火电厂的电气主接线图CAD_pdf
火力发电厂电气主接线课程设计
前言电气主接线代表了发电厂和变压所高电压、大电流的电气部分的主体结构,是电力系统网络结构的重要组成部分。
它直接影响电力生产运行的可靠性、灵活性。
对电气设备的选择、配电装置的布置、继电保护、自动装置和控制方式等诸多方面都有决定性的关系。
本火电厂电气主接线主要从可靠性、灵活性、经济性三方面综合考虑并设计。
可靠性包括:发电厂和变电所在电力系统中的地位;负荷性质和类别;设备的制造水平;长期运行实际经验。
灵活性包括:操作的方便性;调度的方便性;扩建的方便性。
经济性包括:节省投资;降低损耗等。
综合以上三方面的考虑展开火电厂电气主接线的设计,并对设计进行可行性分析,得出结论:本设计适合实际应用。
1对原始资料的分析火力发电厂共有两台50MW的供热式机组,两台300MW的凝汽式机组。
所以Pmax=700MW;机组年利用小时Tmax=6500h。
设计电厂容量:2*50+2*300=700MW;占系统总容量700/(3500+700)*100%=16.7%;超过系统检修备用容量8%-15%和事故备用容量10%的限额。
说明该厂在系统中的作用和地位至关重要。
由于年利用小时数为6500h>5000h,远大于电力系统发电机组的平均最大负荷利用小时数。
该电厂在电力系统中将主要承担基荷,从而在设计电气主接线时务必侧重考虑可能性。
10.5KV电压级:地方负荷容量最大为25.35MW,共有10回电缆馈线,与50MW发电机端电压相等,宜采用直馈线。
220KV电压级:出线回路为5回,为保证检修出线断路器不致对该回路停电,宜采用带旁路母线接线方式。
500KV电压级:与系统有4回馈线,最大可能输送的电力为700-15-200-700*6%=443MW。
500KV电压级的界限可靠性要求相当高。
2 主接线方案的拟定2.1 10.5kV电压级根据设计规程规定:当每段母线超过24MW时应采用双母线分段式接线方式。
利用断路器将双母线中的一组母线分为W1和W2两段,在分段处装有电抗器,另一组母线不分段。
火电厂电气主接线课件
在火电厂电气主接线中,电流互感器通常安装在母 线上或线路中,用于监测电流的大小和方向。
03
电流互感器能够将大电流转换为标准电流,以便于 仪表和保护装置的测量和监测。
电压互感器
电压互感器是一种将高电压转换为低电压的设备,用于测量和保护电路。
在火电厂电气主接线中,电压互感器通常安装在母线上或线路中,用于监 测电压的大小和方向。
06
火电厂电气主接线的未来发展
高压直流输电技术的影响
总结词
高压直流输电技术(HVDC)在火电厂电气主接线中具有重要作用,能够提高电力传输的稳定性和可靠性。
详细描述
随着HVDC技术的不断发展,其在火电厂电气主接线中的应用越来越广泛。HVDC技术能够实现长距离、大容量 电力传输,同时具有较高的稳定性和可靠性,可以有效降低传输损耗和故障风险。这为火电厂的电气主接线提供 了更加灵活和可靠的选择,有助于提高火电厂的供电效率和稳定性。
04
火电厂电气主接线的优化设计
减少短路电流的措施
限制短路电流幅值
通过合理选择主接线设备,如断路器、隔离开关等,以及 优化设备参数,可以有效限制短路电流幅值。
分支回路增设限流电抗器
在分支回路中增设限流电抗器,可以限制短路电流的幅值 ,从而降低对电气设备的冲击。
合理配置保护装置
根据电气主接线的运行方式和短路电流分布情况,合理配 置继电保护装置,实现快速切除短路故障,减小短路电流 的持续时间。
电气主接线的基本要求
安全可靠
电气主接线应保证发电厂正常运行和检修工作的安全可靠,防止发生 人身伤亡和设备损坏事故。
灵活经济
电气主接线应满足发电厂运行方式的灵活性和经济性,能够适应负荷 变化和机组启停需要,同时应尽量减少投资和维护费用。
火电厂电气主接线
单母线接线
双母线接线
一台半断路器接线
1
1 3
台断路器接线
变压器母线组接线
无汇流母线的电气主接线
单元接线 桥形接线 角形接线
精品课件
一、单母线接线及单母线分段接线
1. 单母线接线
WL1 WL2 WL3 WL4
(1)供电电源:在发 QE
电厂是发电机或变压器, 在变电站是变压器或高压 进线
(2)电源可以在母线 上并列运行,任一出线可 以从任一电源获得电能, 各出线在母线的布置尽可 能使负荷均衡分配于母线 上,以减小母线中的功率 传输
