传热的三种基本方式

合集下载

传热的三种方式

传热的三种方式

第6章传热1、传热过程有哪三种基本方式?答:(1)间接换热,(2)直接换热,(3)蓄热式换热。

2、传热按机理分为哪几种?答:(1)热传导,(2)热对流,(3)热辐射。

3、物体的导热系数与哪些主要因素有关?答:与物体材料的组成、结构、温度、湿度、压强及聚集状态等因素有关。

4、流体流动对传热的贡献主要表现在哪儿?答:流体在垂直于传热方向上的流动,可以增加传热方向上的温度梯度,尤其是湍流时,使得传热方向上的温度梯度仅存在于流动边界层内,故温度梯度数值有很大的增加,根据傅立叶热传导定律可知,在温度梯度方向上的传热速率有了很大增加。

流体在平行于传热方向上的同向流动对于传热的作用是明显的,流体的质点运动携带了热量,使得传热速率可有很大增加。

5、自然对流中的加热面与冷却面的位置应如何放才有利于充分传热?答:将加热面水平方向置于底部,加热面水平方向置于顶部,有利于自然环流。

6、液体沸腾的必要条件有哪两个?答:(1)达到一定的过热度,(2)有利于形成较多的气泡核心。

7、工业沸腾装置应在什么沸腾状态下操作?为什么?答:应在什么核状沸腾状态下操作,因为此状态下,对流传热系数大,操作状态安全稳定。

8、沸腾给热的强化可以从哪两方面着手?答:(1)加热表面,易于形成更多的汽化核心,(2)沸腾液体,在液体中加入少量的添加剂改变沸腾液体的表面张力。

9、蒸汽冷凝时为什么要定期排放不凝性气体?答:在冷凝液膜表面上的不凝性气体膜,导热系数很小,热阻值大,直接影响蒸汽冷凝传热速率,故应定期排放不凝性气体。

10、为什么低温时热辐射往往可以忽略,而高温时热辐射则往往成为主要的传热方式?答:根据斯蒂芬-波尔茨曼定律,物体对外辐射能量的总能力E与其绝对温度的4次方成正比,故在物体处于低温时热辐射往往可以忽略,而高温时热辐射则往往成为主要的传热方式。

11、影响辐射传热的主要因素有哪些?答:(1)高温物体绝对温度的4次方与低温物体绝对温度的4次方之差,(2)高温物体的黑度值及低温物体的黑度值,(3)高温物体与低温物体的位置关系。

传热

传热
第三章
第一节
传热
概述
导热
一、热量传递的三种基本方式
根据传热的机理不同,热量传递的基本方式分为三种: 对流 热辐射
1、热传导(又称导热)
当物体内部或两个直接接触的物体存在着温差时,由于分 子、原子和自由电子等微观粒子的热运动而引起热量的传递。 热量由高温部分传到低温部分,或从高温物体传到与之相接 触的低温物体,直到各部分温度相等为止,这种热量传递过 程称为导热。
ΔT=T1 –Tn+1
5、保温层的临界半径
t1----保温层内表面温度;tf----环境温度 r1、r2----分别为保温层内外壁半径; λ---为保温材料的导热系数 α---为对流传热系数;L---为管长
t1 t2
r1 r2
t1 t f r2 1 1 R1 R2 ln 2L r1 2Lr2
2、导热系数

dT A dx
(1)、固体的导热系数
大多数固体的导热系数与温度大致呈线性关系。 λ=λ0(1+αλt)
αλ-------温度系数
(2)液体的导热系数
液态金属:液态金属导热系数比一般液体高 液态金属导热系数随温度升高而降低。 其他液体:水的导热系数最大,除水和甘油等几种液体外,大多数 液体λ随温度升高略有减少,纯液体λ比混合液体一般要大一些。
第二节
一、热传导方程 1、傅立叶定律
热传导
T φ T2 x
dT A dx dT q dx
dT dx
T1
T
T+dT
dx
δ
温度梯度,表示热流方向温度变化的强度,温度梯 度越大,说明热流方向单位长度上的温差越大。
负号 表示热流方向与温度梯度方向相反,热量是沿温度 降低的方向传递.

