湖北省武汉市部分市级示范高中高二数学复数练习试题 百度文库
高中数学复数练习题附答案
高中数学复数练习题附答案一、单选题1.已知复数z 满足(12i)43i z -=-(i 为虚数单位),则z =( ) AB .5C D .22.已知复数1i z =-,则2i z z -=( ) A.2 B .3 C .D .3.已知复数12z i =-,则z 在复平面内对应的点关于虚轴对称的点是( ) A .(1,2)- B .(1,2)C .(2,1)-D .(1,2)--4.已知复数113i z =+的实部与复数21i z a =--的虚部相等,则实数a 等于( ) A .-3 B .3 C .-1 D .15.设集合A 实数 ,{}B =纯虚数,{}C =复数,若全集SC ,则下列结论正确的是( ) A .AB C =B .A B =C .()S A B ⋂=∅D .SSABC6.已知复数5i1iz -=+(i 为虚数单位),则z 的共轭复数z =( ) A .23i +B .24i -C .33i +D .24i +7.已知a R ∈,“实系数一元二次方程2904x ax ++=的两根都是虚数”是“存在复数z 同时满足2z =且1z a +=”的( )条件. A .充分非必要 B .必要非充分 C .充分必要 D .既非充分又非必要 8.设复数z 满足i 3i z z --=,则z 的虚部为( )A .2i -B .2iC .2-D .29.设复数21iz =-+,则z 在复平面内对应的点的坐标为( ) A .(1,1)B .(-1,1)C .(1,-1)D .(-1,-1)10.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =( ) A .2i --B .2i -+C .2i -D .2i +11.已知复数324i 1iz +=-,则z =( )A B C .D .12.设z 的共轭复数是z ,若4i z z -=,8z z ⋅=,则z =( ) A .22i --B .22i +C .22i -+D .22i +或22i -+13.已知复数23i z =-,则()1i z +=( ) A .3i -B .3+3i -C .3i +D .3i -+14.设i 为虚数单位,()1i 2i z -+=+,则复数z 的虚部是( ) A .12- B .1i 2C .32-D .3i 2-15.设复数53i--的实部与虚部分别为a ,b ,则a b -=( ) A .2-B .1-C .1D .216.已知复数1i z a =+(a R ∈),则1a =是z = ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件17.若5i2iz =+,则||z =( )A.2 B C .D .318.已知复数z 满足z +2i -5=7-i ,则|z |=( )A .12B .3 C.D .919.已知z1,z 2∈C ,|z 1+z 2|=|z 1|=2,|z 2|=2,则|z 1-z 2|等于( ) A .1 B .12 C .2 D .20.若复数i (2i)z m m =++在复平面内对应的点在第二象限,则实数m 的取值范围是( ) A .(1,0)- B .(0,1)C .(,0)-∞D .(1,)-+∞二、填空题21.复数121i,22i z z =+=-,则12_________.z z -=22.已知i 是虚数单位,则202220221i 1i ⎛+⎛⎫+= ⎪ -⎝⎭⎝⎭________.23.若i(,)i+∈a b a b R 与3+4i 互为共轭复数,则a b -=___________.24.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如,z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离,在复数平面内,复数02i1ia z +=+ (i 是虚数单位,)a R ∈是纯虚数,其对应的点为0Z ,Z 为曲线1z =上的动点,则0Z 与Z 之间的最小距离为________________.25.若i 为虚数单位,复数3i z =+,则表示复数1iz+的点在第_______象限. 26.若复数z 满足i 3i=iz -+,则z =________. 27.复数2ii 1+-的共轭复数是_______. 28.写出一个在复平面内对应的点在第二象限的复数z =__________. 29.已知复数i 3i z =+(i 为虚数单位),则z =__________.30.已知复数()()211i z a a =-+-()a R ∈是纯虚数,则=a ___________.31.计算:112i2i-=+___________. 32.已知复数z 满足()1i 42i -=+z ,则z =_________. 33.设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则2zz-=________. 34.已知关于x 的方程,()()()221i i 0,,R x x ab a b a b ++++++=∈总有实数解,则a b +的取值范围是__________.35.若2z =,arg 3z π=,则复数z =________.36.已知m R ∈,复平面内表示复数()3i m m --的点位于第三象限内,则m 的取值范围是____________ 37.下列命题:①若a R ∈,则()1i a +是纯虚数;②若()()()22132i x x x x R -+++∈是纯虚数,则1x =±;③两个虚数不能比较大小. 其中正确命题的序号是________.38.已知z =,则22022z z z ++⋅⋅⋅+=___________. 39.已知复数z 满足2i z +∈R ,4zz-是纯虚数,则z 的共轭复数z =______. 40.已知复数1i z =+,则2z z+=____________三、解答题41.已知复数z 满足:i 1i z +=-. (1)求z ; (2)求1iz+的模. 42.数列{}n a 满足1112,1n n na a a a +-==+,试研究数列{}n a 的周期性.43.已知1z ,2z ∈C,1z =2=z12z z +=12z z -. 44.根据复数的几何意义证明:121212z z z z z z -≤+≤+.45.复数()()11i z m m =++-对应的点在直线40x y +-=上,求实数m 的值.【参考答案】一、单选题 1.A 2.D 3.D 4.C 5.D 6.A 7.D 8.C 9.D 10.B 11.B 12.D 13.B 14.C 15.A 16.A 17.B 18.C 19.D20.A 二、填空题 212223.1 24.1 25.四 2627.13i 22-+28.1i -+(答案不唯一)2930.1-31.43i -##3i 4-+ 32.13i +33.-1+2i##2i -1 34.[)2,+∞35.11+ 36.()0,3 37.③ 38.039.22i +##2i 2+ 40.三、解答题41.(1)12i +【解析】 【分析】(1)先求出12z i =-,再求出z ;(2)先利用复数除法法则化简得1i 2i 321z --=+,从而求出模长. (1)12z i =-,12i z =+(2)()()()()2212i 1i 12i 13i 2i 13i 13i 1i 1i 1i 1i 222----+--====--++--,故 22119101i 223442z ⎛⎫⎛⎫=-+-=+=⎪ ⎪+⎝⎭⎝⎭. 42.周期为4 【解析】 【分析】根据通项公式,写出特征方程为210x +=,由方程根的情况求出数列{}n a 的周期. 【详解】数列{}n a 的递归函数为()11x f x x -=+,其特征方程为210x +=. 因为Δ=01440-⨯=-<,解得:i,i m k ==-()1i 36arg arg arg i 1i 24a mc a kc ππ--⎛⎫⎛⎫==-== ⎪ ⎪-+⎝⎭⎝⎭所以数列{}n a 是周期4T =的周期函数. 43.2 【解析】 【分析】设复数1z 对应OA ,2z 对应OB ,OA OB OC +=,利用余弦定理可得6cos 4OAC ∠=-,再利用余弦定理即可得出答案. 【详解】设复数1z 对应OA ,2z 对应OB ,OA OB OC +=, 则222(22)(2)(3)23OAC =+-∠, 解得6cos OAC ∠= ∴6cos AOB ∠=2212(2)(3)223cos 2z z BA AOB ∴-==+-⨯⨯∠.44.证明详见解析 【解析】 【分析】结合三角形两边的和大于第三边、两边的差小于第三边来证得不等式成立. 【详解】当12,z z 方向相同时,121212z z z z z z -<+=+;当12,z z 方向相反时,121212z z z z z z -=+<+;当12,z z 不共线时,1212,,z z z z +满足三角形的三边,根据三角形两边的和大于第三边、两边的差小于第三边可知:121212z z z z z z -<+<+.综上所述,不等式121212z z z z z z -≤+≤+成立. 45.2m = 【解析】 【分析】求得z 对应的点的坐标并代入直线40x y +-=,由此求得m 的值. 【详解】z 对应点为()1,1m m +-,将()1,1m m +-代入直线40x y +-=得1140,2m m m ++--==.。
高中数学复数练习题含答案
高中数学复数练习题含答案一、单选题1.已知复数z 满足(12i)43i z -=-(i 为虚数单位),则z =( ) A .5B .5C .2D .22.已知复数1i z =-,则2i z z -=( ) A .2B .3C .23D .323.已知 i 是虚数单位,复数41322i ⎛⎫+ ⎪ ⎪⎝⎭在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.在复平面内,复数z 满足()1i 3i z -=-+,则复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 5.设复数z 满足i 3i z z --=,则z 的虚部为( )A .2i -B .2iC .2-D .26.在复平面中,复数z 对应的点的坐标为()1,2,则()i z z -的对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限7.如图,在复平面内,复数z 对应的点为P ,则复数i=z ⋅( )A .2i -B .12i -C .1+2i -D .2i -- 8.设复数z 满足i 4i 0z ++=,则||z =( )A 17B .4C 7D 59.设复数z 满足()1i 2i z -=,则z 在复平面内对应的点在第几象限.( )A .一B .二C .三D .四10.3i3i-+=+( )A .43i 55+ B .43i 55-+C .43i 55D .43i 55--11.复数1i1i+-(i 为虚数单位)的共轭复数的虚部等于( ) A .1 B .1- C .i D .i - 12.复数2i z =-(i 为虚数单位)的虚部为( )A .2B .1C .iD .1- 13.若复数z 在复平面内对应的点为(1,1),则其共轭复数z 的虚部是( )A .iB .i -C .1D .1-14.设复数53i--的实部与虚部分别为a ,b ,则a b -=( ) A .2- B .1- C .1 D .2 15.复数z 满足:23i 3=+-z z ,则z =( )A .5B C .10D 16.已知34i z =+,则()i z z -=( ) A .1117i +B .1917i +C .1117i -D .1923i +17.已知复数z 满足()21i 24i z -=-,其中i 为虚数单位,则复数z 的虚部为( ) A .2 B .1 C .2- D .i18.向量a =(-2,1)所对应的复数是( )A .z =1+2iB .z =1-2iC .z =-1+2iD .z =-2+i19.设O 为原点,向量OA ,OB 对应的复数分别为2+3i ,-3-2i ,那么向量BA 对应的复数为( )A .-1+iB .1-iC .-5-5iD .5+5i20.已知复数z 满足i 232i z z +=-(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限二、填空题21.若复数2(1i)34iz +=+,则z =__________.22.若复数z 满足i 3i=iz -+,则z =________. 23.已知复数3i (2i)z =⋅-,则z 的虚部为__________.24.设复数1z ,2z 满足11z =,22z =,121z z -=,则12z z +=________.25.设m ∈R ,复数z =(2+i )m 2-3(1+i )m -2(1-i ),若z 为非零实数,则m =________.26.写出一个在复平面内对应的点在第二象限的复数z =__________. 27.已知2i +是关于x 的方程()20,R x ax b a b ++=∈的根,则b a -=________.28.若复数()2i m m m -+为纯虚数,则实数m 的值为________.29.若i(,)i+∈a b a b R 与3+4i 互为共轭复数,则a b -=___________. 30.若复数1z ,2z 满足112i z =-,234i z =+(i 是虚数单位),则12z z ⋅的虚部为___________. 31.已知复数2i4i ia b +=-,,R a b ∈,则a b +=______. 32.甲、乙、丙、丁四人对复数z 的陈述如下(i为虚数单位):甲:z z +=;乙:2z z -=;丙:26;:4z z z z z ⋅==丁,在甲、乙、丙、丁四人陈述中,有且只有两个人的陈述正确,则z =___________.33.已知复数z 满足()()1i 2i z t t +=∈R,若z =,则t 的值为___________.34.若z 1=a +2i ,z 2=3-4i ,且12z z 为纯虚数,则实数a 的值为________.35.已知关于x 的方程,()()()221i i 0,,R x x ab a b a b ++++++=∈总有实数解,则a b +的取值范围是__________.36i 对应的向量绕原点按逆时针方向旋转90,则所得向量对应的复数为________. 37.计算cos 40isin 40cos10isin10________.38.下列命题:①若a R ∈,则()1i a +是纯虚数;②若()()()22132i x x x x R -+++∈是纯虚数,则1x =±;③两个虚数不能比较大小. 其中正确命题的序号是________. 39.设i是虚数单位,复数z =,则z =___________. 40.设复数z 满足()1i 22i z +=-(i 为虚数单位),则z =______. 三、解答题41.已知()122i z x =+-,()()2234i z y x =++-,其中,x y 均为实数,且12z z =,求,x y .42.(1)设复数z 满足24(1i)(12i)z --=-,求复数z ; (2)若复数z 满足(2i)(1i)1z z ⋅+=⋅-+,求复数z ;(3)已知复数()2256215i m m m m +++--z=,当实数m 为何值时,复数z 对应的点Z 在第四象限.43.复数cos isin 33ππ+经过n 次乘方后,所得的幂等于它的共轭复数,求n 的值.44.根据复数的几何意义证明:121212z z z z z z -≤+≤+. 45.设C z ∈,则满足条件34z <<的点Z 的集合是什么图形?【参考答案】一、单选题 1.A 2.D 3.C 4.C 5.C 6.D 7.D 8.A 9.B 10.B 11.B 12.D 13.D 14.A 15.D 16.B 17.B 18.D 19.D20.A 二、填空题 21.825i 625-2223.-224 25.126.1i -+(答案不唯一) 27.9 28.1 29.1 30.-2 31.6 32.2 33.2或2- 34.8335.[)2,+∞36.1-1-3712i 38.③39.40.2 三、解答题 41.21x y =⎧⎨=-⎩或11x y =-⎧⎨=-⎩【解析】 【分析】根据复数相等条件可构造方程组求得结果. 【详解】12z z =,23242y x x +=⎧∴⎨-=-⎩,解得:21x y =⎧⎨=-⎩或11x y =-⎧⎨=-⎩.42.(1)2;(2)21i 3z =-;(3)25m -<<. 【解析】 【分析】(1)根据复数的四则运算及复数的摸公式即可求解;(2)利用复数的四则运算、两个复数相等及共轭复数即可求解;(3)复数的几何意义得出点Z 的坐标,再根据点在第四象限的特点即可求解. 【详解】(1)()()()()242i 42i 12i 4(1i)10i2i 12i 12i 12i 12i 5z +++--=====---+,∴2z =(2)设i z a b =+()R a ∈、b ,则()()()i 2i i (1i)1a b a b +⋅+=-⋅-+, 化简得(2)(2)i (1)()i a b a b a b a b -++=-+-+,根据对应相等得:212a b a b a b a b-=-+⎧⎨+=--⎩,解得1a =,23b =-,所以21i 3z =-.(3)由()2256215i m m m m +++--z=,得()2256,215m m m m ++--Z ,因为Z 对应的点在第四象限,所以225602150m m m m ⎧++>⎨--<⎩,解得:25m -<<,故而当25m -<<时,复数Z 对应的点在第四象限. 43.()61Z k k -∈. 【解析】 【分析】用共轭复数的概念,以及复数的三角表示即可. 【详解】由题意:cos isin cos isin cos isin 333333nn n ππππππ⎛⎫+=+=- ⎪⎝⎭,可得cos cos ,sin sin 3333n n ππππ==-, ∴()2Z 33n k k πππ=-∈,()61Z n k k =-∈. 44.证明详见解析 【解析】【分析】结合三角形两边的和大于第三边、两边的差小于第三边来证得不等式成立. 【详解】当12,z z 方向相同时,121212z z z z z z -<+=+;当12,z z 方向相反时,121212z z z z z z -=+<+;当12,z z 不共线时,1212,,z z z z +满足三角形的三边,根据三角形两边的和大于第三边、两边的差小于第三边可知:121212z z z z z z -<+<+.综上所述,不等式121212z z z z z z -≤+≤+成立.45.是圆229x y +=与圆2216x y +=之间的圆环(不包括边界) 【解析】 【分析】根据复数模的几何意义得出结论. 【详解】设()i ,R z x y x y =+∈22223,9z x y x y =+=+=,表示圆心在原点,半径为3的圆, 22224,16z x y x y =+=+=,表示圆心在原点,半径为4的圆,所以满足条件34z <<的点Z 的集合是圆229x y +=与圆2216x y +=之间的圆环(不包括边界),如图所示.。
湖北省部分重点中学复数练习题(有答案)doc
一、复数选择题1.设复数1iz i=+,则z 的虚部是( )A .12B .12iC .12-D .12i -2.复数()1z i i =⋅+在复平面上对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限B .第二象限C .第三象限D .第四象限4.已知i 为虚数单位,则复数23ii-+的虚部是( ) A .35 B .35i - C .15-D .15i -5.在复平面内复数Z=i (1﹣2i )对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.复数312iz i=-的虚部是( ) A .65i -B .35iC .35D .65-7.已知i 是虚数单位,则复数41ii+在复平面内对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限8.若复数z 满足421iz i+=+,则z =( ) A .13i + B .13i - C .3i + D .3i - 9.满足313i z i ⋅=-的复数z 的共扼复数是( )A .3i -B .3i --C .3i +D .3i -+10.设复数2i1iz =+,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限11.已知2021(2)i z i -=,则复平面内与z 对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限12.复数z 对应的向量OZ 与(3,4)a =共线,对应的点在第三象限,且10z =,则z =( ) A .68i +B .68i -C .68i --D .68i -+13.在复平面内,复数z 对应的点的坐标是(1,1),则zi=( ) A .1i - B .1i --C .1i -+D .1i +14.设复数满足(12)i z i +=,则||z =( )A .15B C D .515.题目文件丢失!二、多选题16.i 是虚数单位,下列说法中正确的有( ) A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限 17.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( ) A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅=18.已知复数z 满足220z z +=,则z 可能为( ). A .0B .2-C .2iD .2i+1-19.已知复数12z =-+(其中i 为虚数单位,,则以下结论正确的是( ). A .20zB .2z z =C .31z =D .1z =20.若复数z 满足()1z i i +=,则( )A .1z i =-+B .z 的实部为1C .1z i =+D .22z i =21.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数zw z=,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 的虚部为2i22.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( ) A .2ωω=B .31ω=-C .210ωω++=D .ωω>23.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =,则12=z z B .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >24.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )A .||z =B .复数z 的共轭复数为z =﹣1﹣iC .复平面内表示复数z 的点位于第二象限D .复数z 是方程x 2+2x +2=0的一个根25.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z =26.复数21iz i+=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i + C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限27.(多选)()()321i i +-+表示( ) A .点()3,2与点()1,1之间的距离 B .点()3,2与点()1,1--之间的距离 C .点()2,1到原点的距离D .坐标为()2,1--的向量的模 28.对任意1z ,2z ,z C ∈,下列结论成立的是( ) A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅ D .12z z =的充要条件是12=z z29.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方30.已知复数z ,下列结论正确的是( ) A .“0z z +=”是“z 为纯虚数”的充分不必要条件 B .“0z z +=”是“z 为纯虚数”的必要不充分条件 C .“z z =”是“z 为实数”的充要条件 D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.A 【分析】根据复数除法运算整理得到,根据虚部定义可得到结果. 【详解】 ,的虚部为. 故选:. 解析:A 【分析】根据复数除法运算整理得到z ,根据虚部定义可得到结果. 【详解】()()()1111111222i i i i z i i i i -+====+++-,z ∴的虚部为12.故选:A .2.B 【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解. 【详解】 因为复数,所以在复数z 复平面上对应的点位于第二象限 故选:B解析:B 【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解. 【详解】因为复数()11z i i i =⋅+=-+,所以在复数z 复平面上对应的点位于第二象限 故选:B3.D 【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项. 【详解】由已知得,所以复数z在复平面上所对应的点为,在第四象限,故选:D.解析:D【分析】先由复数的运算化简复数z,再运用复数的几何表示可得选项.【详解】由已知得()()()()312317171+21+212555i ii iz ii i i----====--,所以复数z在复平面上所对应的点为17,55⎛⎫-⎪⎝⎭,在第四象限,故选:D.4.A【分析】先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部. 【详解】因为,所以其虚部是.故选:A.解析:A【分析】先由复数的除法运算化简复数23ii-+,再由复数的概念,即可得出其虚部.【详解】因为22(3)26133(3)(3)1055i i i iii i i-----===--++-,所以其虚部是35.故选:A.5.A【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.解:∵复数Z=i(1﹣2i)=2+i∵复数Z的实部2>0,虚解析:A【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.解:∵复数Z=i(1﹣2i)=2+i∵复数Z 的实部2>0,虚部1>0 ∴复数Z 在复平面内对应的点位于第一象限 故选A点评:本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z 化为a=bi (a ,b ∈R )的形式,是解答本题的关键.6.C 【分析】由复数除法法则计算出后可得其虚部. 【详解】 因为,所以复数z 的虚部是. 故选:C .解析:C 【分析】由复数除法法则计算出z 后可得其虚部. 【详解】 因为33(12)366312(12)(12)555i i i i i i i i +-===-+--+, 所以复数z 的虚部是35. 故选:C .7.A 【分析】利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限. 【详解】,所以复数对应的坐标为在第一象限, 故选:A解析:A 【分析】利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限. 【详解】44(1)2(1)12i i i i i -==++,所以复数对应的坐标为(2,2)在第一象限, 故选:A 8.C 【分析】首先根据复数的四则运算求出,然后根据共轭复数的概念求出.【详解】 ,故. 故选:C.解析:C 【分析】首先根据复数的四则运算求出z ,然后根据共轭复数的概念求出z . 【详解】()()()()421426231112i i i iz i i i i +-+-====-++-,故3z i =+. 故选:C.9.A 【分析】根据,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】 因为, 所以,复数的共扼复数是, 故选:A解析:A 【分析】根据313i z i ⋅=-,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】因为313i z i ⋅=-, 所以()13133iz i i i i-==-=+-, 复数z 的共扼复数是3z i =-, 故选:A10.D 【分析】先求出,再求出,直接得复数在复平面内对应的点 【详解】因为,所以,在复平面内对应点,位于第四象限. 故选:D解析:D 【分析】先求出z ,再求出z ,直接得复数z 在复平面内对应的点 【详解】因为211i z i i==++,所以1z i -=-,z 在复平面内对应点()1,1-,位于第四象限.故选:D11.C 【分析】由复数的乘方与除法运算求得,得后可得其对应点的坐标,得出结论. 【详解】 由题意,,∴,对应点,在第三象限. 故选:C .解析:C 【分析】由复数的乘方与除法运算求得z ,得z 后可得其对应点的坐标,得出结论. 【详解】由题意2021(2)i z i i -==,(2)12122(2)(2)555i i i i z i i i i +-+====-+--+, ∴1255z i =--,对应点12(,)55--,在第三象限.故选:C .12.D 【分析】设,根据复数对应的向量与共线,得到,再结合求解. 【详解】 设,则复数对应的向量, 因为向量与共线, 所以, 又, 所以, 解得或,因为复数对应的点在第三象限, 所以, 所以,,解析:D 【分析】设(,)z a bi a R b R =+∈∈,根据复数z 对应的向量OZ 与(3,4)a =共线,得到43a b =,再结合10z =求解.【详解】设(,)z a bi a R b R =+∈∈, 则复数z 对应的向量(),OZ a b =, 因为向量OZ 与(3,4)a =共线, 所以43a b =, 又10z =, 所以22100+=a b , 解得68a b =-⎧⎨=-⎩或68a b =⎧⎨=⎩,因为复数z 对应的点在第三象限,所以68a b =-⎧⎨=-⎩,所以68z i =--,68z i =-+, 故选:D13.A 【分析】根据复数对应的点的坐标是,得到,再利用复数的除法求解. 