场效应管放大器
电子专业技术实验报告—实验5场效应管放大器
电子技术实验报告—实验5场效应管放大器————————————————————————————————作者:————————————————————————————————日期:电子技术实验报告实验名称:场效应管放大器系别:班号:实验者姓名:学号:实验日期:实验报告完成日期:目录一、实验目的 (5)二、实验原理 (5)1. 场效应管的主要特点 (5)2. 结型场效应管的特性 (5)3. 自给偏置场效应管放大器 (7)4. 恒流源负载的场效应管放大器 (8)5. 场效应管放大器参数测试方法 (8)三、实验仪器 (10)四、实验内容 (10)1.电路搭接 (10)2 .静态工作点的调试测量 (11)3. 场效应管放大参数测试 (12)五、实验小结 (13)一、实验目的1. 学习场效应管放大电路设计和调试方法;2. 掌握场效应管基本放大电路的设计及调整、测试方法。
二、实验原理1. 场效应管的主要特点场效应管是一种电压控制器件,由于它的输入阻抗极高(一般可达上百兆、甚至几千兆),动态范围大,热稳定性好,抗辐射能力强,制造工艺简单,便于大规模集成。
因此,场效应管的使用越来越广泛。
场效应管按结构可分为MOS型和结型,按沟道分为N沟道和P沟道器件,按零栅压源、漏通断状态分为增强型和耗尽型器件,可根据需要选用。
那么,场效应管由于结构上的特点源漏极可以互换,为了防止栅极感应电压击穿要求一切测试仪器,都要有良好接地。
2. 结型场效应管的特性(1) 转移特性(控制特性):反映了管子工作在饱和区时栅极电压V GS对漏极电流I D 的控制作用。
当满足|V DS|>|V GS|-|V P|时,I D对于V GS的关系曲线即为转移特性曲线。
如图1所示。
由图可知。
当V GS=0时的漏极电流即为漏极饱和电流I DSS,也称为零栅漏电流。
使I D=0时所对应的栅极电压,称为夹断电压V GS=V GS(TH)。
⑵ 转移特性可用如下近似公式表示:)0()1(2)(P GS TH GS GS DSS D V V V V I I ≥≥-=当这样,只要I DSS 和V GS(TH)确定,就可以把转移特性上的其他点估算出来。
场效应管放大器实验报告
一、实验目的1. 了解场效应管的基本特性和工作原理。
2. 掌握场效应管放大器的设计与调试方法。
3. 学习测量场效应管放大器的各项性能参数。
二、实验原理场效应管(Field-Effect Transistor,简称FET)是一种电压控制器件,具有输入阻抗高、动态范围大、热稳定性好、抗辐射能力强等优点。
根据结构,场效应管可分为结型场效应管(JFET)和绝缘栅型场效应管(IGFET)。
1. 结型场效应管(JFET):JFET是一种三端器件,包括源极(S)、漏极(D)和栅极(G)。
其工作原理是利用导电沟道之间耗尽区的宽窄来控制电流。
2. 绝缘栅型场效应管(IGFET):IGFET是一种四端器件,包括源极(S)、漏极(D)、栅极(G)和衬底。
其工作原理是利用感应电荷的多少来控制导电沟道的宽窄,从而控制电流的大小。
场效应管放大器主要由输入级、中间级和输出级组成。
输入级主要起信号放大作用,中间级主要起信号传递作用,输出级主要起功率放大作用。
三、实验仪器与设备1. 实验箱:包含电源、示波器、信号发生器等。
2. 场效应管:JFET、IGFET各一只。
3. 电阻、电容、电感等电子元件。
4. 接线板、导线等。
四、实验步骤1. 搭建场效应管放大电路,包括输入级、中间级和输出级。
2. 调整电路参数,使放大器处于正常工作状态。
3. 使用示波器观察放大器的输出波形,分析放大器的性能。
4. 测量放大器的各项性能参数,如增益、带宽、输入阻抗、输出阻抗等。
五、实验结果与分析1. 放大器输出波形通过示波器观察,放大器输出波形基本符合预期,说明放大器能够正常工作。
2. 放大器性能参数(1)增益:通过测量输入信号和输出信号的幅度,计算得到放大器的增益为20dB。
(2)带宽:通过测量放大器的-3dB带宽,得到放大器的带宽为1MHz。
(3)输入阻抗:通过测量放大器输入端电压和电流,计算得到放大器的输入阻抗为1kΩ。
(4)输出阻抗:通过测量放大器输出端电压和电流,计算得到放大器的输出阻抗为50Ω。
场效应管功率放大器设计经验汇总
场效应管功率放大器设计经验汇总场效应管功率放大器是一种常用的电路,用于放大电信号的功率。
在电子领域中,功率放大器的设计和实现是非常重要的。
本文将综述场效应管功率放大器的设计经验,介绍其基本原理、设计要点和常见问题解决方法,帮助读者更好地理解和设计场效应管功率放大器。