人们都知道热传导有三种形式

人们都知道热传导有三种形式

人们都知道热传导有三种形式:辐射、传导、对流。

①热传导:热量从系统的一部分传到另一部分或由一个系统传到另一系统的现象叫做热传导。

热传导是固体中热传递的主要方式。

在气体或液体中,热传导过程往往和对流同时发生。

各种物质的热传导性能不同,一般金属都是热的良导体,玻璃、木材、棉毛制品、羽毛、毛皮以及液体和气体都是热的不良导体,石棉的热传导性能极差,常作为绝热材料。

热从物体温度较高的一部分沿着物体传到温度较低的部分的方式叫做热传导。

②对流:液体或气体中较热部分和较冷部分之间通过循环流动使温度趋于均匀的过程。

对流是液体和气体中热传递的主要方式,气体的对流现象比液体明显。

对流可分自然对流和强迫对流两种。

自然对流往往自然发生,是由于温度不均匀而引起的。

强迫对流是由于外界的影响对流体搅拌而形成的。

靠气体或液体的流动来传热的方式叫做对流。

③热辐射:物体因自身的温度而具有向外发射能量的本领,这种热传递的方式叫做热辐射。

热辐射虽然也是热传递的一种方式,但它和热传导、对流不同。

它能不依靠媒质把热量直接从一个系统传给另一系统。

热辐射以电磁辐射的形式发出能量,温度越高,辐射越强。

辐射的波长分布情况也随温度而变,如温度较低时,主要以不可见的红外光进行辐射,在500摄氏度以至更高的温度时,则顺次发射可见光以至紫外辐射。

热辐射是远距离传热的主要方式,如太阳的热量就是以热辐射的形式,经过宇宙空间再传给地球的。

高温物体直接向外发射热的现象叫做热辐射。

热的导体各种物体都能够传热,但是不同物质的传热本领不同.容易传热的物体叫做热的良导体,不容易传热的物体叫做热的不良导体。

金属都是热的良导体。

瓷、木头和竹子、皮革、水都是不良导体。

金属中最善于传热的是银,其次是铜和铝.最不善于传热的是羊毛、羽毛、毛皮、棉花,石棉、软木和其他松软的物质。

液体,除了水银外,都不善于传热,气体比液体更不善于传热.散热器材料的选择散热片的制造材料是影响效能的重要因素,选择时必须加以注意!目前加工散热片所采用的金属材料与常见金属材料的热传导系数:金 317 W/mK银429 W/mK铝401 W/mK铁237 W/mK铜 48 W/mKAA6061型铝合金155 W/mKAA6063型铝合金201 W/mKADC12型铝合金96 W/mKAA1070型铝合金226 W/mKAA1050型铝合金209 W/mK热传导系数的单位为W/mK,即截面积为1平方米的柱体沿轴向1米距离的温差为1开尔文(1K=1℃)时的热传导功率.热传导系数自然是越高越好,但同时还需要兼顾到材料的机械性能与价格.热传导系数很高的金、银,由于质地柔软、密度过大、及价格过于昂贵而无法广泛采用;铁则由于热传导率过低,无法满足高热密度场合的性能需要,不适合用于制作计算机空冷散热片.铜的热传导系数同样很高,可碍于硬度不足、密度较大、成本稍高、加工难度大等不利条件,在计算机相关散热片中使用较少,但近两年随着对散热设备性能要求的提高,越来越多的散热器产品部分甚至全部采用了铜质材料.铝作为地壳中含量最高的金属,因热传导系数较高、密度小、价格低而受到青睐;但由于纯铝硬度较小,在各种应用领域中通常会掺加各种配方材料制成铝合金,寄此获得许多纯铝所不具备的特性,而成为了散热片加工材料的理想选择.各种铝合金材料根据不同的需要,通过调整配方材料的成分与比例,可以获得各种不同的特性,适合于不同的成形、加工方式,应用于不同的领域.上表中列出的5种不同铝合金中:AA6061与AA6063具有不错的热传导能力与加工性,适合于挤压成形工艺,在散热片加工中被广为采用.ADC12适合于压铸成形,但热传导系数较低,因此散热片加工中通常采用AA1070铝合金代替,可惜加工机械性能方面不及ADC12.AA1050则具有较好的延展性,适合于冲压工艺,多用于制造细薄的鳍片.如何判断芯片是否需要增加散热措施如何判断芯片是否需要增加散热措施【铝合金散热器】第一步:搜集芯片的散热参数.主要有:P、Rja、Rjc、Tj等第二步:计算T c-max:Tc-max=Tj- Rjc*P第三步:计算要达到目标需要的Rca:Rca=(Tc-max-Ta)/P第四步:计算芯片本身的Rca’:Rca’=Rja-Rjc如果Rca大于Rca’,说明不需要增加额外的散热措施.