【详解】因为在复平面内,复数对应的点的坐标是, 所以, 所以, 故选:A解析:A 【分析】根据复数z 对应的点的坐标是(1,1),得到1z i =+,再利用复数的除法求解. 【详解】因为在复平面内,复数z 对应的点的坐标是(1,1), 所以1z i =+,所以11i i i z i +==-, 故选:A14.B 【分析】利用复数除法运算求得,再求得. 【详解】依题意, 所以. 故选:B解析:B 【分析】利用复数除法运算求得z ,再求得z . 【详解】 依题意()()()12221121212555i i i i z i i i i -+====+++-,所以z ==故选:B15.无二、多选题 16.AD 【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD 【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果. 【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0ab ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+,所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.AD【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z 在复平面上对应的向量,所以,,|z|=,,故选:AD解析:AD【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=,故选:AD18.AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案.【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩, 所以0z =,或2i z =,或2i z =-.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.19.BCD【分析】计算出,即可进行判断.【详解】,,故B 正确,由于复数不能比较大小,故A 错误;,故C 正确;,故D 正确.故选:BCD.【点睛】本题考查复数的相关计算,属于基础题.解析:BCD【分析】 计算出23,,,z z z z ,即可进行判断.【详解】122z =-+, 221313i i=2222z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222222z ,故C 正确; 2213122z,故D 正确.故选:BCD.【点睛】 本题考查复数的相关计算,属于基础题.20.BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由,得,所以z 的实部为1,,,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由()1z i i +=,得2(1)2(1)1(1)(1)2i i z i i i --====-+-, 所以z 的实部为1,1z i =+,22z i =-,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题21.ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项,A 求出1=22w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 的虚部为2,判断得解. 【详解】对选项,A 由题得1,z =-1=2w ∴===-.所以复数w 对应的点为1(,22-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.22.AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以12ω=--,∴2131442ωω=--=--=,故A 正确,3211131222244ωωω⎛⎫⎛⎫⎛⎫==---+=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,21111022ωω++=--++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.23.BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确;当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.24.ABCD【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.【详解】因为(1﹣i )z =解析:ABCD【分析】利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确.【详解】因为(1﹣i )z =2i ,所以21i z i=-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以||z ==A 正确; 所以1i z =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确.故选:ABCD.【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题. 25.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.26.CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.27.ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模28.AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A 正确;取,;,满足,但且不解析:AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误. 故选:AC【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.29.CD【分析】利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】,,所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误 解析:CD【分析】利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】22549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;当222530220t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.【点睛】本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.30.BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.。
湖北省武汉市部分市级示范高中高二数学复数练习试题 百度文库
一、复数选择题1.复数21i=+( ) A .1i --B .1i -+C .1i -D .1i +2.若复数z 为纯虚数,且()373z i m i -=+,则实数m 的值为( ) A .97-B .7C .97D .7-3.已知,a b ∈R ,若2()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( ) A .2a >或1a <-B .1a >或2a <-C .12a -<<D .21a -<<4.若复数()()24z i i =--,则z =( ) A .76i --B .76-+iC .76i -D .76i +5.已知复数z 满足()311z i i +=-,则复数z 对应的点在( )上 A .直线12y x =-B .直线12y x =C .直线12x =-D .直线12y6.已知i 为虚数单位,若复数()12iz a R a i+=∈+为纯虚数,则z a +=( )A B .3C .5D .7.若复数1211iz i+=--,则z 在复平面内的对应点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限8.设2iz i+=,则||z =( )A B C .2D .59.若1i iz ,则2z z i ⋅-=( )A .B .4C .D .810.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( )A B .2C .10D11.复数z 满足22z z i +=,则z 在复平面上对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限12.在复平面内,复数z 对应的点为(,)x y ,若22(2)4x y ++=,则( ) A .22z +=B .22z i +=C .24z +=D .24z i +=13.设a +∈R ,复数()()()242121i i z ai ++=-,若1z =,则a =( )A .10B .9C .8D .714.复数()()212z i i =-+在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限15.若复数11iz i,i 是虚数单位,则z =( ) A .0B .12C .1D .2二、多选题16.i 是虚数单位,下列说法中正确的有( ) A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限 17.若复数351iz i-=-,则( )A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限 18.下列四个命题中,真命题为( ) A .若复数z 满足z R ∈,则z R ∈ B .若复数z 满足1R z∈,则z R ∈ C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z =19.已知复数(),z x yi x y R =+∈,则( ) A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =20.已知复数12z =-+(其中i 为虚数单位,,则以下结论正确的是( ). A .20zB .2z z =C .31z =D .1z =21.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数zwz=,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 的虚部为2i 22.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )A .|z |=B .z 的实部是2C .z 的虚部是1D .复数z 在复平面内对应的点在第一象限23.下列关于复数的说法,其中正确的是( ) A .复数(),z a bi a b R =+∈是实数的充要条件是0b = B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠ C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称 24.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥25.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限26.对于复数(,)z a bi a b R =+∈,下列结论错误..的是( ). A .若0a =,则a bi +为纯虚数 B .若32a bi i -=+,则3,2a b == C .若0b =,则a bi +为实数 D .纯虚数z 的共轭复数是z - 27.给出下列命题,其中是真命题的是( )A .纯虚数z 的共轭复数是z -B .若120z z -=,则21z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数 28.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方29.已知复数z ,下列结论正确的是( )A .“0z z +=”是“z 为纯虚数”的充分不必要条件B .“0z z +=”是“z 为纯虚数”的必要不充分条件C .“z z =”是“z 为实数”的充要条件D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件 30.已知i 为虚数单位,下列命题中正确的是( ) A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y == B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.C 【分析】根据复数的除法运算法则可得结果. 【详解】 . 故选:C 解析:C 【分析】根据复数的除法运算法则可得结果. 【详解】21i =+2(1)(1)(1)i i i -=+-2(1)12i i -=-.故选:C2.B 【分析】先求出,再解不等式组即得解. 【详解】 依题意,,因为复数为纯虚数, 故,解得. 故选:B 【点睛】易错点睛:复数为纯虚数的充要条件是且,不要只写.本题不能只写出,还要写上.解析:B 【分析】 先求出321795858m m z i -+=+,再解不等式组3210790m m -=⎧⎨+≠⎩即得解.【详解】依题意,()()()()3373321793737375858m i i m i m m z i i i i +++-+===+--+, 因为复数z 为纯虚数,故3210790m m -=⎧⎨+≠⎩,解得7m =.故选:B 【点睛】易错点睛:复数(,)z a bi a b R =+∈为纯虚数的充要条件是0a =且0b ≠,不要只写0b ≠.本题不能只写出790m +≠,还要写上3210m -=.3.A 【分析】根据虚数不能比较大小可得,再解一元二次不等式可得结果. 【详解】 因为,,所以,, 所以或. 故选:A 【点睛】关键点点睛:根据虚数不能比较大小得是解题关键,属于基础题.解析:A 【分析】根据虚数不能比较大小可得a b =,再解一元二次不等式可得结果. 【详解】因为,a b ∈R ,2()2a b a b i -+->,所以a b =,220a a -->, 所以2a >或1a <-. 故选:A 【点睛】关键点点睛:根据虚数不能比较大小得a b =是解题关键,属于基础题.4.D 【分析】由复数乘法运算求得,根据共轭复数定义可求得结果.【详解】 ,. 故选:.解析:D 【分析】由复数乘法运算求得z ,根据共轭复数定义可求得结果. 【详解】()()2248676z i i i i i =--=-+=-,76z i ∴=+.故选:D .5.C 【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可. 【详解】解:因为,所以复数对应的点是,所以在直线上. 故选:C. 【点睛】本题考查复数的乘方和除法运解析:C 【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可. 【详解】解:因为33111(1)1(1)2(1)2i i z i i z i i --+=-⇔===-+-,所以复数z 对应的点是1,02⎛⎫- ⎪⎝⎭,所以在直线12x =-上. 故选:C. 【点睛】本题考查复数的乘方和除法运算,复数的坐标表示,属基础题.注意:()()()()()3211i 12121i i i i i +=++=-+=-.6.A【分析】根据复数运算,化简后由纯虚数的概念可求得,.进而求得复数,再根据模的定义即可求得 【详解】由复数为纯虚数,则,解得则 ,所以,所以 故选:A解析:A 【分析】根据复数运算,化简后由纯虚数的概念可求得a ,.进而求得复数z ,再根据模的定义即可求得z a + 【详解】()()()()()()2221222*********i a i a a i a ii a z a i a i a i a a a +-++--++====+++-+++ 由复数()12iz a R a i +=∈+为纯虚数,则222012101a a a a +⎧=⎪⎪+⎨-⎪≠⎪+⎩,解得2a =-则z i =- ,所以2z a i +=--,所以z a += 故选:A7.B 【分析】利用复数的运算法则和复数的几何意义求解即可 【详解】 ,所以,在复平面内的对应点为,则对应点位于第二象限 故选:B解析:B 【分析】利用复数的运算法则和复数的几何意义求解即可 【详解】()()12i 1i 12i 33i 33i111i 2222z +++-+=-=-==-+-,所以,z 在复平面内的对应点为33,22⎛⎫- ⎪⎝⎭,则对应点位于第二象限 故选:B8.B 【分析】利用复数的除法运算先求出,再求出模即可. 【详解】 ,. 故选:B .解析:B 【分析】利用复数的除法运算先求出z ,再求出模即可. 【详解】()22212i ii z i i i++===-,∴z ==故选:B .9.A 【分析】化简复数,求共轭复数,利用复数的模的定义得. 【详解】 因为,所以, 所以 故选:A解析:A 【分析】化简复数z ,求共轭复数z ,利用复数的模的定义得2i z z --. 【详解】 因为1111i z i i i+==+=-,所以1z i =+,所以()()211222z z i i i i i ⋅-=-+-=-= 故选:A10.D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为, 所以,, 所以, 故选:D.解析:D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为1z i =+,所以1z i =-,12z i +=+,所以()()()1123z z i i i ⋅+=-⋅+=-== 故选:D.11.B 【分析】先设复数,根据复数模的计算公式,以及复数相等,求出,得出复数,再由复数的几何意义,即可得出结果. 【详解】 设复数, 由得, 所以,解得,因为时,不能满足,舍去; 故,所以,其对应的解析:B 【分析】先设复数(),z x yi x R y R =+∈∈,根据复数模的计算公式,以及复数相等,求出,x y ,得出复数,再由复数的几何意义,即可得出结果. 【详解】设复数(),z x yi x R y R =+∈∈,由22z z i +=得222x yi i +=,所以2022x y ⎧⎪+=⎨=⎪⎩,解得1x y ⎧=⎪⎨⎪=⎩,因为1x y ⎧=⎪⎨⎪=⎩时,不能满足20x =,舍去;故1x y ⎧=⎪⎨⎪=⎩z i =+,其对应的点3⎛⎫- ⎪ ⎪⎝⎭位于第二象限, 故选:B.12.B 【分析】利用复数模的计算公式即可判断出结论.【详解】因为复数对应的点为,所以 ,满足则 故选:B解析:B 【分析】利用复数模的计算公式即可判断出结论. 【详解】因为复数z 对应的点为(,)x y ,所以z x yi =+x ,y 满足22(2)4x y ++=则22z i +=故选:B13.D 【分析】根据复数的模的性质求模,然后可解得. 【详解】 解:,解得. 故选:D . 【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数,则, 模的性质:,,.解析:D 【分析】根据复数的模的性质求模,然后可解得a . 【详解】解:()()()()24242422221212501111i i i i aai ai++++====+--,解得7a =. 故选:D . 【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数(,)z a bi a b R=+∈,则z =模的性质:1212z z z z =,(*)nnz z n N =∈,1122z z z z =. 14.A 【分析】利用复数的乘法化简复数,利用复数的乘法可得出结论.【详解】,因此,复数在复平面内对应的点位于第一象限.故选:A.解析:A【分析】利用复数的乘法化简复数z ,利用复数的乘法可得出结论.【详解】()()221223243z i i i i i =-+=+-=+,因此,复数z 在复平面内对应的点位于第一象限.故选:A.15.C【分析】由复数除法求出,再由模计算.【详解】由已知,所以.故选:C .解析:C【分析】由复数除法求出z ,再由模计算.【详解】 由已知21(1)21(1)(1)2i i i z i i i i ---====-++-, 所以1z i =-=.故选:C .二、多选题16.AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+, 所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】解:,,z 的实部为4,虚部为,则相差5,z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正解析:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】 解:()()()()351358241112i i i i z i i i i -+--====---+,z ∴==z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD.18.AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.19.CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确.故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题. 20.BCD【分析】计算出,即可进行判断.【详解】,,故B 正确,由于复数不能比较大小,故A 错误;,故C 正确;,故D 正确.故选:BCD.【点睛】本题考查复数的相关计算,属于基础题.解析:BCD【分析】 计算出23,,,z z z z ,即可进行判断.【详解】122z =-+, 221313i i=2222z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222222z ,故C 正确; 2213122z,故D 正确.故选:BCD.【点睛】 本题考查复数的相关计算,属于基础题.21.ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项,A 求出1=2w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 判断得解. 【详解】对选项,A 由题得1,z =-221=422w -+∴===-+.所以复数w 对应的点为1(2-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 的虚部为2,所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.22.ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数,根据共轭复数概念得到,即可判断.【详解】,,,故选项正确,的实部是,故选项正确,的虚部是,故选项错误,复解析:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数z ,根据共轭复数概念得到z ,即可判断.【详解】(1i)3i z +=+,()()()()3134221112i i i i z i i i i +-+-∴====-++-,z ∴==,故选项A 正确,z 的实部是2,故选项B 正确,z 的虚部是1-,故选项C 错误, 复数2z i =+在复平面内对应的点为()2,1,在第一象限,故选项D 正确.故选:ABD .【点睛】本题主要考查的是复数代数形式的乘除运算,考查了复数的代数表示及几何意义,是基础题.23.AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数解析:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误; 对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.24.ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z ==C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题. 25.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选 解析:AB【分析】求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项.依题意1ω==,所以A 选项正确;2211312242422ω⎛⎫=-+=--=-- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222222ωωω⎛⎫⎛⎫⎛⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;221111222212ω---====--⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,2⎛- ⎝⎭,在第三象限,故D 选项错误.故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.26.AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为当且时复数为纯虚数,此时,故A 错误,D 正确;当时,复数为实数,故C 正确;对于B :,则即,故B 错误;故错误的有AB解析:AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为(,)z a bi a b R =+∈当0a =且0b ≠时复数为纯虚数,此时z bi z =-=-,故A 错误,D 正确;当0b =时,复数为实数,故C 正确;对于B :32a bi i -=+,则32a b =⎧⎨-=⎩即32a b =⎧⎨=-⎩,故B 错误; 故错误的有AB ;【点睛】本题考查复数的代数形式及几何意义,属于基础题.27.AD【分析】A .根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D. 根据,得到,再用共轭复数的定义判断.【详解】A .根据共轭解析:AD【分析】A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.【详解】A .根据共轭复数的定义,显然是真命题;B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题;D. 若120z z -=,则12z z =,所以1z 与2z 互为共轭复数,故D 是真命题.故选:AD【点睛】本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题. 28.CD【分析】利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】,,所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误解析:CD【分析】利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】22549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;当222530220t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.【点睛】本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.29.BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.30.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.。
(完整版)高二数学复数测试题
27.若复数 a 3i ( a R , i 为虚数单位位)是纯虚数,则实数
1 2i
a 的值为 ___________。
28.设复数 z1 1 i, z2 x 2i ( x R), 若 z1z2 为实数,则 x _____________
29. 若 z1 a 2i , z2 3 4i ,且 z1 为纯虚数,则实数 a 的值为 z2
1 13. (
i )4 =_______________
i
14.已知 x, y R ,若 xi 2 3i y i ,则 x y
.
15、试求 i1,i 2, i 3 ,i 4,i 5, i 6 ,i 7, i 8 的值,由此推测 i 4n _____, i 4n 1 ______,
i 4n 2 ______, i 4n 3 ______, i1i 2i 3i 4 ......i 2000 ___________
C. 1
1
D.
3i
22
20.已知 3 3i z ( 2 3i ) ,那么复数 z 在平面内对应的点位于 ( )
A .第一象限
B. 第二象限
C.第三象限
D .第四象限
21.若
1
3 i ,则等于
4
2 1(
)
22
A.1
B. 0
C. 3 3i
D . 1 3i
22. (i i 1)3 的虚部为 ( )
A . 8i
z
i, 则 1
z =(
1z
C.- 2 )
i
D.
2
D.- 3
A.1
B. 0
15.