1. 基本原理场效应管功率放大器是通过控制场效应管的栅极电压和漏源电流来放大输入信号的功率。
场效应管通过调节栅极-源极电压的变化来控制漏源电流的大小,从而实现对输入信号的放大。
场效应管的三个极端分别为栅极(Gate),漏极(Drain)和源极(Source)。
其中,栅极电压作为控制信号,漏极-源极电压作为放大信号输入,漏极电流作为放大信号输出。
2. 设计要点2.1 选择合适的场效应管在设计场效应管功率放大器时,需要根据放大的频率范围、功率要求、输入输出阻抗等参数来选择合适的场效应管。
不同型号的场效应管有不同的特性参数,例如增益、输入输出容量、截止频率等。
需要根据实际需求来选择合适的场效应管,并进行模拟和实际测试来验证其性能。
2.2 设置偏置电路场效应管需要设置适当的偏置电路来确保其工作在合适的工作点上。
偏置电路的设计应考虑工作电流和工作温度等因素,以提高放大器的稳定性和线性度。
偏置电路的设计还要考虑功耗和效率的折中,尽量减小功耗并提高效率。
2.3 电源设计场效应管功率放大器的电源设计非常重要。
合理的电源设计可以提高功率放大器的工作效率和稳定性。
电源设计应考虑电源噪声、电源稳定性和功率输出等因素。
选择合适的电源电压和电源容量,并采取适合的滤波电路来降低电源噪声。
2.4 保护电路设计在场效应管功率放大器设计中,需要加入保护电路来保护场效应管和其他部件免受过负载、过电流等因素的影响。
常用的保护电路包括过载保护、过热保护和静电保护等。
保护电路的设计需要根据实际应用场景来确定,并进行充分测试和验证。
3. 常见问题解决方法在场效应管功率放大器的设计和应用过程中,可能会遇到一些常见的问题,例如功率输出不稳定、失真和频率响应不均等。
场效应管共源放大器电路
场效应管共源放大器电路场效应管共源放大器是一种常用的放大电路,它具有放大电压的功能。
本文将介绍场效应管共源放大器的原理、特点和应用。
一、场效应管共源放大器的原理场效应管是一种三极管,由栅极、漏极和源极构成。
在共源放大器中,源极是电压信号的输入端,漏极是电压信号的输出端,栅极用于控制场效应管的工作状态。
当在栅极施加一个恒定的直流电压时,栅极和源极之间形成一道正向偏置电压,使得场效应管进入饱和区。
在饱和区,源极电流基本上不受栅极电压的影响,因此可以实现电流信号的放大。
二、场效应管共源放大器的特点1. 输入电阻高:由于场效应管的栅极与源极之间存在一道反向偏置电压,使得输入电阻较大,可以减小输入信号对电路的负载影响。
2. 输出电阻低:场效应管的漏极与源极之间形成一道正向偏置电压,使得输出电阻较低,可以提供较大的输出电流。
3. 放大系数大:场效应管共源放大器的放大系数由栅极电压和源极电压决定,可以通过调节栅极电压来改变放大倍数。
4. 频率响应好:由于场效应管的输入和输出电容较小,因此具有较好的高频响应特性。
三、场效应管共源放大器的应用场效应管共源放大器广泛应用于各种电子设备中,如音频放大器、射频放大器等。
在音频放大器中,场效应管共源放大器可以将微弱的音频信号放大,使得音频信号能够驱动扬声器发出声音。
在射频放大器中,场效应管共源放大器可以将微弱的射频信号放大,使得射频信号能够被传输或接收设备处理。
四、场效应管共源放大器的优缺点场效应管共源放大器具有以下优点:1. 输入电阻高,输出电阻低,适合与其他电路连接;2. 放大系数大,可以放大微弱的信号;3. 频率响应好,适用于高频信号的放大。
然而,场效应管共源放大器也存在一些缺点:1. 由于场效应管的栅极与源极之间存在一道反向偏置电压,输入电压有一定的限制范围;2. 由于场效应管的漏极与源极之间形成一道正向偏置电压,输出电压也有一定的限制范围。
五、总结场效应管共源放大器是一种常用的放大电路,具有输入电阻高、输出电阻低、放大系数大和频率响应好等特点。
2.7 场效应管放大器
D
G
vs
VGG
vi
vo
vs
vi vgs
S
rd
Rd
vds
图2.7.3(a)共源基本放大电路
(b)交流等效电路
一、静态分析 静态工作点由VDD、VGG、RD共同来确定。 由直流通路可知: ∵ IG=0 ,∴ VGS=VGG
VGS I D I ( sat ) 1 V GS ( off )
N沟道耗尽型MOS管 P沟道耗尽型MOS管
负
正、零、负均可 正、零、负均可
负
正 负
2、场效应管的交流等效电路
采用推导晶体管h参数等效电路的方法可导出场效应管的 低频小信号等效电路。 以共源放大电路为例。 场效应管是电压控制元件,其栅极不取电流,漏极电 流iD,是栅源电压VGS和漏源电压VDS的函数,即:
§2.7 场效应管放大器
