框架式红外导引头伺服系统跟踪特性研究

框架式红外导引头伺服系统跟踪特性研究
框架式红外导引头伺服系统跟踪特性研究

红外成像导引头的结构设计

第8章红外成像导引头的结构设计 8.1红外成像导引头对结构的要求及结构设计内容与原则 1.红外成像导引头对结构的要求 好的总体方案要靠好的结构设计来实现,特别是对于小体积红外成像导引头来说,结构设计至关重要,结构设计方面的一小步突破可能就会为优良的红外成像导引头总体方案提供技术基础。 红外成像导引头对结构有如下要求: (1)严格限制体积和重量。红外成像导引头一般装在导弹的前端,必须严格限制体积和质量。为了增加有效载荷,一般都要求红外成像头质量轻,把有效的载荷让给战斗部,但在某些场合为了增加导弹的静稳定度反而希望红外成像导引头有比较大的质量,小质量固然不容易实现,在体积受限的条件下实现大质量也十分困难。另外保证红外成像导引头的质心满足要求也是十分必要的。 结构设计时必须选择紧凑的组装方式,电子舱结构设计时尽可能提高装填密度,随动平台设计时尽量避免笨重的实体结构。 (2)环境适应能力强、可靠性高。红外成像导引头要承受导弹飞行过程中的冲击、振动、过载等各种恶劣力学环境条件,特别是需要具备高加速能力的导弹,红外成像导引头要承受大过载。同时,红外成像导引头的成像探测器抗冲击、抗振动能力极其有限,需要采取特殊措施,如减振设计等。除了要承受飞行时的恶劣环境外,还需要承受运输过程中的振动和冲击、高低温工作环境、盐雾和霉菌等。所有这些都要求红外成像导引头的结构必须具备很强的环境适应能力。 结构设计时要保证红外成像导引头在承受各种静、动、热载条件下有足够的强度、刚度和稳定性,并满足各项动力学性能要求。 (3)高精度。成像系统安装在随动平台上,成像系统的安装精度直接影响红外成像导引头的测量精度;陀螺安装时要保证测量轴与导弹各轴保持平行;红外光学整流罩安装在红外成像导引头壳体上,光学系统是活动的,红外光学整流罩与光学系统必须紧密配合才能可靠成像,因而对红外光学整流罩的安装精度要求较严;印制电路板与总线板之间也要求足够的连接精度,否则不能保证有效的电气连接。所有哲学都对结构设计提出了高精度的要求。 (4)气动性能要求。红外成像导引头是导弹的一个舱段,除了搜索跟踪目标外还必须维持导弹气动外形的完整性。导引头接受设计时应尽量保持与理论外形的一致性,减少设计外形与理论外形的误差并提高表面品质,尽量不出现凸起、缝隙等影响气动性能的外形结构。 2.红外成像导引头结构设计内容与原则 红外成像导引头结构总体设计的任务是按照导弹总体对红外成像导引头性能参数的要求和红外成像导引头自身的使用环境条件,将电子部件、电气元器件和机械部件合理布局并组装成完整的红外成像导引头,使其在规定的条件下实现规定的功能。结构总体设计包括机械设计和物理设计。机械设计包括整机组装结构设计,如结构单元的划分、总体布局方式的选择等;随动执行机构设计,如执行机构形式选择、平衡设计等;抗振缓冲设计,如结构件强度和刚度计算、稳定性分析、隔振和缓冲措施选择等。物理设计包括热设计(如散热和隔热设计);电磁兼容设计(如屏蔽设计、接插件选择以及合理布线等)及三防设计等。 红外成像导引头结构设计一般遵循以下原则: (1)模块化原则。根据导引头系统要求和各分机的功能、几何特征,在结构上进行模块化设计,同时尽可能提高单元模块的安装密度。 (2)简单化原则。尽可能使结构简单、质量轻,减少零部件的品种、数量,提高产品通用化、系列化、组合化水平。 (3)加工和装配方便原则。考虑具有成熟工艺的结构设计形式以及导引头系统结构的