1 (
i ) 2008
(
1i
高二数学复数练习题及答案
高二数学复数练习题及答案复数是数学中的一个重要概念,它在数学和物理等领域中有着广泛的应用。
在高二数学中,复数也是一项重要的学习内容,通过掌握复数的性质和运算规则,可以解决各种与实数无法解决的问题。
本文将为同学们提供一些高二数学复数练习题及其答案,帮助巩固复数的知识。
练习题一:1. 计算并写出结果的精确值:(3+2i)+(1-4i)2. 求复数的共轭数:(4+3i)的共轭数是多少?3. 计算并写出结果的精确值:(2-5i)(1+3i)4. 求复数的模:计算|(4-1i)|的值。
5. 求复数的幅角:计算辐角arg(2i)的值。
练习题二:1. 计算并写出结果的精确值:(1+i)^2的值是多少?2. 计算并写出结果的精确值:(1+i)^4的值是多少?3. 计算并写出结果的精确值:(1+i)^5的值是多少?4. 求复数的幂:计算(2+3i)^3的值。
5. 求复数的根:计算方程x^4+1=0的全部根。
练习题三:1. 求函数f(x) = 2x^3 - 3x^2 + x + 1的图像与坐标轴的交点。
2. 求函数f(x) = (x+1)^2 - 4的图像与坐标轴的交点。
3. 求函数f(x) = x^2 - 3x + 2的图像与坐标轴的交点。
4. 求函数f(x) = 3x^2 + 2x - 1的最小值。
5. 求函数f(x) = -2x^2 + 4x - 3的最大值。
答案及解析:练习题一:1. (3+2i)+(1-4i) = 3+2i+1-4i = 4-2i2. (4+3i)的共轭数为4-3i3. (2-5i)(1+3i) = 2+6i-5i-15i^2 = 2+6i-5i+15 = 17+i4. |(4-1i)| = √(4^2 + (-1)^2) = √175. 辐角arg(2i)的值为π/2练习题二:1. (1+i)^2 = 1^2 + 2i + i^2 = 1+2i-1 = 2i2. (1+i)^4 = (1^2 + 2i + i^2)^2 = (1+2i-1)^2 = (2i)^2 = -43. (1+i)^5 = (1+i)(1+2i-1)^2 = (1+i)(2i)^2 = (1+i)(-4) = -4-4i4. (2+3i)^3 = (2^2+2*2*3i+(3i)^2)(2+3i) = (4-9+12i)(2+3i) = (-5+12i)(2+3i) = (-34+1i)5. 方程x^4+1=0的全部根为±i,±i^3练习题三:1. 函数f(x) = 2x^3 - 3x^2 + x + 1的图像与坐标轴的交点为:x轴上的交点:令f(x) = 0,得到2x^3 - 3x^2 + x + 1 = 0的解;y轴上的交点:x = 0时,y = f(0) = 1,所以与y轴的交点为(0, 1)2. 函数f(x) = (x+1)^2 - 4的图像与坐标轴的交点为:x轴上的交点:令f(x) = 0,得到(x+1)^2 - 4 = 0的解;y轴上的交点:x = 0时,y = f(0) = -3,所以与y轴的交点为(0, -3)3. 函数f(x) = x^2 - 3x + 2的图像与坐标轴的交点为:x轴上的交点:令f(x) = 0,得到x^2 - 3x + 2 = 0的解;y轴上的交点:x = 0时,y = f(0) = 2,所以与y轴的交点为(0, 2)4. 函数f(x) = 3x^2 + 2x - 1的最小值为函数的顶点坐标的y值,顶点的横坐标为 x = -b/2a = -2/(2*3) = -1/3;将x = -1/3代入函数中,得到f(-1/3) = 3*(-1/3)^2 + 2*(-1/3) - 1 = -8/9,所以最小值为-8/9。
高二数学复数练习试题 百度文库
一、复数选择题1.已知复数2z i =-,若i 为虚数单位,则1iz+=( ) A .3155i + B .1355i + C .113i +D .13i + 2.若()211z i =-,21z i =+,则12z z 等于( ) A .1i +B .1i -+C .1i -D .1i --3.复数3(23)i +(其中i 为虚数单位)的虚部为( )A .9iB .46i -C .9D .46-4.已知复数()2m m m iz i--=为纯虚数,则实数m =( )A .-1B .0C .1D .0或15.已知i 为虚数单位,则复数23ii -+的虚部是( ) A .35B .35i -C .15-D .15i -6.已知复数31iz i-=,则z 的虚部为( ) A .1 B .1-C .iD .i -7.))5511--+=( )A .1B .-1C .2D .-2 8.满足313i z i ⋅=-的复数z 的共扼复数是( )A .3i -B .3i --C .3i +D .3i -+9.设2iz i+=,则||z =( ) ABC .2D .510.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( ) AB .2C .10D11.122ii-=+( ) A .1B .-1C .iD .-i12.已知(),a bi a b R +∈是()()112i i +-的共轭复数,则a b +=( ) A .4B .2C .0D .1-13.复数()()212z i i =-+在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限14.设复数202011i z i+=-(其中i 为虚数单位),则z 在复平面内对应的点所在象限为( ) A .第四象限B .第三象限C .第二象限D .第一象限15.设复数满足(12)i z i +=,则||z =( )A .15B C D .5二、多选题16.下面关于复数的四个命题中,结论正确的是( ) A .若复数z R ∈,则z R ∈ B .若复数z 满足2z ∈R ,则z R ∈ C .若复数z 满足1R z∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z =17.已知复数12z =-+(其中i 为虚数单位,,则以下结论正确的是( ). A .20zB .2z z =C .31z =D .1z =18.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点19.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( )A .第一象限B .第二象限C .第三象限D .第四象限20.下列说法正确的是( ) A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件21.已知i 为虚数单位,复数322iz i+=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z =D .z 在复平面内对应的点在第一象限22.下列关于复数的说法,其中正确的是( ) A .复数(),z a bi a b R =+∈是实数的充要条件是0b = B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称 23.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥24.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =,则12=z z B .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >25.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( ) A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122-C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为226.下面四个命题,其中错误的命题是( ) A .0比i -大 B .两个复数当且仅当其和为实数时互为共轭复数C .1x yi i +=+的充要条件为1x y ==D .任何纯虚数的平方都是负实数27.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z =28.已知i 为虚数单位,下列说法正确的是( ) A .若,x y R ∈,且1x yi i +=+,则1x y == B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于1 29.复数21iz i+=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i + C .z 的实部与虚部之和为2 D .z 在复平面内的对应点位于第一象限 30.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( )A .1B .4-C .0D .5【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.B 【分析】利用复数的除法法则可化简,即可得解. 【详解】 ,. 故选:B. 解析:B 【分析】利用复数的除法法则可化简1iz+,即可得解. 【详解】2z i =-,()()()()12111313222555i i i i i i z i i i +++++∴====+--+. 故选:B.2.D 【分析】由复数的运算法则计算即可. 【详解】 解:, . 故选:D.解析:D 【分析】由复数的运算法则计算即可. 【详解】 解:()2211122z i i i i =-=-+=-,()()212222(1)2222111112z i i i i i i i z i i i i --⨯--+--∴=====--++--. 故选:D.3.C 【分析】应用复数相乘的运算法则计算即可. 【详解】 解:所以的虚部为9. 故选:C.解析:C 【分析】应用复数相乘的运算法则计算即可. 【详解】解:()()()32351223469i i i i +=-++=-+ 所以()323i +的虚部为9. 故选:C.4.C 【分析】结合复数除法运算化简复数,再由纯虚数定义求解即可 【详解】解析:因为为纯虚数,所以,解得, 故选:C.解析:C 【分析】结合复数除法运算化简复数z ,再由纯虚数定义求解即可 【详解】 解析:因为()()22m m m iz m m mi i--==--为纯虚数,所以200m m m ⎧-=⎨≠⎩,解得1m =,故选:C.5.A【分析】先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部. 【详解】因为,所以其虚部是.故选:A.解析:A 【分析】先由复数的除法运算化简复数23ii-+,再由复数的概念,即可得出其虚部. 【详解】因为22(3)26133(3)(3)1055i i i i i i i i -----===--++-,所以其虚部是35. 故选:A.6.B 【分析】化简复数,可得,结合选项得出答案. 【详解】则,的虚部为 故选:B解析:B 【分析】化简复数z ,可得z ,结合选项得出答案. 【详解】()311==11i i z i i i i i--=-=+- 则1z i =-,z 的虚部为1- 故选:B7.D 【分析】先求和的平方,再求4次方,最后求5次方,即可得结果. 【详解】 ∵,, ∴,, ∴, , ∴, 故选:D.解析:D 【分析】先求)1-和)1+的平方,再求4次方,最后求5次方,即可得结果.∵)211-=--,)2+1=-,∴)()42117-=--=-+,)()42+17=-=--,∴)()51711-=-+-=--, )()51711+=--+=-,∴))55121-+=--,故选:D.8.A 【分析】根据,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】 因为, 所以,复数的共扼复数是, 故选:A解析:A 【分析】根据313i z i ⋅=-,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】因为313i z i ⋅=-, 所以()13133iz i i i i-==-=+-, 复数z 的共扼复数是3z i =-, 故选:A9.B 【分析】利用复数的除法运算先求出,再求出模即可. 【详解】 , .故选:B .解析:B 【分析】利用复数的除法运算先求出z ,再求出模即可.()22212i ii z i i i ++===-,∴z ==故选:B .10.D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为, 所以,, 所以, 故选:D.解析:D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为1z i =+,所以1z i =-,12z i +=+,所以()()()1123z z i i i ⋅+=-⋅+=-== 故选:D.11.D 【分析】利用复数的除法求解. 【详解】 . 故选:D解析:D 【分析】利用复数的除法求解. 【详解】()()()()12212222i i i i i i i ---==-++-. 故选:D12.A 【分析】先利用复数的乘法运算法则化简,再利用共轭复数的定义求出a+bi ,从而确定a ,b 的值,求出a+b . 【详解】 , 故选:A解析:A 【分析】先利用复数的乘法运算法则化简()()112i i +-,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b . 【详解】()()112i i +-1223i i i =-++=-3a bi i ∴+=+3,1a b ==,4a b +=故选:A13.A 【分析】利用复数的乘法化简复数,利用复数的乘法可得出结论. 【详解】 ,因此,复数在复平面内对应的点位于第一象限. 故选:A.解析:A 【分析】利用复数的乘法化简复数z ,利用复数的乘法可得出结论. 【详解】()()221223243z i i i i i =-+=+-=+,因此,复数z 在复平面内对应的点位于第一象限. 故选:A.14.A 【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果. 【详解】 因为,所以,其在复平面内对应的点为,位于第四象限.故选:A.解析:A 【分析】根据复数的运算,先将z 化简,求出z ,再由复数的几何意义,即可得出结果. 【详解】因为()()()()4202050550512111121111111i i i z i iii i i i ++++======+-----+, 所以1z i =-,其在复平面内对应的点为()1,1-,位于第四象限. 故选:A.15.B 【分析】利用复数除法运算求得,再求得. 【详解】 依题意, 所以. 故选:B解析:B 【分析】利用复数除法运算求得z ,再求得z . 【详解】 依题意()()()12221121212555i i i i z i i i i -+====+++-,所以z == 故选:B二、多选题 16.AC 【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果. 【详解】A 选项,设复数,则,因为,所以,因此,即A 正确;B 选项,设复数,则, 因为,所,若,则;故B 错;C 选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;C 选项,设复数(,)z a bi a b R =+∈,则22222211a bi a b i z a bi a b a b a b -===-++++, 因为1R z∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,则()()()()12z z a bi c di ac bd ad bc i =++=-++,因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.17.BCD【分析】计算出,即可进行判断.【详解】,,故B 正确,由于复数不能比较大小,故A 错误;,故C 正确;,故D 正确.故选:BCD.【点睛】本题考查复数的相关计算,属于基础题.解析:BCD【分析】 计算出23,,,z z z z ,即可进行判断.【详解】12z =-+, 221313i i=22z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222z ,故C 正确; 2213122z,故D 正确.故选:BCD.【点睛】 本题考查复数的相关计算,属于基础题.18.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.19.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.20.AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误;当时解析:AD【分析】 由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.21.AD【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.【详解】,故,故A 正确.的虚部为,故B 错,,故C 错,在复平面内对应的点为,故D 正确.故选:AD.【点睛】本题考解析:AD【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.【详解】()()32232474725555i i i i i z i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,355z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,故D 正确. 故选:AD.【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.22.AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数解析:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误;对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;故选:AC【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.23.ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z ==C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题. 24.BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确; 当两个复数的模相等时,复数不一定相等,比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.25.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A :为纯虚数,有可得,故正确选项B解析:ACD首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确 选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围26.ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,解析:ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,A 选项错误;对于B 选项,()()123i i ++-=,但1i +与2i -不互为共轭复数,B 选项错误; 对于C 选项,由于1x yi i +=+,且x 、y 不一定是实数,若取x i =,y i =-,则1x yi i +=+,C 选项错误;对于D 选项,任取纯虚数()0,ai a a R ≠∈,则()220ai a =-<,D 选项正确. 故选:ABC.【点睛】本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.27.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.28.AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 29.CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.30.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.。
完整版)高中数学复数练习题
完整版)高中数学复数练习题高中数学《复数》练题一、基本知识:复数的基本概念1.形如a+bi的数叫做复数(其中a,b∈R);复数的单位为i,它的平方等于-1,即i²=-1.其中a叫做复数的实部,b叫做虚部。
2.实数:当b=0时复数a+bi为实数;虚数:当b≠0时的复数a+bi为虚数;纯虚数:当a=0且b≠0时的复数a+bi为纯虚数。
3.两个复数相等的定义:a+bi=c+di⟺a=c且b=d(其中,a,b,c,d,∈R)。
特别地a+bi=0⟺a=b=0.4.共轭复数:z=a+bi的共轭记作z=a-bi;5.复平面:z=a+bi,对应点坐标为p(a,b);(象限的复)6.复数的模:对于复数z=a+bi,把z²=a²+b²叫做复数z的模;二、复数的基本运算:设z1=a1+b1i,z2=a2+b2i1.加法:z1+z2=(a1+a2)+(b1+b2)i;2.减法:z1-z2=(a1-a2)+(b1-b2)i;3.乘法:z1·z2=(a1a2-b1b2)+(a2b1+a1b2)i。
特别z·z=a²+b²。
4.幂运算:i¹=i,i²=-1,i³=-i,i⁴=1,i⁵=i,i⁶=-1……以此类推。
三、复数的化简把c+di(a,b是均不为0的实数)的化简就是通过分母实数化的方法将分母化为实数:z=(a+bi)/(c+di)=(ac+bd)+(ad-bc)i/(c²+d²)四、例题分析例1】已知z=a+1+(b-4)i,求1) 当a,b为何值时z为实数2) 当a,b为何值时z为纯虚数3) 当a,b为何值时z为虚数4) 当a,b满足什么条件时z对应的点在复平面内的第二象限。
变式1】若复数z=(x²-1)+(x-1)i为纯虚数,则实数x的值为A。
-1 B。
1 C。
0 D。
-1或1例2】已知z1=3+4i,z2=(a-3)+(b-4)i,求当a,b为何值时z1=z2例3】已知z=1-i,求z,z·z;变式1】复数z满足z=(2-i)/(1-i),则求z的共轭z变式2】已知复数z=3+i,则z·z=?例4】已知z1=2-i,z2=-3+2i1) 求z1+z22) 求z1·z22.已知复数 $z$ 满足 $(z-2)i=1+i$,求 $|z|$。
高二数学复数练习试题百度文库
一、复数选择题1.已知复数1z i =+,则21z +=( )A .2BC .4D .52.设复数1iz i =+,则z 的虚部是( )A .12B .12iC .12- D .12i -3.i =( )A .i -B .iC i -D i4.若复数z 为纯虚数,且()373z i m i -=+,则实数m 的值为( )A .97- B .7 C .97 D .7-5.已知,a b ∈R ,若2()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( )A .2a >或1a <-B .1a >或2a <-C .12a -<<D .21a -<<6.已知复数31iz i -=,则z 的虚部为( )A .1B .1-C .iD .i -7.若复数()()24z i i =--,则z =( )A .76i --B .76-+iC .76i -D .76i +8.已知复数512z i =+,则z =( )A .1BCD .59.设复数2i1i z =+,则复数z 的共轭复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限10.已知复数202111i z i -=+,则z 的虚部是( )A .1-B .i -C .1D .i11.已知2021(2)i z i -=,则复平面内与z 对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限12.复数112z i =+,21z i =+(i 为虚数单位),则12z z ⋅虚部等于( ). A .1- B .3 C .3i D .i -13.设复数z 满足(1)2i z -=,则z =( )A .1B C D .2 14.若复数11i z i ,i 是虚数单位,则z =( ) A .0B .12C .1D .215.题目文件丢失!二、多选题16.i 是虚数单位,下列说法中正确的有( )A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限17.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是( )A .z 的实部为2B .z 的虚部为1C .z i =D .||z =18.已知复数z 满足220z z +=,则z 可能为( ).A .0B .2-C .2iD .2i+1-19.已知复数12z =-+(其中i 为虚数单位,,则以下结论正确的是( ). A .20zB .2z z =C .31z =D .1z = 20.复数z 满足233232i z i i+⋅+=-,则下列说法正确的是( )A .z 的实部为3-B .z 的虚部为2C .32z i =-D .||z =21.下列说法正确的是( )A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件 22.已知i 为虚数单位,以下四个说法中正确的是( ).A .234i i i i 0+++=B .3i 1i +>+C .若()2z=12i +,则复平面内z 对应的点位于第四象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线23.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:()()()n cos sin co i s s n n n z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( )A .22z z =B .当1r =,3πθ=时,31z =C .当1r =,3πθ=时,12z =D .当1r =,4πθ=时,若n 为偶数,则复数n z 为纯虚数24.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( ) A .20z B .2z z = C .31z = D .1z =25.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限26.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z += 27.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( )A .z 的虚部为1-B .||z =C .2z 为纯虚数D .z 的共轭复数为1i -- 28.对于复数(,)z a bi a b R =+∈,下列结论错误..的是( ). A .若0a =,则a bi +为纯虚数B .若32a bi i -=+,则3,2a b ==C .若0b =,则a bi +为实数D .纯虚数z 的共轭复数是z - 29.复数21i z i +=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i +C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限30.(多选)()()321i i +-+表示( )A .点()3,2与点()1,1之间的距离B .点()3,2与点()1,1--之间的距离C .点()2,1到原点的距离D .坐标为()2,1--的向量的模【参考答案】***试卷处理标记,请不要删除一、复数选择题1.B【分析】先求出,再计算出模.【详解】,,.故选:B.解析:B【分析】 先求出21z+,再计算出模. 【详解】 1z i =+,()()()21221112111i i z i i i -∴+=+=+=-++-,21z∴+==. 故选:B.2.A【分析】根据复数除法运算整理得到,根据虚部定义可得到结果.【详解】,的虚部为.故选:.解析:A【分析】根据复数除法运算整理得到z ,根据虚部定义可得到结果.【详解】()()()1111111222i i i i z i i i i -+====+++-,z ∴的虚部为12. 故选:A .3.B【分析】由复数除法运算直接计算即可. 【详解】. 故选:B.解析:B【分析】由复数除法运算直接计算即可.【详解】()211i i i i++==--. 故选:B. 4.B【分析】 先求出,再解不等式组即得解.【详解】依题意,,因为复数为纯虚数,故,解得.故选:B【点睛】易错点睛:复数为纯虚数的充要条件是且,不要只写.本题不能只写出,还要写上.解析:B【分析】先求出321795858m m z i -+=+,再解不等式组3210790m m -=⎧⎨+≠⎩即得解. 【详解】 依题意,()()()()3373321793737375858m i i m i m m z i i i i +++-+===+--+, 因为复数z 为纯虚数,故3210790m m -=⎧⎨+≠⎩,解得7m =. 故选:B【点睛】易错点睛:复数(,)z a bi a b R =+∈为纯虚数的充要条件是0a =且0b ≠,不要只写0b ≠.本题不能只写出790m +≠,还要写上3210m -=.5.A【分析】根据虚数不能比较大小可得,再解一元二次不等式可得结果.【详解】因为,,所以,,所以或.故选:A【点睛】关键点点睛:根据虚数不能比较大小得是解题关键,属于基础题.