场效应管通过栅—源之间的电压VGS来控制漏极电流iD, 因此,和晶体管一样可以实现—源之间的电阻很大, 可以认为栅极基本不从信号源索取电流,因而由它所构成
的放大电路的输入电阻可达到几兆欧~几十兆欧,甚至更大。
由于场效应管其具有栅—源之间的电阻很大这一特点, 所以常作为高输入阻抗放大器的输入极。
∵ rd RD
∴ AV g m RD
∵ ii ig 0 ∴ Ri
G
D gmvgs
vs
vi vgs
S
rd
Rd
vds
Ro RD // rd RD
(b)交流等效电路
2
+VDD
D G
VDS VDD I D RD
静态工作点也可通过作 图法在输出特性曲线上作负 载线求得。
场效应管放大器课件
转移特性曲线可以用来分析场效应管的放大性能和动态特性,以及确定 电路的工作点。
电压放大倍数
电流放大倍数
电流放大倍数是指输出电流与输入电流之比,也是衡量放大器放大能力的重要指标。 电流放大倍数越大,说明放大器的放大能力越强。
当栅极电压增加时,场效应管内部的 电场增强,导致源极和漏极之间的电 流增加。
跨导
跨导是描述场效应管放大能力的 参数,表示栅极电压变化与源极
和漏极之间电流变化的比率。
跨导越大,场效应管的放大能力 越强。
跨导与场效应管的源极和漏极之 间的电阻有关,电阻越大,跨导
越小。
转移特性曲线
转移特性曲线是描述场效应管栅极电压与源极和漏极之间电流关系的曲线。
电流放大倍数通常由场效应管的跨导决定,可以通过调整栅极和源极之间的电压差来改变。
通频带宽度
输入电阻和输出电阻
01
输入电阻是指场效应管 放大器输入端的等效电 阻,是衡量输入信号被 衰减的程度。
02
输入电阻越大,说明输 入信号的衰减越小,信 号质量越好。
ห้องสมุดไป่ตู้
03
输出电阻是指场效应管 放大器输出端的等效电 阻,是衡量输出信号的 负载能力。
场效应管放大器具有较 宽的频带,适用于宽带
信号的放大。
高效能
场效应管放大器具有较 高的能量转换效率,能
够减少能源消耗。
场效应管放大器的应用场景
01
音频放大
02
通信系统
03
测量仪器
04
自动控制系统
输入级
输入级是放大器的起始部分,负 责接收微弱信号并将其传输到后
场效应管放大器实验报告
场效应管放大器实验报告场效应管(FET)是一种常用的放大器元件,它具有高输入阻抗、低噪声、低失真等优点,因此在电子电路中得到了广泛的应用。
本实验旨在通过实际操作,了解场效应管放大器的工作原理、特性和参数测量方法,以及对放大器性能的影响。
下面将从实验目的、实验原理、实验步骤、实验数据处理和分析、实验结论等方面进行详细的报告。
实验目的。
1. 了解场效应管放大器的基本工作原理;2. 掌握场效应管放大器的参数测量方法;3. 理解不同参数对放大器性能的影响。
实验原理。
场效应管放大器是利用场效应管的放大特性来实现信号放大的电路。
场效应管由栅极、漏极和源极组成,通过控制栅极电压来调节漏极和源极之间的电流,从而实现信号放大。
在放大器电路中,场效应管通常作为放大器的输入级,其输入阻抗高,对输入信号不产生负载效应,能够有效地将输入信号传递到后级放大器,因此被广泛应用于各种电子设备中。
实验步骤。
1. 搭建场效应管放大器电路,连接电源和信号源;2. 调节栅极电压,测量输入输出电压和电流;3. 改变栅极电压,测量不同工作点下的电压增益、输入阻抗和输出阻抗;4. 记录实验数据,进行数据处理和分析。
实验数据处理和分析。
通过实验数据的记录和分析,我们得到了不同工作点下的电压增益、输入阻抗和输出阻抗的变化情况。
根据实验结果,我们可以看出,随着栅极电压的变化,电压增益呈现出不同的变化趋势,输入阻抗和输出阻抗也有所不同。
这些数据反映了场效应管放大器在不同工作点下的性能特点,为进一步了解其工作原理和优化设计提供了重要参考。
实验结论。
通过本次实验,我们深入了解了场效应管放大器的工作原理和参数测量方法,掌握了实际操作技能,对放大器性能的影响有了更清晰的认识。
实验结果表明,场效应管放大器具有较高的输入阻抗和电压增益,能够有效地实现信号放大,为电子电路设计和应用提供了重要的技术支持。
总结。
通过本次实验,我们对场效应管放大器有了更深入的了解,实践操作使我们更加熟悉了电子电路中的放大器元件,提高了我们的实际动手能力和技术水平。
实验五 场效应管放大器
实验五场效应管放大器一.实验目的1.了解场效应管共源极放大器的性能特点。
2.掌握放大器主要性能指标的测试方法。
二.预习要求1.复习场效应管共源极放大器的工作原理。
2.熟悉本实验中测量A u、R i、R o、f L、f H的方法。
三.实验原理场效应管共源极放大器具有以下特点:输入阻抗高,电压放大倍数较小。
