导数题型分类大全
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数题型分类(A )
题型一:导数的定义及计算、常见函数的导数及运算法则
(一)导数的定义:函数)(x f y =在0x 处的瞬时变化率x
x f x x f x y
o x x ∆-∆+=∆∆→∆→∆)()(lim
lim 000称为函数)(x f y =在0x x =处的导数,记作)(0/
x f 或0
/
x x y =,即
x
x f x x f x f x ∆-∆+=→∆)
()(lim
)(000
0/
如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数)(/
x f ,从而构成了一个新的函数)(/
x f 。称这个函数)(/
x f 为函数
)(x f y =在开区间内的导函数,简称导数,也可记作/y ,即)(/x f =/y =
x
x f x x f x ∆-∆+→∆)
()(lim
导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求函数
)(x f y =在0x 处的导数0
/
x x y =,就是导函数)(/
x f 在0x 处的函数值,即0
/
x x y ==)(0/
x f 。
例1.函数()a x x f y ==在处的导数为A ,求
()()t
t a f t a f t 54lim
+-+→。
例2.2
3
33
x y x x +=
=+求在点处的导数。 (二)常见基本初等函数的导数公式和运算法则 :
+-∈==N n nx x C C n n ,)(;)(01''为常数; ;sin )(cos ;
cos )(sin ''x x x x -==
a a a e e x
x x
x ln )(;
)('
'
==; e x
x x
x a a
log 1
)(log ;1
)(ln ''=
=
法则1: )()()]()(['
'
'
x v x u x v x u ±=± 法则2: )()()()()]()(['
'
'
x v x u x v x u x v x u +=
法则3: )0)(()
()()()()(])()([2'
''≠-=x v x v x v x u x v x u x v x u
(理)复合函数的求导:若(),()y f u u x ϕ==,则'()'()x y f x x ϕ'=g
如,sin ()'x
e
=_______________;(sin )'x e =_____________
公式1
/
)(-=n n nx
x 的特例:①=')x (______; ②='
⎪⎭
⎫ ⎝⎛x 1_______, ③=')x (_________.
题型二:利用导数几何意义及求切线方程
导数的几何意义:函数)(x f y =在0x 处的导数是曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(0x f '存在,则曲线)(x f y =在点()(,00x f x )处的切线方程为______________________
例1.若函数()f x 满足,3
21()(1),3
f x x f x x '=
-⋅-则(1)f '的值 例2.设曲线ax
y e =在点(0,1)处的切线与直线210x y ++=垂直,则a = .
练习题
1.曲线在点处的切线方程是
2.若曲线在P 点处的切线平行于直线,则P 点的坐标为 (1,0) 3.若曲线的一条切线与直线垂直,则的方程为 4.求下列直线的方程:(注意解的个数)
(1)曲线在P(-1,1)处的切线; (2)曲线过点P(3,5)的切线; 解:(1)
所以切线方程为
(2)显然点P (3,5)不在曲线上,所以可设切点为,则①又函数的导数为,
所以过点的切线的斜率为,又切线过、P(3,5)点,所以有②,由①②联立方程组得,,即切点为(1,1)时,切线斜率为;当切点为(5,25)时,切线斜率为;所以所求的切线有两条,方程分别为
5.设P 为曲线C :y =x 2
+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为[0,π4],
则点P 横坐标的取值范围为( ) A .[-1,-1
2
]
B .[-1,0]
C .[0,1]
D .[1
2
,1]
6.下列函数中,在(0,+∞)上为增函数的是( )
=sinx B. x
y xe = C. 3
y x x =- =ln(1+x)—x
7. 设f(x),g(x)是R 上的可导函数,(),()f x g x ''分别为f(x),g(x)的导数,且
()()()()0f x g x f x g x ''+<,则当a (x)g(b)>f(b)g(x) (x)g(x)>f(b)g(b) (x)g(a)>f(a)g(x) (x)g(x)>f(b)g(a) 题型三:利用导数研究函数的单调性 1. 设函数)(x f y =在某个区间(a,b )内有导数,如果在这个区间内____,则)(x f y =在这个区间内单调递增;如果在这个区间内____,则)(x f y =是这个区间内单调递减. 2. 求函数的单调区间的方法: (1)求导数)x (f y '='; (2)解方程0)x (f ='; (3)使不等式0)x (f >'成立的区间就是递增区间,使0)x (f <'成立的区间就是递减区间 3.若函数)(x f y =在区间(,)a b 上单调递增,则'()__0f x 在(,)a b 恒成立. 例:1.函数y =x cos x -sin x 在下面哪个区间内是增函数( ) (A )( 2π,23π) (B )(π,2π) (C )(2 3π,25π) (D )(2π,3π) 2. 函数f(x)=xlnx(x>0)的单调递增区间是_________________. 3.已知函数()1x f x e ax =-+在R 上单调递增,则a 的取值范围是________. 题型四:利用导数研究函数的极值、最值。 1. 在区间上的最大值是 2 2.已知函数处有极大值,则常数c = 6 ; 3.函数有极小值 -1 ,极大值 3 4.已知函数f (x )的导函数()f x '的图象如右图所示, 那么函数f (x )的图象最有可能的是( ) 5.已知函数3 2 ()(6)1f x x ax a x =++++有极大值和极小值,则实数a 的取值范围是( ) A B C D