船舶稳定平台解决方案

船舶稳定平台解决方案 陀螺稳定平台(gyroscope-stabilized platform)利用陀螺仪特性保持平台台体方位稳定的装置。简称陀螺平台、惯性平台。用来测量运动载体姿态,并为测量载体线加速度建立参考坐标系,或用于稳定载体上的某些设备。它是导弹、航天器、飞机和舰船等的惯性制导系统和惯性导航系统的主要装置。 稳定平台作为一种安放在运动物体上的设备,具有隔离运动物体扰动的功能。稳定平台在航空航天、工业控制、军用及商用船舶中都有比较广泛的用途,例如航拍、舰载导弹发射台、船载卫星接收天线等。船舶上工作面或者平台姿态检测,船载天线稳定平台系统,会应用倾角传感器定时(较长时间)读取数值,通过计算后,对稳定平台进行校正。平台的实际运动由单片机控制外部机械装置以达到对稳定水平平台进行修正,以保证其始终处于水平状态。某些倾角传感器作为船体液压调平系统中的反馈元件,提供高精度的倾角信号。既可用于水下钻进也可用于水下开采等。 在国外,陀螺稳定跟踪装置被广泛应用于地基、车载、舰载、机载、弹载以及各种航天设备中。20世纪40年代末,为了减少车体振动对行进间射击的影响,在坦克上开始安装火炮稳定器,从50年代起,双稳定器在坦克中得到了广泛的应用。在英、美等国的先进武器系统中,基于微惯性传感器的稳定跟踪平台得到了广泛的应用,如美国的M1坦克、英国“挑战者”坦克、俄罗斯T-82坦克、英国“标枪”导弹海上发射平台和“海枭”船用红外跟踪稳定平台等,都采用了不同类型的稳定跟踪平台。美国海军采用BEI电子公司生产的QRS-10型石英音叉陀螺,研制出WSC-6型卫星通讯系统的舰载天线稳定系统,工作12万小时尚未出现故障;Honeywell公司以红外传感器平台稳定为应用背景,研制的以GG1320环形激光陀螺为基础的惯性姿态控制装置,很好的满足了稳瞄跟踪系统的要求。美军配装的Honeywell公司采用激光陀螺技术研制的自行榴弹炮组件式方位位置惯性系统(MAPS6000) ,在工作时可连续提供高精度的方位基准、高程、纵摇、横摇、角速率、经度和纬度输出,性能大大高于美军MAPS系统规范的要求。在导弹制导方面,俄罗斯的X-29T、美国的“幼畜”AGM-65、以色列的“突眼”等成像制导导引头中,都采用了陀螺稳定跟踪平台。在机载设备中,陀螺稳定平台在机载光-电火控系统和机载光电侦察平台中也得到极其广泛的应用,美国、以色列、加拿大、南非、法国、英国、俄罗斯等国家都已研制出多种型号产品装备部队。如以色列的ESP-600C型无人机载光电侦察平台采用两轴平台,其方位转动范围360o×N、俯仰+10o----10o、最大角速度50o/s、最大角加速度60o/s2,其稳定精度达到15μrad,所达精度代表了国际先进水平。 国内对陀螺稳定平台的研究起步较晚,20世纪80年代开始研制瞄准具稳定平台,而90 年代初才开始陀螺稳定平台的研制。虽有不少单位,如北京电子3所、长春光机所、中科院成都光电所、西安应用光学研究所、华中光电技术研究所和清华大学等都在开展该应用领域的研究工作,但在稳定跟踪平台技术的研究上与国外相比仍有较大差距,由于惯性元件的技术不过关,成本较高,致使该项技术的研究始终没有取得突破性的进展。 一、船用红外/可见光陀螺稳定平台 近年来,随着精密机械、电子技术、数字信号处理技术和模式识别技术的飞速发展,陀螺伺服稳定跟踪系统的性能也有了很大的提高。陀螺伺服稳定跟踪系统,其主要任务是完成