如果Rca小于Rca’,说明需要增加额外的散热措施.比如增加散热器、增加风扇等等.如前所述,Rja不能用于准确的计算芯片的温度,所以这种方法只能用于简单的判断.而不能用于最终的依据.下面举一个简单的例子:例:某芯片功耗——1.7W;Rja——53℃/W;Tj——125℃;Rjc——25℃/W,芯片工作的最大环境温度是50℃.判断该芯片是否需要加散热器,散热器热阻是多少.Tc-max=Tj- Rjc*P=125℃-25℃/W*1.7W=82.5℃Rca=(Tc-max-Ta)/P=(82.5-50)1.7=19.12℃/WRca’=Rja-Rjc=53-25=28℃/WRca小于Rca’,所以需要增加散热器.散热器的热阻假设为Rs,则有:Rs//Rca’小于RcaRs*28/(Rs+28)小于19.12Rs小于60.29℃/W所以选用的散热器热阻必须小于60.29℃/W.在普通的数字电路设计中,我们很少考虑到集成电路的散热,因为低速芯片的功耗一般很小,在正常的自然散热条件下,芯片的温升不会太大.随着芯片速率的不断提高,单个芯片的功耗也逐渐变大,例如:Intel的奔腾CPU的功耗可达到25W.当自然条件的散热已经不能使芯片的温升控制在要求的指标之下时,就需要使用适当的散热措施来加快芯片表面热的释放,使芯片工作在正常温度范围之内.通常条件下,热量的传递包括三种方式:传导、对流和辐射.传导是指直接接触的物体之间热量由温度高的一方向温度较低的一方的传递,对流是借助流体的流动传递热量,而辐射无需借助任何媒介,是发热体直接向周围空间释放热量.在实际应用中,散热的措施有散热器和风扇两种方式或者二者的同时使用.散热器通过和芯片表面的紧密接触使芯片的热量传导到散热器,散热器通常是一块带有很多叶片的热的良导体,它的充分扩展的表面使热的辐射大大增加,同时流通的空气也能带走更大的热能.风扇的使用也分为两种形式,一种是直接安装在散热器表面,另一种是安装在机箱和机架上,提高整个空间的空气流速.与电路计算中最基本的欧姆定律类似,散热的计算有一个最基本的公式:温差= 热阻×功耗在使用散热器的情况下,散热器与周围空气之间的热释放的"阻力"称为热阻,散热器与空气之间"热流"的大小用芯片的功耗来代表,这样热流由散热器流向空气时由于热阻的存在,在散热器和空气之间就产生了一定的温差,就像电流流过电阻会产生电压降一样.同样,散热器与芯片表面之间也会存在一定的热阻.热阻的单位为℃/W.选择散热器时,除了机械尺寸的考虑之外,最重要的参数就是散热器的热阻.热阻越小,散热器的散热能力越强.散热设计的一些基本原则业裕铝合金散热器散热设计的一些基本原则从有利于散热的角度出发,印制版最好是直立安装,板与板之间的距离一般不应小于2cm,而且器件在印制版上的排列方式应遵循一定的规则:·对于采用自由对流空气冷却的设备,最好是将集成电路(或其它器件)按纵长方式排列,如图3示;对于采用强制空气冷却的设备,最好是将集成电路(或其它器件)按横长方式排列.·同一块印制板上的器件应尽可能按其发热量大小及散热程度分区排列,发热量小或耐热性差的器件(如小信号晶体管、小规模集成电路、电解电容等)放在冷却气流的最上流(入口处),发热量大或耐热性好的器件(如功率晶体管、大规模集成电路等)放在冷却气流最下游.·在水平方向上,大功率器件尽量靠近印制板边沿布置,以便缩短传热路径;在垂直方向上,大功率器件尽量靠近印制板上方布置,以便减少这些器件工作时对其它器件温度的影响.·对温度比较敏感的器件最好安置在温度最低的区域(如设备的底部),千万不要将它放在发热器件的正上方,多个器件最好是在水平面上交错布局.·设备内印制板的散热主要依靠空气流动,所以在设计时要研究空气流动路径,合理配置器件或印制电路板.空气流动时总是趋向于阻力小的地方流动,所以在印制电路板上配置器件时,要避免在某个区域留有较大的空域.整机中多块印制电路板的配置也应注意同样的问题.业裕铝合金散热器-功率器件的散热计算及散热器选择功率器件的散热计算及散热器选择目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。