倒闸操作程序示意图:
接受调令
通告全值
审核调令
填操作票
审核
危险分析
模拟预演
操作准备
核对设备
唱票复诵
实施操作
操作复查
汇报调度 操作评价
精品课件
优点:接线简单、操作方便、 设备少、经济性好,便于扩建
WL1 WL2 WL3 WL4
缺点: (1)可靠性较差 (2)灵活性较差
QE
QS22
QF2 QS21
适用范围:
第一节 电气主接线设计原则和程序
一、对电气主接线的基本要求
可靠性、经济性、灵活性三个方面
1、可靠性
(1)发电厂、变电站在电力系统中的作用和地位
(2)负荷性质和类别
Ⅰ类负荷、Ⅱ类负荷、Ⅲ类负荷
Ⅰ类负荷:即使短时停电也会造成人员伤亡和 重大设备损坏,任何时间都不能停电 Ⅱ类负荷:停电将造成减产,使用户蒙受较大 的经济损失,仅在必要时可短时停电 Ⅲ类负荷:Ⅰ、Ⅱ类负荷以外的其他负荷,停 电不会造成大的影响,必要时可长时间停电
路器QF3 、限流电抗器L ,提高了供电可靠性和灵活性。
2x300MW火电厂主接线设计
目录发电厂课程设计任务书 (1)摘要 (2)第一章主接线的设计 (2)1.1主接线的设计依据 (2)1.2主接线的基本形式 (2)1.3主接线的设计方案 (3)第二章厂用电接线方式的择 (5)2.1厂用电 (5)2.2厂用电的分类 (5)2.3厂用电设计原则 (6)2.4厂用电源选择 (7)2.5厂用电接线形式 (7)第三章电气设备的选择 (8)3.1电气设备选择的一般规则 (8)3.2按正常工作条件选择电器 (9)3.3按短路情况校验 (10)3.4断路器的选择 (10)3.5隔离开关的选择 (11)3.6电流互感器的选择 (11)3.7电缆的选择 (12)总结 (13)参考文献 (14)发电厂课程设计任务书设计题目:2*300MW火电厂主接线设计设计原始资料:1、厂用电为总容量7%2、两台主变,一台联络变。
3、220KV 5回出线4、110KV 7回出线5.U=10.5KV COSφ=0.85设计内容:1、对电气主接线进行论述2、选择电气主接线方式,并说明3、对主接线主要电气设备选型计算,校验计算*4、主要点短路电流计算*5、对主变保护进行论述6.对厂用电6KV段设计设计要求:1、主接线论证,方案比较2、主接线设计正确3、设备选型科学并有依据4、图纸规范5、独立完成6、参阅相关资料设计时间安排:1、主接线初步设计1天2、短路电流计算1天3、设备选择2天4、汇制图纸书写说明书2天摘要电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。
主接线的确定对电力系统整体及发电厂、变电所本身的运行的可靠性、灵活性和经济性密切相关。
并且对电气设备选择、配电装置配置、继电保护和控制方式的拟定有较大的影响。
本文将针对某火力发电厂的设计,主要是对电气方面进行研究。
对配有2台300MW汽轮发电机的火电厂一次部分的初步设计,主要完成了电气主接线的设计。
包括电气主接线的形式的比较、选择;主变压器、启动/备用变压器和高压厂用变压器容量计算、台数和型号的选择;短路电流计算和高压电气设备的选择与校验; 并作了变压器保护。
第六章 火电厂电气主接线及厂用电
三、厂用电源分类 1. 工作电源
•含义: – 保证正常运行的基本电源
•要求: – 供电可靠 – 电压和容量满足要求 •引接方式: – 有机压母线的机组:从该母线上引接。 – 单元接线的机组:从主变低压侧引接。 – 扩大单元接线的机组:从发电机出口或主变低压侧引接。 发电厂的工作电源包括:6kV、10kV高压工作电源、380V 低压工作电源、110V、220V直流工作电源和220V交流不间断 电源(UPS)。
五、电气设备的主要倒闸操作内容 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 电力线路或负荷的送电/停电操作; 发电机的并列/解列操作; 电力变压器的投运/停运操作; 工作电源与启/备电源互换操作; 倒母线和倒旁路操作; 直流电源启用/停用操作; 改变中性点接地方式操作; 继电保护装置启用/停用操作; 电气自动装置启用/停用操作; 测量、监视、控制和信号装置的启用/停用操作。
• 3. 对操作断路器的要求 • (1)在一般情况下,断路器不允许就地带电手动合闸。
这是因为手动合闸慢,易产生电弧,但特殊需要时例外。
