成数字
信号的过程。

在视频方面,常见的编码标准有H.264、H.265、VP9等,它们通过
对视频进行帧间预测、变换编码和熵编码等技术,实现了对视频数据的高效压缩。

而在音频方面,AAC、MP3、Opus等编码标准也起到了类似的作用。

这些编码标
准的出现,大大提高了多媒体数据的传输效率和存储空间利用率。

其次,我们要讨论多媒体压缩标准。

多媒体压缩是指通过编码技术将多媒体数
据压缩到更小的体积,以便于存储和传输。

在视频压缩方面,除了编码标准外,还有MPEG-2、MPEG-4等压缩标准,它们通过去除冗余信息和利用人眼视觉特性来
减小视频数据量。

在音频压缩方面,除了编码标准外,还有ADPCM、PCM等压
缩标准,它们通过减小采样率和量化精度来减小音频数据量。

这些压缩标准的应用,使得多媒体数据在存储和传输时占用的空间大大减小。

总的来说,多媒体编码及压缩标准在数字化信息时代起到了至关重要的作用。

它们不仅提高了多媒体数据的传输效率和存储空间利用率,还为人们的日常生活带来了便利。

随着技术的不断发展,相信多媒体编码及压缩标准会变得更加高效和先进,为人们的多媒体体验带来更多的惊喜。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 统计编码原理 根据信息论的观点,信元的冗余度是由于信
源本身所具有的相关性和和信源内事件概率分布 的不均匀性产生的。因此,图像的统计编码方法 就是利用信源的统计特性,去除其内在的相关性 和改变概率分布的不均匀性,从而实现图像信息 的压缩。
多媒体技术及其医学应用
21
• 哈夫曼编码
哈夫曼编码是50年代提出的一种基于统计 的无损编码方法,哈夫曼于1952年提出了一种不 等长编码方法,这种编码的码字长度的排列与符 号的概率大小的排列是严格逆序的,理论上已经 证明其平均码字最短,因此被称为最佳码。静态 哈夫曼编码使用一棵依据字符出现的概率事先生 成好的编码树进行编码。而动态哈夫曼编码需要 在编码的过程中建立编码树。由于哈夫曼编码所 得到的平均码字长度可以接近信源的熵,故也称 为熵编码。
26
一、静态图像压缩编码标准——JPEG
(一)JPEG
• JPEG(Joint Photographic Expert Grout)标 准是由IS0的联合摄影专家组制定的,1986年 成立专家组,1992年完成的标准,简称JPEG 标准,用于静止图像压缩编码标准。该标准适 用于各种分辨率和格式的连续色调图像的压缩, 可将24位单帧彩色图像,压缩到2x,y)
多媒体技术及其医学应用
14
• 则均方根误差
e rm s M 1 N M x 0 1N y 0 1 [f^(x ,y)f(x ,y)]2

如果将
^
f (x, y)
看作原始图像
f (x, y) 和e(x,y)的和,那
么解压图像的均方根信噪比为:
M1N1^
f2 max
[f(x,y)f(x,y)]2
x0y0
多媒体技术及其医学应用
16
2. 主观保真度准则
尽管客观保真度准则提供了一种简单、方 便的评估信息损失的方法,但很多解压图像最 终是供人观看的。对具有相同客观保真度的不 同图像,人的视觉可能产生不同的视觉效果。 这是因为客观保真度是一种统计平均意义下的 度量准则,对于图像中的细节无法反映出来, 而人的视觉能够觉察出来。这种情况下,用主 观的方法来评价图像的质量更为合适。
ct工作站
信息提取
无损
有损 、
无损压
量化

