代谢组学

合集下载

代谢组学

代谢组学

-在模式识别方法中,主成分分析法(principal component analysis,PCA) 最为常用、有效。
30
研究步骤
第一,生物样品收集与制备。代谢组学的研究 对象很广,常用的有生物体液,包括尿液、血
液、唾液、组织提取液及活体组织等。
生物样品的收集与制备是代谢组学研究的第一
阶段,也是重要环节之一,样品的浓度、pH值
34
第四,通过找到一种空间变换方式,把经标准
也会影响实验结果。
31
第二,NMR制谱。NMR方法适合研究代谢产物中 的成分,表征和研究海量的代谢信息及其变化
规律,从而得到丰富的生理、病理、药理和毒
理等生物信息。
其中1HNMR对含氢化合物均有响应,能给出精
细的代谢物成分图谱即代谢物指纹图谱。
32
不同器官组织具有不同的代谢轮廓,广谱全采集
33
14
15
16
17
代谢组学的发展
• 最早起源于代谢轮廓分析(Metabolic profiling)。早 在二十世纪七十年代,Baylor药学院就已经提出并发表了 代谢轮廓分析的理论。 • 1975年,Thompson 和Markey利用气相色谱和质谱在代谢 轮廓分析的定量方面取得了较大进展;二十世纪七十年代 末期这种方法得到了广泛认同;;八十年代早期应用HPLC 和NMR来对代谢物进行分析。 • 1986年,Joumal of Chromatography A出版了一期关于 代谢轮廓分析的专辑。 • 随着基因组学的提出和迅速发展,Oliver于1997年提出了 代谢组学(metabolomics)的概念,之后很多植物化学家 开展了这方面的研究; • 1999年Jeremy K. Nicholson等人提出metabonomics的概 念。

代谢组学

代谢组学

软件:MATLAB version7.10 主成分分析(PCA) 相关性分析:Pearson相关性系数 马尔距离:MD=
结果与讨论
1H NMR分析 LCMS分析
标准品的NMR和LCMS响应值
样品LCMS-LCMS信号的相关性 生物学样品NMR-LCMS信号的相关性
1H
NMR分析
样品NMR-NMR信号的相关性
将取准后的蕃茄样品NMR信号强度进行相关性分析来
鉴定品系数据矩阵中有相关的NMR信号。 相关系数|r| ≥ 0.8→有相关 1008个NMR谱峰, >30000相关(置信区间α=3.0%)
理论上不同样品中同一化合物显著相关,如蕃茄样中
的葫芦巴碱(A)、蔗糖(B)、柠檬酸(C)证明这 点。
前言
NMR和LCMS是代谢学研究的常用的技术手段。
将同一样品的NMR和LCMS谱图分析获取的代谢组学数据
统计结合,这就可以了解同一代谢物的光谱及其性质的关 系。
相关性分析是一种统计学方法,可用于建立一生物系统代
谢物信息的相互关系。 在本文中, 利用1H NMR和精确质量液相—四极杆飞行时 间质谱(LS- QTOF-MS)技术分析50种蕃茄栽培品种成熟 果实的代谢谱图。
Thank you
樱桃番茄与牛肉番茄和圆番茄的代谢差异较大,牛肉
番茄和圆番茄的代谢相似
标准品的NMR和LCMS剂量效应
六种标准品在两种方法的计量效应关系。 在NMR中,仪器响应是呈线性关系(所有共振和被测的
代谢物,相关性系数均值为1)。 新型MS检测范围更广,本实验中,其检测响应在母离子 强度达到20000个/扫描时呈线形的
氯原酸不但与其特异异 构体还和其衍生物高度 相关→蕃茄中有一系列 的氯原酸衍生物;可鉴 定复杂混合物中生物化 学高度相关的化合物; 显著(r>0.8)的LCMSLCMS相关不仅在同一代 谢物中还在化学相关的 代谢物中。 氯原酸 II (353 m/z at 14.9 min)—677 m/z at 40.7 min = [三氯原酸 acid 苯丙氨酸 (164 m/z) (341 —165 m/z) m/z —387 = 2nd m/z = [蔗糖 of +HCOOH [phenylalanine H]-, II - H]-, 677 m/z at蔗糖 39.4 min = [三氯原酸 I -isotope H]-, 515 m/z at 30.7 min =H]-, III - H]-, 683m/z =at [蔗糖 蔗糖 - H]-, [二氯原酸 515 m/z 28.6 + min =[二氯原酸 II - H]-, 515 m/z at [phenylalanine - NH3H]684 Im/z = 353 2nd isotope of [ 蔗糖 + 蔗糖 - IH]-, 27.9 147 minm/z= = [二氯原酸 - H]-, m/z at 13.2 min =[ 氯原酸 - H]-. 1,025 m/z= [蔗糖 + 蔗糖 + 蔗糖- H]-