• (2)当远距离操作断路器时,不得用力过猛,以防止损 坏控制开关,也不得返回太快,以防止断路器合闸后又跳闸。
• (3)在断路器操作后,应检查有关信号及测量仪表的指
④ 事故保安负荷:
• 根据对电源的要求不同,事故保安负荷又可分为: – 直流保安负荷:如发电机组的直流润滑油泵、事故氢密 封油泵等; – 交流保安负荷:如盘车电动机、交流密封油泵、实时控 制用的电子计算机等。 • 事故保安负荷的供电方式: – 直流保安负荷的直流电源由蓄电池组供电。
– 交流保安负荷的交流电源由快速自启动柴油发电机组且 有自动投入装置功能,或燃气轮机组,或具有可靠的外 部独立电源供电。对交流不间断供电负荷,可接于蓄电 池组的逆变装置。
电气课件(主接线图)
我公司2*135兆瓦热电联产工程厂内电气主接 线原定设计为双母线接线,此种接线方式虽 然具有供电可靠,调度灵活及便于扩建等优 点,但这种接线方式所用设备较多,配电装 置复杂,经济性较差,在运行中隔离开关作 为操作电器,很容易发生误操作事故,并且 对于实现自动化不方便,当母线故障时,须 切除较多的电源和线路
电力安全工作规程
1.3 作业人员的基本条件 1.3.1经医师鉴定,无妨碍工作的病症(体格 检查每两年至少一次)。 1.3.2 具备必要的电气知识和业务技能,且按 工作性质,熟悉本规程的相关部分,并经考 试合格。 1.3.3 具备必要的安全生产知识,学会紧急救 护法,特别要学会触电急救。
1.4教育和培训 1.4.1 各类作业人员应接受相应的安全生产教育和 岗位技能培训,经考试合格上岗。 岗位技能培训,经考试合格上岗。 1.4.2 作业人员对本规程应每年考试一次。因故间断 电气工作连续三个月以上者,应重新学习本规程, 并经考试合格后,方能恢复工作。 1.4.3 新参加电气工作的人员、实习人员和临时参加 劳动的人员(管理人员、临时工等),应经过安全知 识教育后,方可下现场参加指定的工作,并且不得 单独工作。
PT的配置
数量和配置于主接线方式(方式改变时) 有关,应能满足测量、保护、同期和自动装 置的要求 1.6~220KV每组母线的三相上装设; 2.当需要监视和检测线路侧有无电压时,出线 侧的一组上装设; 3.发电机出口装有三组,供测量、保护和自动 电压调整装置需要。
CT的配置
与断路器有关,凡装有断路器的地方均装 有,有些没有设置断路器的地方也装有(如 发电机、变压器的中性点;发电机和变压器 的出口)供测量、保护和控制装置需要。 对直接接地系统,一般按三相配置; 对非直接接地系统,按两相也有按三相配 置;
发电厂电气部分2-7发电厂电气主接线设计举例
②双母线带旁路接线正常运行时 T1、L1、L2接W1母线, T2、T3、L3、L4接于W2段母线,母联断路器投入,以固 定接线方式运行为例,进行分析计算。 1.先求其辅助系数 (1)断路器故障率Qi由Qi= Q + LL/100 + , 对断路器分别计算。其中对母联断路器及一串的中间断 路器的Q修正为2Q值,计算结果示于表2-4及2-5。
虑限制短路电流的措施。除在主接线形式和运行方式上尽可能 采用等效阻抗较大的接线形式,如单元接线、母线硬分段等外, 更重要的是在某些电路中加装电抗器,如母线电抗器、出线电 抗器、分裂电抗器等,亦可选用低压分裂绕组变压器取代普通 变压器,均可得到较好的限流效果,故被广泛采用。
电气主接线的设计,应根据对主接线的基本要求,以设计任务 书为依据,技术规范为准绳,历经以下几个阶段: 1)对任务书原始资料进行分析,画出主接线框图。
(1)10kV电压级鉴于出线回路多,且为直馈线、电压较 低,宜采用屋内配电,其负荷亦较小,因此,可能采用单 母线分段或双母线分段接线形式。
两台50MW机组分别接在两段母线上,剩余功率通过主变压 器送往高一级电压220kV。
由于50MW机组均接于10kV母线上,为选择轻型电器,应在 分段处加装母线电抗器,各条电缆馈线上装设出线电抗器。 (2)220kV电压级出线回路数大于 4回,为使其出线断路 器检修时不停电,应采用单母线分段带旁路接线或双母线 带旁路接线,以保证其供电的可靠性和灵活性。其进线仅 从10 kV侧送来剩余容量2 X 50-[(100 X 6%)+20]= 74MW,不能满足220kV最大负荷250MW的要求。
三、方案的可靠性计算
由于500kV电压高、容量大、可靠性要求高,须对两种