有损
重复压缩 比特分配 否

医学图 像数据 库
多媒体技术及其医学应用
10
第二节 数据压缩编码的基本原理
一、图像的可压缩理论 二、图像压缩性能评价 三、图像冗余度和编码效率
多媒体技术及其医学应用
11
一、图像的可压缩理论
• 数据压缩的理论研究始于香农的信息论。1948年香 农在其经典论文《通信的数学原理》中首次提到信 息率——失真函数概念,1959年又进一步确立了失 真率理论,从而奠定了信源编码的理论基础。
• 预测编码的关键在于预测算法的选取,这与图像信号 的概率分布很有关系。实际中常根据大量的统计结果 来设计最佳的预测器,有时还使用自适应预测器以刻 画图像信号的局部特性,从而提高编码效率。
多媒体技术及其医学应用
23
三、变换编码
• 变换编码((Transform coding)是通过信号 变换来消除图像数据空间相关性的一种有效 方法。尽管图像变换本身不能对数据进行压 缩,但由于变换后系数之间的相关性明显降 低,图像的大部分能量只集中在少数变换系 数上,采用适当的量化和熵编码方法就可以 有效地压缩图像的数据量。而且图像经过某 些变换后,系数的空间分布和频率分布特性 与人眼的视觉特性相符合,因此可以利用人 类视觉系统的生理和心理特点来得到较好的 编码系统。
感程度是不同的,可以利用人类的视觉特性去除
医学图像中对信息传输和整合影响小的部分,获
取较大的压缩比。 多媒体技术及其医学应用
7
• 医学图像存在的冗余
1. 空间冗余: 取决于医学图像中图案粗细程 度的冗余。 2. 时间冗余: 取决于医学图像随时间变化程 度的冗余。 3. 结构冗余: 把医学图像看作是区域集时产 生的冗余。
③离散哈达玛变换(Discrete Hadamard Transfor m, 简称DHT)
④特征向量变换(Karhunen-Loeve,简称K-L)
多媒体技术及其医学应用
25
第四节 数据压缩编码的国际标准
一、静态图像压缩编码标准——JPEG 二、运动图像压缩编码标准——MPEG
多媒体技术及其医学应用
多媒体技术及其医学应用
22
二、预测编码
• 预测编码(predictive coding)实际上是基于图像数 据的空间冗余特性的,用相邻的已知像素(或像素块) 来预测当前像素(或像素块)的值,然后再对预测误差 进行量化和编码,这些相邻像素或像素块可以是同行 的,也可以是前几行的,相应的预测编码分别称为一 维和二维预测。
多媒体技术及其医学应用
3
• 数字图像压缩的出现
二十世纪末,人类社会开始进入到数字化时 代,数字图像技术作为数字技术的重要组成部分, 将人们带入了崭新的多媒体世界。随着科学的发 展和社会的进步,人们对图像信息的需求也越来 越大。在多媒体计算机系统、电子出版、视频会 议、数字化图书馆等许多领域,数字图像都有着 广泛的应用。
1. 信息保持编码:主要应用于图像数字存储方 面。要求:无失真编码。
2. 保真度编码 :主要应用于数字电视技术和 静止图像通信方面。要求:在保证保真度的条 件下允许一定的失真。
3. 特征提取 :主要应用于一些图像识别和分 析技术中,要求:对需要的特征信息进行编码, 就可以压缩图像数据。
多媒体技术及其医学应用
第二章 多媒体数据压缩 编码技术
多媒体技术及其医学应用
1
第一节 多媒体数据压缩编码概述
一、数据压缩与多媒体压缩 二、医学数据压缩
多媒体技术及其医学应用
2
一、数据压缩与多媒体压缩
• 数据压缩 就是以最少的数码表示信源所发的信号,以
减少容纳给定消息集合或数据采样集合的信号空 间,通过减少计算机中所存储数据或者通信传播 中数据的冗余度,达到增大数据密度,最终使数 据的存储空间减少的技术。
多媒体技术及其医学应用
4
• 图像的压缩与解码
图像数据一般的都存在各种信息的冗余, 如空间冗余、信息熵冗余、视觉冗余、结构冗余 等。想办法去掉各种冗余,保留真正有用的信息, 就是图像压缩。把信号进行压缩的过程常称为图 像编码,恢复原图像的过程常称为解码。
多媒体技术及其医学应用
5
• 图像压缩领域常用的编码有:
多媒体技术及其医学应用
27
• JPEG主体压缩技术采用3种编码系统 :
1. 基于DCT(Discrete Cosine Transform)的有损压 缩基本编码系统,可适用于绝大多数压缩应用场合。 2. 用于高压缩、高精确度渐进重建应用的扩展编码 系统。 3. 独立的无损压缩系统,应用于失真场合。
多媒体技术及其医学应用
18
• i 为灰度级i对应的码长, p i 为灰度级i出现

的概率。图像的冗余度可定义为: r=
B
1
H (x)
• 编码效率则定义为:
H(x)
B
1 1r
多媒体技术及其医学应用
19
第三节 常用数据压缩编码算法
一、统计编码 二、预测编码 三、变换编码
多媒体技术及其医学应用
20
一、统计编码
多媒体技术及其医学应用
8
4. 知识冗余: 与收发端所共有的知识相关 联的冗余。
5. 熵冗余: 像素灰度值出现概率不均匀 产生的冗余。
6. 视觉冗余: 由于人的视觉分辨有限性产 生的冗余。
7. 其他冗余: 由于医学图像非平稳性产生 的冗余。
多媒体技术及其医学应用
9
• 可以把医学图像信号看成有用信息和冗余信息的结 合,其压缩通过编码器实现
多媒体技术及其医学应用
30
二、运动图像压缩编码标准——MPEG
MPEG(Moving Picture Experts Group)是活 动图像专家组的缩写,是ISO为制定数字视频和音 频压缩标准而建立的一个工作小组,其正式名称是 ISO/IEC JTCI SC29 WG11。自1988年成立以来, 该小组已经制定出了MPEG-1, MPEG-2, MPEG-4, MPEG-7等不同应用目的的标准。
4. 分层模式,以各种分辨率对图像进行编码,可以 根据不同的要求,获得不同分辨率的图像。
多媒体技术及其医学应用
29
(二)JPEG2000
与JPEG标准相比,JPEG2000有了一个很大的飞跃, 它有许多原来的标准所不可比拟的优点。JPEG2000与传 统的JPEG最大的不同,在于它放弃了JPEG所采用的以D CT变换为主的分块编码方式,而改为以小波变换为主的 多分辨率编码方式。JPEG2000标准还充分考虑了人眼视 觉特性,增加了视觉权重和掩膜,这样在不损害视觉效果 的情况下,可以大大提高压缩效率。
多媒体技术及其医学应用
31
多媒体技术及其医学应用
28
• JPEG算法共有四种运行模式,其中一种是基 于空间预测(DPCM)的无损压缩算法,另外三 种是基于DCT的有损压缩算法。
1. 无损压缩算法,可以保证无失真的重构原始图像。
2. 基于DCT的顺序模式,按从上到下,从左到右的 顺序对图像进行编码,称为基本系统。
3. 基于DCT的渐进模式,指对一幅图像按由无损到 有损进行编码。
f(x,y)2
SNRm s x0y0
M1N1 ^
[f(x,y)f(x,y)]2
x0y0
多媒体技术及其医学应用
15
f • 如果令 m a x m a x [f(x ,y ) ] ,x 0 ,1 ...,M 1 ,y 0 ,1 ,...,N 1 ,
相关文档
最新文档