场效应管在组成放大器时,需要由偏置电路建立一个合适又稳定的静态工作点,由于场效应管是电压控制器件,因此,它只需要给栅极加上合适的偏压,一般采用自给偏压的方法给栅极加上合适的偏压。
如图1所示的共源极放大器就是由N沟道结型场效应管构成的自给偏压电路。
由于栅极电流I G近似为零,所以栅极电图1 自偏压式场效应管共源极放大器阻R G上的压降近似为零,栅极G与地同电位,即U G = 0。
对结型场效应管来说,即使在U GS = 0时,也存在漏极电流I D,因此在没有外加栅极电源的情况下,仍然有静态电流I DQ流经源极电阻R S,在源极电阻R S上产生压降U S (U S= I DQ R S),使源极电位为正,结果在栅极与源极间形成一个负偏置电压:U GSQ = U GQ– U SQ = – I DQ R S(1)这个偏置电压是由场效应管本身的电流I DQ产生的,所以称为自给偏压。
为了减小R S对交流信号的影响,可在R S两端并联一个交流旁路电容C S。
四.场效应管共源极放大器的直流与交流参数1.场效应管共源极放大器的直流参数为了使放大器正常工作,必须对场效应管放大器设置合适的静态工作点,场效应管放大器的静态工作点是指直流量U GSQ 、I DQ 和U DSQ 。
静态工作点可采用图解法或计算法确定。
在本实验中采用计算法来确定静态工作点。
根据图 1 电路可得到如下静态时的关系式。
U DSQ =U DD – I DQ (R S + R d ) (2)U GSQ = – I DQ R S (3)2)1(P GSQDSS DQ U U I I -= (4)将已知的U DD 、R S 、R d 、U P 和I DSS 代入以上方程,联立求解,就可算出静态工作点U GSQ 、I DQ 和U DSQ (U P 和I DSS 分别为夹断电压和漏极饱和电流)。
场效应管放大器实验报告
场效应管放大器实验报告实验目的:1.熟悉场效应管的特性;2.掌握场效应管放大电路的实验测量方法;3.了解场效应管放大电路的放大特性和输出特性。
一、实验原理场效应管(MOSFET)是一种三端器件,由栅极、漏极和源极组成。
本实验中使用的场效应管为N沟道MOSFET,其增强型导通态,栅极电压(V_gs)正,使得源极-漏极电流(I_ds)增大。
场效应管放大器是将输入信号通过场效应管放大后,得到更大的输出信号。
输入信号通过耦合电容从输入端传入场效应管的栅极,输出信号经耦合电容从场效应管的漏极输出。
当输入信号变化时,场效应管的栅极电压会相应改变,从而控制漏极电流的变化,从而实现了信号的放大。
二、实验器材信号发生器、场效应管、电阻、电容、万用表、示波器等。
三、实验步骤1.搭建场效应管放大电路,连接如下图所示,其中RD为漏极负载电阻,VG、VS、VD分别为栅极、源极和漏极电压。
将示波器的探头用示波器的X/Y模式引出,连接到电路的输入和输出端口,方便观测输入和输出信号。
2.根据实验电路的参数和实际需要的放大倍数确定漏极负载电阻RD的大小。
设置发生器的频率和幅度(如1kHz的正弦波信号)。
3.打开电源,调节电位器,使场效应管的漏极电流为预期值。
4.调节信号发生器的频率和幅度,获得所需放大倍数的输出信号。
5.用万用表测量电路各节点的电压值,观察漏极电流变化对应的栅极电压。
6.记录数据,并根据测量数据绘制输入输出特性曲线和增益特性曲线。
四、实验结果及数据处理根据实验步骤记录实验数据,并将实验数据整理成表格。
根据测量数据绘制输入输出特性曲线和增益特性曲线,分析实验结果。
五、实验总结通过本次实验,我们熟悉了场效应管的特性,掌握了场效应管放大电路的实验测量方法。
实验过程中我们了解到了场效应管放大器的放大特性和输出特性,通过输入输出特性曲线和增益特性曲线的绘制和分析,我们进一步加深了对场效应管放大器的理解。
同时,我们还学会了使用信号发生器、示波器和万用表等仪器进行实验测量,锻炼了实验操作技能。
MOS场效应管放大电路
电源抑制比
偏置电路应具有较高的电 源抑制比,以提高放大电 路对电源噪声的抑制能力。
调整方便性
偏置电路应易于调整,以 满足不同工作条件下的需 要。
Part
04
mos场效应管放大电路的性 能分析
电压放大倍数
总结词
电压放大倍数是mos场效应管放大电路的重要性能指标,表示输出电压与输入电压的比 值。
详细描述
促进电子技术发展
研究mos场效应管放大电 路有助于推动电子技术的 发展,促进相关领域的技 术创新。
Part
02
mos场效应管放大电路的基 本原理
mos场效应管的工作原理
金属-氧化物-半导体结构
mos场效应管由金属、氧化物和半导体材料组成,形成导电沟道。
电压控制器件
mos场效应管通过外加电压控制导电沟道的开闭,实现电流的放大 或开关作用。