代谢组学概述

代谢组学概述

代谢组学概述代谢组学是一门综合性的生物学研究领域,通过分析生物体内代谢产物的变化,揭示生物体内代谢网络的调控机制和代谢异常与疾病之间的关系。

代谢组学在生命科学研究、医学诊断与治疗、食品安全等领域具有重要的应用价值。

代谢组学的研究对象主要是代谢产物,包括代谢物、代谢酶和代谢途径等。

代谢产物是生物体代谢活动的结果,通过分析代谢产物的种类和含量,可以了解生物体的代谢状态和变化。

代谢酶是催化代谢反应的关键蛋白质,通过研究代谢酶的活性和表达水平,可以揭示代谢途径的调控机制。

代谢途径是一系列相互关联的化学反应,通过研究代谢途径的变化,可以了解生物体的代谢网络和调控机制。

代谢组学的研究方法主要包括代谢物分析、代谢酶活性测定和代谢途径研究等。

代谢物分析是代谢组学的核心技术,目前常用的代谢物分析方法包括质谱技术、核磁共振技术和高效液相色谱技术等。

质谱技术可以用于代谢物的定性和定量分析,核磁共振技术可以用于代谢物的结构鉴定,高效液相色谱技术可以用于代谢物的分离和纯化。

代谢酶活性测定是研究代谢酶功能的重要方法,通过测定代谢酶的催化反应速率,可以了解代谢酶的活性和调控机制。

代谢途径研究是研究代谢途径调控机制的关键方法,通过构建代谢途径模型,可以揭示代谢途径的结构和调控机制。

代谢组学在生命科学研究中具有广泛的应用价值。

通过代谢组学的研究,可以了解生物体在不同生理状态下的代谢特征和代谢网络的调控机制,揭示疾病发生发展的分子机制,为疾病的预防和治疗提供理论依据。

代谢组学在医学诊断与治疗中也有重要的应用,通过分析生物体的代谢产物,可以进行疾病的早期诊断、疾病的分型和预后评估,并为个体化治疗提供依据。

此外,代谢组学还可以用于食品安全的检测和评估,通过分析食品中的代谢产物,可以了解食品的质量和安全性。

代谢组学是一门综合性的生物学研究领域,通过分析生物体内代谢产物的变化,揭示生物体内代谢网络的调控机制和代谢异常与疾病之间的关系。

代谢组学在生命科学研究、医学诊断与治疗、食品安全等领域具有重要的应用价值。

代谢组学简介-百趣代谢组学

代谢组学简介-百趣代谢组学

什么是代谢组学?代谢组学(Metabonomics/Metabolomics)是继基因组学和蛋白质组学之后发展起来的新兴的组学技术,是系统生物学的重要组成部分,研究对象大都是相对分子质量1000以内的小分子物质。

代谢组学是对某一生物体组份或细胞在一特定生理时期或条件下所有代谢产物同时进行定性和定量分析,以寻找出目标差异代谢物。

可用于疾病早期诊断、药物靶点发现、疾病机理研究及疾病诊断等。

国内外研究现状简述国际上,代谢组学研究很活跃:美国国家健康研究所(NIH)在国家生物技术发展的路线图计划中制订了代谢组学的发展规划;许多国家的科研单位和公司均开始了代谢组学相关研究及业务,如英国帝国理工大学的Jeremy Nicholson实验室、美国加州大学Davis分校的Oliver Fiehn 实验室、美国Scripps实验室、荷兰莱顿大学的Jan van der Greef实验室等。

其中许多机构已经开始了多组学整合研究工作。

国内多家科研机构已先后开展了代谢组学的研究工作,包括中国科学院大连化学物理研究所许国旺实验室、中国科学院武汉数学物理研究所唐惠儒实验室、上海交通大学贾伟实验室、军科院等。

没有任何一个分析技术能够同时分析代谢组中的所有化合物,只能通过选择性地提取结合各种分析技术的并行分析来解决。

样品之间的变异、仪器动力学范围的局限和分析误差的存在也给代谢组学分析带来巨大的挑战。

因此在取样方法,新型分析仪器和分析技术的研发等方面,都需要进一步深入开发。

代谢组学分析产生出海量的数据,当前我们缺乏适当的代谢组数据库和数据交换版式,需要完善代谢组学数据库,建立代谢产物数据的标准,并且需要开发功能强大的数据分析工具。

代谢组学服务有哪些?一、非靶标代谢组学经过多年发展,BIOTREE现已拥有完善的非靶标代谢组学平台,包括UHPLC-QTOFMS、Orbitrap LC-MS、GC-TOF-MS、GC-Q-MS 等,能够准确、快速地分析各种生物样本(血、尿、动物组织、唾液、羊水、细胞和细胞液、植物、微生物等)中的小分子代谢物。

《代谢组学介绍》课件

《代谢组学介绍》课件

代谢组学的研究内容
代谢产物的检测与
鉴定
通过高通量检测技术,对生物体 内的代谢产物进行定性和定量分 析,了解代谢产物的种类和含量 。
代谢产物的变化规

研究生物体在生理、病理或环境 因素刺激下,代谢产物的变化规 律及其与生物功能的关系。
代谢调控机制
探讨代谢产物的合成、分解、转 化等过程,揭示代谢调控的机制 和规律。
跨学科融合
代谢组学与生物信息学、人工智能等领域的交叉融合,将有助于从海量数据中挖掘出更 具有预测性和指ห้องสมุดไป่ตู้意义的生物标志物。
应用领域拓展
代谢组学在药物研发、毒理学、营养学等领域的应用将不断拓展,为相关领域的研究提 供新的思路和方法。
未来代谢组学的研究方向
提高检测灵敏度和特异性
进一步改进和完善代谢组学技术,提高检测灵敏度和特异性,是未 来研究的重要方向之一。
代谢组学研究的新方法与新技术
代谢组学研究的新方法
随着技术的不断发展,代谢组学研究的方法也在不断更新。近年来,新的研究方法如基于质谱的代谢组学、核磁 共振代谢组学和代谢组学数据分析方法等得到了广泛应用。这些新方法提高了代谢组学研究的灵敏度、特异性和 可重复性,为代谢组学研究提供了更可靠的工具。
代谢组学研究的新技术
代谢组学在个体化医疗和精准医学方 面具有广阔的应用前景。通过对个体 代谢产物的差异进行分析,可以为个 体化医疗和精准医学提供更准确的诊 断和治疗方案。
代谢组学与其他领域的交叉研究
营养学与代谢组学
营养学与代谢组学的交叉研究对于了解营养物质在生物体内的代谢过程和作用机制具有重要意义。通 过代谢组学的研究,可以深入了解不同营养物质对生物体代谢的影响,为营养学提供更科学的基础。

代谢组学名词解释

代谢组学名词解释

代谢组学名词解释代谢组学,简称Metabolomics,是一个研究机构研究物质代谢及其变化的科学领域。

它是一门以系统生物学方法研究生物体代谢状态的一种系统研究,是聚焦细胞的活动、代谢过程以及其与表型的联系的学科。

通过研究物质代谢及其构成、调节、机制以及其和表型的联系,代谢组学研究者探寻出深层的生物体代谢规律,使得科学家们能够更好地了解生物体的发育、病理过程和重要的生物活动。

代谢组学技术是以独特的代谢物组成为标记,使用多种分析工具和多种生物学技术来研究物质代谢及其变化。

它涉及到整个生物体的一系列代谢活动,其中包括形成物质代谢物的发酵过程。

对物质代谢进行监测,其实就是在不同体系中,研究活动丰富的代谢物种和其中的变化,这种研究能够更好地理解其中的系统和功能。

代谢组学的各种技术主要包括代谢分析技术、生物信息学技术、细胞培养技术、分子水平的分析技术等。

代谢分析技术包括质谱学、气相色谱、高效液相色谱和其它新兴技术。

高效液相色谱是一种常用的细胞代谢分析技术,它可以有效地检测大量微量物质,并将它们用于生物学样品分析。

生物信息学技术则是用来分析数据及其表现形式,建立更准确的分析模型。

在这些研究之中,运用细胞培养技术对相应的物质的形成和功能,以及分子水平的分析技术,可以更好地探究其内在机制。

代谢组学的应用发展到目前为止,已经有许多良好的研究成果,用户可以通过使用这些成果来提升性能和生产能力。

例如,代谢组学可以更好地调控物质代谢,从而提高发酵过程中产物生成量;深入研究微生物群落的代谢过程,可以更好地利用发酵物;通过研究植物代谢特征,可以更好地筛选植物抗病性的优良品系,发现抗病性物种;运用代谢组学分析,可以更好地研究药物的特性和药效,并设计出更好的治疗方案;进行疾病物质代谢的研究,可以更好地揭示疾病的发病机制,更加有效的应对疾病。