解析:A【分析】根据虚数不能比较大小可得a b =,再解一元二次不等式可得结果.【详解】因为,a b ∈R ,2()2a b a b i -+->,所以a b =,220a a -->,所以2a >或1a <-.故选:A【点睛】关键点点睛:根据虚数不能比较大小得a b =是解题关键,属于基础题. 6.B【分析】化简复数,可得,结合选项得出答案.【详解】则,的虚部为故选:B解析:B【分析】化简复数z ,可得z ,结合选项得出答案.【详解】()311==11i i z i i i i i--=-=+-则1z i =-,z 的虚部为1-故选:B7.D【分析】由复数乘法运算求得,根据共轭复数定义可求得结果.【详解】,.故选:.解析:D【分析】由复数乘法运算求得z ,根据共轭复数定义可求得结果.【详解】()()2248676z i i i i i =--=-+=-,76z i ∴=+.故选:D .8.C【分析】根据模的运算可得选项.【详解】.故选:C.解析:C【分析】根据模的运算可得选项.【详解】512z i ====+ 故选:C.9.D【分析】先求出,再求出,直接得复数在复平面内对应的点【详解】因为,所以,在复平面内对应点,位于第四象限.故选:D解析:D【分析】先求出z ,再求出z ,直接得复数z 在复平面内对应的点【详解】因为211i z i i ==++,所以1z i -=-,z 在复平面内对应点()1,1-,位于第四象限. 故选:D10.C【分析】求出,即可得出,求出虚部.【详解】,,其虚部是1.故选:C.解析:C【分析】求出z ,即可得出z ,求出虚部.【详解】()()()220211i 1i i 1i 1i 1i z --===-++-,i z ∴=,其虚部是1. 故选:C. 11.C【分析】由复数的乘方与除法运算求得,得后可得其对应点的坐标,得出结论.【详解】由题意,,∴,对应点,在第三象限.故选:C .解析:C【分析】 由复数的乘方与除法运算求得z ,得z 后可得其对应点的坐标,得出结论.【详解】 由题意2021(2)i z i i -==,(2)12122(2)(2)555i i i i z i i i i +-+====-+--+, ∴1255z i =--,对应点12(,)55--,在第三象限. 故选:C .12.B【分析】化简,利用定义可得的虚部.【详解】则的虚部等于故选:B解析:B【分析】化简12z z ⋅,利用定义可得12z z ⋅的虚部.【详解】()()1212113z z i i i ⋅=+⋅+=-+则12z z ⋅的虚部等于3故选:B13.B【分析】由复数除法求得,再由模的运算求得模.【详解】由题意,∴.故选:B .解析:B【分析】由复数除法求得z ,再由模的运算求得模.【详解】由题意22(1)11(1)(1)i z i i i i +===+--+,∴z == 故选:B .14.C【分析】由复数除法求出,再由模计算.【详解】由已知,所以.故选:C .解析:C【分析】由复数除法求出z ,再由模计算.【详解】 由已知21(1)21(1)(1)2i i i z i i i i ---====-++-, 所以1z i =-=.故选:C .15.无二、多选题16.AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+, 所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.AC【分析】根据复数的运算及复数的概念即可求解.【详解】因为复数,所以z 的虚部为1,,故AC 错误,BD 正确.故选:AC解析:AC【分析】根据复数的运算及复数的概念即可求解.【详解】 因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z =故AC 错误,BD 正确.故选:AC18.AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案.【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩, 所以0z =,或2i z =,或2i z =-.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.19.BCD【分析】计算出,即可进行判断.【详解】,,故B 正确,由于复数不能比较大小,故A 错误;,故C 正确;,故D 正确.故选:BCD.【点睛】本题考查复数的相关计算,属于基础题.解析:BCD【分析】 计算出23,,,z z z z ,即可进行判断.【详解】12z =-+, 221313i i=22z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222z ,故C 正确; 2213122z,故D 正确.故选:BCD.【点睛】 本题考查复数的相关计算,属于基础题.20.AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A 正确;的虚部为-2,B 错误;,C 错误;,D 正确;故选:A解析:AD【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】 解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.【点睛】 本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.21.AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误; 当时解析:AD【分析】由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.22.AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D.【详解】,则A 正确;虚数不能比较大小,则B 错误;,则,解析:AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D.【详解】234110i i i i i i +++=--+=,则A 正确;虚数不能比较大小,则B 错误;()221424341z i i i i =++=+-+=,则34z i =--,其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误; 令,,z x yi x y R =+∈,|1||1z z -=+∣,=,解得0x =则z 在复平面内对应的点的轨迹为直线,D 正确;故选:AD【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.23.AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误.【详解】对于A 选项,,则,可得解析:AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误.【详解】对于A 选项,()cos sin z r i θθ=+,则()22cos2sin 2z r i θθ=+,可得()222cos 2sin 2z r i r θθ=+=,()222cos sin z r i r θθ=+=,A 选项正确; 对于B 选项,当1r =,3πθ=时,()33cos sin cos3sin3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;对于C 选项,当1r =,3πθ=时,1cos sin 3322z i ππ=+=+,则12z =,C 选项正确;对于D 选项,()cos sin cos sin cos sin 44n n n n z i n i n i ππθθθθ=+=+=+, 取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误. 故选:AC.【点睛】本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.24.BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数12z =-(其中i 为虚数单位),2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =--+=+=,故C 正确;||1z ==.故D 正确. 故选:BCD .【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.25.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】 求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项. 【详解】依题意1ω==,所以A 选项正确; 2211312242422ω⎛⎫=-+=--=-- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确; 22321111222222ωωω⎛⎫⎛⎫⎛⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;22111122212ω---====-⎛⎫-+⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,2⎛-⎝⎭,在第三象限,故D选项错误.故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.26.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD.【解析:ACD【分析】先利用题目条件可求得z,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i=+可得,11iz ii+==-,所以12z i+=-==,z虚部为1-;因为2422,2z i z=-=-,所以()5052020410102z z==-,2211z z i i i z+=-++=-=.故选:ACD.【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题.27.ABC【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为,对于A :的虚部为,正确;对于B :模长,正确;对于C :因为,故为纯虚数,解析:ABC【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】 因为()()()2122211i 1i 12i i z i i --====-++-, 对于A :z 的虚部为1-,正确;对于B :模长z =对于C :因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D :z 的共轭复数为1i +,错误.故选:ABC .【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.28.AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为当且时复数为纯虚数,此时,故A 错误,D 正确;当时,复数为实数,故C 正确;对于B :,则即,故B 错误;故错误的有AB解析:AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为(,)z a bi a b R =+∈当0a =且0b ≠时复数为纯虚数,此时z bi z =-=-,故A 错误,D 正确;当0b =时,复数为实数,故C 正确;对于B :32a bi i -=+,则32a b =⎧⎨-=⎩即32a b =⎧⎨=-⎩,故B 错误; 故错误的有AB ;故选:AB【点睛】本题考查复数的代数形式及几何意义,属于基础题.29.CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.30.ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模。
高二数学复数练习试题及答案
高二数学复数练习试题及答案解析1.如果复数a+bi(a,bR)在复平面内的对应点在第二象限,则()A.a0,b0B.a0,b0C.a0,b0D.a0,b0[答案] D[解析] 复数z=a+bi在复平面内的对应点坐标为(a,b),该点在第二象限,需a0且b0,故应选D.2.(2022北京文,2)在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是()A.4+8iB.8+2iC.2+4iD.4+i[答案] C[解析] 由题意知A(6,5),B(-2,3),AB中点C(,y),则=6-22=2,y=5+32=4,点C对应的复数为2+4i,故选C.3.当23A.第一象限B.第二象限C.第三象限D.第四象限[答案] D[解析] ∵230,m-10,点(3m-2,m-1)在第四象限.4.复数z=-2(in100-ico100)在复平面内所对应的点Z位于()A.第一象限B.第二象限C.第三象限D.第四象限[答案] C[解析] z=-2in100+2ico100.∵-2in1000,2co1000,Z点在第三象限.故应选C.5.若a、bR,则复数(a2-6a+10)+(-b2+4b-5)i对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限[答案] D[解析] a2-6a+10=(a-3)2+10,-b2+4b-5=-(b-2)2-10.所以对应点在第四象限,故应选D.6.设z=(2t2+5t-3)+(t2+2t+2)i,tR,则以下结论中正确的是()A.z对应的点在第一象限B.z一定不是纯虚数C.z对应的点在实轴上方D.z一定是实数[答案] C[解析] ∵2t2+5t-3=(t+3)(2t-1)的值可正、可负、可为0,t2+2t+2=(t+1)2+11,排除A、B、D,选C.7.下列命题中假命题是()A.复数的模是非负实数B.复数等于零的充要条件是它的模等于零C.两个复数模相等是这两个复数相等的必要条件D.复数z1z2的充要条件是|z1||z2|[答案] D若z1=z2,则有a1=a2,b1=b2,|z1|=|z2|反之由|z1|=|z2|,推不出z1=z2,如z1=1+3i,z2=1-3i时|z1|=|z2|,故C正确;④不全为零的两个复数不能比较大小,但任意两个复数的模总能比较大小,D错.8.已知复数z=(-1)+(2-1)i的模小于10,则实数取值范围是()A.-45B.2C.-45D.=-45或=2[答案] A[解析] 由题意知(-1)2+(2-1)210,解之得-459.已知复数z1=a+bi(a,bR),z2=-1+ai,若|z1||z2|,则实数b适合的条件是()A.b-1或b1B.-1C.b1D.b0[答案] B[解析] 由|z1||z2|得a2+b2b21,则-110.复平面内向量OA表示的复数为1+i,将OA向右平移一个单位后得到向量OA,则向量OA与点A对应的复数分别为()A.1+i,1+iB.2+i,2+iC.1+i,2+iD.2+i,1+i[答案] C[解析] 由题意OA=OA,对应复数为1+i,点A对应复数为1+(1+i)=2+i.二、填空题11.如果复数z=(m2+m-1)+(4m2-8m+3)i(mR)对应的点在第一象限,则实数m的取值范围为________________.[答案] -,-1-5232,+[解析] 复数z对应的点在第一象限需m2+m-104m2-8m+30解得:m-1-52或m32.12.设复数z的模为17,虚部为-8,则复数z=________.[答案] 15-8i[解析] 设复数z=a-8i,由a2+82=17,a2=225,a=15,z=15-8i.13.已知z=(1+i)m2-(8+i)m+15-6i(mR),若复数z对应点位于复平面上的第二象限,则m的取值范围是________.[答案] 3[解析] 将复数z变形为z=(m2-8m+15)+(m2-m-6)i∵复数z对应点位于复平面上的第二象限m2-8m+150m2-m-60解得314.若tR,t-1,t0,复数z=t1+t+1+tti的模的取值范围是________.[答案] [2,+)[解析] |z|2=t1+t2+1+tt22t1+t1+tt=2.|z|2.三、解答题15.实数m取什么值时,复平面内表示复数z=2m+(4-m2)i的点(1)位于虚轴上;(2)位于一、三象限;(3)位于以原点为圆心,以4为半径的圆上.[解析] (1)若复平面内对应点位于虚轴上,则2m=0,即m=0.(2)若复平面内对应点位于一、三象限,则2m(4-m2)0,解得m-2或0(3)若对应点位于以原点为圆心,4为半径的圆上,则4m2+(4-m2)2=4即m4-4m2=0,解得m=0或m=2.16.已知z1=2+2+1i,z2=(2+a)i,对于任意的R,均有|z1||z2|成立,试求实数a的取值范围.[解析] |z1|=4+2+1,|z2|=|2+a|因为|z1||z2|,所以4+2+1|2+a|1.不等式的基本性质:性质1:如果ab,bc,那么ac(不等式的传递性).性质2:如果ab,那么a+cb+c(不等式的可加性).性质3:如果ab,c0,那么acbc;如果ab,c0,那么acb,cd,那么a+cb+d.性质4:如果ab0,cd0,那么acbd.性质5:如果ab0,nN,n1,那么anbn,且.例1:判断下列命题的真假,并说明理由.若ab,c=d,则ac2bd2;(假)若,则ab;(真)若ab且ab0,则;(假)若a若,则ab;(真)若|a|b2;(充要条件)命题A:a命题A:,命题B:0说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性.a,bR且ab,比较a3-b3与ab2-a2b的大小.()说明:强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备.例2:设ab,n是偶数且nN,试比较an+bn与an-1b+abn-1的大小.说明:本例条件是ab,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为ab,可由三种情况(1)ab0;(2)a0b;(3)0ab.由此得到总有an+bnan-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想.练习:1.若a0,比较(a2+1)2与a4+a2+1的大小.()2.若a0,b0且ab,比较a3+b3与a2b+ab2的大小.()3.判断下列命题的真假,并说明理由.(1)若ab,则a2b2;(假)(2)若ab,则a3b3;(真)(3)若ab,则ac2bc2;(假)(4)若,则ab;(真)若ab,cd,则a-db-c.(真).高考数学易错知识点易错点用错基本公式致误错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q1时,前n项和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式Sn=na1。
高二数学复数练习试题百度文库
一、复数选择题1.若()211z i =-,21z i =+,则12z z 等于( ) A .1i + B .1i -+ C .1i - D .1i -- 2.复数()1z i i =⋅+在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A ,B 对应的复数分别是1z ,2z ,则12z z -=( )A 2B .2C .2D .84.已知复数1z i i =+-(i 为虚数单位),则z =( )A .1B .2iC 2iD 2i 5.若复数z 满足421i z i +=+,则z =( ) A .13i +B .13i -C .3i +D .3i - 6.若复数1211i z i +=--,则z 在复平面内的对应点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限 7.已知复数()211i z i-=+,则z =( ) A .1i -- B .1i -+C .1i +D .1i - 8.已知复数z 满足202122z i i i+=+-+,则复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限9.已知复数z 的共轭复数212i z i -=+,i 是虚数单位,则复数z 的虚部是( ) A .1 B .-1 C .i D .i -10.已知复数z 满足()1+243i z i =+,则z 的虚部是( ) A .-1B .1C .i -D .i 11.复数()()212z i i =-+在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限12.已知i 为虚数单位,则43i i =-( ) A .2655i + B .2655i - C .2655i -+ D .2655i -- 13.已知i 是虚数单位,2i z i ⋅=+,则复数z 的共轭复数的模是( )A .5BCD .314.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( ) A .1- B .12- C .13 D .115.已知i 是虚数单位,设11i z i ,则复数2z +对应的点位于复平面( ) A .第一象限 B .第二象限C .第三象限D .第四象限 二、多选题16.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z 的虚部为sin θ 17.若复数351i z i-=-,则( )A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限18.已知复数(),z x yi x y R =+∈,则( )A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =19.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( )A .0P 点的坐标为(1,2)B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称C .复数z 对应的点Z 在一条直线上D .0P 与z 对应的点Z 间的距离的最小值为220.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥21.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限22.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( )A .2ωω=B .31ω=-C .210ωω++=D .ωω> 23.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )A .||z =B .复数z 的共轭复数为z =﹣1﹣iC .复平面内表示复数z 的点位于第二象限D .复数z 是方程x 2+2x +2=0的一个根24.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限25.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z =B .12i 5z +=-C .复数z 的实部为1-D .复数z 对应复平面上的点在第二象限26.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z =27.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( )A .1B .4-C .0D .528.(多选)()()321i i +-+表示( )A .点()3,2与点()1,1之间的距离B .点()3,2与点()1,1--之间的距离C .点()2,1到原点的距离D .坐标为()2,1--的向量的模29.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A.|z |=B .复数z 在复平面内对应的点在第四象限 C .z 的共轭复数为12i -+ D .复数z 在复平面内对应的点在直线2y x =-上30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题1.D【分析】由复数的运算法则计算即可.【详解】解:,.故选:D.解析:D【分析】由复数的运算法则计算即可.【详解】解:()2211122z i i i i =-=-+=-, ()()212222(1)2222111112z i i i i i i i z i i i i --⨯--+--∴=====--++--. 故选:D.2.B【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解.【详解】因为复数,所以在复数z 复平面上对应的点位于第二象限故选:B解析:B【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解.【详解】因为复数()11z i i i =⋅+=-+,所以在复数z 复平面上对应的点位于第二象限故选:B3.B【分析】根据复数的几何意义,求两个复数,再计算复数的模.【详解】由图象可知,,则,故.故选:B.解析:B【分析】根据复数的几何意义,求两个复数,再计算复数的模.【详解】由图象可知1z i =,22z i =-,则1222z z i -=-+,故12|22|z z i -=-+==故选:B .4.D【分析】先对化简,求出,从而可求出【详解】解:因为,所以,故选:D解析:D【分析】 先对1z i i =+-化简,求出z ,从而可求出z解:因为1z i i i i =+-==,所以z i =,故选:D 5.C【分析】首先根据复数的四则运算求出,然后根据共轭复数的概念求出.【详解】,故.故选:C.解析:C【分析】首先根据复数的四则运算求出z ,然后根据共轭复数的概念求出z .【详解】()()()()421426231112i i i i z i i i i +-+-====-++-,故3z i =+. 故选:C.6.B【分析】利用复数的运算法则和复数的几何意义求解即可【详解】,所以,在复平面内的对应点为,则对应点位于第二象限故选:B解析:B【分析】利用复数的运算法则和复数的几何意义求解即可【详解】()()12i 1i 12i 33i 33i 111i 2222z +++-+=-=-==-+-, 所以,z 在复平面内的对应点为33,22⎛⎫-⎪⎝⎭,则对应点位于第二象限 故选:B 7.B【分析】根据复数的除法运算法则求出复数,然后根据共轭复数的概念即可得解.由题意可得,则.故答案为:B解析:B【分析】根据复数的除法运算法则求出复数z ,然后根据共轭复数的概念即可得解.【详解】由题意可得()()()()()212111111i i i z i i i ii i ---===--=--++-,则1z i =-+. 故答案为:B 8.C【分析】由已知得到,然后利用复数的乘法运算法则计算,利用复数的周期性算出的值,最后利用复数的几何意义可得结果.【详解】由题可得,,所以复数在复平面内对应的点为,在第三象限,故选:C .解析:C【分析】由已知得到2021(2)(2)i i i z -++-=,然后利用复数的乘法运算法则计算(2)(2)i i -++,利用复数n i 的周期性算出2021i 的值,最后利用复数的几何意义可得结果.【详解】由题可得,2021(2)(2)5i z i i i -+=+-=--,所以复数z 在复平面内对应的点为(5,1)--,在第三象限,故选:C .9.A【分析】先化简,由此求得,进而求得的虚部.【详解】,所以,则的虚部为.故选:A解析:A【分析】 先化简z ,由此求得z ,进而求得z 的虚部.()()()()212251212125i i i i z i i i i ----====-++-, 所以z i ,则z 的虚部为1.故选:A10.B【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念求得,则答案可求.【详解】由,得,,则的虚部是1.故选:.解析:B【分析】 利用复数代数形式的乘除运算化简,再由共轭复数的概念求得z ,则答案可求.【详解】由(12)43i z i +=+, 得43(43)(12)105212(12)(12)5i i i i z i i i i ++--====-++-, ∴2z i =+, 则z 的虚部是1.故选:B .11.A【分析】利用复数的乘法化简复数,利用复数的乘法可得出结论.【详解】,因此,复数在复平面内对应的点位于第一象限.故选:A.解析:A【分析】利用复数的乘法化简复数z ,利用复数的乘法可得出结论.【详解】()()221223243z i i i i i =-+=+-=+,因此,复数z 在复平面内对应的点位于第一象限.故选:A.12.C【分析】对的分子分母同乘以,再化简整理即可求解.【详解】,故选:C解析:C【分析】 对43i i-的分子分母同乘以3i +,再化简整理即可求解. 【详解】 ()()()434412263331055i i i i i i i i +-+===-+--+, 故选:C13.C【分析】首先求出复数的共轭复数,再求模长即可.【详解】据题意,得,所以的共轭复数是,所以.故选:C.解析:C【分析】首先求出复数z 的共轭复数,再求模长即可.【详解】 据题意,得22(2)12121i i i i z i i i ++-+====--,所以z 的共轭复数是12i +,所以z =.故选:C.14.B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得 故选:B解析:B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:()()()()21i 3i 33331a i ai ai a a i +-=-+-=++-,所以复数()()1i 3i a +-的实部为3a +,虚部为31a -,因为实部和虚部互为相反数,所以3310a a ++-=,解得12a =- 故选:B15.A【分析】由复数的除法求出,然后得出,由复数的几何意义得结果.