红外制导

红外制导导弹 制导是指导弹、火箭、飞船等运动物体,依靠其上的仪器或人的控制自动奔向目标的过程,该过程是由制导装置来完成的。一般可分为 (1)自主制导。制导信息不是指挥站或目标所发送的能量,完全由安装在飞行器内部的设备动作来制导飞行器。 (2)遥控制导。利用装设在飞行器内部和外部的设备,在指挥站(可设在地面或别的飞行器上)制导该飞行器,驾束制导和指令制导都属遥控制导。 (3)寻的制导。利用来自目标的信息,测算出目标的位置,控制器根据计算出来的信号控制飞行器的飞行方向而将飞行器导向目标。 (4)全球定位系统(GPS)制导。利用飞行器上安装的GPS接收机接收4颗以上的导航卫星播发的信号来修正飞行器的飞行路线。 (5)复合制导。综合利用几种制导方式的优点于飞行全过程的制导。 按照制导时携带信息的载波可分为无线电制导、红外制导和激光制导等。 红外制导是利用红外探测器捕获和跟踪目标自身辐射的能量来实现寻的制导的技术。大多数红外制导系统是被动式的。 在各种精确制导体系中,红外制导因其制导精度高、抗干扰能力强、隐蔽性好、效费比高等优点,在现代武器装配发展中占据着重要的地位。 导弹(guided missile)依靠自身动力装置推进,由制导系统导引、控制其飞行弹道,将战斗部导向并摧毁目标的武器。属于精确制导武器。具有射程远、速度快、精度高、威力大等特点。 自50年代中期出现了美国“响尾蛇”、英国“火光”为代表的红外制导导弹以来,世界各国普遍开展了对红外制导导弹的研究,红外制导已经用于空-空、地-空、空-地、地-地导弹中,近年来在反坦克弹中也开始采用红外制导,但其中以空-空导弹采用红外制导为数最多。据不完全统计,世界各国研制的红外导弹有50多种型号,现已装备部队的有30多种,其中正在服役的红外空-空导弹就有数十种。 如图1所示为被动式红外导弹制导系统原理图。 导引头由整流罩、光学系统、探测系统、信号处理系统组成。 导引头是导弹的重要部位,就像导弹的眼睛一样,由它接收到目标的红外辐射,再转为电的信号,送入电子装置处理,经放大后带动控制系统,控制舵的转动方

一种红外成像导引头通用信息处理平台

一种红外成像导引头通用信息处理平台 一种红外成像导引头通用信息处理平台 摘要:红外成像导引头集光机电于一身,设计难度大、研制周期长。为了缩短导引头研制周期、降低开发成本,提出一种通用的信息处理平台方案。本方案采用FPGA+DSP架构,有较强的通用性,易于维护和扩展,可以在原理样机阶段迅速搭建硬件平台,用于系统验证和弹载软件调试,并为后续的产品研制提供有力支持。关键词: 红外成像导引头;通用信息处理平台;实时图像处理;FPGA+DSP架构红外成像导引头是第四代红外型空空导弹的标志,具有作用距离远、抗干扰能力强、导引精度高、可自动识别目标和区分多目标、准全天候工作等显著优点[1]。根据红外 探测器的不同,红外成像导引头又可分为线列扫描成像导引头、凝视焦平面成像导引头、双色(多色)焦平面成像导引头。为了与探测器配套,需要设计不同的信息处理平台。随着技术的不断发展,信息处理平台在功能上越来越复杂,集成化程度越来越高,而要求产品的研发周期却大大缩短,更新速度加快。为了解决这一矛盾,本文提出一种通用的信息处理平台方案,在产品初期利用通用信息处理平台迅速搭建,用于系统验证和弹 载软件调试,并为后期的产品硬件研制提供有力借鉴。1通用信息处理平台特征分析[2-4]无论是哪一种红外成像导引头,信息处理平台都具有如下功能:高速图像信 号采集、图像预处理、图像处理、与外部系统通信、视频图像输出、时钟管理及时序控制等。功能组成。 1.1高速图像信号采集高速图像信号采集是对从前置放大器输出的视频信号进行A/D采样,把模拟视频信号转换为数字视频信号。由于视频输出信号电压范围未知,因此在A/D采样前还需要一个放大倍数可调的调理电路。红外成像导引头的探测灵敏度高、帧频高(达到100Hz以上)、视频传输数据量大,因此要求AD转换器精度高、速度快、通道一致性好。这部分是模拟数字混合部分,因此在电源供电、元器件布局布线上要进行低噪声设计。1.2图像预处理图像预处理包括非均匀校正、图像重构、图 像滤波、图像稳像等。非均匀校正是指由于探测器本身的固有缺陷,使得从前置放大器输出的视频信号出现了不均匀性,为了防止系统成像质量变差而对视频数据进行的处理。图像重构是指对扫描成像来说,输出的信号不是逐行顺序输出,需要对得到的视频数据进行重新排序才能得到一幅正确图像。图像滤波指的是利用高通滤波和中值滤波等算法简单、数据处理吞吐量大的算法对视频数据进行处理,提高图像质量。图像稳像是指探