可以总结,代谢组学在深入研究物质代谢过程、研究各种生物活动、研究药物机理及疾病发病机制、研究植物抗病性和发酵物利用等方面,均具有重要的意义。

代谢组学及其应用

代谢组学及其应用
1、代谢物分离和鉴定:通过分离和鉴定生物体中的小分子代谢物,了解其种 类和结构。
2、代谢谱分析:利用色谱、质谱等分析技术,对生物体的代谢谱进行分析, 找出特定代谢物或代谢途径的变化。
3、生物信息学分析:对代谢组学数据进行生物信息学分析,如主成分分析、 聚类分析等,找出特定代谢物或代谢途径的变化规律。
一、代谢组学的定义及概述
代谢组学主要研究生物体在受到内外环境因素刺激时,细胞内代谢产物的动态 变化及其与生物体代谢过程的。它以系统生物学、分析化学、计算机科学等多 学科为基础,涉及多个领域,包括代谢产物的检测、代谢途径的确定以及代谢 调控机制的研究等。目前,代谢组学在研究疾病发生发展、药物疗效及副作用、 环境污染等方面发挥着重要作用。
代谢组学及其应用
目录
01 一、代谢组学的定义 及概述
02
二、代谢组学技术的 应用
03
三、代谢组学技术的 未来发展
04 四、结论
05 参考内容
代谢组学是一门新兴的生物科学,专注于研究细胞内代谢产物的动态变化及其 与生物体代谢过程的。近年来,代谢组学在医学、药学、环境科学等多个领域 得到了广泛的应用,为诸多科学问题的解决提供了新的思路和方法。本次演示 将介绍代谢组学及其在各领域的应用,并探讨其未来发展趋势。
二、代谢组学技术的应用
1、医学领域
在医学领域,代谢组学主要用于疾病诊断、药物研发和机理研究。通过对患者 血液、尿液等样本中代谢产物的检测,可以实现对多种疾病的早期诊断和预后 评估。同时,通过对药物作用下机体内代谢产物的变化进行研究,有助于阐明 药物的作用机制及副作用,为新药研发提供依据。
2、药学领域
然而,代谢组学技术也存在一些挑战和限制。首先,代谢组学的实验成本较高, 需要大量的资金和设备投入。其次,代谢组学的数据分析复杂,需要专业的生 物信息学知识和技能。此外,由于生物体的代谢过程受到多种因素的影响,代 谢组学的结果可能存在一定的变异性和不确定性。

代谢组学概述

代谢组学概述

代谢组学概述代谢组学(metabonomics/metabolomics)是效仿基因组学和蛋白质组学的研究思想,对生物体内所有代谢物进行定量分析,并寻找代谢物与生理病理变化的相对关系的研究方式,是系统生物学的组成部分。

其研究对象大都是相对分子质量1000以内的小分子物质。

先进分析检测技术结合模式识别和专家系统等计算分析方法是代谢组学研究的基本方法。

一:代谢组学分析流程一般来说,代谢组的分析流程有:首先将代谢组分进行预处理,预处理的方法由测量分析方法决定,如使用质谱方法分析,则需要预先对代谢组分进行分离和离子化。

接着,再对预处理后的组分进行定性和定量分析。

预处理中,常用分离方法包括:气相色谱(Gas chromatography,GC),高效液相色谱(High performance liquid chromatography,HPLC)。

气相色谱具有较高的分辨率,但需要对代谢组分进行气化,并且对组分分子质量有一定的限制。

高效液相色谱也在代谢组分析中被广泛地使用,因其在液相中对代谢组分进行分离,因此不用对组分进行气化,相较气相色谱具有测量范围更广,更灵敏的优点。

此外,毛细管电泳法(Capillary electrophoresis)也可以对代谢组分进行分离,其应用较少,但在理论上其分离效率比高效液相色谱法高。

在预处理时,常常会加入内参(internal standards),以方便后续对样品的质量进行监控和对比,由于不同的实验批次、样品顺序对后续测量也有一定对影响,因此,还会加入空对照和混合样品对照来进行质量监控。

对不同的代谢组分进行定性和定量分析的方法包括质谱分析法(Mass spectrometry,MS)和核磁共振谱(Nuclear Magnetic Resonance Imaging,NMR)等。

其中,质谱分析法具有灵敏度高,特异性强等优点,被广泛地应用于检测代谢组分,可以对经过分离、离子化处理后的代谢组分进行定性和定量。

代谢组学

代谢组学

代谢组学(metabonomics)是继基因组学和蛋白质组学之后新近发展起来的一门学科,是系统生物学的重要组成部分。

之后得到迅速发展并渗透到多项领域,比如疾病诊断、医药研制开发、营养食品科学、毒理学、环境学,植物学等与人类健康护理密切相关的领域。

代谢组学的概念来源于代谢组,代谢组是指某一生物或细胞在一特定生理时期内所有的低分子量代谢产物,代谢组学则是对某一生物或细胞在一特定生理时期内所有低分子量代谢产物同时进行定性和定量分析的一门新学科(Goodacre,2004)。

它是以组群指标分析为基础,以高通量检测和数据处理为手段,以信息建模与系统整合为目标的系统生物学的一个分支。

效仿:基因组学和蛋白质组学的研究思想。

分析:生物体内所有代谢物。

研究方式:代谢物与生理病理变化的相对关系。

(基因组学和蛋白质组学分别从基因和蛋白质层面探寻生命的活动,而实际上细胞内许多生命活动是发生在代谢物层面的,如细胞信号释放(cell signaling),能量传递,细胞间通信等都是受代谢物调控的。