【详解】由已知,,对应点为,在第一象限,故选:A.解析:A【分析】由复数的除法求出z i =-,然后得出2z +,由复数的几何意义得结果.【详解】 由已知(1)(1)(1)(1)i i z i i i --==-+-, 222z i i +=-+=+,对应点为(2,1),在第一象限,故选:A.二、多选题16.BC【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z ,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC. 17.AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】解:,,z 的实部为4,虚部为,则相差5,z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正解析:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】 解:()()()()351358241112i i i i z i i i i -+--====---+,z ∴==z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD.18.CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确.故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题. 19.ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确解析:ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.【详解】复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距2=,故D 正确.故选:ACD【点睛】本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题.20.ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z ==C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题. 21.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.22.AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以12ω=--,∴2131442ωω=--=--=,故A 正确,3211131222244ωωω⎛⎫⎛⎫⎛⎫==---+=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,21111022ωω++=--++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.23.ABCD【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.【详解】因为(1﹣i )z =解析:ABCD【分析】利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确.【详解】因为(1﹣i )z =2i ,所以21i z i =-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以||z ==A 正确; 所以1i z =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确.故选:ABCD.【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题.24.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】 求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项.【详解】依题意1ω==,所以A 选项正确;2211312242422ω⎛⎫=-+=--=-- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222222ωωω⎛⎫⎛⎫⎛⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;221111222212ω---====--⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,2⎛- ⎝⎭,在第三象限,故D 选项错误.故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.25.BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以z ==,故A 错误; 1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题. 26.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.27.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.28.ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模29.AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。
2023-2024学年湖北省武汉市高中数学人教A版 必修二第七章 复数章节测试-8-含解析
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年湖北省武汉市高中数学人教A 版 必修二第七章复数章节测试(8)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)第一象限第二象限第三象限第四象限1. 复数( 是虚数单位)在复平面内对应的点在( )A.B. C.D. 2. 复数满足, 则( )A. B. C. D.133. 已知 ,则 ( )A.B. C. D.12 4. 已知复数z 满足 ,则( )A. B. C. D. -222或-2以上都不对5. 若是纯虚数( 为虚数单位),则实数x 的值为( )A. B. C. D. 1-2i 2-2i -1+2i -2-2i 6. 若复数(i 为虚数单位),为其共轭复数,则 ( )A. B. C. D. 7. 复数 ( 为虚数单位)的共轭复数为( )A. B. C. D.-28. 设复数 , 在复平面内对应的点关于虚轴对称,且 ,则 ( )A. B. C. D. 1-19. 已知复数 , 则复数的共轭复数的虚部是( )A. B. C. D.2-2或2 3.-3或310. 已知复数 满是且 ,则 的值为( )A. B. C. D. -11i -i11. 已知为虚数单位,则复数( )A. B. C. D. 12. 复数等于( )A. B. C. D.13. 已知 是虚数单位,复数 ,则 .14. 已知复数(为虚数单位)是关于x 的方程(其中)的一个根,则 .15. 计算: (为虚数单位)16. 复数z=(1+i )+(﹣2+2i )在复平面内对应的点位于第 象限.17. 已知复数z 1= +(a 2﹣3)i ,z 2=2+(3a+1)i (a ∈R ,i 是虚数单位).(1) 若复数z 1﹣z 2在复平面上对应点落在第一象限,求实数a 的取值范围;(2) 若虚数z 1是实系数一元二次方程x 2﹣6x+m=0的根,求实数m 值.18. 现新定义两个复数(、)和(、)之间的一个新运算,其运算法则为:.(1) 请证明新运算对于复数的加法满足分配律,即求证:;(2) 设运算为运算的逆运算,请推导运算的运算法则.19. 已知复数,,.(1) 若为纯虚数,求实数的值;(2) 在复平面内,若对应的点在第四象限,对应的点在第二象限,求实数的取值范围.20. 已知复数,设(1) 求复数;(2) 若复数z满足,,求 .21. 解答下面两个问题:(Ⅰ)已知复数,其共轭复数为,求;(Ⅱ)复数z1=2a+1+(1+a2)i,z2=1﹣a+(3﹣a)i,a∈R,若是实数,求a的值.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)19.(1)(2)20.(1)(2)21.。
武汉市必修第二册第二单元《复数》测试(答案解析)
一、选择题1.已知复数1z ,2z 满足()1117i z i +=-+,21z =,则21z z -的最大值为( ) A .3 B .4 C .5 D .62.设a R ∈,则复数22121a ai z a-+=+所对应点组成的图形为( ) A .单位圆 B .单位圆除去点()1,0±C .单位圆除去点()1,0D .单位圆除去点()1,0-3.已知复数z 满足()20161i z i -=(其中i 为虚数单位),则z 的虚部为( ) A .12 B .12- C .12i D .12i - 4.“1x >”是“复数2(1)()z x x x i x R =-+-∈在复平面内对应的点在第一象限”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知复数12z =-,则z z +=( )A .12--B .12-+C .12+D .122- 6.“复数3i ia z -=在复平面内对应的点在第三象限”是“0a ≥”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 7.若复数z 满足22iz i =-(i 为虚数单位),则z 的共轭复数z 在复平面内对应的点所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 8.若实系数一元二次方程20z z m ++=有两虚数根αβ、,且3αβ=-,那么实数m 的值是( )A .52B .1C .1-D .52- 9.已知i 为虚数单位,(1+i )x =2+yi ,其中x ,y ∈R ,则|x +yi |=A .B .2C .4 D10.若i 为虚数单位,复数z 满足z i ≤,则2z i -的最大值为( )A .2B .3C .D .11.已知复数1z i =+,z 为z 的共轭复数,则1z z+=( )A .32i +B .132i +C .332i +D .12i + 12.若复数z 满足(12)5z i +=,则它的共轭复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 二、填空题13.已知23i i z z +-=,i z C ∈,1,2i =,122z z -=,则12z z +的最大值为______. 14.复数2018|(3)|z i i i =-+(i 为虚数单位),则||z =________.15.若z C ∈且1z =,那么2z i +-的最小值为_______________.16.设i 为虚数单位,复数z 满足()()2133i z i +=-+,则z =______. 17.化简20122221117i i⎛⎫+= ⎪+-⎝⎭________.点集{||13|1,}D z z i z C =++=∈,则||z 的最小值_____和最大值________.18.计算:66232123i i ⎛⎫-++= ⎪ ⎪+⎝⎭_______________. 19.若复数z 满足2z i z i -++=,则1z i --的取值范围是________20.已知,则 =____. 三、解答题21.已知i 是虚数单位,设复数z 满足22z -=.(1)求14z i +-的最小值与最大值;(2)若4z z+为实数,求z 的值. 22.已知复数1z i =-. (1)设25341z z ω=+-+,求ω的值; (2332a ≥+的实数a 的取值范围. 23.设m R ∈,复数22(56)(3)m m m m i -++-(i 为虚数单位)是纯虚数.(1)求m 的值;(2)若2mi -+是方程20x px q ++=的一个根,求实数p ,q 的值.24.设复数12i z a =+(其中a R ∈),234z i =-.(Ⅰ)若12z z +是实数,求12z z ⋅的值;(Ⅱ)若12z z 是纯虚数,求1z . 25.已知复数z 满足|3+4i|+z=1+3i.(1)求z ;(2)求()()2134i i z++的值. 26.已知O 为坐标原点,向量1OZ 、2OZ 分别对应复数1z 、2z ,且()213105z a i a =+-+,()()22251z a i a R a =+-∈-.若12z z +是实数. (1)求实数a 的值; (2)求以1OZ 、2OZ 为邻边的平行四边形的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先求得1z ,设出2z ,然后根据几何意义求得21z z -的最大值.【详解】 由()()()()11711768341112i i i i z i i i i -+--++====+++-,令2z x yi =+,x ,y R ∈,由 222||11z x y =⇒+=,()()2134z z x y i -=-+-=2z 对应点在单位圆上,所以21z z -表示的是单位圆上的点和点()3,4的距离,()3,4到圆心()0,05=,单位圆的半径为1,所以21max 516z z -=+=.故选:D【点睛】 本小题主要考查复数除法运算,考查复数模的最值的计算.2.D解析:D【分析】根据复数222221212111a ai a a z i a a a-+-==++++,得到复数z 对应点的坐标为:22212,11a a a a ⎛⎫- ⎪++⎝⎭,然后由22212,11a a x y a a -==++,利用复数的模求解. 【详解】 因为复数222221212111a ai a a z i a a a -+-==++++, 所以复数z 对应点的坐标为:22212,11a a a a ⎛⎫- ⎪++⎝⎭, 即22212,11a a x y a a-==++, 所以222222212111a a x y a a ⎛⎫-⎛⎫+=+= ⎪ ⎪++⎝⎭⎝⎭, 因为22212111a x a a -==-+++, 又因为a R ∈,所以211a +≥, 所以22021a<≤+, 所以221111a-<-+≤+, 即11x -<≤, 所以复数z 对应点组成的图形为单位圆除去点()1,0-.故选:D【点睛】本题主要考查复数的几何意义以及复数模的轨迹问题,还考查了运算求解的能力,属于中档题.3.B解析:B【分析】 根据题意求出1122z i =+,即可得到z ,得出虚部. 【详解】 20164504=⨯,201641i i ∴==.111122z i i ∴==+-,1122z i ∴=-,z ∴的虚部为12-.故选:B.【点睛】此题考查复数的运算和概念辨析,易错点在于没能弄清虚部的概念导致选错.4.C解析:C【分析】根据充分必要条件的定义结合复数与复平面内点的对应关系,从而得到答案.【详解】若复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限,则20,10x x x ⎧->⎨->⎩ 解得1x >,故“1x >”是“复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限”的充要条件.故选C.【点睛】本题考查了充分必要条件,考查了复数的与复平面内点的对应关系,是一道基础题. 5.C解析:C【解析】分析:首先根据题中所给的复数z ,可以求得其共轭复数,并且可以求出复数的模,代入求得122z z i +=+,从而求得结果.详解:根据12z =-,可得12z =-+,且1z ==,所以有11122z z +=-++=+,故选C. 点睛:该题考查的是有关复数的问题,涉及到的知识点有复数的共轭复数、复数的模、以及复数的加法运算,属于基础题目.6.A解析:A【详解】 因为33ai z a i i-==--,所以由题设可得00a a -<⇒>,因此0a >是0a ≥的充分不必要条件,故应选答案A . 7.B解析:B【解析】分析:直接利用复数代数形式的乘除运算化简复数,然后求z 的共轭复数,即可得到z 在复平面内对应的点所在的象限.详解:由题意,()()()222222,i i i z i i i i -⋅--===--⋅- 22,z i ∴=-+ 则z 的共轭复数z 对应的点在第二象限.故选B.点睛:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题. 8.A 解析:A【分析】根据实系数方程有两虚数根,利用求根公式解得:z =,由此可得αβ-的m 表示形式,根据3αβ-=即可求得m 的值.【详解】因为20z z m ++=,所以z =,又因为3αβ-=,所以3=,所以419m -=,解得:52m =. 故选A.【点睛】 实系数一元二次方程()200++=≠ax bx c a ,有两虚根为,αβ,注意此时的240b ac ∆=-<,因此在写方程根时应写成:x =x = 9.A解析:A【解析】【分析】首先求得x ,y 的值,然后求解复数的模即可.【详解】由题意可得:2x xi yi +=+,结合复数的充分必要条件可知:2x x y=⎧⎨=⎩,则2x y ==,22x yi i +=+==本题选择A 选项.【点睛】本题主要考查复数相等的充分必要条件,复数模的求解等知识,意在考查学生的转化能力和计算求解能力.10.D解析:D【分析】 先根据33z i ++≤分析出复数z 对应的点在复平面内的轨迹,然后将2z i -的最大值转化为圆外一点到圆上一点的距离最大值问题并完成求解.【详解】 因为33z i ++≤表示以点()3,1M --为圆心,半径3R =的圆及其内部, 又2z i -表示复平面内的点到()0,2N 的距离,据此作出如下示意图:所以()()()()22max20321333z i MN R -=+=--+--= 故选:D.【点睛】 结论点睛:常见的复数与轨迹的结论:(1)()00z z r r -=>:表示以0z 为圆心,半径为r 的圆;(2)(1220z z z z a a -+-=>且)122a z z =:表示以12,z z 为端点的线段; (3)(1220z z z z a a -+-=>且)122a z z >:表示以12,z z 为焦点的椭圆; (4)(1220z z z z a a ---=>且)1202a z z <<:表示以12,z z 为焦点的双曲线. 11.B解析:B【分析】由复数1z i =+,得到1z i =-,进而得到121z i z i++=-,根据复数的除法运算法则,即可求解.【详解】 由题意,复数1z i =+,可得1z i =-,则()()()()2112131112i i z i i z i i i +++++===--+. 故选:B.【点睛】本题主要考查了复数的除法运算,以及共轭复数的概念及应用,其中解答中熟练应用复数的除法运算的法则,以及熟记复数的共轭复数的概念是解答的关键,着重考查运算与求解能力.12.A解析:A【分析】根据复数的除法运算法则,可得12z i =-,求得12z i =+,结合复数的几何意义,即可求解.【详解】由题意,复数z 满足(12)5z i +=,可得51212z i i==-+, 所以12z i =+,它在复平面内对应的点为(1,2)在第一象限. 故选:A.【点睛】本题主要考查了复数的除法运算法则,以及共轭复数的概念和复数的几何意义,其中解答中熟记复数的除法的运算法则,准确化简、运算是解答的关键,着重考查推理与运算能力.二、填空题13.4【分析】本题先将分别代入然后相加再运用复数模的三角不等式可计算出的最大值【详解】由题意可知则当与对应的向量反向共线时等号成立故的最大值为4故答案为:4【点睛】本题主要考查复数的模的计算以及复数模的 解析:4【分析】本题先将1z ,2z 分别代入23i i z z +-=,然后相加,再运用复数模的三角不等式可计算出12z z +的最大值.【详解】由题意,可知1123z z +-=,2223z z +-=, 则12121212126222z z z z z z z z z z =++-+-≥++-=++,当12z -与22z -对应的向量反向共线时,等号成立.124z z ∴+≤. 故12z z +的最大值为4.故答案为:4.【点睛】本题主要考查复数的模的计算,以及复数模的三角不等式的运用,不等式的计算能力.本题属基础题.14.1【分析】由复数模的求法及虚数单位的性质化简求值【详解】解:由题得故答案为:1【点睛】本题考查复数模的求法考查虚数单位的性质是基础题 解析:1【分析】由复数模的求法及虚数单位i 的性质化简求值.【详解】解:由题得2|1|1211z i =+==-=,||1z ∴=.故答案为:1.【点睛】本题考查复数模的求法考查虚数单位i 的性质,是基础题.15.【分析】复数满足表示以为圆心1为半径的圆表示圆上的点与点的距离求出即可得出结果【详解】复数满足表示以为圆心1为半径的圆表示圆上的点与点的距离∵∴的最小值是故答案为【点睛】本题考查了复数的运算法则复数1【分析】复数z 满足1z =,表示以()0,0O 为圆心,1为半径的圆,2z i +-表示圆上的点与点()2,1M -的距离,求出1OM -即可得出结果.【详解】复数z 满足1z =,表示以()0,0O 为圆心,1为半径的圆,2z i +-表示圆上的点与点()2,1M -的距离.∵OM ==∴2z i +-11.【点睛】本题考查了复数的运算法则、复数的几何意义、圆的方程,考查了推理能力与计算能力,属于中档题.16.【分析】根据复数的除法运算化简求得再结合复数的模的运算公式即可求解【详解】由则所以故答案为:【点睛】本题主要考查了复数的除法运算以及复数的模的运算其中解答中熟记复数的运算法则以及复数模的计算公式是解 解析:2【分析】根据复数的除法运算,化简求得1z =-,再结合复数的模的运算公式,即可求解.【详解】由()222(2i i =-+=-,则1z ====-,所以12z =-=.故答案为:2.【点睛】本题主要考查了复数的除法运算,以及复数的模的运算,其中解答中熟记复数的运算法则,以及复数模的计算公式是解答的关键,着重考查推理与运算能力.17.13【分析】根据复数的代数形式的除法乘方运算法则计算可得根据复数的几何意义得到的轨迹即可得到的最值;【详解】解:设因为即根据复数的几何意义可知表示以为圆心为半径的圆上的点集则故答案为:;;【点睛】本 解析:1- 1 3【分析】根据复数的代数形式的除法、乘方运算法则计算可得,根据复数的几何意义得到z 的轨迹,即可得到||z 的最值;【详解】解:201222+⎝⎭)()()201222111i i i ⎡⎤-=⎢⎥+-⎢⎥⎣⎦2012022⎛⎫=-+ ⎪ ⎪⎝⎭2012022⎛⎫=-+ ⎪ ⎪⎝⎭10062⎡⎤⎫⎢⎥=⎪⎪⎢⎥⎝⎭⎣⎦()100610062514221i i i i ⨯+=-====-设(),z x yi x y R =+∈,因为{||1|1,}D z z z C =++=∈即11x yi +++=根据复数的几何意义可知{||1|1,}D z z z C =+=∈表示以(1,-为圆心,1为半径的圆上的点集, 则max 13z ==,min 11z ==,故答案为:1-;1;3.【点睛】本题考查了复数代数形式的乘除运算,也考查了复数模的求法与几何意义,是中档题. 18.【分析】由于次数比较高先利用的周期性将其次数降低再进行四则运算【详解】故答案为:【点睛】本主要考查了有关的幂的运算和复数的四则运算还考查了转化问题运算求解的能力属于基础题解析:2i【分析】由于次数比较高,先利用()*n in ∈N 的周期性,将其次数降低,再进行四则运算.【详解】66+=⎝⎭33233121⎡⎤+⎛⎫⎢⎥=+=+= ⎪ ⎪-⎢⎥⎝⎭⎣⎦i i i i i i i . 故答案为:2i【点睛】本主要考查了有关i 的幂的运算和复数的四则运算,还考查了转化问题,运算求解的能力,属于基础题.19.【解析】分析:由复数的几何意义解得点的轨迹为以为端点的线段表示线段上的点到的距离根据数形结合思想结合点到直线距离公式可得结果详解:因为复数满足在复平面内设复数对应的点为则到的距离之和为所以点的轨迹为 解析:【解析】 分析:由复数的几何意义解得点z 的轨迹为以()()0,1,0,1-为端点的线段,1z i --表示线段上的点到()1,1的距离,根据数形结合思想,结合点到直线距离公式可得结果. 详解:因为复数z 满足2z i z i -++=,在复平面内设复数z 对应的点为(),z x y ,则(),z x y 到()()0,1,0,1-的距离之和为2,所以点z 的轨迹为以()()0,1,0,1-为端点的线段,1z i --表示线段上的点到()1,1的距离,可得最小距离是()0,1与()1,1的距离,等于1;最大距离是()0,1-与()1,1即1z i --的取值范围是1,5⎡⎤⎣⎦,故答案为1,5⎡⎤⎣⎦.点睛:本题考查复数的模,复数的几何意义,是基础题. 复数的模的几何意义是复平面内两点间的距离,所以若z x yi =+,则z a bi -+表示点(),x y 与点(),a b 的距离,z a bi r -+=表示以(),a b 为圆心,以r 为半径的圆.20.-2-3i 【解析】分析:化简已知的等式即得a 的值详解:由题得(1-i)31+i-3i=a ∴a=(1-i)4(1+i)(1-i)-3i=-2i·-2i2-3i=-2-3i 故答案为-2-3i 点睛:(1)解析:-2-3i 【解析】分析:化简已知的等式,即得 a 的值.详解:由题得,故答案为-2-3i点睛:(1)本题主要考查复数的综合运算,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)本题是一个易错题,已知没有说“a”是一个实数,所以它是一个复数,如果看成一个实数,解答就错了. 三、解答题21.(1)最大值为7,最小值为3.(2)见解析【分析】(1)根据题意22z -=,可知z 的轨迹为以(2,0)为圆心,以2为半径的圆,14z i +-表示点(,)x y 到(1,4)-的距离,结合几何意义求得结果;(2)根据4z z +为实数,列出等量关系式,求得结果. 【详解】(1)设z x yi =+,根据22z -=,所以有22(2)4x y -+=,所以z 的轨迹为以(2,0)为圆心,以2为半径的圆, 所以2214(1)(4)(1)(4)z i x y i x y +-=++-=++-其表示点(,)x y 到(1,4)-的距离,所以其最大值为圆心(2,0)到(1,4)-的距离加半径,最小值为圆心(2,0)到(1,4)-的距离减半径,22(21)427++=22(21)423++=;(2)222222444()44()()x yi x y z x yi x yi x y i z x yi x y x y x y-+=++=++=++-++++,因为4z z +为实数,所以2240y y x y -=+, 即224(1)0y x y-=+,所以0y =或224x y +=, 又因为22(2)4x y -+=,所以00x y =⎧⎨=⎩(舍去),40x y =⎧⎨=⎩,1x y =⎧⎪⎨=⎪⎩1x y =⎧⎪⎨=⎪⎩, 所以4z =或1z =+或1z =-.【点睛】该题考查的是有关复数的问题,涉及到的知识点有根据几何意义有模的最值,根据复数为实数求复数的值,属于简单题目.22.(1)5i ;(2)1(2,][1,)6-+∞.【分析】 (1)将复数1z i =-代入25341z z ω=+-+,利用复数乘方运算以及除法运算法则,计算化简即可,解题过程注意避免出现计算错误; (2)将复数1z i =-≥,转化为一元二次不等式求解即可,解题过程注意考虑二次根式的有意义的条件.【详解】(1)1z i =-.()()255314311211i i i i ω∴=++-=+---+ ()()()512311212i i i i +=+--+ 12315i i i =++-=; (2|1|a a i +-≥3≥, 即()2231220a a a a ⎧⎡⎤+-≥+⎪⎣⎦⎨⎪+>⎩,整理得26710a a -+≥且2a >-,解得126a -<≤或1a ≥,所以实数a 的取值范围是[)12,1,6⎛⎤-⋃+∞ ⎥⎝⎦. 【点睛】本题综合考查复数的运算法则的应用,考查了复数的模的公式,同时考查一元二次不等式的解法,考查了运算求解能力,属于中档题.23.(1)2.(2)4p =,8q =.【分析】(1)根据纯虚数的定义求出m 的值即可;(2)将2mi -+代入方程20x px q ++=,得到关于p ,q 的方程组,解出即可.【详解】(1)复数22(56)(3)m m m m i -++-是纯虚数, 2256030m m m m ⎧-+=∴⎨-≠⎩解得:2?30?3m m m m ==⎧⎨≠≠⎩或且 2m ∴=(2) 2mi -+是方程20x px q ++=的一个根由(1)可得2m =,即:22i -+是方程20x px q ++=的一个根2(22)(22)0i p i q ∴-++-++=即(2)(28)0p q p i -++-=20280p q p -+=⎧∴⎨-=⎩解得:4p =,8q =.【点睛】本题解题关键是掌握纯虚数定义和复数相等求参数方法,考查了分析能力和计算能力,属于中档题.24.(Ⅰ)22+4i (Ⅱ)152z =【分析】(Ⅰ)利用复数z 1+z 2是实数,求得a =4,之后应用复数乘法运算法则即可得出结果; (Ⅱ)利用复数的除法运算法则,求得12z z ,利用复数是纯虚数的条件求得a 的值,之后应用复数模的公式求得结果【详解】(Ⅰ)∵z 1+z 2=5+(a -4)i 是实数,∴a =4,z 1=2+4i ,∴z 1z 2=(2+4i )(3-4i )=22+4i ;(Ⅱ)∵()()12643823425a a i z ai z i -+++==-是纯虚数, ∴133,222a z i ==+, 故195442z =+=. 【点睛】 该题考查的是有关复数的问题,涉及到的知识点有复数是实数的条件,复数的乘法运算法则,复数的除法运算,复数的模,属于简单题目.25.(1)43i --;(2)2【分析】(1)先求出为34i 5+= ,即可求出z ,再根据共轭复数的定义即可求出z ;(2)根据复数的运算法则计算即可得出结论.【详解】 (1)因为|3+4i|=5,所以z=1+3i-5=-4+3i,所以=-4-3i.(2)===2. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.26.(1)3a =;(2)118. 【分析】(1)求出1z 和2z ,由复数12z z +是实数,可求得实数a 的值;(2)求出1OZ 和2OZ ,利用平面向量的数量积求出12cos Z OZ ∠,进一步求出12sin Z OZ ∠,结合三角形的面积公式可求得所求四边形的面积.【详解】(1)由题意可得()213105z a i a =--+, ()22251z a i a =+--,则()2123221551z z a a i a a+=+++-+-, 由于复数12z z +是实数,则221505010a a a a ⎧+-=⎪+≠⎨⎪-≠⎩,解得3a =;(2)由(1)可得138z i =+,21z i =-+,则点13,18Z ⎛⎫ ⎪⎝⎭,()21,1Z -, 因此,以1OZ 、2OZ 为邻边的平行四边形的面积为121118S Z Z =⨯=. 【点睛】本题考查利用复数类型求参数,同时也考查了四边形面积的计算,涉及平面向量数量积的应用,考查计算能力,属于中等题.。