02
结果表明,mos场效应管放大电路具有高放大倍数、高输入电阻和低噪声等优 点,适用于低频信号放大和高增益要求的应用场景。
03
本文还对mos场效应管放大电路的稳定性进行了分析,并提出了改进措施,以 提高电路的稳定性和可靠性。
对未来研究的展望
未来研究可以进一步探索mos场效应管放大电路在高频、宽带和低噪声等方面的性能优化,以满足更 广泛的应用需求。
VS
详细描述
失真性能是衡量mos场效应管放大电路性 能的重要指标之一,失真越小,电路的性 能越好。失真性能主要受到静态工作点、 跨导、源极电阻和负载电阻等因素的影响 。
Part
05
mos场效应管放大电路的应 用
在音频放大器中的应用
音频放大器是mos场效应 1
管放大电路的重要应用领 域之一。
场效应管放大器实验报告
场效应管放大器实验报告实验目的:本实验旨在通过实际操作,了解场效应管放大器的工作原理,掌握其基本特性和参数测量方法。
实验仪器和器材:1. 电压表。
2. 示波器。
3. 信号发生器。
4. 直流稳压电源。
5. 场效应管。
6. 电阻、电容等元件。
7. 示波器探头。
8. 连接线等。
实验原理:场效应管是一种电子管,具有高输入电阻、低噪声、大输入动态范围等特点,常被用作放大器的放大元件。
其工作原理是通过控制栅极电压,改变沟道中的电子浓度,从而控制漏极电流。
在放大器中,场效应管可以实现电压信号的放大。
实验步骤:1. 按照电路图连接实验电路,注意接线正确、稳固。
2. 调节直流稳压电源,使其输出电压为所需值,接通电源。
3. 连接信号发生器和示波器,调节信号发生器输出频率和幅度。
4. 测量输入输出电压,并记录数据。
5. 调节输入信号幅度,观察输出信号变化。
6. 改变场效应管的工作状态,观察输出信号的变化。
实验结果与分析:通过实验测量和观察,我们得到了场效应管放大器的输入输出特性曲线。
当输入信号幅度较小时,输出信号随之变化,但当输入信号幅度超过一定值后,输出信号不再随之变化,出现了饱和现象。
这表明场效应管放大器具有一定的线性放大范围,超出该范围后会出现失真。
此外,我们还观察到了场效应管放大器的频率特性。
随着输入信号频率的增加,输出信号的幅度出现了衰减,这是由于场效应管的内部电容导致的。
因此,在实际应用中,需要根据信号频率选择合适的场效应管型号,以保证放大器的性能。
结论:通过本次实验,我们深入了解了场效应管放大器的工作原理和特性,掌握了其参数测量方法。
同时,我们也发现了其在实际应用中需要注意的问题,为今后的电子电路设计和实际应用提供了重要的参考。
总之,场效应管放大器作为一种重要的放大器元件,在电子技术领域具有广泛的应用前景,我们应该深入学习其原理和特性,不断提高自己的实验操作能力,为今后的科研和工程实践打下坚实的基础。
场效应管放大器实验报告
场效应管放大器实验报告实验报告:场效应管放大器一、实验目的1.了解场效应管的原理和特性。
2.学习场效应管的半导体制作工艺。
3.掌握场效应管放大电路的设计和调试方法。
二、实验原理1.场效应管的原理场效应管(Field Effect Transistor,FET)是一种电子管,利用金属-半导体界面的电势差作为控制电路的调节电量,从而实现信号放大、开关等功能。
根据控制电压的不同种类和作用方式,场效应管可以分为三种:JFET(结型场效应管)、MOSFET(金属氧化物半导体场效应管)和IGFET(绝缘栅场效应管)。
其中,JFET的控制电压是负电压,而MOSFET和IGFET的控制电压是正电压。
2.场效应管的特性(1)输入电阻大:场效应管的输入电阻比双极晶体管大几十倍,适用于输入信号电阻较高的场合。
(2)无电流干扰:场效应管有高阻输入,输入电阻大,输入电流小,不容易受其他电路的电流稳压管的电流影响,所以不会产生电流干扰。
(3)低噪声:场效应管有高输入电阻,且内部噪声小,在低频放大器中可得到较低的噪声。
(4)失真小:场效应管可以使失真因子保持在1以下。
(5)增益高:场效应管的内部电流放大系数较大,故增益高,一般比双极晶体管高好几倍。
(6)无相位变化:场效应管的内部反馈电容小,无相位变化。
三、实验仪器和设备1.场效应管试验箱2.双踪示波器3.信号源4.直流电源5.万用表四、实验步骤1.按照实验原理连接电路,调节直流电源,使其为2V,同时调节信号源,使其输出为频率为1kHz,幅度为0.1V的正弦波。
2.将示波器连接到场效应管的输入端和输出端,观察输入信号和输出信号的波形以及幅值。
3.调整场效应管电路中的电阻网络,达到预定的放大倍数和通频带范围。
4.对场效应管的静态特性进行测量,包括Idss(漏源极饱和电流)、VP(截止电压)、VGS(栅源电压)等指标的测量。