热量的传递与温度差

热量的传递与温度差

热量的传递与温度差热量传递是物体间热量分布不均匀引起的物理现象,而温度差则是衡量热量传递的一个重要因素。

在本文中,我们将探讨热量传递与温度差之间的关系以及其在自然界和工程应用中的重要性。

一、热量传递的方式热量的传递可以通过三种基本方式实现:传导、对流和辐射。

1. 传导:传导是指物质之间通过直接接触而传递热量的过程。

当两个物体处于不同的温度时,高温的物体分子会以更高的速度振动,传递给低温物体的分子,进而实现热量的传导。

导热性能是物体传导热量的重要指标,不同物体的导热性能差异也会影响热量传递的效率。

2. 对流:对流是指在流体中传递热量的过程。

当物体受热时,流体周围的分子被加热,体积膨胀,密度降低,从而形成一个密度较低的区域。

这将导致热量的上升,并带走了部分热量。

对流的强弱与流体的性质、温度差和流体运动有关。

3. 辐射:辐射是指通过电磁波传递热量的过程,无需媒质介导。

所有物体都会辐射能量,但只有在高温下才会产生明显的热辐射。

辐射热量的传递速度快且无需接触,可以在真空中进行。

二、温度差对热量传递的影响温度差是影响热量传递速率的重要因素之一。

根据热力学第一定律,热量从高温物体传递到低温物体,直到两者达到热平衡。

温度差越大,热量传递速率越快。

以传导为例,热量传导速率与温度差成正比,可以用以下公式表示:Q = K * A * (T1 - T2)/L其中,Q代表传导热量,K是传导导热系数,A是传热面积,L是热传导长度,T1和T2分别代表两个物体的温度差。

由公式可以看出,温度差的增大将导致传导热量的增加。

对流和辐射传热也存在类似的关系,温度差的增大将促进更快的热能传递。

三、热量传递与自然界热量传递在自然界中起着重要作用,调节着能量的分布和物体的温度变化。

1. 气候调节:太阳辐射地球表面时,温暖的空气会上升,冷空气会下沉,形成气流循环,使得地球的温度得到调节。

温度差是产生气流的主要原因之一。

2. 大气环流:地球上的大气环流是热量传递的结果。

传热学1-热工

传热学1-热工
7
晶格结构振动的传递在文献中常称为弹性 波。
至于液体中的导热机理,还存在着不同的 观点。有一种观点认为定性上类似于气体, 只是情况更复杂,因为液体分子间的距离比 较近.分子间的作用力对碰撞过程的影响远 比气体为大。另一种观点则认为液体的导热 机理类似于非导电固体,主要靠弹性波的作 用。导热微观机理的进一步论述已超出本书 的范围,有兴趣的同学可参阅热物性学专著 文献。本书以后的论述仅限于导热现象的宏 观规律。
(2)计算每米长度管道的总散热量。 解 (1)此管道的散热有辐射换热和自 然对流换热两种方式。
29
(2) 把管道每米长度上的散热量记为q1。当仅 考虑自然对流时.据式(1-6)单位长度上的自 然对流换热量为:
管道外表面与室内物体及墙壁之间的辐射换热可 以按式(1-9)计算,并近似地取这些物体的表面温度 等于室内空气温度。于是每米长度管子上的辐射换 热量为:
8
傅立叶定律
考察如图1-1所示的两 个表面均维持均匀温度的 平板的导热。这是个一维 导热问题。 对于x方向上任意一个厚度为dx的微元层 来说,根据傅里叶定律,单位时间内通过 该层的导热热量与当地的温度变化率及平 板面积A成正比,即
9
=-Adt (1-1)
dx
式中 λ是比例系数,称为热导率,又称 导热系数,负号表示热量传递的方向同温 度升高的方向相反。
1-1 热量传递的三种基本方式
热量传递有三种基本方式:
导热、对流和热辐射。
1.导热
物体各部分之间不发生相对位移时,依靠 分子、原子及自由电子等微观粒子的热运动 而产生的热量传递称为导热(或称热传导)。
例如,固体内部热量从温度较高的部分传 递到温度较低的部分,以及温度较高的固体 把热量传递给与之接触的温度较低的另一固 体都是导热现象。