代谢组学正是研究代谢组(metabolome)——在某一时刻细胞内所有代谢物的集合——的一门学科。

基因与蛋白质的表达紧密相连,而代谢物则更多地反映了细胞所处的环境,这又与细胞的营养状态,药物和环境污染物的作用,以及其它外界因素的影响密切相关。

因此有人认为,“基因组学和蛋白质组学告诉你什么可能会发生,而代谢组学则告诉你什么确实发生了。

”(Bill Lasley, UC Davis))研究范围:代谢组学主要研究的是作为各种代谢路径的底物和产物的小分子代谢物(MW<1000)。

在食品安全领域,利用代谢组学工具发现农兽药等在动植物体内的相关生物标志物也是一个热点领域。

其样品主要是动植物的细胞和组织的提取液。

主要技术手段是核磁共振(NMR),质谱(MS),色谱(HPLC,GC)及色谱质谱联用技术。

通过检测一系列样品的NMR 谱图,再结合模式识别方法,可以判断出生物体的病理生理状态,并有可能找出与之相关的生物标志物(biomarker)。

代谢组学的原理

代谢组学的原理

代谢组学的原理
1什么是代谢组学
代谢组学是研究生物大分子的一种技术,也被称为生物分析学,主要涉及到蛋白质、核酸和代谢物的定量和质量分析。

它是以基因表达谱、代谢谱和系统生物学等为基础,采用高通量分析技术和统计学方法研究生物体中的一系列相关物质和代谢产物的分子生物学范畴。

2代谢组学的主要目的
代谢组学的主要目的是建立一套系统的数据和模型来研究与健康和疾病以及药物疗效性相关的生物体代谢状态。

它将基因表达谱、代谢谱和系统生物学融合在一起,以便更加深入地研究蛋白质、核酸、代谢物和细胞通路之间的相互关系。

采用代谢组学可以对生物组织或器官中涉及各种交互作用和代谢网络进行深入分析,预测疾病发生的原因,以及制定诊断和治疗策略。

3代谢组学的三个主要步骤
代谢组学的三个主要步骤分别是:样本分析、数据挖掘和下游分析。

1)样本分析:通过高通量分析手段对样品中的内源性物质进行筛选和定量的分析,定位和确定样品中的物质类别和代谢。

2)数据挖掘:利用机器学习技术和统计模型分析信息,从而形成具有代表性的基因网络模型和代谢模型,以及具备预测性的蛋白质组学和活性网络。

3)下游分析:对分子网络和代谢网络进行全面检验,进行基因表达实验、细胞性能分析和功能验证,从而验证网络模型的有效性和正确性。

4代谢组学的未来
代谢组学的未来趋势是发展先进的高通量技术,以及更快、更准确的数据分析方法以及相应的软件。

随着数据量的不断增大、算法技术的发展,研究人员将有更多机会利用机器学习技术建立更精准的代谢模型,从而加强对潜在疾病的诊断和防治能力。

代谢组学概念

代谢组学概念

代谢组学概念代谢组学概念一、引言代谢组学是一门新兴的交叉学科,它结合了代谢物分析和系统生物学的原则,致力于研究生物体内代谢过程中产生的所有小分子代谢产物,从而揭示这些分子之间的相互作用和调节机制。

随着技术的不断发展,代谢组学在医学、农业、环境保护等领域中得到了广泛应用。

二、代谢组学的基本原理1. 代谢物分析代谢物分析是指对生物体内所有小分子化合物进行定量和定性检测,并通过比较不同样本之间的差异来揭示其相互作用和调节机制。

常用的技术包括质谱法、核磁共振法和色谱法等。

2. 系统生物学系统生物学是指将生命现象看作一个整体,并通过建立数学模型来描述其复杂性。

在代谢组学中,系统生物学可以用于预测代谢途径、鉴定关键酶以及优化治疗方案等方面。

三、代谢组学在医学领域中的应用1. 诊断疾病代谢组学可以通过检测血液、尿液等样本中的代谢产物,来诊断各种疾病。

例如,肝癌患者的尿液中会出现较高浓度的甲酸和乳酸,而胰腺癌患者的血液中则会出现较高浓度的L-赖氨酸。

2. 评估药效代谢组学可以帮助评估药物的有效性和安全性。

例如,在治疗乳腺癌时,代谢组学可以帮助选择最佳药物,并监测患者对药物的反应情况。

3. 预测预后代谢组学可以通过检测患者体内代谢产物的含量和比例,来预测其对治疗的反应以及生存期。

例如,在肺癌治疗中,代谢组学可以预测肿瘤复发率和患者生存期。

四、代谢组学在农业领域中的应用1. 品种鉴定通过分析不同品种作物体内代谢产物的差异,可以实现快速准确地进行品种鉴定。

2. 营养评估代谢组学可以帮助评估植物的营养状况,从而为农业生产提供科学依据。

例如,在玉米生产中,代谢组学可以帮助评估土壤中的氮磷钾含量,从而确定最佳的施肥方案。

3. 品质控制代谢组学可以通过检测作物体内代谢产物的含量和比例,来评估其品质。

例如,在葡萄酒生产中,代谢组学可以帮助判断葡萄的成熟度和酿造质量。

五、代谢组学在环境保护领域中的应用1. 污染监测通过分析环境样品中的有机污染物,可以实现对环境污染情况进行监测和评估。

代谢组学和空间代谢组学

代谢组学和空间代谢组学

代谢组学和空间代谢组学摘要:一、代谢组学简介1.代谢组学的定义2.代谢组学的发展历程3.代谢组学的研究意义二、空间代谢组学简介1.空间代谢组学的定义2.空间代谢组学的发展历程3.空间代谢组学的研究意义三、代谢组学与空间代谢组学的联系与区别1.二者的联系2.二者的区别四、代谢组学和空间代谢组学的应用1.代谢组学的应用领域2.空间代谢组学的应用领域五、代谢组学和空间代谢组学的发展前景1.代谢组学的发展前景2.空间代谢组学的发展前景正文:代谢组学和空间代谢组学都是研究生物体内代谢物及其相互作用的科学领域。