五、实验结果1.测量得到的Idss值为2.5mA。
2.测量得到的VP值为5V。
场效应管放大器教学课件
03
CHAPTER
场效应管放大器的性能指标
电压增益:指放大器输出电压与输入电压之比,用于衡量放大器对信号的放大能力。
电压增益大小与放大器的设计、工作状态及电路元件的参数有关。
电压增益是场效应管放大器的重要性能指标,其值越大,放大效果越好。
01
Байду номын сангаас02
03
04
通过调整反馈元件参数,优化电路结构,避免放大器自激振荡。
优化电路设计,选用低噪声元件,加强屏蔽措施,降低外部干扰。
调整静态工作点,优化放大级数和元件参数,减小非线性失真。
通过增加放大级数、调整反馈系数或选用更高增益的场效应管,提高输出信号幅度。
06
CHAPTER
场效应管放大器的未来发展与趋势
功率增益:指放大器输出功率与输入功率之比,用于衡量放大器对信号的功率放大能力。
功率增益大小与放大器的效率、工作状态及电路元件的参数有关。
功率增益是场效应管放大器的重要性能指标,其值越大,功率放大效果越好。
01
02
带宽增益乘积是场效应管放大器的重要性能指标,其值越小,说明放大器在宽频带范围内具有较好的性能。
静态工作点的调试
调整输入和输出阻抗,使信号源和负载与放大器达到最佳匹配。
输入和输出匹配调试
通过改变反馈电阻或电容,调整放大器的通频带,以满足不同频率信号的放大需求。
频率响应调试
优化放大器电路参数,降低噪声,减小非线性失真,提高信号质量。
噪声和失真调试
放大器自激振荡
噪声过大
非线性失真严重
输出信号幅度不足
特点
原理
通过改变场效应管的栅极电压,控制源极和漏极之间的电流,从而实现信号的放大。
场效应管功率放大器的制作
场效应管功率放大器的制作一、引言场效应管(FET)是一种半导体器件,具有输入阻抗高、噪声系数低、驱动能力强等优点,因此在功率放大器中得到广泛应用。
本文将介绍场效应管功率放大器的制作过程。
二、器件选型与准备1.选型:在选型时应根据实际需求来选择合适的FET型号,要考虑输出功率、工作频率、输入/输出阻抗匹配等因素。
2.准备材料与工具:选型完成后,需要准备以下材料与工具:场效应管、电感、电容、电阻、电源、电路板、焊锡、焊锡丝、螺丝刀、万用表等。
三、电路设计与仿真1.电路设计:根据所选型号的FET和电路特性来设计功率放大电路,包括输入/输出匹配电路、偏置电路、负反馈电路等。
2.电路仿真:使用相应的电路仿真软件,如Proteus、Multisim等,对设计的电路进行仿真验证,分析其工作特性和参数。
四、电路板制作与元件安装1.电路板制作:将设计好的电路图绘制到电路板上,注意保持连接的正确性和元件的正确摆放位置。
2.元件安装:根据电路图,将各个元件按照正确的位置焊接到电路板上,注意焊接的稳定性和可靠性。
五、电路调试与测试1.电路连接与供电:将电路板与电源连接,注意极性的正确性。
可以选用直流稳压电源或者电池作为供电源。
2.调试与测试:给电路加电后,使用万用表进行电压、电流等参数的测量,确保电路工作正常。
如果有可调节的元件,如可变电阻或可变电容,可以进行调试,使其达到期望的工作状态。
六、性能评估与优化1.性能评估:通过实际测试,测量电路的增益、频率响应、失真等性能指标,与所需性能指标进行比对。
2.优化设计:根据性能评估结果,优化电路设计,可能需要调整元件参数、电路配置等,以满足性能要求。
七、保护电路设计与应用为确保电路的工作稳定性和安全性,可以添加保护电路,如过压保护、过流保护、过温保护等。
根据实际应用场景,选择相应的保护电路,并进行相应的连接。
八、总结通过以上的制作过程,一个场效应管功率放大器就可以完成。
在实际制作过程中,要注意安全使用工具,防止短路或其他意外情况的发生。
制作场效应管功率放大器
制作场效应管功率放大器第一步:理解场效应管功率放大器的原理场效应管(FET)是一种电子元件,可以作为电流放大器和电压放大器。
场效应管功率放大器的核心组成部分是场效应管,其工作原理是基于调节输入信号通过控制栅极电场来控制源-漏电流的大小。
栅极电压的变动可以引起源-漏电流的变动,从而实现对输入信号的放大。
第二步:选择合适的场效应管第三步:设计电路图在选择好场效应管之后,需要进行电路设计。
电路图的设计需要考虑输入电阻、输出电阻、电流增益等因素。
同时,还需要合理选择电源电压和电源电流,以确保电路能够正常工作。
第四步:制作电路板根据电路图设计制作电路板,可以采用单面板或双面板。
在制作电路板的过程中,可以使用CAD软件进行布线设计,并根据设计制作出真实的电路板。