武汉市必修第二册第二单元《复数》测试(包含答案解析)
一、选择题1.已知复数z 满足()20161i z i-=(其中i 为虚数单位),则z 的虚部为( ) A .12 B .12- C .12i D .12i - 2.当2z =时,100501z z ++=( ) A .1 B .-1 C .i D .i -3.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=( )A .-16B .0C .16D .32 4.已知方程()()2440x i x ai a R ++++=∈有实根b ,且z a bi =+,则复数z 等于( )A .22i -B .22i +C .22i -+D .22i -- 5.已知复数,是z 的共轭复数,则= A .B .C .1D .2 6.已知z 是纯虚数,21z i +-是实数,那么z 等于 ( ). A .2i B .i C .-i D .-2i7.若C z ∈,且22i 1z +-=,则22i z --的最小值是( )A .2B .3C .4D .58.已知复数z 满足()()()1212i z i i -=++,则z 的共轭复数为( )A .1i --B .1i +C 55D 55- 9.在复平面内,复数201812z i i =++对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限 10.已知复数1z i =+,z 为z 的共轭复数,则1z z +=( ) A .32i + B .132i + C .332i + D .12i + 11.已知复数21ai z i +=-是纯虚数,则实数a 等于( ) A 5B .2 C 3D 212.已知复数z 满足|z |=1,则|z +1-2i |的最小值为( )A1 BC .3D .2二、填空题13.已知复数34z i =+所对应的向量为OZ ,把OZ 依逆时针旋转θ得到一个新向量为1OZ .若1OZ 对应一个纯虚数,当θ取最小正角时,这个纯虚数是________. 14.已知复数z 满足|z 2-2i||z|+=(i 为虚数单位),则z 在复平面内对应的点的坐标(x ,y )的轨迹方程为__________.15.已知a 为实数,i 为虚数单位,若复数2(1)(1)z a a i =-++为纯虚数,则20001a i i+=+______. 16.已知复数[(1)]z a ai i =++(i 是虚数单位)是虚数,且||1z =,则实数a 的值是______17.在复平面内,三点A 、B 、C 分别对应复数A z 、B z 、C z ,若413B A C A z z i z z -=+-,则ABC ∆的三边长之比为________18.若复数(3)(12)z i i =--,则z 的共轭复数z 的虚部为_____19.已知复数032z i =+,其中i 是虚数单位,复数z 满足003z z z z ⋅=+,则复数z 的模等于__________.20.设z 是复数,()a z 表示满足1n z =时的最小正整数n ,i 是虚数单位,则1i ()1ia +=-________. 三、解答题21.已知i 是虚数单位,设复数z 满足22z -=.(1)求14z i +-的最小值与最大值;(2)若4z z+为实数,求z 的值. 22.当实数m 为何值时,复数()22656z m m m m i =--+++分别是(1)虚数;(2)纯虚数;(3)实数.23.复数z 满足||1z =,且2120z z z ++<.求z . 24.当m为何值时,复数()228()x m m i m =++-∈R 是(1)实数?(2)虚数?(3)纯虚数?25.已知m ∈R ,复数z =()()22211m m m m i m +++--,当m 为何值时: (1)z ∈R ;(2)z 是虚数;(3)z 是纯虚数. 26.已知z 为虚数,42z z +-为实数. (1)若2z -为纯虚数,求虚数z ;(2)求|4|z -的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】 根据题意求出1122z i =+,即可得到z ,得出虚部. 【详解】 20164504=⨯,201641i i ∴==.111122z i i ∴==+-,1122z i ∴=-,z ∴的虚部为12-.故选:B. 【点睛】此题考查复数的运算和概念辨析,易错点在于没能弄清虚部的概念导致选错.2.D解析:D【分析】根据100501z z ++的结构特点,先由z =,得到()2212-==-i z i ,再代入100501z z ++求解.【详解】 因为z = 所以()221,2-==-i z i所以()()()2550250100,1=-=-=-=-=-z i i z i i , 所100501++=-z z i ,故选:D【点睛】本题主要考查了复数的基本运算,还考查了周期性的应用,运算求解的能力,属于基础题. 3.B解析:B【分析】先求出(4,4)OA =,(4,4)OB =-,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称,∴z 对应的点是24y x =与y x =-的交点.由24y x y x ⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =,(4,4)OB =-,∴444(4)0OA OB ⋅=⨯+⨯-=.故选B【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.4.A解析:A【解析】【详解】由b 是方程()()2440x i x ai a R ++++=∈的根可得()2440b i b ai ++++=, 整理可得:()()2440b a i b b ++++=, 所以20440b a b b +=⎧⎨++=⎩,解得22a b =⎧⎨=-⎩,所以22z i =-,故选A . 5.A解析:A【分析】利用复数除法化简,再求出共轭复数,进而可得结果.【详解】, ,, 故答案为:A.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.6.D解析:D【分析】 根据复数的运算,化简得到21[(2)(2)]12z b b i i +=-++-,再由复数为实数,即可求解. 【详解】设z =b i (b ∈R ,且b ≠0),则=== [(2-b )+(2+b )i]. ∵∈R , ∴2+b =0,解得b =-2,∴z =-2i.故选D.【点睛】本题主要考查了复数的基本运算和复数的基本概念的应用,其中熟记复数的四则运算法则和复数的基本分类是解答的关键,着重考查了推理与计算能力,属于基础题.7.B 解析:B【分析】由复数的模的几何意义,可得z 在复平面的轨迹是以()2,2-为圆心,以1为半径的圆,根据圆的几何性质可得结果.【详解】设i z x y =+(),x y ∈R ,则()22i 22i 1z x y +-=++-=,所以()()22221x y ++-=,表示圆心为()2,2-,半径为1r =的圆. ()()()()2222i 22i 22z x y x y --=-+-=-+-,表示点(),x y 和()2,2之间的距离, 故()min 22i 22413z r --=---=-=.故选:B.【点睛】本题考查复数的模的几何意义,考查圆的性质,考查学生的计算求解能力,属于中档题. 8.A解析:A【分析】化简得到1z i =-+,再计算共轭复数得到答案.【详解】()()()1212i z i i -=++,故()()()()()()()()()121212131211212125i i i i i i i z i i i i +++++++====-+--+,故1z i =--. 故选:A .【点睛】本题考查了复数的化简,共轭复数,意在考查学生的计算能力.9.C解析:C【解析】 因为201812z i i =++()()22231122555i i i i i i --=+=-=--+- ,复数201812z i i=++对应的点的坐标为31,55⎛⎫-- ⎪⎝⎭ ,故复数201812z i i=++对应的点位于第三象限,故选C. 10.B解析:B【分析】由复数1z i =+,得到1z i =-,进而得到121z i z i ++=-,根据复数的除法运算法则,即可求解.【详解】由题意,复数1z i =+,可得1z i =-,则()()()()2112131112i i z i i z i i i +++++===--+. 故选:B.【点睛】本题主要考查了复数的除法运算,以及共轭复数的概念及应用,其中解答中熟练应用复数的除法运算的法则,以及熟记复数的共轭复数的概念是解答的关键,着重考查运算与求解能力.11.B解析:B【分析】 化简复数2222a a z i -+=+,根据复数z 是纯虚数,得到202a -=且202a +≠,即可求解.【详解】 由题意,复数()()()()2122211122ai i ai a a z i i i i +++-+===+--+, 因为复数z 是纯虚数,可得202a -=且202a +≠,解得2a =, 所以实数a 等于2.故选:B.【点睛】本题主要考查了复数的除法运算,以及复数的基本概念的应用,其中解答中熟记复数的运算法则,结合复数的基本概念求解是解答的关键,着重考查推理与运算能力. 12.A解析:A【分析】 根据1z =分析出z 在复平面内的轨迹方程,再根据12z i +-的几何意义以及圆外一点到圆上点的距离最小值求法求解出结果.【详解】因为|||i |1z x y =+==,所以221x y +=,即z 在复平面内表示圆O :221x y +=上的点;又|12i ||(1)(2)i |z x y +-=++-,所以|12i |z +-表示圆O 上的动点到定点(12)A -,的距离,所以min |12i |z +-为||1OA r -=,故选:A .【点睛】 关键点点睛:解答本题的关键是理解1z =对应的轨迹方程以及掌握12z i +-的几何意义,将复数模的最值问题转化为点到点的距离最值问题. 二、填空题13.【分析】确定复数对应点在第一象限旋转后在轴的正半轴上计算复数模得到答案【详解】对应的点为在第一象限逆时针旋转最小正角时对应的点在轴的正半轴上故纯虚数为故答案为:【点睛】本题考查了复数对应的点复数的旋解析:5i【分析】确定复数对应点在第一象限,旋转后在y 轴的正半轴上,计算复数模得到答案.【详解】34z i =+,对应的点为()3,4在第一象限,逆时针旋转最小正角时,对应的点在y 轴的正半轴上,5z ==,故纯虚数为5i . 故答案为:5i .【点睛】本题考查了复数对应的点,复数的旋转,意在考查学生的计算能力和综合应用能力. 14.【分析】设复数根据模的计算公式得到化简即可求解【详解】设复数则所以整理得即在复平面内对应的点的坐标的轨迹方程为故答案为:【点睛】本题主要考查了复数的模的运算以及复数的表示及应用其中解答中熟记复数的模 解析:20x y -+=【分析】设复数(,)z x yi x y R =+∈=简即可求解.【详解】设复数(,)z x yi x y R =+∈,则z =22(2)(2)z i x y i +-=++-==20x y -+=,即z 在复平面内对应的点的坐标(,)x y 的轨迹方程为20x y -+=.故答案为:20x y -+=.【点睛】本题主要考查了复数的模的运算,以及复数的表示及应用,其中解答中熟记复数的模的运算公式,准确运算是解答的关键,着重考查了计算能力.15.【分析】利用纯虚数的定义复数的运算法则即可求出【详解】解:为纯虚数且解得故答案为:【点睛】本题考查了复数的运算法则纯虚数的定义考查了推理能力与计算能力属于基础题解析:1i -【分析】利用纯虚数的定义、复数的运算法则即可求出.【详解】解:2(1)(1)z a a i =-++为纯虚数,210a ∴-=,且10a +≠,解得1a =20001112(1)111(1)(1)i i i i i i i ++-∴===-+++-. 故答案为:1i -.【点睛】本题考查了复数的运算法则、纯虚数的定义,考查了推理能力与计算能力,属于基础题. 16.【解析】【分析】计算复数根据结合模长公式即可解出实数的值【详解】由题:复数是虚数则即解得或(舍)所以故答案为:【点睛】此题考查复数的运算和模长的计算并求参数取值注意概念辨析一个复数是虚数则虚部不为零 解析:0【解析】【分析】计算复数2[(1)](1)(1)z a ai i a i ai a a i =++=++=-++,根据||1z =,结合模长公式即可解出实数a 的值.【详解】由题:复数2[(1)](1)(1)z a ai i a i ai a a i =++=++=-++,是虚数,则10a +≠,||1z ==,即2220a a +=,解得0a =或1a =-(舍)所以0a =.故答案为:0【点睛】此题考查复数的运算和模长的计算并求参数取值,注意概念辨析,一个复数是虚数,则虚部不为零,此题的易错点在于漏掉考虑为虚数的限制条件.17.3:4:5【分析】设对应的复数计算对应的复数从而得出再根据与的比值得出答案【详解】设表示的复数为表示的复数为则所以所以表示的复数为所以所以又所以又则所以的三边长之比为:故答案为:【点睛】本题考查了复 解析:3:4:5【分析】设AB 、AC 对应的复数,计算BC 对应的复数,从而得出AC BC ⊥,再根据AB 与AC 的比值得出答案.【详解】设AB 表示的复数为a bi +,AC 表示的复数为i c d +, 则444()(1)()()333a bi c di i c d d c i +=++=-++, 所以43a c d =-,43b dc =+, 所以BC 表示的复数为44()()33AC AB c a bd i d ci -=-+-=-,所以44(,)(,)033AC BC c d d c ⋅=⋅-=, 所以AC BC ⊥, 又B A C A z z AB AC z z -=-,所以45133AB i AC =+==, 又AC BC ⊥,则433BC AC ==, 所以ABC ∆的三边长之比为:3:4:5,故答案为:3:4:5.【点睛】本题考查了复数的运算,重点考查了复数模的运算,考查了推理能力,属中档题. 18.7【分析】利用复数乘法运算化简为的形式由此求得共轭复数进而求得共轭复数的虚部【详解】故虚部为【点睛】本小题主要考查复数乘法运算考查共轭复数的概念考查复数虚部的知识解析:7【分析】利用复数乘法运算化简z 为a bi +的形式,由此求得共轭复数,进而求得共轭复数的虚部.【详解】()()31217z i i i =--=-,17z i =+,故虚部为7.【点睛】本小题主要考查复数乘法运算,考查共轭复数的概念,考查复数虚部的知识.19.【分析】可设出复数z 通过复数相等建立方程组从而求得复数的模【详解】由题意可设由于所以因此解得因此复数的模为:【点睛】本题主要考查复数的四则运算相等的条件比较基础【分析】可设出复数z ,通过复数相等建立方程组,从而求得复数的模.【详解】由题意可设z a bi =+,由于003z z z z ⋅=+,所以 (32)(23)(33)(23)a b a b i a b i -++=+++,因此32332323a b a a b b -=+⎧⎨+=+⎩,解得132a b =⎧⎪⎨=-⎪⎩,因此复数z2=.【点睛】本题主要考查复数的四则运算,相等的条件,比较基础.20.4【解析】∵∴∵表示满足的最小正整数∴当时满足第一次成立∴故答案为 解析:4【解析】 ∵21(1)1211(1)(1)11i i i i i i i +++-===--++ ∴1()()1i a a i i+=- ∵()a z 表示满足1n z =的最小正整数n ∴当4n =时满足1n i =第一次成立∴()4a i =故答案为4.三、解答题21.(1)最大值为7,最小值为3.(2)见解析【分析】(1)根据题意22z -=,可知z 的轨迹为以(2,0)为圆心,以2为半径的圆,14z i +-表示点(,)x y 到(1,4)-的距离,结合几何意义求得结果;(2)根据4z z +为实数,列出等量关系式,求得结果. 【详解】(1)设z x yi =+,根据22z -=,所以有22(2)4x y -+=,所以z 的轨迹为以(2,0)为圆心,以2为半径的圆,所以14(1)(4)z i x y i +-=++-=其表示点(,)x y 到(1,4)-的距离,所以其最大值为圆心(2,0)到(1,4)-的距离加半径,最小值为圆心(2,0)到(1,4)-的距离减半径,27=23=;(2)222222444()44()()x yi x y z x yi x yi x y i z x yi x y x y x y-+=++=++=++-++++, 因为4z z+为实数,所以2240y y x y -=+,即224(1)0y x y-=+,所以0y =或224x y +=, 又因为22(2)4x y -+=,所以00x y =⎧⎨=⎩(舍去),40x y =⎧⎨=⎩,1x y =⎧⎪⎨=⎪⎩1x y =⎧⎪⎨=⎪⎩, 所以4z =或1z =+或1z =-.【点睛】该题考查的是有关复数的问题,涉及到的知识点有根据几何意义有模的最值,根据复数为实数求复数的值,属于简单题目.22.(1)m≠-2且m≠ -3; (2)m=3; (3)m=-2或m=-3.【分析】由已知条件分别得到(1)虚数:得到 256m m ++≠0;(2)纯虚数:得到 26m m --=0并且256m m ++≠0(3)实数;2 56m m ++=0;分别解之即可.【详解】复数()22656z m m m m i =--+++是:(1)虚数:得到 256m m ++≠0,解得m≠-2且m≠ -3;(2)纯虚数: 得到 26m m --=0并且256m m ++≠0解得m=3(3)实数:2 56m m ++=0解得m=-2或m=-3故答案为m≠-2且m≠ -3; m=3; m=-2或m=-3.【点睛】本题考查了复数的基本概念;关键是由题意,得到复数的实部和虚部的性质.23.1z =-或122z i =-± 【分析】由题意可知设复数cos sin z i αα=+,计算出2z ,2z ,1z ,代入2120z z z++<中可得cos 23cos 02sin cos sin 0ααααα+<⎧⎨+=⎩可求得复数z . 【详解】由题意可知:cos sin z i αα=+,则222cos sin 2sin cos z i αααα=-+,22cos 2sin z i αα=+,1cos sin i zαα=-, ∴212(cos23cos )(2sin cos sin )0z z i zααααα++=+++<, ∴cos 23cos 02sin cos sin 0ααααα+<⎧⎨+=⎩,即()cos 23cos 0sin 2cos 10αααα+<⎧⎨+=⎩,若sin 0α=,则cos21α=,由cos23cos 0αα+<得cos 1α=-,所以1z =-, 若1cos 2α=-,则1cos 2cos 23cos 02ααα=-+<,,得12z =-±, ∴1z =-或12z =-±. 【点睛】本题考查复数的计算,关键在于设出复数z 的三角形式进行运算,理解复数小于零的含义,属于中档题.24.(1)4m =-(2)3m ≥或1m ≤-且4m ≠-(3)1m =-或3m =【分析】(1)根据实数的定义,由实部中根式内部的代数式大于等于0,虚部等于0,列式求解; (2)根据虚数的定义,由实部中根式内部的代数式大于等于0,虚部不等于0,列式求解;(3)根据纯虚数的定义,由实部中根式内部的代数式等于0,虚部不等于0,列式即可求解.【详解】(1)由题意知22230280m m m m ⎧--≥⎨+-=⎩,所以4m =-, 故当4m =-时,复数z 为实数.(2)由题意得22230280m m m m ⎧--≥⎨+-≠⎩,即3124m m m m ≥≤-⎧⎨≠≠-⎩或且, 所以3m ≥或1m ≤-且4m ≠-,故当3m ≥或1m ≤-且4m ≠-时,z 为虚数.(3)由题意得20280m m =+-≠⎪⎩,所以1324m m m m =-=⎧⎨≠≠-⎩或且, 所以1m =-或3m =,故当1m =-或3m =时,复数z 为纯虚数.【点睛】本题考查复数的基本概念和复数的分类,根据复数的类型求参数,还涉及一元二次方程和一元二次不等式的解法,考查计算能力,是中档题.25.(1)1m =-+1m =-2)1m ≠-+1m ≠-1m ≠;(3)0m =或2m =-.【分析】(1)解221m m +-=0,1m ≠,即可得解;(2)虚部不为0,则该复数为虚数,则2210m m +-≠,1m ≠即可得解;(3)复数是纯虚数,则实部为0,虚部不为0,根据()20m m +=,2210m m +-≠,1m ≠即可得解.【详解】(1)z ∈R ,所以221m m +-=0,1m ≠,1m ==-所以,当1m =-+1m =--z ∈R ;(2)z 是虚数,则2210m m +-≠,1m ≠,当1m ≠-+1m ≠--1m ≠时,z 是虚数;(3)z 是纯虚数,()20m m +=,2210m m +-≠,1m ≠,所以0m =或2m =-时,z 是纯虚数.【点睛】此题考查复数的概念,根据复数的分类求解参数的取值,需要熟练掌握复数的概念,准确求解.26.(1)22z i =+或22z i =-;(2)()0,4.【分析】(1)由于z 为虚数,可设(z x yi x =+,y R ∈,0)y ≠,根据2z -为纯虚数,求得x 的值,再由42z z +-为实数求出y 的值,即得虚数z ; (2)由42z z +-为实数且0y ≠,可得22(2)4x y -+=,根据2204(2)y x =-->,求得x的范围,根据复数的模的定义,化简为4z -=的范围,即可得出|4|z -的取值范围.【详解】解:由于z 为虚数,可设(z x yi x =+,y R ∈,0)y ≠,(1)则22z x yi -=-+,由2z -为纯虚数,得2x =,2z yi ∴=+, 又因为42z z +-为实数, 则(442)242z yi y i R z yi y +=++=+-∈-, 得40y y-=,2y =±, 所以22z i =+或22z i =-. (2)2222(4442)4[]22(2)(2)x y z x yi x y i R z x yi x y x y -+=++=++-∈-+--+-+,因为42z z +-为实数, ∴2240(2)y y x y -=-+, 0y ≠,22(2)4x y ∴-+=,224(2)0y x =-->∴,则2(2)4x -<,解得:(0,4)x ∈,∴|4||4|z x yi -=+-由于(0,4)x ∈,则016416x <-<,所以04<<, 即0|4|4z <-<,所以|4|z -的取值范围为()0,4.【点睛】本题考查复数的基本概念,两个复数代数形式的除法以及复数求模,考查运算求解能力.。
武汉市必修第二册第二单元《复数》检测题(包含答案解析)
一、选择题1.12i 12i+=- A .43i 55-- B .43i 55-+ C .34i 55-- D .34i 55-+2.已知12,z z C ∈,121z z ==,12z z +=12z z -=( )A .0B .1CD .23.设i 为虚数单位,复数z 满足21i i z =-,则复数z 的共轭复数等于( ) A .1-i B .-1-i C .1+i D .-1+i4.已知复数23i -是方程220x px q ++=的一个根,则实数p ,q 的值分别是( ) A .12,26 B .24,26C .12,0D .6,8 5.设x ∈R ,则“1x =”是“复数()()211z x x i =-++为纯虚数”的( ) A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件 6.设i 是虚数单位,则2320192342020i i i i +++⋅⋅⋅+的值为( ) A .10101010i --B .10111010i --C .10111012i --D .10111010i - 7.若实系数一元二次方程20z z m ++=有两虚数根αβ、,且3αβ=-,那么实数m 的值是( )A .52B .1C .1-D .52- 8.已知i 为虚数单位,(1+i )x =2+yi ,其中x ,y ∈R ,则|x +yi |=A .B .2C .4 D9.设复数z 满足()1i i z +=,则z =( )A .2B .12CD .2 10.在下列命题中,正确命题的个数是( )①两个复数不能比较大小;②复数1z i =-对应的点在第四象限; ③若22(1)(32)x x x i -+++是纯虚数,则实数1x =±;④若221223()()0z z z z -+-=,则123z z z ==.A .0B .1C .2D .3 11.已知复数z 满足()211i i z +=-(i 为虚数单位),则复数z =( )A .1i +B .1i -+C .1i -D .1i --12.已知复数z 满足()2z i i i -=+,则z =( )A B C D二、填空题13.已知复数z 满足||1z =,则|i ||i |z z ++-的最大值是__________.14.设复数z 满足1z =,且使得关于x 的方程2230zx zx ++=有实根,则这样的复数z 的和为______.15.计算:8811i i -⎛⎫-= ⎪+⎝⎭______________.16.设i 为虚数单位,复数z 满足()()21z i +=,则z =______. 17.已知复数z 满足等式|1|1z i --=(i 为虚数单位),则|3|z -的最大值为________. 18.在复变函数中,自变量z 可以写成(cos sin )i z r i r e θθθ=⨯+=⨯,其中||r z =,θ是z 的辐角.点(),x y 绕原点逆时针旋转θ后的位置可利用复数推导,点()2,3A 绕原点逆时针旋转3arcsin 5得A '_______;复变函数ln (,0)z z C z ω=∈≠,i ωπ=,z =_______.19.设b R ∈,i 是虚数单位,已知集合{}|2A z z i =-≤,{}11|1,B z z z bi z A ==++∈,若A B ⋂≠∅,则b 的取值范围是________. 20.定义运算a c ad bcb d =-,复数z 满足i 1i 1i z =+,z 为z 的共轭复数,则z =___________. 三、解答题21.已知复数()212(24)z a a i =--+,()221z a a i =-+,12z z z =-(i 为虚数单位,a R ∈).(1)若复数12z z z =-为纯虚数,求12z z ⋅的值;(2)若1z z i +=-,求z i +的值.22.已知复数()()()121z m m m i =-++- (m R ∈,i 为虚数单位)(1)若z 是纯虚数,求实数m 的值;(2)若2m =,设1z i a bi z +=+- (,a b ∈R ),试求+a b . 23.(1)求复数2320191i i i i z i++++=+的值.(2)复数()213105z a i a =+-+,()22251z a i a=+--,若12z z +是在复平面内对应的点在第三象限,求实数a 的取值范围. 24.已知复数z 使得2z i R +∈,2z R i∈-,其中i 是虚数单位. (1)求复数z 的共轭复数z ;(2)若复数()2z mi +在复平面上对应的点在第四象限,求实数m 的取值范围. 25.写出下列复数的实部与虚部,并指出哪些是实数,哪些是虚数,哪些是纯虚数.4,23i -,0,12i 23-+,5+,7i . 26.i 是虚数单位,且2(1)2(5)3i i a bi i-+++=+(,a b ∈R ). (1)求,a b 的值;(2)设复数1()z yi y R =-+∈,且满足复数()a bi z +⋅在复平面上对应的点在第一、三象限的角平分线上,求||z .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:根据复数除法法则化简复数,即得结果. 详解:212(12)341255i i i i ++-+==∴-选D. 点睛:本题考查复数除法法则,考查学生基本运算能力.2.B解析:B【分析】利用复数加法、减法和模的运算化简已知条件,由此求得12z z -.【详解】设12,z a bi z c di =+=+,则()()12z z a c b d i +=+++,()()12z z a c b d i -=-+-. 依题意得:22221,1a b c d +=+=,12z z +=⇒()()223a c b d +++=⇒()222223a b c d ac bd +++++=⇒()21ac bd +=.所以12z z -==1==.故选:B【点睛】本小题主要考查复数运算,属于中档题. 3.B解析:B【分析】利用复数的运算法则解得1z i =-+,结合共轭复数的概念即可得结果.【详解】∵复数z 满足21i i z =-,∴()()()2121111i i i z i i i i +===---+, ∴复数z 的共轭复数等于1i --,故选B.【点睛】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.4.A解析:A【分析】复数23i -是方程的根,代入方程,整理后利用复数的相等即可求出p,q 的值.