可行的接线方案(图2-34)进行可靠性计算。
220KV配电室电气主接线图
电气主接线二-2
2. 大型火电厂 电厂特点:多为区域性电厂,装机容量1000MVA以上,
单机容量200~1300MVA;要求可靠性高,常建在能
源中心,无机端负荷,远距离高电压送电 主接线特点: ①发-变单元接线 ②高压侧主接线用双母线或3/2接线(视电压等级而定) ③若有两个电压等级,常用联络变联系(单机容量较小 时也用三绕组变压器)
中小型火电厂 电气主接线
Ⅲ
具有地方负荷的火力发电厂的能源主要是以煤炭作为燃料,所生产的电能除直 接供电给地方负荷使用之外,其余的电能都将升高电压送往电力系统。目前我 国的中型发电厂,一般指总容量在200MW~1000MW,单机容量为50MW~ 200MW,煤炭主要来源于就近的一些地方煤矿。发电厂一般建设在中小城市附 近或工业中心。 最具代表性的接线形式为热电厂的电气主接线 .由于受供热距离的限制,一般热 电厂的单机容量多为中小型机组。无论是凝汽式火电厂或热电厂,它们的电气 主接线应包括发电机电压接线形式及1~2级升高电压级接线形式的完整接线, 且与电力系统相连。
50%
(2)可靠性、灵活性较好
任一断路器检修不需断电(但接线开环运行) 无母线,接线任一段故障,只切除该段及与其相连的元件,对
系统影响小
(3)断路器数量不能多,进出线回路数受限制(角数一般不
易超过六角 )
(4)开环和闭环时各支路潮流变化大,使保护整定复杂 (5)进出线数比较固定不便扩建
3. “当出线回路数不多,且远景规模比较明确,
无母线接线
main electrical connection without bus
主要内容: 1.单元接线的接线特点,运行特点,适用条件 (1)发电机-变压器单元接线 (2)发电机-变压器-线路单元接线和变压器-线路单元接 线 (3)扩大单元接线 2.桥形接线的接线特点,运行特点,适用条件 (1)内桥接线 (2)外桥接线 3.角形接线的接线特点,运行特点,适用条件 (1)四角形接线 (2)六角形接线
热电厂工程电气主接线CAD图
火力发电厂 电气主接线设计~2ED3D
火力发电厂电气主接线设计~2ED3D火力发电厂电气主接线设计~2ed3d摘要发电厂就是电力系统的关键组成部分,也直接影响整个电力系统的安全与运转。
在发电厂中,一次接线和二次接线都就是其电气部分的关键组成部分。
在本次设计中,主要针对了一次接线的设计。
从主接线方案的确定到厂用电的设计以及电气设备的选择,都做了较为详尽的阐述。
设计过程中,综合考虑了经济性、可靠性和可发展性等多方面因素,在确保可靠性的前提下,力争经济性。
关键词:凝汽式火电厂电气主接线1第一章发电厂电气主接线设计1-1设计要求及原始资料分析1、凝汽式发电机的规模(1)装机容量装机5台容量3×25mw+2×50mw,un=10.5kv(2)机组年利用小时tmax=6500h/a(3)厂用电率按8%考虑(4)气象条件发电厂所在地最低温度38℃,年平均温度25℃。
气象条件通常并无特殊要求(台风、地震、海拔等)2、电力负荷及电力系统相连接情况(1)10.5kv电压级电缆出线六回,输送距离最远8km,每回平均输送电量4.2mw,10kv最大负荷25mw,最小负荷16.8mw,cosφ=0.8,tmax=5200h/a。
(2)35kv电压级架空线六回,输送距离最远20km,每回平均输送容量为5.6mw。
35kv电压级最大负荷33.6mw,最小负荷为22.4mw。
cosφ=0.8,tmax=5200h/a。
(3)110kv电压级架空线4良贵电力系统相连接,拒绝接受该厂的余下功率,电力系统容量为3500mw,求函数基准容量为100mva时,系统隆哥蒙至110kv母线上的电抗x*s=0.083。
(4)发电机出口处主保护动作时间tpr1=0.1s,后备保护动作时间tpr2=4s。
原始资料分析设计电厂总容量3×25+2×50=175mw,在200mw以下,单机容量在50mw以下,为小型凝汽式火电厂。
当本厂投产后,将占到系统总容量为175/(3500+175)×100%=4.1%<15%,未少于电力系统的检修水泵容量和事故水泵容量,表明该电厂在未来供电系统中的地位和促进作用不是很关键,但tmax=6500h/a>5000h/a,又为火电厂,在电力系统中将主要分担基荷,从而该电厂主接线的设计务必着重于考量其可靠性。