代谢组学主要关注代谢物的组成和变化,而空间代谢组学则在此基础上引入了空间维度,研究代谢物的空间分布和作用。

代谢组学作为一门新兴的生物学分支,自20 世纪90 年代以来得到了广泛关注。

代谢组学的研究意义在于,它能够为生物体的生长、发育、疾病发生等过程提供代谢层面的信息,有助于揭示生物体内部复杂的代谢网络。

空间代谢组学则是在代谢组学的基础上,结合空间信息技术和质谱技术发展起来的。

空间代谢组学的研究意义在于,它能够揭示代谢物在生物体内外的空间分布规律,为生物体的生理和病理过程提供更加精细的代谢信息。

代谢组学和空间代谢组学之间存在联系,也存在区别。

联系方面,二者都是研究生物体内代谢物的组成、变化和相互作用;区别方面,代谢组学关注代谢物的整体组成和变化,而空间代谢组学则更注重代谢物在空间上的分布和作用。

代谢组学和空间代谢组学在许多领域都有广泛的应用。

代谢组学在疾病诊断、药物研发、生物技术等领域发挥着重要作用;空间代谢组学则在肿瘤研究、神经科学研究、肠道微生物研究等领域具有巨大的潜力。

代谢组学和空间代谢组学作为生物学的两个重要分支,正逐渐成为研究生物体内部代谢过程的关键工具。

代谢组学分类

代谢组学分类

代谢组学分类代谢组学是一种系统性的研究生物体代谢物的方法,它集成了多种高通量技术,如质谱、核磁共振、高效液相色谱等,用于识别和定量生物体内的小分子化合物。

通过对代谢组学数据的分析,可以揭示生物体内代谢通路、代谢途径以及与疾病相关的生物标志物等信息。

根据不同的分类方法,代谢组学可以被划分为多个子领域。

一、按照样本来源分类1. 植物代谢组学植物代谢组学是指对植物中小分子化合物进行全面鉴定和定量的方法。

植物代谢组学可以用于鉴定植物中活性成分、筛选新型药物和开发新型农药等方面。

2. 动物代谢组学动物代谢组学是指对动物体内小分子化合物进行全面鉴定和定量的方法。

动物代谢组学可以用于诊断疾病、评估营养状态和监测药效等方面。

3. 微生物代谢组学微生物代谢组学是指对微生物中小分子化合物进行全面鉴定和定量的方法。

微生物代谢组学可以用于研究微生物代谢途径、筛选新型抗生素和开发新型工业酶等方面。

二、按照技术平台分类1. 质谱代谢组学质谱代谢组学是指利用质谱技术对样本中小分子化合物进行鉴定和定量的方法。

质谱代谢组学可以通过不同的离子化方式,如电喷雾、大气压化学电离等,对样品进行分析。

2. 核磁共振代谢组学核磁共振代谢组学是指利用核磁共振技术对样本中小分子化合物进行鉴定和定量的方法。

核磁共振代谢组学可以通过不同的核自旋种类,如氢、碳、氮等,对样品进行分析。

3. 高效液相色谱代谢组学高效液相色谱代谢组学是指利用高效液相色谱技术对样本中小分子化合物进行鉴定和定量的方法。

高效液相色谱代谢组学可以通过不同的柱填充材料和流动相,如反相柱、离子交换柱等,对样品进行分析。

三、按照研究目的分类1. 代谢通路分析代谢通路分析是指通过对代谢组学数据进行分析,揭示生物体内代谢途径和代谢通路的方法。

代谢通路分析可以用于研究生物体内化学反应的机制和调节方式。

2. 生物标志物鉴定生物标志物鉴定是指通过对代谢组学数据进行分析,发现与疾病相关的小分子化合物作为诊断或预测疾病的标志物的方法。

代谢组学介绍

代谢组学介绍

代谢组学介绍代谢组学是一门研究生物体内代谢物的综合分析学科,通过对代谢产物的定性和定量分析,旨在揭示生物体内代谢网络的变化,并探索代谢与疾病之间的关联。

代谢组学的研究方法主要包括质谱和核磁共振等技术,以及生物信息学和统计学等分析方法。

通过代谢组学分析,可以获得关于生物体内代谢物的全面信息。

代谢物是生物体内代谢过程的产物,包括小分子有机物、无机物和生物大分子。

这些代谢物可以反映生物体内的代谢状态、疾病发展过程以及环境因素对生物体的影响。

通过对代谢物的定性和定量分析,可以获得丰富的信息,例如代谢物的种类、含量、相互关系等。

代谢组学在疾病的早期诊断和治疗方面具有重要的应用价值。

由于许多疾病会导致代谢的异常变化,通过对代谢物的分析,可以发现这些异常变化并与疾病进行关联。

例如,某些代谢物的浓度增加或减少可能与某种疾病的发生和发展有关。

通过对这些代谢物的分析,可以为疾病的早期诊断提供参考依据,并为制定个体化的治疗方案提供指导。

代谢组学还可以用于药物研发和药效评价。

药物的作用机制通常与代谢有关,通过对药物与代谢物的相互作用进行分析,可以揭示药物在生物体内的代谢途径、代谢产物的形成过程以及代谢物与药物的关系。

这些信息对于药物研发和药效评价具有重要的指导意义。

代谢组学还可以应用于食品安全和环境监测等领域。

食品中的代谢物可以反映食品的质量和安全性,通过对食品中代谢物的分析,可以检测食品中的有害物质和添加剂,保障食品的安全性。

环境中的代谢物可以反映环境的质量和污染程度,通过对环境中代谢物的分析,可以监测环境中的污染物和毒性物质,保护环境的健康和可持续发展。

代谢组学是一门研究生物体内代谢物的分析学科,通过对代谢物的定性和定量分析,揭示生物体内代谢网络的变化,并探索代谢与疾病、药物、食品以及环境之间的关联。

代谢组学在疾病的早期诊断和治疗、药物研发和药效评价、食品安全和环境监测等领域具有重要的应用价值。

随着技术的不断发展和应用的推广,代谢组学将为人类健康和生物科学的发展做出更大的贡献。

代谢组的应用

代谢组的应用

代谢组的应用一、什么是代谢组学?代谢组学是一种研究生物体内代谢物的全面分析技术,通过对生物体内代谢产物的定量和定性分析,可以揭示生物体内代谢通路的变化,为研究生理、病理等方面提供了新的手段。