第五步:焊接元件和连线将选好的场效应管和其他所需零件焊接到电路板上,并根据电路图进行正确的连线。
注意焊接时的温度和时间,以避免电路板损坏。
第六步:测试电路完成焊接工作后,需要进行电路测试。
可以用示波器、信号发生器等仪器测试电路的输入输出特性,验证电路的工作是否符合设计要求。
如果发现问题,需要及时进行排查和修复。
第七步:调整电路参数根据测试结果,如果电路的工作与设计要求不符,需要对电路进行调整。
可以通过调整电阻、电容等元件的数值来达到理想的电路参数。
第八步:封装和安装当电路参数满足要求后,可以将电路封装起来,以保护电路板免受环境的影响。
封装可以选择合适的外壳或散热器来进行。
制作场效应管功率放大器需要一定的电子电路知识和相关实践经验。
同时,由于场效应管功率放大器的工作电压较高,对安全性也有一定要求,需要在制作过程中注意安全事项。
最后,为了获得更好的效果,可以不断地进行实验和优化,以提高功率放大器的性能。
通过以上步骤,就可以制作一个场效应管功率放大器。
当然,整个过程中还有很多细节和注意事项需要注意,希望这篇文章能给您提供一些初步的了解和指导。
如果您对这个话题感兴趣,建议您继续深入学习和实践,以提高自己的电子电路制作技能。
场效应管放大器的输入耦合电容与晶体管
场效应管放大器的输入耦合电容与晶体管
场效应管放大器是一种常用的放大器电路,它通过调制输入信号中的电流,来控制输出信号的电压。
而输入耦合电容则是将输入信号与场效应管的栅极之间进行耦合的元件,它起到阻隔直流信号、传递交流信号的作用。
晶体管则是场效应管放大器中常用的放大元件。
它由电流放大区和电压放大区组成,通过调节栅极的电压来控制输出电流或电压的放大倍数。
对于场效应管放大器而言,输入耦合电容的作用是将输入信号的交流成分传递到晶体管的栅极上,而阻隔直流信号的通过。
这样,就可以实现输入信号的放大。
同时,晶体管则负责对输入信号进行放大处理,将其转化为更大的输出信号。
通过调节晶体管的工作点和偏置电压,可以实现对输入信号的精确放大。
综上所述,输入耦合电容和晶体管是场效应管放大器中不可或缺的组成部分,它们共同协作,实现对输入信号的放大处理。
制作场效应管功率放大器
制作场效应管功率放大器场效应管功率放大器是一种广泛应用于电子电路中的功率放大器,它通过场效应管的操控来实现信号的放大。
下面将介绍制作场效应管功率放大器的步骤。
首先,我们需要准备以下材料和工具:1.一块电路板2.场效应管(有源器件)3.小信号二极管4.电阻5.电容6.输入、输出端子7.直流电源8.滤波电容9.电流表和电压表10.焊接工具11.示波器(可选)步骤1:设计电路根据功率放大器的需求,设计所需电路图,确定电路中各个元器件的数值和连接方式。
主要包含输入信号源、输入电容、放大电路、输出电容、输出信号负载等部分,其中的输出电容和输出信号负载是用来保证放大的信号稳定和驱动外部负载。
步骤2:打开电路板按照电路图的设计,将电路板上不需要的部分切割或去除。
保留需要焊接进电路板的部分。
步骤3:焊接电路将先前准备好的各个元器件按照电路图的要求,一个接一个地焊接到电路板上。
注意焊接的顺序和技巧,确保焊点牢固可靠。
步骤4:连接输入和输出端子连接输入和输出端子,用于提供输入信号和接收输出信号。
输入端子可以连接到信号源,输出端子可以连接到负载。
步骤5:连接直流电源和滤波电容连接直流电源和滤波电容,用于提供工作电压和滤除电路中的杂散电压。
步骤6:安装场效应管将场效应管安装到电路板上,注意引脚的正确连接和插入方式。
在插入前,可以清洁引脚和插孔。
步骤7:测试和调试连接相应的测试设备,如电流表和电压表,对电路进行测试和调试。
通过测量输出电压、电流和输入电压等参数,调整电路的工作点和放大系数,以达到预期的功率放大效果。
步骤8:优化和改进根据实际测试结果和需求,对电路进行优化和改进。
可以尝试更换元器件,调整电路参数,改进电路拓扑结构,以提高功率放大器的性能和稳定性。
在制作场效应管功率放大器的过程中,需要注意以下几点:1.仔细阅读和理解电路图和规格书,确保元器件的正确使用和连接。
2.在焊接过程中,注意安全操作,避免因电路短路或电源短路而引起危险。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电路结构:
+VDD Rg1 C1 Rd C2
+
ui Rg3 Rg2 RS RL CS
+
uo
_
_
直流通路与静态工作点
ID +VDD
Rg1
IG=0
Rg3 G
Rd
RG 2 U GSQ VDD I DQ RS RG1 RG 2
Rg2
S
RS
I S= I D
I DQ I DSS [1
3-3-4 多级放大器的通频带