热传递的三种方式

热传递的三种方式

tw1
R
tw2
22.06.2020
.
5
导热系数
导热系数物质导热能力的大小。单位:W/m.K。 绝大多数材料的导热系数值都可以通过实验测得。
22.06.2020
.
6
物质的导热系数在数值上具有下述特点:
(1) 对于同一种物质, 固态的导热系数值最大,气态的 导热系数值最小; (2)一般金属的导热系数大于非金属的热导率 ; (3)导电性能好的金属, 其导热性能也好 ; (4)纯金属的导热系数大于它的合金 。
理论上热辐射的波长范围从零到无穷大,但在日 常生活和工业上常见的温度范围内,热辐射的波长 主要在0.1m至100m之间,包括部分紫外线、可见 光和部分红外线三个波段 。
22.06.2020
.
15
热辐射的主要特点:
(1)所有温度大于0 K的物体都具有发射热辐 射的能力,温度愈高,发射热辐射的能力愈强。
特点:热对流只发生在流体之中,并伴随有微 观粒子热运动而产生的导热。
对流:换流热体与相互接触的固体表面之间的热量
传递现象,是导热和热对流两种基本传热方式共同 作用的结果。
牛顿冷却公式:
= Ah(tw – tf)
q = h(tw – tf)
22.06.2020
.
10
h 称为对流换热的表面传热系数(习惯称为 对流换热系数),单位为W/(m2K)。
发射热辐射时:内热能 辐射能
(2)所有实际物体都具有吸收热辐射的能力, 吸收热辐射时:辐射能 内热能 ;
(3)热辐射不依靠中间媒介,可以在真空中传 播;
(4)物体间以热辐射的方式进行的热量传递是
双向的。
高温 物体
低温 热 辐 射 是 热 量 传 递 物体 的基本方式之一 。

传热三种方式

传热三种方式

1•传导传热是指温度不同的物体直接接触,由于自由电子的运动或分子的运动而 发生的热交换现象。

温度不同的接触物体间或一物体中各部分之间热能的传递过程,称为传导传热。

传热过程中,物体的微观粒子不发生宏观的相对移动,而在其热运动相互振动或 碰撞中发生动能的传递,宏观上表现为热量从高温部分传至低温部分。

微观粒子 热能的传递方式随物质结构而异,在气体和液体中靠分子的热运动和彼此相撞, 在金属中靠电子自由运动和原子振动。

⑴对流传热是热传递的一种基本方式。

热能在液体或气体中从一处传递到另一处的过程。

主要计算分类对于宅瘟畀捲T 特担黑举为聲疑*ao2、多层平面壁的计算1、单层平壁的计算⑴序+购珅子连嘉荐挑扯ft qg 醴円畀…是由于质点位置的移动,使温度趋于均匀。

是液体和气体中热传递的主要方式。

但也往往伴有热传导。

通常由于产生的原因不同,有自然对流和强制对流两种。

根据流动状态,又可分为层流传热和湍流传热。

化学工业中所常遇到的对流传热,是将热由流体传至固体壁面(如靠近热流体一面的容器壁或导管壁等),或由固体壁传入周围的流体(如靠近冷流体一面的导管壁等)。

这种由壁面传给流体或相反的过程,通常称作给热。

定义对流仅发生于流体中,它是指由于流体的宏观运动使流体各部分之间发生相对位弯管中的对流传热⑴由于流体间各部分是相互接触的,除了流体的整体运动所带来的热对流之外,还伴生有由于流体的微观粒子运动造成的热传导。

在工程上,常见的是流体流经固体表面时的热量传递过程,称之为对流传热。

[2]对流传热通常用牛顿冷却定律来描述,即当主体温度为tf的流体被温度为tw 的热壁加热时,单位面积上的加热量可以表示为q=a(tw-tf),当主体温度为tf的流体被温度为tw的冷壁冷却时,有q=a(tf-tw)式中q为对流传热的热通量,W/m2 a 为比例系数,称为对流传热系数,W/(m2「C)。

牛顿冷却公式表明,单位面积上的对流传热速率与温差成正比关系。

传热学知识点

传热学知识点

传热学主要知识点1.热量传递的三种基本方式。

热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。

2.导热的特点。

a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。

3.对流(热对流)(Convection)的概念。

流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。

4对流换热的特点。

当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层 5.牛顿冷却公式的基本表达式及其中各物理量的定义。