二、代谢组学在临床医学中的应用1. 诊断疾病通过对患者血液、尿液等样本中的代谢产物进行分析,可以发现某些特定的代谢产物在某些疾病发生时会出现明显变化。

例如,在肝脏癌患者中,血浆中甲酸含量明显降低;在胰腺癌患者中,血浆中苯乙氨酸含量明显升高等。

这些特定的代谢产物可以作为诊断该疾病的标志。

2. 监测治疗效果通过对患者血液、尿液等样本中的代谢产物进行分析,可以监测治疗效果。

例如,在抗癌药治疗后,血浆中多巴胺含量升高可以作为治疗效果的标志。

3. 预测疾病风险通过对健康人群中代谢产物的分析,可以发现某些代谢产物与某些疾病发生的风险相关。

例如,在血浆中低密度脂蛋白含量升高与冠心病发生的风险相关。

这些代谢产物可以作为预测患某种疾病的风险的标志。

三、代谢组学在农业中的应用1. 品种鉴定通过对不同品种作物中代谢产物的分析,可以鉴定不同品种之间的差异。

例如,在小麦中,不同品种之间乳酸含量和苹果酸含量存在明显差异。

2. 品质评价通过对农产品中代谢产物的分析,可以评价其品质。

例如,在茶叶中,咖啡因含量越高,茶叶品质越好。

3. 生长环境监测通过对农产品中代谢产物的分析,可以监测其生长环境是否符合标准。

例如,在有机蔬菜中,如果检测到有害化学物质残留,说明生长环境存在问题。

四、代谢组学在食品安全中的应用1. 食品质量监测通过对食品中代谢产物的分析,可以监测食品质量是否符合标准。

例如,在奶制品中,如果检测到过氧化值过高,说明奶制品已经变质。

2. 食品源追踪通过对食品中代谢产物的分析,可以追踪其来源。

例如,在鱼类中检测到某种特定的代谢产物,可以追踪该鱼是来自哪个地区或水域。

3. 食品添加剂检测通过对食品中代谢产物的分析,可以检测食品是否添加了不合法的添加剂。

生命科学中的代谢组学

生命科学中的代谢组学

生命科学中的代谢组学生命科学是研究生命本质的科学。

代谢组学则是生命科学中的一个重要领域,它是一种普及的新方法,旨在研究代谢产物的数量和种类,有助于深入理解生命体内的代谢过程和疾病机制。

代谢组学的定义代谢组学是研究生物体的代谢物组成的科学,它的目的是通过代谢产物的数量和种类来了解代谢的机制。

代谢组学的应用范围代谢组学可以应用于各种生物体,包括微生物、植物和动物等。

它可以用于研究代谢疾病、生物活性物质和毒理学等诸多领域。

代谢组学研究的内容代谢组学研究的主要内容是代谢产物。

代谢产物是指生物体内产生的化学物质,它们包括蛋白质、脂肪和碳水化合物等。

通过研究代谢产物的分布和种类,人们可以深入了解生物体的代谢过程并探究这些代谢产物与生命过程之间的关系。

代谢组学在医学中的应用代谢组学在医学中应用广泛,尤其是在代谢性疾病的研究中。

代谢性疾病是指由代谢异常引起的疾病,例如糖尿病、高血压等。

通过分析代谢物的种类和分布,代谢组学可以深入了解代谢性疾病的发病机理,有助于寻找新的诊断和治疗方法。

代谢组学在食品科学中的应用代谢组学在食品科学中的应用也很广泛,主要是用于食品成分的分析和鉴定。

通过分析代谢产物的种类和数量,人们可以对食品中的营养成分进行深入的研究,并探究其对人体的影响。

代谢组学在环境科学中的应用代谢组学在环境科学中的应用主要是针对环境污染的研究。

通过分析生物体内的代谢产物,可以判断环境中是否存在有毒化学物质,并深入了解这些化学物质对生物体的影响。

总结代谢组学是一个非常新颖的研究领域,它通过研究代谢产物的分布和种类来探究生命体内的代谢过程和疾病机制。

在医学、食品科学和环境科学等领域中,代谢组学都有着广泛的应用。

望未来代谢组学可以得到更加深入和广泛的应用,为人类的生命科学研究做出更多的贡献。

生物化学第四节 代谢组学

生物化学第四节 代谢组学

第四节代谢组学细胞内的生命活动大多发生于代谢层面,因此代谢物的变化更直接地反映了细胞所处的环境,如营养状态,药物作用和环境影响等。

代谢组学(metabonomics)就是测定一个生物/细胞中所有的小分子( Mr≤l000)组成,描绘其动态变化规律,建立系统代谢图谱,并确定这些变化与生物过程的联系。

一、代谢组学的任务是分析生物/细胞代谢产物的全貌代谢组学分为四个层次:①代谢物靶标分析( metabolite target analysis):对某个或某几个特定组分的分析;②代谢谱分析(metabolic profiling analysis):对一系列预先设定的目标代谢物进行定量分析。

如某一类结构、性质相关的化合物或某一代谢途径中所有代谢物或一组由多条代谢途径共享的代谢物进行定量分析;③代谢组学:对某一生物或细胞所有代谢物进行定性和定量分析;④代谢指纹分析( metabolic fingerprinting analysis):不分离鉴定具体单一组分,而是对代谢物整体进行高通量的定性分析。

代谢组学主要以生物体液为研究对象,如血样、尿样等,另外还可采用完整的组织样品、组织提取液或细胞培养液等进行研究。

血样中的内源性代谢产物比较丰富,信息量较大,有利于观测体内代谢水平的全貌和动态变化过程。

尽管尿样所含的信息量相对有限,但样品采集不具损伤性。

二、核磁共振、色谱及质谱是代谢组学的主要分析工具由于代谢物的多样性,常需采用多种分离和分析手段,其中,核磁共振( nuclear magnetic res- onance,NMR)、色谱及MS等技术是最主要的分析工具(图26-5)。

①NMR:是当前代谢组学研究中的主要技术。

代谢组学中常用的NMR谱是氢谱(1H-NMR)、碳谱(13C-NMR)及磷谱(31P-NMR);②MS:按质荷比(m/z)进行各种代谢物的定性或定量分析,可得封相应的代谢产物谱;③色谱·质谱联用技术:这种联用技术使样品的分离、定性、定量一次完成,具有较高的灵敏度和选择性。