稳定平台关键技术综述

稳定平台关键技术综述 0引言 从科索沃战争、伊拉克战争到最近的利比亚战争,局部战争成为主要的作战模式。与以往的区域攻击不同,现代局部战争的主要特点是快速反应、精确打击。为应对未来局部战争,做到敢打必胜,改进与研制武器装备,提高部队作战能力成为首要任务。 在我军车载陆战装备中,战术导弹、坦克、火炮等武器系统近些年来有了很大发展,射击范围和精度都有了很大提高。但与外军先进装备相比,行进间射击精度尚有较大差距,甚至大多装配的武器系统还无法实现行进间射击。行进间射击作为提高部队作战效率,增强武器装备自我防护能力的重要指标,已成为未来陆战装备的主要发展方向,同时这也使得对武器系统的改进与研制迫在眉睫。 瞄准线稳定技术是实现行进间射击、提高行进间射击精度的主要环节。它采用稳定平台对车体的航向、纵摇和横滚运动进行有效的隔离,使瞄准线在惯性坐标系下保持稳定。为提高陆战装备快速反应与精确打击能力,急需提高稳定瞄准的快速性、精确性、自适应性,因此本课题的研究具有重要意义。 1稳定平台国内外研究现状 在光电稳定平台中,陀螺稳定平台迄今得到了广泛的应用,它是采用一个环架系统作为光电传感器的光学平台,在平台上放置陀螺来测量平台的运动,陀螺敏感姿态角的变化经过放大以后驱动环架的力矩电机,通过力矩电机驱动平台使光电传感器保持稳定。在国外起初应用于手持式望远镜和瞄准具中,并在八十年代装备部队,现已广泛应用于地基、车载、舰载、机载、弹载、天基等各种观测、摄像系统中。1996年,美国的航空红外制造商前视红外系统公司以电子新闻采集市场为目标推出了一种双传感器系统,它包括一个用于低照度的高分辨率红外摄像机和用于白天的标准广播摄像机,这两台摄像机一起被安装在一个紧凑的三轴陀螺稳定的万向架中,能够提供50rad μ的图像稳定精度,意大利的Caselle-Torinese 公司生产的11072Caselle-Torinese 光轴稳定平台的旋转范围可以做到高低方位均为??360~0,最大旋转速度为?60/s ,稳定精度为0.4mrad 。英国的Ferranti Electro-optics 公司生产的FIN1155用于坦克的陆地导弹/稳定平台,其瞄准线的稳定精度达到了0.1mrad 。法国的SAGEM 公司研制的舰载对空红外全景监视系统可以在?+?-30~30的摇摆,?+?-10~10的纵摇时的稳定精度达到0.5mrad 。1994年法国生产的“唯吉-105”型周视光电火控红外系统,在方位为??360~0,俯仰角为??-65~25范围内稳定精度为0.1mrad 。以色列研制的ESP-1H 采用两轴陀螺稳定平台,在方位角为??360~0,俯仰角在?+?-110~10的范围内,最大旋转速度为?50/s 的稳定精度高达50rad μ,而ESO-600C 的稳定精度高达15rad μ。 国内上世纪80年代开始研制瞄准具稳定平台,90年代逐渐展开了陀螺稳定平台的研制。北京618所90年代初期研制了机载陀螺稳定平台,其稳定精度可达到0.1mrad ,中科院成都光电所承担的863子课题——快速反射镜成像跟踪系统,采用了二级稳定技术,并于1994年通过评审。华中光电技术研究所研制的舰载红外稳定平台的稳定精度为1mrad ,清华大学精密机械与机械学系惯性导航研究室于1997年研制出机载瞄准线稳定跟踪系统,并交付部队使用。 车载稳定平台的研究开始于80年代后期,最初用于坦克炮长镜上以稳定瞄准线,其原理是在框架陀螺的转子上安装导光棱镜,以达到稳定瞄准线的目的,其稳定精度可达到0.2mrad ,但瞄准范围仅仅是方位?±4、俯仰?+?-20~10,加之人机工程差,使用受到了

相关文档
最新文档