6. 热辐射的特点。

a 任何物体,只要温度高于0 K ,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的4次方。

[]W )(∞-=t t hA Φw []2m W )( f w t t h AΦq -==7.导热系数, 表面传热系数和传热系数之间的区别。

导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。

表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。

影响h因素:流速、流体物性、壁面形状大小等。

传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。

常温下部分物质导热系数:银:427;纯铜:398;纯铝:236;普通钢:30-50;水:0.599;空气:0.0259;保温材料:<0.14;水垢:1-3;烟垢:0.1-0.3。

8.实际热量传递过程:常常表现为三种基本方式的相互串联/并联作用。

9.复杂传热过程二、解答题和分析题1、热量、热流量与热流密度有何联系与区别?热能:物质所具有的内动能(广延量,物质的微观运动属性)。

传热方式有哪三种

传热方式有哪三种

传热有三种基本方式,分别是热传导;热辐射;热对流。

特点如下:
1、热传导:有温度不同的质点在热运动中引起的,在固体,液体,气体中均能产生。

单纯的导热仅能在密实的固体中发生。

2、热对流:对流式由于温度不同的各部分流体之间发生相对运动,互相掺和而传地热能。

包括自然对流换热,受迫对流换热。

3、热辐射:过程中伴随形式能量转化;传播不需要任何中间介质;凡是温度高于绝对零度的一切物体,不论他们的温度高低都在不间断地向外辐射不同波长的电磁波。

传热学知识总结1

传热学知识总结1

传热学主要知识点1. 热量传递的三种基本方式。

热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。

2.导热的特点。

a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。

3.对流〔热对流〕(Convection)的概念。

流体中〔气体或液体〕温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。

4对流换热的特点。

当流体流过一个物体外表时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触〔流体与壁面〕和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层5.牛顿冷却公式的基本表达式及其中各物理量的定义。