【详解】因为23i -是方程220x px q ++=的一个根,所以22(23)(23)0i p i q -+-+=, 即(224)3100p i p q --++=,所以22403100p p q -=⎧⎨-++=⎩,解得12,26p q ==,故选A. 【点睛】本题主要考查了复数方程及复数相等的概念,属于中档题.5.A解析:A【解析】分析:先化简“复数()()211z x x i =-++为纯虚数”,再利用充要条件的定义判断. 详解:因为复数()()211z x x i =-++为纯虚数, 所以210, 1.10x x x ⎧-=∴=⎨+≠⎩ 因为“x=1”是“x=1”的充要条件,所以“1x =”是“复数()()211z x x i =-++为纯虚数”的充分必要条件.故答案为A.点睛:(1)本题主要考查纯虚数的概念,考查充要条件的判断,意在考查学生对这些知识的掌握水平.(2) 复数(,)z a bi a b R =+∈为纯虚数0,0a b =⎧⇔⎨≠⎩不要把下面的b≠0漏掉了. 6.B解析:B【分析】利用错位相减法、等比数列的求和公式及复数的周期性进行计算可得答案.【详解】解:设2320192342020S i i i i =+++⋅⋅⋅+,可得:24201920320023420192020iS i i i i i =++++⋅⋅⋅++,则24201923020(1)22020i S i i i i ii -=++++⋅⋅⋅+-, 2019242019202023020(1)(1)202020201i i i S i i i i i i i i i i--=+++++⋅⋅⋅+-+-=-, 可得:2(1)(1)(1)20202020202112i i i i i S i i i i ++-=+-=+-=-+-, 可得:2021(2021)(1)1011101012i i i S i i -+-++===---, 故选:B.【点睛】本题主要考查等比数列的求和公式,错位相减法、及复数的乘除法运算,属于中档题. 7.A解析:A【分析】根据实系数方程有两虚数根,利用求根公式解得:z =,由此可得αβ-的m 表示形式,根据3αβ-=即可求得m 的值.【详解】因为20z z m ++=,所以z =,又因为3αβ-=,所以3=,所以419m -=,解得:52m =. 故选A.【点睛】 实系数一元二次方程()200++=≠ax bx c a ,有两虚根为,αβ,注意此时的240b ac ∆=-<,因此在写方程根时应写成:2b x -±=而不能写成了x = 8.A解析:A【解析】【分析】首先求得x ,y 的值,然后求解复数的模即可.【详解】由题意可得:2x xi yi +=+,结合复数的充分必要条件可知:2x x y =⎧⎨=⎩,则2x y ==,22x yi i +=+==本题选择A 选项.【点睛】本题主要考查复数相等的充分必要条件,复数模的求解等知识,意在考查学生的转化能力和计算求解能力. 9.A解析:A【解析】由()1i z i +=,得()()()i 1i i 11i 1i 1i 1i 22z -=+++-==,2z ∴==故选A . 10.A解析:A【解析】对于选项①,不能说两个复数不能比较大小,如复数3和4就可比较大小,所以该命题是错误的.对于选项②,复数1z i =-对应的点在第二象限,所以该命题是错误的.对于选项③,若()()22132x x x i -+++是纯虚数,则21x -=0且232x x ++≠0,所以x=1,所以该命题是错误的. 对于选项④,若()()2212230z z z z -+-=,可以123,0,1z i z z ===, 所以该命题是错误的. 故选A. 11.B解析:B【解析】因为()211i i z+=-,所以22(1)112i i z i i i ==+=-- ,选B. 12.A解析:A【分析】首先求得复数z ,然后求解其共轭复数并确定模即可.【详解】 由题意可得:2211i z i i i i i +=+=-++=-,则1,z i z =+=故选A .【点睛】本题主要考查复数的运算法则,复数的模的计算等知识,意在考查学生的转化能力和计算求解能力. 二、填空题13.【分析】设则化简可得;然后分类讨论去绝对值在根据三角函数的性质即可求出结果【详解】设则当时所以的最大值是;当时所以的最大值是;当时所以综上的最大值是故答案为:【点睛】本题考查复数的代数表示法及其几何解析:【分析】设cos sin (,0)2z i θθθπ=+≤<,则化简可得cos cos 2222z i z i θθθθ++-=++-;然后分类讨论去绝对值,在根据三角函数的性质,即可求出结果.【详解】设cos sin (,0)2z i θθθπ=+≤< .则z i z i ++-===cos cos 2222θθθθ=++-. 02θπ≤<,02θπ∴≤<.当0,24θπ⎡⎤∈⎢⎥⎣⎦时,0sin cos 1222θθ≤≤≤≤,所以2z i z i θ+-=+,z i z i ++-的最大值是当3,244θππ∈⎛⎤ ⎥⎝⎦时,cos sin 12222θθ-≤<<≤,所以2z i z i θ++-=,z i z i ++-的最大值是;当3,24θππ∈⎛⎫ ⎪⎝⎭时,1cos sin 2222θθ-<<-<<,所以sin cos 22θθ<,2z i z i θ++-=-,z i z i ++-<.综上,z i z i ++-的最大值是故答案为:【点睛】本题考查复数的代数表示法及其几何意义,考查复数模的求法,训练了利用三角函数求最值,是中档题. 14.【分析】首先设(且)代入方程化简为再分和两种情况求验证是否成立【详解】设(且)则原方程变为所以①且②;(1)若则解得当时①无实数解舍去;从而此时或3故满足条件;(2)若由②知或显然不满足故代入①得所 解析:74- 【分析】首先设z a bi =+ (a ,b ∈R 且221a b +=),代入方程,化简为()()222320ax ax bx bx i +++-=,再分0b =和0b ≠两种情况求,a x 验证是否成立.【详解】设z a bi =+,(a ,b ∈R 且221a b +=) 则原方程2230zx zx ++=变为()()222320ax ax bx bx i +++-=.所以2230ax ax ++=,①且220bx bx -=,②;(1)若0b =,则21a =解得1a =±,当1a =时①无实数解,舍去;从而1a =-,2230x x --=此时1x =-或3,故1z =-满足条件;(2)若0b ≠,由②知,0x =或2x =,显然0x =不满足,故2x =,代入①得38a =-,8b =±,所以83z =-±.综上满足条件的所以复数的和为3371884⎛⎫⎛⎫-+-++--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.故答案为:74-【点睛】 思路点睛:本题考查复系数二次方程有实数根问题,关键是设复数z a bi =+后代入方程,再进行整理转化复数的代数形式,注意实部和虚部为0,建立方程求复数z .15.【分析】先利用复数的运算法则将和化简然后计算出及的值然后得出的值【详解】故答案为:解析:0【分析】 先利用复数的运算法则将11i i -+和2化简,然后计算出811i i -⎛⎫ ⎪+⎝⎭及8的值,然后得出8811i i -⎛⎫- ⎪+⎝⎭的值. 【详解】()()()()8422848811111011i i i i i i i ⎡⎤⎡⎤-=-=--=-=⎢⎥⎢⎥+-⎢-⎛⎫- ⎪+⎝⎭⎥⎥⎢⎣⎦⎣⎦. 故答案为:0.16.【分析】根据复数的除法运算化简求得再结合复数的模的运算公式即可求解【详解】由则所以故答案为:【点睛】本题主要考查了复数的除法运算以及复数的模的运算其中解答中熟记复数的运算法则以及复数模的计算公式是解 解析:2【分析】根据复数的除法运算,化简求得1z =-,再结合复数的模的运算公式,即可求解.【详解】由()222(2i i =-+=-,则21z ====-,所以12z =-=.故答案为:2.【点睛】本题主要考查了复数的除法运算,以及复数的模的运算,其中解答中熟记复数的运算法则,以及复数模的计算公式是解答的关键,着重考查推理与运算能力.17.【分析】根据复数的几何意义得表示以为圆心1为半径的圆表示复数所对应的点到点的距离然后再利用点与圆的位置关系求解【详解】解:根据复数的几何意义得表示以为圆心1为半径的圆表示复数所对应的点到点的距离点到 解析:51+【分析】根据复数的几何意义得|1|1z i --=表示以()1,1C 为圆心,1为半径的圆,|3|z -表示复数z 所对应的点P 到点()3,0Q 的距离,然后再利用点与圆的位置关系求解.【详解】解:根据复数的几何意义得|1|1z i --=表示以()1,1C 为圆心,1为半径的圆, |3|z -表示复数z 所对应的点P 到点()3,0Q 的距离,点Q 到圆心C 的距离为5CQ =所以|3|z -的最大值为51CQ r +=.51.【点睛】本题主要考查复数的几何意义,还考查了数形结合的思想方法,属于基础题. 18.【分析】点对应的复数其中则对应的复数其中利用两角和差公式求得的坐标;由则化简可得【详解】点对应的复数其中则对应的复数其中则则故的坐标为;由则得故答案为:;【点睛】本题考查了复数的运算结合考查了两角和解析:118(,)55-1- 【分析】点A 对应的复数13(cos sin )z i αα=+,其中213313cos αα==A '对应的复数13[cos()sin()]z i αβαβ'=+++,其中34sin ,cos 55ββ==,利用两角和差公式求得A '的坐标;由ln (,0)z z C z ω=∈≠,i ωπ=,则i z e π=cos sin i ππ=+,化简可得z .【详解】点A 对应的复数13(cos sin )z i αα=+,其中13313cos ,sin 1313αα==,则A '对应的复数)sin()]z i αβαβ'=+++,其中34sin ,cos 55ββ==,则cos()cos cos sin sin 65αβαβαβ+=-=-,sin()sin cos cos sin 65αβαβαβ+=+=,则118)55z i '=+=-+,故A '的坐标为118(,)55-; 由ln (,0)z z C z ω=∈≠,i ωπ=,则i z e π=cos sin i ππ=+,得1z =-. 故答案为:118(,)55-;1- 【点睛】本题考查了复数的运算,结合考查了两角和的正弦、余弦公式,还考查了学生阅读理解能力,分析能力,运算能力,属于中档题. 19.【解析】【分析】根据复数的代数表示法及其几何意义可知集合A 表示的点的轨迹是以(01)为圆心半径为2的圆及内部;集合B 表示圆的圆心移动到了(11+b );两圆面有交点即可求解b 的取值范围【详解】由题意集解析:b ≤≤【解析】【分析】根据复数的代数表示法及其几何意义可知集合A 表示的点的轨迹是以(0,1)为圆心,半径为2的圆及内部;集合B 表示圆的圆心移动到了(1,1+b );两圆面有交点即可求解b 的取值范围.【详解】由题意,集合A 表示的点的轨迹是以(0,1)为圆心,半径为2的圆及内部;集合B 表示点的轨迹为以(1,1+b )为圆心,半径为2的圆及内部∵A∩B≠∅,说明,两圆面有交点;∴4≤.可得:b ≤≤,故答案:b ≤≤,【点睛】本题考查复数几何意义,圆与圆的位置关系,体现了数学转化思想方法,明确A.B 集合的意义是关键,是中档题20.2+i 【解析】根据题意得到=故得到z=2-i =2+i 故答案为2+i解析:2+i【解析】 根据题意得到1z i zi i i =-=1i +,故得到z=2-i ,z =2+i.故答案为2+i.三、解答题21.(1)123626z z i ⋅=--;(2)1或4. 【分析】 (1)由复数12z z z =-为纯虚数,可得2220230a a a a ⎧--=⎨--≠⎩,从而可求出a 的值,进而可求出12z z ⋅的值;(2)由1z z i +=-,可得复数z 在直线y x =-上,所以22232a a a a --=-++,从而可求出a 的值,进而可得z i +的值【详解】解:(1)()()22122241()z z a a a a i a R -=--+--++∈为纯虚数, ∴2220230a a a a ⎧--=⎨--≠⎩,解得2a =, ∴128z i =-,225z i =-,∴12(28)(25)3626z z i i i ⋅=-⋅-=--.(2)()()2212223z z z a a a a i =-=--+--, ∵1z z i +=-,∴复数z 对应的点22(2,23)a a a a ----在直线y x =-上,即22232a a a a --=-++,解得1a =-或52a =. 当1a =-时,0z =,1z i +=;当52a =时,7744z i =-,73444z i i +=-=. 【点睛】此题考查复数的有关概念,考查复数的模,考查计算能力,属于中档题22.(1)2m =-;(2)85【解析】分析:(Ⅰ)先把复数 整理成z a bi =+的形式,由虚部等于0得到实数m 的值;(Ⅱ)把复数z i z i +-整理成a bi +的形式,根据复数相等的条件得到a b 、的值进而求出a b +.详解:(Ⅰ)若z 是纯虚数,则()()m 1m 2010m ⎧-+=⎨-≠⎩,()()m 1m 20,10,m ⎧-+=⎨-≠⎩解得m 2=-.(Ⅱ)若m 2=,则z 4i =+.∴()()()()42i 3i 4i i 42i 71a bi i 4i 13i 3i 3i 55+-++++====++-++- ()()()()42i 3i 4i i 42i a bi 4i 13i 3i 3i +-++++====+-++- 71 i 55+, ∴7a 5=,1b 5=,∴8a b 5+=. 点睛:本题考查纯虚数和复数相等的概念,以及复数的四则运算.对于复数要掌握常规运算技巧和常规思路,其次要熟记复数的实部、虚部、模、几何意义、共轭复数等知识点.23.(1)1122z i =-+;(2)()1,3 【分析】(1)根据4142434,1,,1n n n n i i i i i i +++==-=-=得414243442340,n n n n i i i i i i i i n N +++++++=+++=∈,进而得2311122i i i z i i ++==-++; (2)由题得()()()2121321551a z z a a i a a -+=++-+-,再结合题意,根据复数的几何意义得()()2130512150a a a a a -⎧<⎪+-⎨⎪+-<⎩,解不等式组即可得答案. 【详解】解:(1)由于4142434,1,,1n n n n ii i i i i +++==-=-=, 所以414243442340,n n n n i i i i i i i i n N +++++++=+++=∈,而201945043=⨯+,所以()232019231111111222i i i i i i i i z i i i i --++++++-=====-++++; (2)()()()()22123232102510255151z z a i a i a a i a a a a ⎛⎫⎡⎤+=+-++-=++-+- ⎪⎣⎦+-+-⎝⎭()()()21321551a a a i a a -=++-+-, 因为12z z +在复平面内对应的点在第三象限,所以()()2130512150a a a a a -⎧<⎪+-⎨⎪+-<⎩,解不等式组得:13a <<. 故实数a 的取值范围是()1,3【点睛】本题考查复数的运算,复数的几何意义求参数,考查运算能力,是中档题.24.(1)42i +;(2)()2,2-.【分析】(1)根据2z i R +∈、2z R i∈-,结合复数的加法、除法运算即可求出z ,进而由共轭复数的概念求得z ;(2) 复数()2z mi +在复平面上对应的点在第四象限,即对应复数的实部、虚部都小于0,解不等式即可求得m 的范围【详解】(1)设(),z x yi x y R =+∈,则()22z i x y i +=++∵2z i R +∈∴2y =- 又22242255z x i x x i R i i -+-==+∈--, ∴4x = 综上,有42z i =- ∴42z i =+(2)∵m 为实数,且()()()()2224212482z mi m i m m m i +=+-=+-+-⎡⎤⎣⎦ ∴由题意得()21240820m m m ⎧+->⎪⎨-<⎪⎩,解得22m -<< 故,实数m 的取值范围是()2,2-【点睛】本题考查了复数,利用复数的四则运算及共轭复数的概念求复数,另外依据复数所处的象限求参数范围25.见解析【分析】形如(,)a bi a b R +∈的数叫复数,其中,a b 分别是它的实部和虚部,据此可得到各个复数的实部和虚部;(,)a bi a b R +∈,若0b =,则a bi +为实数,若0b ≠,则a bi +是虚数,若0,0a b =≠,则a bi +为纯虚数.【详解】4,23i -,0,1122-+i ,5+,7i 的实部分别是4,2,0,12-,5,0;4,23i -,0,1122-+i ,5+,7i 的虚部分别是0,3-,0,127. 其中,4,0是实数;23i -,1122-+i ,5,7i 是虚数; 7i 是纯虚数.【点睛】该题主要考查的是复数的基本概念,解答该题的关键是熟悉复数的概念.26.(1)3,1a b ==-(2【解析】分析:(1)由复数的四则运算可化简复数,再由复数相等可知实部与虚部都要相等,可求得,a b .(2)由复数的乘法运算可化简复数式为标准式,再由复数在第一、三象限的角平分线上可知复数实部等于虚部,求得参数y,再由复数模公式求得复数模.详解:(1)∵()()21253i i a bi i -+++=+ 1033i i==-+ , 又∵,a b R ∈ ∴3,1a b ==-(2)()()()31a bi z i yi +⋅=--+()()331y y i =-+++由题意可知:331y y -+=+,解得2y =-∴z ==点睛:本题主要考查复数四则运算与乘方综合运算和复数相等,及复数与坐标对应关系,及复数的模.。
(人教版)武汉市必修第二册第二单元《复数》检测卷(含答案解析)
一、选择题1.在复平面内与复数21iz i=+所对应的点关于虚轴对称的点为A ,则A 对应的复数为( ) A .1i --B .1i -C .1i +D .1i -+2.设()()2225322z t t t t i =+-+++,其中t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限 B .z 一定不为纯虚数 C .z 对应的点在实轴的下方D .z 一定为实数3.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=( )A .-16B .0C .16D .324.如果复数z 满足|||i 2|i z z ++-=,那么|1|z i ++的最小值是( ) A .1 B 2C .2D5.设x ∈R ,则“1x =”是“复数()()211z x x i =-++为纯虚数”的( )A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件6.已知复数122z =--,则z z +=( )A .12-- B .12-+ C .12+ D .122- 7.,A B 分别是复数12,z z 在复平面内对应的点,O 是原点,若1212z z z z +=-,则OAB ∆一定是A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形8.若11z z -=+,则复数z 对应的点在( ) A .实轴上B .虚轴上C .第一象限D .第二象限9.若复数z 满足()11z i i --⋅=+,则z =( )A BC .D .310.设i 是虚数单位,则2320192342020i i i i +++⋅⋅⋅+的值为( )A .10101010i --B .10111010i --C .10111012i --D .10111010i -11.已知i 是虚数单位,复数z 满足()341z i i +=+,则z 的共轭复数在复平面内表示的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限12.已知复数Z 满足()13Z i i +=+,则Z 的共轭复数为( ) A .2i +B .2i -C .2i -+D .2i --二、填空题13.设z 为复数,且1z =,当23413z z z z ++++取得最小值时,则此时复数z =______.14.若i 为虚数单位,则计232020232020i i i i ++++=___________.15.下列命题(i 为虚数单位)中:①已知,a b ∈R 且a b =,则()()a b a b i -++为纯虚数;②当z 是非零实数时,12z z+≥恒成立;③复数3(1)z i =-的实部和虚部都是-2;④如果|2||2|a i i +<-+,则实数a 的取值范围是11a -<<;⑤复数1z i =-,则13122z i z +=+;其中正确的命题的序号是__________. 16.已知11z i --=,则z i +的取值范围是_____________;17.设1x ,2x 是实系数一元二次方程20ax bx c ++=的两个根,若1x 是虚数,212x x 是实数,则24816321111112222221x x x x x x S x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭______.18.已知i 为虚数单位,则(1)(23i)(32i)-+-+=________________; (2)(4i)(23i)+--+=________________;(3)已知复数13i z b =-,22i z a =-+,其中a ,b R ∈,若复数12z z z =+,且复数z 对应的点在第三象限,则+a b 的取值范围为________________;(4)在复平面内,复数1z 对应的点为(2,2)-,复数2z 对应的点为(1,1)-,若复数21z z z =-,则复数z 对应的点在第________________象限.19.复数(1)(z i i i =-为虚数单位)的共轭复数为________.20.已知复数z 满足(12)43i z i +=+,则z = _________________;三、解答题21.复数1z 、2z 满足120z z ⋅≠,1212||||z z z z +=-,证明:21220z z <.22.计算下列各式: (1)32322323i ii i+-+-+; (2)()3111ii i i+++-;23.(1)已知z C ∈,解关于z 的方程(3)13z i z i -⋅=+;(2)已知32i +是关于x 的方程220x ax b ++=在复数集内的一个根,求实数a ,b 的值. 24.已知复数z 满足|3+4i|+z=1+3i. (1)求z ;(2)求()()2134i i z++的值. 25.写出下列复数的实部与虚部,并指出哪些是实数,哪些是虚数,哪些是纯虚数.4,23i -,0,12i 23-+,5+,7i .26.已知复数z =22761a a a -+-2(56)i a a +--,a R ∈. (1)若复数z 为实数,求实数a 的值;(2)若复数z 为虚数,求实数a 的取值范围; (3)是否存在实数a ,使得复数z 为纯虚数?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据复数的运算法则求出1z i =+,即可得到其对应点关于虚轴对称点的坐标,写出复数. 【详解】 由题()()()2122211112i i i i z i i i i -+====+++-,在复平面对应的点为(1,1), 关于虚轴对称点为(-1,1),所以其对应的复数为1i -+. 故选:D 【点睛】此题考查复数的几何意义,关键在于根据复数的乘法除法运算准确求解,熟练掌握复数的几何意义.2.C解析:C 【分析】根据()2222110t t t ++=++>,2253t t +-可正可负也可为0,即可判定. 【详解】()2222110t t t ++=++>,z ∴不可能为实数,所以D 错误;z ∴对应的点在实轴的上方,又z 与z 对应的点关于实轴对称,z 对应的点在实轴的下方,所以C 正确;213,25302t t t -<<+-<,z 对应的点在第二象限,所以A 错误;21,25302t t t =+-=,z 可能为纯虚数,所以B 错误; ∴C 项正确.故选:C 【点睛】此题考查复数概念的辨析,关键在于准确求出实部和虚部的取值范围.3.B解析:B 【分析】先求出(4,4)OA =,(4,4)OB =-,再利用平面向量的数量积求解. 【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =,(4,4)OB =-, ∴444(4)0OA OB ⋅=⨯+⨯-=. 故选B 【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.4.A解析:A 【分析】直接利用复数模的几何意义求出z 的轨迹.然后利用点到直线的距离公式求解即可. 【详解】:∵|z +i|+|z -i|=2∴点Z 到点A (0,-1)与到点B (0,1)的距离之和为2. ∴点Z 的轨迹为线段AB .而|z +1+i|表示为点Z 到点(-1,-1)的距离. 数形结合,得最小距离为1 故选A . 【点睛】本题只要弄清楚复数模的几何意义,就能够得到解答.5.A解析:A 【解析】分析:先化简“复数()()211z x x i =-++为纯虚数”,再利用充要条件的定义判断.详解:因为复数()()211z x x i =-++为纯虚数,所以210, 1.10x x x ⎧-=∴=⎨+≠⎩ 因为“x=1”是“x=1”的充要条件,所以“1x =”是“复数()()211z x x i =-++为纯虚数”的充分必要条件.故答案为A.点睛:(1)本题主要考查纯虚数的概念,考查充要条件的判断,意在考查学生对这些知识的掌握水平.(2) 复数(,)z a bi a b R =+∈为纯虚数0,0a b =⎧⇔⎨≠⎩不要把下面的b≠0漏掉了. 6.C解析:C 【解析】分析:首先根据题中所给的复数z ,可以求得其共轭复数,并且可以求出复数的模,代入求得12z z +=+,从而求得结果.详解:根据122z =--,可得12z =-+,且1z ==,所以有1112222z z +=-++=+,故选C.点睛:该题考查的是有关复数的问题,涉及到的知识点有复数的共轭复数、复数的模、以及复数的加法运算,属于基础题目.7.C解析:C 【解析】因为1212z z z z +=-,所以22||OA OB OA OB OA OB OA OB +=-∴+=- , 因此0OA OB OA OB ⋅=∴⊥ ,即OAB 一定是直角三角形,选C.8.B解析:B 【分析】首先分析题目,设z x yi =+,将其代入11z z -=+进行化简可得0x =,从而可得结论.【详解】设z x yi =+,则11x yi x yi +-=++, 即()()222211x y x y -+=++, 解得0x =,所以z yi =,它对应的点在虚轴上. 故选B. 【点睛】本题主要考查复数的模以及复数的几何意义,属于中档题.9.A解析:A 【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解. 【详解】由()11z i i --⋅=+,得()()21111i i i z i i i +-+--===--,则2z i =-+,∴z ==故选:A 【点睛】本题主要考查了复数的除法运算,复数的模的运算,属于中档题.10.B解析:B 【分析】利用错位相减法、等比数列的求和公式及复数的周期性进行计算可得答案. 【详解】解:设2320192342020S i i i i =+++⋅⋅⋅+,可得:24201920320023420192020iS i i i i i =++++⋅⋅⋅++,则24201923020(1)22020i S i i i i ii -=++++⋅⋅⋅+-, 2019242019202023020(1)(1)202020201i i i S i i i i i iii i i--=+++++⋅⋅⋅+-+-=-,可得:2(1)(1)(1)20202020202112i i i i i S i i i i ++-=+-=+-=-+-,可得:2021(2021)(1)1011101012i i i S i i -+-++===---, 故选:B. 【点睛】本题主要考查等比数列的求和公式,错位相减法、及复数的乘除法运算,属于中档题.11.A解析:A 【分析】利用复数的运算法则、共轭复数的定义、几何意义即可得出. 【详解】复数z 满足()341z i i +=+,∴()()()()3434134z i i i i +-=+-, ∴257z i =-,∴712525z i =-. ∴712525z i =+. 则复平面内表示z 的共轭复数的点71,2525⎛⎫⎪⎝⎭在第一象限. 故选:A . 【点睛】此题考查复数的运算和几何意义,涉及共轭复数概念辨析,关键在于熟练掌握运算法则,根据几何意义确定点的位置.12.A解析:A 【分析】根据复数的运算法则得()()()()31242112i i i Z ii i +--===-+--,即可求得其共轭复数.【详解】由题:()13Z i i +=+,所以()()()()31242112i i i Z ii i +--===-+--,所以Z 的共轭复数为2i +. 故选:A 【点睛】此题考查求复数的共轭复数,关键在于准确求出复数Z ,需要熟练掌握复数的运算法则,准确求解.二、填空题13.【分析】设复数的辐角为将用表示出来再利用二倍角公式二次函数性质求最小值可得与的值即可得复数【详解】设复数的辐角为所以所以故答案为:【点睛】本题主要考查了复数的三角形形式涉及三角恒等变换及二次函数性质解析:144-±【分析】设复数z 的辐角为θ,将23413z z z z ++++用θ表示出来,再利用二倍角公式,二次函数性质求最小值,可得cos θ与sin θ的值,即可得复数z . 【详解】设复数z 的辐角为θ,23413z z z z ++++==2cos22cos 3θθ=++ 24cos 2cos 1θθ=++ 21334cos 444θ⎛⎫=++≥ ⎪⎝⎭所以1cos 4θ=-,sinθ= 所以14z=-±, 故答案为:14- 【点睛】本题主要考查了复数的三角形形式,涉及三角恒等变换及二次函数性质,属于中档题.14.