见黑板
课后小结——见黑板
课前复习及提问:1)场效应管 2)共射、共集电路特点及动态参数计 算方法 思考题:P180 2、3 作业题:1) 多级放大器的构成及对各级的要求? 2) 多级放大器的放大倍数、输入电阻、输出电阻? 预习内容:OCL、 OTL功放
βib1
RB11 RB12 RC1 RB2
βib2
+ RE2 u o Ro RL
C4 +
3-3-3 变压器耦合多级放大器
电路如图:
RB1 C1 + ui RB2 RE1 Tr1 + V1 + CE + C2 RB2 Tr2 V2 +VCC RL + uO -
变压器耦合两级放大器
三种耦合方式多级放大器性能比较: 直接耦合——优点:电路简单、便于集成、频率特性好、交 直流信号都能放大 缺点:“零点漂移”现象较明显极间电平配合 需 要解决。 阻容耦合——优点:静态工作点互不影响、稳定 缺点:耦合电容容量大(因频率低)不便于集 成、只能放大交流信号 变压器耦合——优点:静态工作点互不影响、稳定 缺点:体积大不便于集成、只能放大交流信 号频率特性不好。
例1. 在图示电路中,β1=β2=50,rbe1=1kΩ,rbe2= 0.2kΩ 求: (1)两级放大器的电压放大倍数Au;(2)两级放大器的输入 电阻Ri和输出电阻R0。 引导学生共同分析过程
+VCC RB11 110k C1 + + R ui B12 270k (a) RE1 2.7k + C2 RE2 800 RC1 6.2k + C3 RB2 56k + ui + uO RL 800 Ri Ro1 Ri2 b) ib1 rbe1 ib2 rbe2
U GSQ U GS ( off )
]2
IDSS 耗尽型NMOS管 uGS UGS(off)
共源极放大器主要性能参数
(1) 电压放大倍数:
Au gm ( Rd // RL )
U DSQ
iD 其中gm为跨导: gm = uGS
(2) 输入电阻: Ri=RG3+(RG1//RG2)
(高MΩ)
§3-2 场效应管放大器
§3-3 多级放大器
学习要点: •场效应管放大器结构及特点 •多级放大器的参数计算
场效应管放大器
3-2-1 场效应管共源极放大器 3-2-2 场效应管共漏极放大器 3-3-1 直接耦合多级放大器 3-3-2 阻容耦合多级放大器 3-3-3 变压器耦合多级放大器 3-3-3 多级放大器的通频带
3-3-1 直接耦合多级放大器
——与直接耦合单级放大器类似:将前一级的输出直接送入后 一级的输入 电路形式如图:
+VCC RB1 + ui RC1 + V1 UCE1 + UBE2 V2 RB2 RC2 + uO RB1 + RC1 RB2 RC2 + uO +VCC
V1 RE2 (b) +VCC
5. 输出电阻:共源极放大器较高;共漏极放 大器很低(几十Ω )
§3-3 多级放大器
多级放大器的构成框图——
信号源
输入级
中间级
输出级
负载
要求:1)输入级——具有高输入电阻和较强的抗干扰能力 常用“共集放大器”或“场效应管放大 器”; 2)中间级——具有较高的电压放大能力,“共射放大器” 组成,以上两级为小信号放大电路; 3)输出级——具有较低输出电阻(提高带载能力)和大 的功率输出。
(3) 输出电阻:
R0=Rd
3-2-2 场效应管共漏极放大器
电路结构:
+VDD Rg1 C1
+
R
+
us
ui
Rg3 Rg2 RS
C2
+
uo RL
_
_
_
共漏极放大器(源极跟随器)
源极跟随器主要性能参数
(1) 电压放大倍数:
g m ( RS // RL ) Au 1 1 g m ( RS // RL )
V2 +
CE
(a) RC1 RC2 + uO
RB1 +
RB2
V1 VDZ (c)
V2
3-3-2 阻容耦合多级放大器
电路如图:
RB1 C1 RS us + + ui 第一级 第二级 + RC1 C2 + RB2 V1 +VCC RC2 C3 + + uO RL
V2
交流参数计算—— 1)电压放大倍数Au——等于各级电压放大倍数之积 Au=Au1Au2…Au3 2)输入电阻Ri——等于第一级的输入电阻 Ri=Ri1 3)出电阻R0——等于输出级的输出电阻 Ro=Ro出
U DSQ
iD 其中gm为跨导: gm = uGS
(2) 输入电阻: Ri=RG3+(RG1//RG2) (高)MΩ (3) 输出电阻:
RS R0= 1 g m RS (低)
场效应管放大器性能小结
1. 噪声低;热稳定性好; 2. 输入电阻很高,可达MΩ; 3. 共源极放大器为反相放大器,电压放大倍 数较高; 4. 共漏极放大器为同相放大器,电压放大倍 数接近于1,故叫做源极跟随器。