代谢组学

代谢组学
分析技术各有优势及适用范围,最好采用联用技 术和多个方法的综合分析。分离分析手段包括: 色谱、质谱、NMR、毛细管电泳、红外光谱、电化 学检测。
NMR对代谢物具有普适性;色谱-质谱联用=色谱: 高分离度、高通量+质谱:普适性、高灵敏度、高 特异性。
色谱:层析分离技术或色层分离技术,是一种分离 复杂混合物中各个组分的有效方法。它是利用不同 物质在由固定相和流动相构成的体系中具有不同的 分配系数,当两相作相对运动时,这些物质随流动 相一起运动,并在两相间进行反复多次的分配,从 而使各物质达到分离。
二 代谢组学的研究方法
运用核磁共振(NMR)、质谱(MS)、气质联用技术 (GC-MS)、高效液相色谱(HPLC)等高通量、高灵敏 度与高精确度的现代分析技术对细胞提取物、组织 提取物和生物体液随时间变化的代谢物浓度进行检 测,结合有效的模式识别方法进行定性、定量和分 类,并将这些代谢信息与病理生理过程中的生物学 事件关联起来,从而了解机体生命活动的代谢过程。
KNApSAcK(http://kanaya.naist.jp/KNApSAcK/): 涵盖大部分植物物种和代谢化合物关系,包括了4 万多种化合物和8千多种植物物种的信息。
PlantCyc()阐述了超过350种植 物体内600多种代谢途径
MassBank(www.massbank.jp):日本质谱协会发展 和维护的高分辨率质谱数据库,近25000高分辨率 质谱数据,提供了多种质谱谱图搜索手段。
步骤
样品采集和制备 代谢组数据的采集 数据预处理 多变量数据分析 标志物识别 途径分析
代谢产物分析4个层次
代谢物靶标分析:对个别特定组分分析。 代谢轮廓分析:对预设组分的分析。 代谢组学:特定样品中所有代谢物分析。 代谢指纹分析:比较代谢物指纹图谱。

代谢组学国内

代谢组学国内

代谢组学国内摘要:一、代谢组学简介1.代谢组学的定义2.代谢组学研究的内容和意义二、代谢组学在我国的发展历程1.代谢组学在国内的研究起步2.代谢组学在我国的研究现状三、代谢组学在我国的研究应用1.在医学领域的应用2.在农业领域的应用3.在环境监测领域的应用四、代谢组学面临的挑战与未来展望1.技术挑战2.代谢组学与多学科交叉发展3.代谢组学的产业化前景正文:代谢组学是一门研究生物体内所有代谢物及其相互作用的科学。

它通过高通量技术对生物体内代谢物进行定性和定量分析,从而揭示生物体在特定条件下的生理和代谢状态。

代谢组学在我国的研究起步于21 世纪初,经过近20 年的发展,已经在多个领域取得了显著成果。

代谢组学在我国的研究现状表现为研究水平不断提高,研究方法不断丰富,研究队伍逐渐壮大。

目前,国内许多科研机构和高校都已经建立了代谢组学实验室,从事代谢组学研究的专家学者数量也在不断增加。

此外,我国还积极参与国际代谢组学合作项目,与国际代谢组学研究保持着紧密的联系。

代谢组学在我国的应用前景广阔。

在医学领域,代谢组学可以通过对病人的代谢物进行分析,为疾病诊断、疗效监测和预后评估提供重要依据。

在农业领域,代谢组学可以用于研究植物和动物的生长发育、抗逆性等生理过程,从而指导农业生产。

在环境监测领域,代谢组学可以用于分析环境中的代谢物,为环境监测和污染治理提供科学依据。

尽管代谢组学在我国取得了显著进展,但仍然面临着一些挑战。

首先,代谢组学研究需要克服技术难题,例如提高检测灵敏度、提高数据处理效率等。

其次,代谢组学需要与其他学科如生物信息学、蛋白质组学等交叉发展,以实现多学科综合研究。

最后,代谢组学的产业化发展将对促进国家经济和科技进步产生积极作用。

总之,代谢组学作为一门新兴的交叉学科,在我国的研究和应用取得了显著成果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