【分析】设两边乘以相减结合等比数列的求和公式和复数的乘除运算法则计算可得所求和【详解】设上面两式相减可得则故答案为:【点睛】本题考查数列的求和方法:错位相减法以及复数的运算考查等比数列的求和公式以及 解析:10101010i -【分析】设232020232020S i i i i =+++⋯+,两边乘以i ,相减,结合等比数列的求和公式和复数的乘除运算法则,计算可得所求和. 【详解】设232020232020S i i i i =+++⋯+, 2342021232020iS i i i i =+++⋯+,上面两式相减可得,2320202021(1)2020i S i i i i i -=+++⋯+-20202021(1)(11)20202020202011i i i i i i i i--=-=-=---,则(1)202020201010101012i i i S i i +=-=-=--. 故答案为:10101010i -. 【点睛】本题考查数列的求和方法:错位相减法,以及复数的运算,考查等比数列的求和公式,以及化简运算能力,属于中档题.15.②③④【分析】①当时不是纯虚数;②根据基本不等式的性质知恒成立;③化简复数得的实部和虚部都是;④根据模长公式得关于的不等式求解即可;⑤根据复数代数运算法则化简计算即可【详解】对于①且若时则不是纯虚数解析:②③④ 【分析】 ①当0ab 时,()()0a b a b i -++=不是纯虚数;②根据基本不等式的性质知1||2z z+恒成立; ③化简复数z ,得z 的实部和虚部都是2-; ④根据模长公式得关于a 的不等式,求解即可; ⑤根据复数代数运算法则,化简计算即可. 【详解】对于①,a ,b R ∈且a b =,若0ab 时,则()()a b a b i -++不是纯虚数,①错误;对于②,当z 是非零实数时,根据基本不等式的性质知1||2z z+恒成立,②正确; 对于③,复数3(1)22z i i =-=--,z ∴的实部和虚部都是2-,③正确;对于④,如果|2||2|a i i +<-+,则2441a +<+,解得11a -<<,所以实数a 的取值范围是11a -<<,④正确;对于⑤,复数1z i =-,则1131(1)122z i i z i +=+-=--,∴⑤错误. 综上,正确的命题的序号是②③④. 故答案为:②③④. 【点睛】本题考查复数的概念与应用问题,考查逻辑推理能力,是综合题.16.【分析】利用复数的几何意义求解表示复平面内到点距离为1的所有复数对应的点表示复平面内到点的距离结合两点间距离公式可求范围【详解】因为在复平面内表示复平面内到点距离为1的所有复数对应的点即复数对应的点解析:1]【分析】利用复数的几何意义求解,11z i --=表示复平面内到点(1,1)距离为1的所有复数对应的点,z i +表示复平面内到点(0,1)-的距离,结合两点间距离公式可求范围. 【详解】因为在复平面内,11z i --=表示复平面内到点(1,1)距离为1的所有复数对应的点,即复数z 对应的点都在以(1,1)为圆心,半径为1的圆上;z i+表示复平面内的点到点(0,1)-11 =,11 =,所以z i+的取值范围是1].故答案为:1]-.【点睛】结论点睛:本题考查复数的模,复数的几何意义,复数的几何意义是复平面内两点之间的距离公式,若z x yi=+,则z a bi--表示复平面内点(,)x y与点(,)a b之间的距离,z a bi r--=表示以(,)a b为圆心,以r为半径的圆上的点.17.-2【分析】设(s)则则利用是实数可得于是取则代入化简即可得出【详解】设(s)则则∵是实数∴∴∴∴∴取则∴则故答案为:【点睛】本题考查了实系数一元二次方程的虚根成对定理考查了复数的概念考查了复数的性解析:-2【分析】设1ix s t=+(s,t∈R,0t≠).则2ix s t=-.则122x x s+=,2212x x s t=+.利用212xx是实数,可得223s t=.于是122x x s+=,2212x x s t=+.2112210x xx x⎛⎫++=⎪⎝⎭,取12xxω=,则210ωω++=,31ω=.代入化简即可得出.【详解】设1ix s t=+(s,t∈R,0t≠).则2ix s t=-.则122x x s+=,2212x x s t=+.∵()223223122222i33iis tx s st s t tx s t s t s t+--==+-++是实数,∴2330s t t-=,∴223s t=.∴122x x s+=,2212x x s t=+.∴()22221212121242s x x x x x x x x=+=++=,∴122110x xx x++=,取12xxω=,则210ωω++=,∴31ω=.则2481632248163211111122222211x x x x x x S x x x x x x ωωωωωω⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++=++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 220ωωωω=++++2=-.故答案为:2-.【点睛】本题考查了实系数一元二次方程的虚根成对定理,考查了复数的概念,考查了复数的性质210ωω++=,属于中档题.18.四【分析】(1)利用复数的加法法则计算即可;(2)利用复数的减法法则计算即可;(3)由题意可得则且据此可得的取值范围(4)由题意可得结合可得据此确定其所在的象限即可【详解】(1)(2)(3)因为所以解析:1i --62i -(,5)-∞四【分析】(1)利用复数的加法法则计算()()2332i i -+-+即可;(2)利用复数的减法法则计算()()423i i +--+即可;(3)由题意可得12(2)(3)i z z b a z =+=-+-,则2b <且3a <,据此可得+a b 的取值范围.(4)由题意可得122i z =-+,21z i =-,结合21z z z =-可得33z i =-,据此确定其所在的象限即可.【详解】(1)()()(23)(32)23321i i i i i -+-+=-+-+=--.(2)()()(4)(23)42362i i i i i +--+=++-=-.(3)因为13i z b =-,22i z a =-+,所以12(2)(3)i z z b a z =+=-+-,又复数z 对应的点在第三象限,所以2030b a -<⎧⎨-<⎩,所以2b <且3a <, 所以5a b +<,故+a b 的取值范围为(,5)-∞.(4)因为复数1z 对应的点为(2,2)-,复数2z 对应的点为(1,1)-,所以122i z =-+,21z i =-,又复数21z z z =-,所以1i (22i)33i z =---+=-,所以复数z 对应的点为(3,3)-,在第四象限【点睛】本题主要考查复数的加法、减法运算,复数所在象限的判定等知识,意在考查学生的转化能力和计算求解能力.19.【分析】根据复数的乘法运算可求z 写出其共轭复数即可【详解】因为所以故填【点睛】本题主要考查了复数的运算共轭复数属于中档题解析:1i -【分析】根据复数的乘法运算可求z,写出其共轭复数即可.【详解】因为()1z i i =-1i =+,所以 1z i =-,故填1i -【点睛】本题主要考查了复数的运算,共轭复数,属于中档题.20.【分析】先根据复数除法得再根据共轭复数概念得【详解】因为所以即【点睛】本题重点考查复数的概念与复数相等属于基本题复数的实部为虚部为模为对应点为共轭为解析:2i +【分析】 先根据复数除法得z ,再根据共轭复数概念得z .【详解】因为()1243i z i +=+,所以43212i z i i+==-+,即2.z i =+ 【点睛】本题重点考查复数的概念与复数相等,属于基本题.复数(,)a bi a b R +∈的实部为a 、虚部为b(,)a b 、共轭为.-a bi 三、解答题21.见解析.【分析】通过复数的模相等,判断两个复数对应的向量垂直,然后设出复数比证明即可.【详解】设复数1z 、2z 在复平面上对应的点为1Z 、2Z ,由1212||||z z z z +=-知,以1OZ 、2OZ 为邻边的平行四边形为矩形,∴12OZ OZ ⊥,故可设12z ki z =(k ∈R 且0k ≠),∴22221220z k i k z ==-<. 【点睛】本题关键之处在于模长相等的处理,可以得到1OZ 、2OZ 为邻边的平行四边形为矩形. 22.(1)0;(2)8i -【分析】利用复数的乘除运算法则求解.【详解】计算下列各式:(1)()()23233232023232323i i i i i i i i i i i i--++-+=+=-=-+-+; (2)()()()3338113331i i ii i i i i i ++--+=-+--+-+=-=-.【点睛】 本题主要考查复数的基本运算,还考查了运算求解的能力,属于中档题.23.(1)1z =-或13i -+;(2)12,26a b =-=.【分析】(1)设,z a bi z a bi =+=-,代入(3)13z i z i -⋅=+,化简后利用向量相等的知识列方程组,解方程组求得,a b 的值,由此求得z .(2)根据虚根成对以及根与系数关系列方程组,解方程组求得,a b 的值.【详解】(1)设z a bi =+,则(3)()13a bi i a bi i +--=+,即223313a b b ai i +--=+ ∴223133a b b a ⎧+-=⎨-=⎩,解得10a b =-⎧⎨=⎩,或13a b =-⎧⎨=⎩∴1z =-或13i -+; (2)由题知方程在复数集内另一根为32i -,故323262(32)(32)132a i ib i i ⎧-=++-=⎪⎪⎨⎪=+-=⎪⎩, 即12,26a b =-=.【点睛】本小题主要考查复数运算,考查复数相等的概念,属于中档题.24.(1)43i --;(2)2【分析】(1)先求出为34i 5+= ,即可求出z ,再根据共轭复数的定义即可求出z ;(2)根据复数的运算法则计算即可得出结论.【详解】(1)因为|3+4i|=5,所以z=1+3i-5=-4+3i,所以=-4-3i.(2)===2.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.25.见解析【分析】形如(,)a bi a b R +∈的数叫复数,其中,a b 分别是它的实部和虚部,据此可得到各个复数的实部和虚部;(,)a bi a b R +∈,若0b =,则a bi +为实数,若0b ≠,则a bi +是虚数,若0,0a b =≠,则a bi +为纯虚数.【详解】4,23i -,0,1122-+i,5+,7i 的实部分别是4,2,0,12-,5,0; 4,23i -,0,1122-+i,5+,7i 的虚部分别是0,3-,0,127. 其中,4,0是实数;23i -,1122-+i,5,7i 是虚数; 7i 是纯虚数.【点睛】该题主要考查的是复数的基本概念,解答该题的关键是熟悉复数的概念.26.(1)6;(2)(,1)(1,1)(1,6)(6,)-∞--+∞;(3)不存在实数a 使得复数z 为纯虚数.【分析】根据z a bi =+为实数、虚数和纯虚数的条件,列方程,解方程求得a 的值.【详解】由于210a -≠,所以1a ≠±.(1)当z 为实数时,2560a a --=,解得6a =.(2)当z 为虚数时2560a a --≠,结合1a ≠±可知,a 的取值范围是()()()(),11,11,66,-∞-⋃-⋃⋃+∞.(3)当z 为纯虚数时,2227601560a a a a a ⎧-+=⎪-⎨⎪--≠⎩,方程227601a a a -+=-解得6a =,2560a a --≠解得1a ≠-且6a ≠,两者没有公共元素,故不存在实数a 使得复数z 为纯虚数.【点睛】本小题主要考查复数z a bi =+是实数、虚数和纯虚数的条件,属于基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、复数选择题1.复数()1z i i =⋅+在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.若复数1z i i ⋅=-+,则复数z 的虚部为( )A .-1B .1C .-iD .i 3.已知a 为正实数,复数1ai +(i 为虚数单位)的模为2,则a 的值为( )A B .1C .2D .34.已知,a b ∈R ,若2()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( ) A .2a >或1a <- B .1a >或2a <- C .12a -<< D .21a -<< 5.在复平面内复数Z=i (1﹣2i )对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限6.若复数()()24z i i =--,则z =( ) A .76i -- B .76-+iC .76i -D .76i +7.已知复数5i5i 2iz =+-,则z =( )A B .C .D .8.已知复数512z i=+,则z =( )A .1B C D .59.若复数z 满足421iz i+=+,则z =( ) A .13i + B .13i - C .3i + D .3i - 10.满足313i z i ⋅=-的复数z 的共扼复数是( )A .3i -B .3i --C .3i +D .3i -+11.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ⋅④zz,其结果一定是实数的是( ) A .①② B .②④C .②③D .①③12.复数2ii -的实部与虚部之和为( ) A .35 B .15- C .15D .3513.设21iz i+=-,则z 的虚部为( )A .12B .12-C .32D .32-14.已知i 是虚数单位,2i z i ⋅=+,则复数z 的共轭复数的模是( )A .5BC D .315.设复数满足(12)i z i +=,则||z =( )A .15B C D .5二、多选题16.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 17.已知复数z 满足220z z +=,则z 可能为( ) A .0B .2-C .2iD .2i -18.下面关于复数的四个命题中,结论正确的是( ) A .若复数z R ∈,则z R ∈ B .若复数z 满足2z ∈R ,则z R ∈ C .若复数z 满足1R z∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z =19.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点20.复数z 满足233232iz i i+⋅+=-,则下列说法正确的是( )A .z 的实部为3-B .z 的虚部为2C .32z i =-D .||z =21.若复数z 满足()1z i i +=,则( )A .1z i =-+B .z 的实部为1C .1z i =+D .22z i =22.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =,则12=z z B .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >23.已知i 为虚数单位,则下列选项中正确的是( ) A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =- D .对任意的复数z ,都有20z24.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( )A .20zB .2z z =C .31z =D .1z =25.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )A .||z =B .复数z 的共轭复数为z =﹣1﹣iC .复平面内表示复数z 的点位于第二象限D .复数z 是方程x 2+2x +2=0的一个根 26.以下为真命题的是( ) A .纯虚数z 的共轭复数等于z -B .若120z z +=,则12z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数 27.已知i 为虚数单位,下列说法正确的是( ) A .若,x y R ∈,且1x yi i +=+,则1x y == B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于128.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1B .4-C .0D .529.对任意1z ,2z ,z C ∈,下列结论成立的是( ) A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅ D .12z z =的充要条件是12=z z30.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.B 【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解. 【详解】 因为复数,所以在复数z 复平面上对应的点位于第二象限 故选:B 解析:B 【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解. 【详解】因为复数()11z i i i =⋅+=-+,所以在复数z 复平面上对应的点位于第二象限 故选:B2.B 【分析】 ,然后算出即可. 【详解】由题意,则复数的虚部为1 故选:B解析:B 【分析】1iz i -+=,然后算出即可. 【详解】 由题意()11111i i i i z i i i i -+-+--====+⋅-,则复数z 的虚部为1故选:B3.A 【分析】利用复数的模长公式结合可求得的值. 【详解】,由已知条件可得,解得.故选:A.解析:A 【分析】利用复数的模长公式结合0a >可求得a 的值. 【详解】0a >,由已知条件可得12ai +==,解得a =故选:A.4.A 【分析】根据虚数不能比较大小可得,再解一元二次不等式可得结果. 【详解】 因为,,所以,, 所以或. 故选:A 【点睛】关键点点睛:根据虚数不能比较大小得是解题关键,属于基础题.解析:A 【分析】根据虚数不能比较大小可得a b =,再解一元二次不等式可得结果. 【详解】因为,a b ∈R ,2()2a b a b i -+->,所以a b =,220a a -->, 所以2a >或1a <-. 故选:A 【点睛】关键点点睛:根据虚数不能比较大小得a b =是解题关键,属于基础题.5.A 【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z 化为a=bi (a ,b ∈R )的形式,分析实部和虚部的符号,即可得到答案. 解:∵复数Z=i (1﹣2i )=2+i ∵复数Z 的实部2>0,虚解析:A 【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z 化为a=bi (a ,b ∈R )的形式,分析实部和虚部的符号,即可得到答案. 解:∵复数Z=i (1﹣2i )=2+i ∵复数Z 的实部2>0,虚部1>0∴复数Z 在复平面内对应的点位于第一象限 故选A点评:本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z 化为a=bi (a ,b ∈R )的形式,是解答本题的关键.6.D 【分析】由复数乘法运算求得,根据共轭复数定义可求得结果. 【详解】 ,. 故选:.解析:D 【分析】由复数乘法运算求得z ,根据共轭复数定义可求得结果. 【详解】()()2248676z i i i i i =--=-+=-,76z i ∴=+.故选:D .7.B 【分析】根据复数的四则运算法则及模的计算公式,即可得到选项. 【详解】 由题,得,所以. 故选:B.解析:B 【分析】根据复数的四则运算法则及模的计算公式,即可得到选项. 【详解】由题,得()()()5i 2+i 5i5i 5i 1+7i 2i 2i 2+i z =+=+=---,所以z == 故选:B.8.C 【分析】根据模的运算可得选项. 【详解】 . 故选:C.解析:C 【分析】根据模的运算可得选项. 【详解】512z i ====+故选:C.9.C 【分析】首先根据复数的四则运算求出,然后根据共轭复数的概念求出. 【详解】 ,故. 故选:C.解析:C 【分析】首先根据复数的四则运算求出z ,然后根据共轭复数的概念求出z . 【详解】()()()()421426231112i i i i z i i i i +-+-====-++-,故3z i =+. 故选:C.10.A 【分析】根据,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】 因为, 所以,复数的共扼复数是, 故选:A解析:A 【分析】根据313i z i ⋅=-,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】因为313i z i ⋅=-, 所以()13133iz i i i i-==-=+-, 复数z 的共扼复数是3z i =-, 故选:A11.D 【分析】设,则,利用复数的运算判断. 【详解】 设,则, 故,, ,. 故选:D.解析:D 【分析】设(),z a bi a b R =+∈,则z a bi =-,利用复数的运算判断. 【详解】设(),z a bi a b R =+∈,则z a bi =-, 故2z z a R +=∈,2z z bi -=,22222z a bi a b abi z a bi a b +-+==-+,22z z a b ⋅=+∈R . 故选:D.12.C 【分析】利用复数代数形式的乘除运算化简得答案. 【详解】,的实部与虚部之和为. 故选:C 【点睛】易错点睛:复数的虚部是,不是.解析:C 【分析】利用复数代数形式的乘除运算化简得答案. 【详解】()()()2+1212222+555i i i i i i i i -+===-+--,2i i ∴-的实部与虚部之和为121555-+=. 故选:C 【点睛】易错点睛:复数z a bi =+的虚部是b ,不是bi .13.C 【分析】根据复数的除法运算,先化简复数,即可得出结果. 【详解】 因为,所以其虚部为. 故选:C.解析:C 【分析】根据复数的除法运算,先化简复数,即可得出结果. 【详解】 因为()()()()21223113111222i i i i z i i i i ++++-====+--+, 所以其虚部为32. 故选:C.14.C 【分析】首先求出复数的共轭复数,再求模长即可. 【详解】 据题意,得,所以的共轭复数是,所以. 故选:C.解析:C 【分析】首先求出复数z 的共轭复数,再求模长即可. 【详解】 据题意,得22(2)12121i i i iz i i i ++-+====--,所以z 的共轭复数是12i +,所以z =. 故选:C.15.B 【分析】利用复数除法运算求得,再求得. 【详解】 依题意, 所以. 故选:B解析:B 【分析】利用复数除法运算求得z ,再求得z . 【详解】依题意()()()12221121212555i i i i z i i i i -+====+++-,所以z ==故选:B二、多选题 16.BC 【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC 【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z,利用复数的概念可判断D 选项的正误. 【详解】 对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确; 对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC.17.ACD 【分析】令代入已知等式,列方程组求解即可知的可能值. 【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.18.AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数,则,因为,所以,因此,即A 正确;B 选项,设复数,则,因为,所,若,则;故B 错;C 选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;C 选项,设复数(,)z a bi a b R =+∈,则22222211a bi a b i z a bi a b a b a b-===-++++,因为1R z∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,则()()()()12z z a bi c di ac bd ad bc i =++=-++,因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.19.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.20.AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A 正确;的虚部为-2,B 错误;,C 错误;,D 正确;故选:A解析:AD【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】 解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.【点睛】 本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.21.BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由,得,所以z 的实部为1,,,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由()1z i i +=,得2(1)2(1)11(1)(1)2i i z i i i i --====-++-, 所以z 的实部为1,1z i =+,22z i =-,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题22.BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确; 当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.23.AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题.24.BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数12z =-(其中i 为虚数单位),2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =--+=+=,故C 正确;||1z ==.故D 正确. 故选:BCD .【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.25.ABCD【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.【详解】因为(1﹣i )z =解析:ABCD【分析】利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确.【详解】因为(1﹣i )z =2i ,所以21i z i =-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以||z ==A 正确; 所以1i z =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确.故选:ABCD.【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题. 26.AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A 正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,即纯虚数z 的共轭复数等于z -,故A 正确;对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;对于D ,120z z -=,则12z z =,则1z 与2z 互为共轭复数,故D 正确.故选:AD.【点睛】 本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题.27.AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 28.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.29.AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A 正确;取,;,满足,但且不解析:AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误.故选:AC【点睛】 本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.30.CD【分析】利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】,,所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误 解析:CD【分析】利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】22549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;当222530220t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.【点睛】本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.。