6. 热辐射的特点。

a 任何物体,只要温度高于0 K ,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的4次方。

7.导热系数, 外表传热系数和传热系数之间的区别。

导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。

外表传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。

影响h 因素:流速、流体物性、壁面形[]W )(∞-=t t hA Φw []2m W )( f w t t h AΦq -==状大小等。

传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。

8.实际热量传递过程:常常表现为三种基本方式的相互串联/并联作用。

9.复杂传热过程第一章 导热理论基础1傅立叶定律的基本表达式及其中各物理量的意义。

傅立叶定律〔导热基本定律〕:垂直导过等温面的热流密度,正比于该处的温度梯度,方向与温度梯度相反。

(1)空隙中充有空气,空气导热系数小,因此保温性好;(2)空隙太大,会形成自然对流换热,辐射的影响也会增强,因此并非空隙越大越好。

热传递的三种方式

热传递的三种方式

热传递的三种方式热传递是指热量从一个物体传递到另一个物体的过程,其中包括三种基本方式:传导、对流和辐射。

在日常生活和工业生产中,我们都会遇到热传递现象,了解热传递的三种方式对我们理解和应用热传递过程至关重要。

一、传导传导是物质内部的热传递方式。

它是通过固体、液体或气体中分子的直接碰撞来实现的。

热传导的速率取决于物质的导热性能、材料的温度梯度以及传导路径的长度。

导热性能是指物质传导热量的能力,不同物质的导热性能不同。

例如,金属是良好的导热体,而绝缘材料则相对较差。

在传热过程中,温度高的一侧会传递热量到温度低的一侧,直到两侧温度趋于平衡。

在传导中,热量的传递方向与传热表面无关,只取决于温度梯度。

传导还会受到材料的厚度、面积和热传导的时间等因素的影响。

二、对流对流是通过流体(液体或气体)的流动来实现的热传递方式。

它包括自然对流和强制对流两种形式。

自然对流是指由密度差异引起的流体的自发运动。

当一个物体受热后,它的密度降低,密度较高的冷空气下沉,密度较低的热空气上升,形成对流循环。

自然对流通常发生在气体和液体的密闭环境中,如室内空气对流。

强制对流是通过外界作用力(如风或泵)来使流体产生运动。

传热增大的一个重要途径就是通过增加对流换热面积来实现的,因为对流的瞬时换热速度是远远高于传导的。

对流传热既与对流体的速度和温度分布有关,也与传热表面的形状和尺寸有关。

例如,将金属片安装到风扇上,利用风扇吹过的风可以加速金属片的散热,提高传热效率。

三、辐射辐射是通过电磁波的辐射传递热量的过程。

它可以在真空中或通过透明介质中传播。

辐射是无需通过物质颗粒的直接碰撞来实现的热传递方式。

所有物体在绝对零度以上都会发射辐射,且辐射强度与物体的温度成正比。

辐射的热量传递速率依赖于辐射体的温度、表面属性和周围环境。

表面的颜色和质地会影响热辐射的吸收和反射程度。

光的颜色也会影响辐射传热,例如黑色物体在阳光中吸收更多的热量,而白色物体则相对较少吸收。

热量传递的三种基本方式导热(热传导)、对流(热对流)和热辐射。

热量传递的三种基本方式导热(热传导)、对流(热对流)和热辐射。

[ W m2 ]
: 热导率(导热系数) (Thermal conductivity) W (m C) 直角坐标系中: t t t q q x i q y j q z k i j k x y z
注:傅里叶定律只适用于各向同性材料 各向同性材料:热导率在各个方向是相同的
Nu C Rem
)/ 2; 式中:定性温度为 tr (tw tf特征长度为管外径 d, 数中的流速采用整个管束中最窄截面处的流速。 Re 实验验证范围:
C和m的值见下表。
Ref 2000 ~ 40000。
§6-5 自然对流换热及实验关联式
自然对流:不依靠泵或风机等外力推动,由流体自身 温度场的不均匀所引起的流动。一般地,不均匀温度 场仅发生在靠近换热壁面的薄层之内。 自然对流的自模化现象:紊流时换热系数与特征尺度无 关。
Nu f (Re, Pr); Nu x f ( x ' , Re, Pr)
自然对流换热:
Nu f (Gr , Pr)
混合对流换热: Nu f (Re, Gr , Pr) 试验数据的整理形式:
Nu c Re n Nu c Re n Pr m Nu c(Gr Pr)n
2. 入口段的热边界层薄,表面传热系数高。 层流入口段长度: l / d 0.05 Re Pr 湍流时:
4-2 边界节点离散方程的建立及代数 方程的求解
对于第一类边界条件的热传导问题,处理比较简单,因为 已知边界的温度,可将其以数值的形式加入到内节点的离 散方程中,组成封闭的代数方程组,直接求解。
而对于第二类边界条件或第三类边界条件的热传导问题, 就必须用热平衡的方法,建立边界节点的离散方程,边界 节点与内节点的离散方程一起组成封闭的代数方程组,才 能求解。

传热的三种方式ppt课件

传热的三种方式ppt课件

2024/7/14
5
物质的导热系数在数值上具有下述特点:
(1) 对于同一种物质, 固态的导热系数值最大,气态的 导热系数值最小; (2)一般金属的导热系数大于非金属的热导率 ; (3)导电性能好的金属, 其导热性能也好 ; (4)纯金属的导热系数大于它的合金 。
导热系数数值的影响因素较多, 主要取决于物质的 种类、物质结构与物理状态, 此外温度、密度、湿度 等因素对导热系数也有较大的影响。其中温度对导热 系数的影响尤为重要。
t
(1)左侧的对流换热
tf1
Ah1
tw1 tf1
tw1 tf1 1
tw1 h1
tw1 tf1 Rh1
Ah1
(2)平壁的导热
0
A tw1 tw2
tw1
tw 2
tw1 tw2 R
A
2024/7/14
h2 tw2
tf2
x
18
(3)右侧的对流换热
Ah2
tw2 tf 2
一、热量传递的基本方式
热量传递有三种基本方式: 导热 对流 辐射
2024/7/14
1
1、导热
在物体内部或相互接触的物体表面之 间,由于分子、原子及自由电子等微观粒子 的热运动而产生的热量传递现象。
纯导热现象可以发生在固体内部,也可以 发生在静止的液体和气体之中。
2024/7/14
2
大平壁的一维稳态导热
(1)热量从高温流体以对流换热(或对流换热+
辐射换热)的方式传给壁面;
(2)热量从一侧壁面以导热的 高
方式传递到另一侧壁面;