缺点:
灵敏度较低,分辨率不高,检测动态范围有限, 难以检测到丰度较低的化合物,难以同时对同一样 品中含量相差很大的物质进行检测,对于能检测到 的但含量较低的化合物物信号较弱。
同一个代谢物可能会有多个信号,而有些信号 则是不同代谢物的信号叠加的结果,将NMR所给出的 为结构片段信息进行归属比较困难。
代谢组学的应用
ห้องสมุดไป่ตู้
代谢物组学这一技术自提出后 , 发展迅速 , 目前已经在 植物学、毒理学、临床诊断、药物研发、营养科学等研究领 域都得到了广泛的应用。
代谢组学在自身免疫性疾病中的研究应用:
如 Giera 等应用毛细管液相色谱 - 串联四极杆质谱系 统, 分析了类风湿关节炎患者滑液 (SF) 中的近 70 种溶血性磷 脂酰胆碱和脂酰胆碱成分。进一步采用基于 LC-MS 的代谢靶 标分析方法定性和定量分析RA患者SF中的maresin 1,UpoxinA4和resolvinD5,鉴别出脂氧合酶途径相互作用的 主要物质5S,12S-diHETE可能是RA的生物标志物。
仪器价格及维护费用昂贵,难以普及。
基于色谱质谱联用技术的代谢组学研究
利用色谱的分离作用和质谱的鉴定作用,对代 谢物进行快速的定性分析和准确的定量。 色谱质谱联用技术兼具色谱的高分离度、高通 量和质谱的高灵敏度、特异性等优点,能够获得更 加丰富的代谢物信息,弥补了 NMR灵敏度低、信号 重叠及代谢物谱窄的不足,逐渐成为代谢组学研究 中的常用手段。
尿液为研究对象有其独特优势: 首先,尿样采集没有侵入性,使用代谢笼装置 即可实现连续采样,而且可实现自身对照,进而最 大限度地降低了个体差异对研究结果的影响; 其次,尿液经过肾小球的过滤,可以使氨基酸、 小分子有机酸等成分得到浓缩,方便检测;
再次,尿样的预处理过程也比较简单,因此它 是代谢组学分析中最典型的生物体液。
基于NMR的代谢组学研究
优势:
通过单次检测可以得到所有小分子化合物的特征 NMR 谱 以及这些小分子化合物在整个刺激周期中的动态变化。便于 确定未知代谢物的结构和性质,便于活体原位动态检测。 无偏向性分析,对所有化合物的灵敏度都相同。
所需样品量少,样品预处理简单,测试手段多样,样品 还可回收用于其它分析。
优势:
可设计多种谱图编辑手段,如单脉冲、扩散加权序列 等,实验方法灵活多变,通过操控脉冲序列可以获得样品中 不同官能团、不同分子量或不同存在状态的代谢物信息。
分析时间短 ( 一般 5~10min) ,可以实现代谢组学分析的 高通量样品检测要求。
具有良好的客观性和重现性,能实现数据的交换和比较, 结合新技术,使检测速度和准确性不断得到提高。
基因组的变化不一定会表达,蛋白在某些特定条件下不一定具有活 性,其浓度改变也不一定会对系统产生影响。小分子物质的产生和代谢 是这一系列事件的最终结果,能更灵敏、准确的表现生物体系的状态并 反映出整个体系的动态变化过程。 外环境对生物体的代谢有很大影响,但却不一定达到能影响基因组 或蛋白表达的激烈程度。
缺点: (1)数据库尚未完全建立,分析手段有限,目前还没 有一项分析技术能够同时分析所有的代谢物,也没 有相应代谢产物数据的标准值与之比较; (2)尚无有效的数据分析手段能够将得到的全部信息 进行分析和解释; (3)生物体代谢组变化比较快,稳定性较难控制; (4)检测所需的仪器设备价格昂贵、操作专业性强。
基因组学 转录组学 蛋白质组学 代谢组学
基因结构组成 转录因子 表达的所有蛋白质 小分子代谢物群
共同点:
都是系统生物学(分子系统生物学)研究的重要组成部分;
是对生物体在内外因作用下发生的各种动态变化进行整体性分析。
不同点:
前三者都是基于生物大分子水平的研究;而代谢组学关注的则是分 子量< 1000Da的内源性小分子代谢物的变化。
模式识别方法
代谢组学研究过程中主要通过模式识别技术来 产生直观结果。
模式识别技术是建立在传统的统计学方法之上 的模型判别技术,主要包括非监督学习方法和有监 督学习方法两大类。
代谢途径和生物化学数据库: 代谢组学数据通过模式识别、判别分析找到差异性变 量后,需要对这些差异性代谢物进行鉴定并了解他们所参与 的代谢通路,以对其生物学内涵加以解释,这些可以通过各 种代谢途径和生物化学数据库来实现。 最常用的有:京都基因与基因组百科全书(KEGG)、人 类代谢组数据库等。
代谢组学的特点
优势:
(1)代谢物是病理生理改变的最终结果,它调控着许多细胞内的生命活动, 更准确地反映生物体系的状态; (2)作为基因和蛋白表达的下游产物,代谢物的变化更容易被检测;
(3)代谢物的数量及种类远少于基因和蛋白,且研究范围相对集中。
(4)很多内源性小分子化合物的生化代谢网络已弄清,而目前对基因、蛋白质功 能的认识尚十分有限; (5)它反映的是各因素综合作用下的终末效应,是各个因素效应的综合体现,具 有很强的综合信息优势; (6)代谢组学研究中所采用的技术具有通用性。
数据处理方法 正如其它“组学”技术一样,基于核磁共振、质谱等现 代分析手段的代谢组学也会产生海量复杂的非直观图谱数据。 处理、分析和管理这些数据必须借助专门的数学、统计 和信息学工具,才能消除多余干扰因素的影响 , 保留与组分 有关的信息,最终获取有价值的信息并解释相应的生理及病 理变化。 主要采用化学计量学对数据进行分析,数据处理主要包 括:原始数据的处理、数据和信息的管理、统计分析、数据 标准化、代谢物及路径识别、数据集成和代谢网络的数学模 拟。
代谢组学的研究方法
其研究不仅涉及生命科学 , 还包含分析科学以及化学计 量学等专业知识的应用 , 其研究平台主要由分析技术平台和 数据分析平台构成。 一般来说,完整的代谢组学研究流程包括: 样品采集和制备 样品分析与检测 数据处理与分析 结果解释
样品釆集: 为了全面详尽的反映生物学过程 , 代谢组学研究要求严 格的实验设计和合适的分析精度。 首先,需要准确釆集到典型且数量足够的样本,以最大 限度地减少生物体个体差异对分析结果的影响,得到有统计 学意义的分析数据。 其次,实验设计中对样品收集的时间、部位、种类、样 本群体及样本的保存条件和保存时间等应给予充分考虑。 最后,必需科学、严格、全面地设计和采集对照组样品。
代 谢 组 学 相 关 知 识
概要
1.代谢组学的概念
代谢组学的定义 代谢组学与其它组学的联系、区别和特点
2.代谢组学的研究方法
样品釆集和制备 样品分析与检测
数据处理方法
3.代谢组学的应用
代谢组学在自身免疫性疾病研究中的应用
代谢组学的概念
1.定义: 它是关于定性和定量描述生物体内源性小分子代谢物的 整体及其对内因和外因变化应答规律的科学。 2.代谢组学与其它组学的联系、区别 代谢组学与基因组学、转录组学、蛋白质组学之间既存 在十分密切的联系又有着明显的差别。
样品制备: 尽可能保留并体现样品中完整的代谢物组分信息。 常用的样品处理方法包括有机溶剂沉淀法,液-液提取法 以及固液提取法。 样品的制备应遵循: (1)尽量采取简单的制备方法; (2)样品中各组分应尽量多地保留; (3)有利于样品中各组分的相互分离; (4)不能改变样品中各组分的相对浓度; (5)处理后样品成分稳定、重现性高,不引入其它杂质。
代谢组学采用高通量、高分辨率的分析技术 , 并与生物 信息学技术相结合 , 以其独特的视角对生物体代谢层面进行 研究,其必将在生命科学各个领域发挥越来越大的作用。 它是系统生物学不可或缺的一部分,帮助我们更深入地 了解生物体各种复杂的相互作用。 需要对代谢组学研究数据与基因组学、转录组学、蛋白 质组学、酶学等系统生物学其它学科研究数据整合,这是系 统生物学研究精髓所在,并且对于了解生物体正常的生理变 化、疾病的病理机制、疾病的诊断以及物种的进化也将具有 重大的推动作用。
样品分析与检测: 目前,代谢组分析技术中最常用的分离分析 手段包括液相色谱质谱(LC-MS)联用、气相色谱质谱 (GC-MS)联用以及核磁共振(NMR)技术。
其中以NMR技术应用最为广泛。另外,色谱质谱联用技术因其兼备色谱的高分离度、高通量以 及质谱的高灵敏度和特异性,也逐渐成为代谢组学 分析中的重要工具。
样品釆集: 检测所需的样品一般包括生物体液、细胞或是组织提取
物。
可应用于代谢组学研究的体液除常见的血液和尿液外 , 还包括:脑脊液、腹水、羊水、精液、消化液等。 以血样为研究对象进行分析十分常见,血样中内源性代 谢物种类比较繁多,成分比较稳定,可在预设时间点采集操 作,有利于从整体水平上观测并追踪体内的代谢物变化。 血样分析也存在缺点,如取血时有一定的侵入和创伤性 , 容易引起应激反应,进而影响生物体内的代谢物水平;也正 因为如此,采血频率受到一定的限制,无法进行连续采样。
相关文档
最新文档