固 体
低 温
(3)热量从低温流体侧壁面以 流

对流换热(或对流换热+辐射换 体 壁 体

传热学知识点

传热学知识点

传热学主要知识点1.热量传递的三种基本方式。

热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。

2.导热的特点。

a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。

3.对流(热对流)(Convection)的概念。

流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。

4对流换热的特点。

当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层 5.牛顿冷却公式的基本表达式及其中各物理量的定义。

[]W )(∞-=t t hA Φw []2m W )( f w t t h AΦq -==6. 热辐射的特点。

a 任何物体,只要温度高于0 K,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的4次方。

7.导热系数, 表面传热系数和传热系数之间的区别。

导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。

表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。

影响h因素:流速、流体物性、壁面形状大小等。

传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。

常温下部分物质导热系数:银:427;纯铜:398;纯铝:236;普通钢:30-50;水:;空气:;保温材料:<;水垢:1-3;烟垢:。

8.实际热量传递过程:常常表现为三种基本方式的相互串联/并联作用。

9.复杂传热过程Upside surface: adiabaticDownside surface: adiabatic xai LL2L A/A/A/第一章导热理论基础1傅立叶定律的基本表达式及其中各物理量的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回
式中
q Q A
A──总传热面积
二、定态与非定态传热
非定态传热 Q,q, t f x, y, z,
定态传热 Q,q, t f x, y, z
t 0

返回
三、冷、热流体通过间壁的传热过程
T1
t2
(1)热流体 Q1(对 流) 管壁内侧
对流 导 对流
返回
4.1.3 冷、热流体的接触方式
一、直接接触式
板式塔
返回
填料塔
返回
凉水塔
返回
二、蓄热式
低温流体
优点: • 结构较简单 • 耐高温
高温流体
缺点: • 设备体积大 • 有一定程度的混合
t2
冷流体t1
T2
传热面为内管的表面积
返回
(2)列管换热器
热流体T1
返回
二、对流 流体内部质点发生相对位移的热量传递过程。 • 自然对流:由于流体内温度不同造成的浮升力
引起的流动。 • 强制对流:流体受外力作用而引起的流动。
对流传热:流体与固体壁面之间的传热过程。
三、热辐射 物体因热的原因发出辐射能的过程称为热辐射。
• 能量转移、能量形式的转化 • 不需要任何物质作媒介
返回
4.1.2 传热的三种基本方式
一、热传导 热量从物体内温度较高的部分传递到温度较低的部
分,或传递到与之接触的另一物体的过程称为热传导。 特点:没有物质的宏观位移
• 气体 分子做不规则热运动时相互碰撞的结果 • 固体 导电体:自由电子在晶格间的运动
非导电体:通过晶格结构的振动实现 • 液体 机理复杂
Q

(2)管壁内侧Q2( 热传导) 管壁外侧

流 体 T2
冷 流
(3)管壁外侧Q3 (对 流) 冷流体
t1 体
定态传热: Q1 Q2 Q3 Q
返回
总传热速率方程:
Q

KAtm

tm 1/ KA

总传热推动力 总热阻
式中 tm──两流体的平均温差,℃或K; A──总传热面积,m2; K──总传热系数,W/(m2·℃)或W/(m2·K)。
t2
冷流体t1
T2
传热面为壳内所有管束的表面积
返回
4.1.4 热载体及其选择
加热剂:热水、饱和水蒸气 矿物油或联苯等低熔混合物、烟道气等 用电加热
冷却剂:水、空气、冷冻盐水、液氨等
• 加热温度180C 饱和水蒸气 • 冷却温度30C 水
返回
4.1.5 间壁式换热器的传热过程
一、基本概念 热负荷Q’:工艺要求,同种流体需升温或降温时 吸收或放出的热量,单位 J/s或W。 传热速率Q(热流量):单位时间内通过换热器的 整个传热面传递的热量,单位 J/s或W。 热流密度q (热通量) :单位时间内通过单位传 热面积传递的热量,单位 J/(s·m2)或W/m2。
4.1 概述
4.1.1 传热过程在化工生产中的应用 4.1.2 传热的三种基本方式 4.1.3 冷、热流体的接触方式 4.1.4 热载体及其选择 4.1.5 间壁式换热器的传热过程
返回
4.1.1 传热过程在化工生产中的应用
• 加热或冷却 • 回收热量 • 保温 • 强化传热过程 • 削弱传热过程
返回
相关文档
最新文档