经典的博弈案例
博弈论案例
不完全信息博弈论案例一、空城计街亭失守,司马懿引大军蜂拥而来,当时孔明身边只有一班文官,军士一半已经运粮草去了,只有2500军士在城中。
众官听得这个消息,尽皆失色。
孔明登城望之,果然尘土冲天,魏兵分两路杀来。
孔明令众将旌旗尽皆藏匿,打开城门,每一门用20军士,扮作百姓,洒扫街道。
而孔明羽扇纶巾,引二小童携琴一张,于城上敌楼前凭栏而望,焚香操琴。
司马懿自马上远远望之,见诸葛亮神态自若,顿时心生疑忌,犹豫再三,难下决断。
又接到远山中可能有埋伏的情报,于是叫后军做前军,前军做后军,急速退去。
司马懿之子司马昭问:“莫非诸葛亮无军,故做此态,父何故便退兵?”司马懿说:“亮平生谨慎,不曾弄险,今大开城门,必有埋伏,我兵若进,必中计也。
”孔明见魏军退去,抚掌而笑,众官无不骇然。
诸葛亮说,司马懿“料吾生平谨慎,必不弄险,疑有伏兵,所以退去。
吾非行险,盖因不得已而用之,弃城而去,必为之所擒。
”分析:解释该事件中的参与人、行动、战略、支付,并画出这个博弈的战略式或扩展式表述。
二、卖猫一个古董商发现一个人用珍贵的茶碟做猫食碗,于是假装对这只猫很感兴趣,要从主人手里买下,主人不卖,为此古董商出了大价钱。
成交之后,古董商装做不在意地说:这个碟子它已经用惯了,就一块送给我吧。
猫主人不干了:你知道用这个碟子,我已经卖了多少只猫了?分析:卖猫人和买猫人之间各拥有那些信息?三、猴子的智慧有一个卖草帽的人,有一天叫卖归来,在一棵大树旁打起了瞌睡,等他醒来的时候,发现身边的帽子都不见了,抬头一看,树上有很多猴子,模仿人的样子把帽子戴在头上,他想到猴子喜欢模仿人的动作,就拿下自己的帽子扔在地上,猴子也学他,纷纷将帽子扔在地上。
于是卖帽子的人检起帽子回家去了,并将这个故事告诉了他的子孙。
很多年后,他的孙子继承了卖帽子的家业,有一天,他也在大树旁睡着了,而帽子也同样被猴子拿走了,他想起爷爷的办法,拿下帽子扔在地上。
可是猴子非但没有照他的做,还把扔在地下的帽子也拣走了,临走时还说:我爷爷早告诉我了,你这个老骗子要玩什么把戏。
博弈论的经典案例
博弈论的经典案例博弈论是研究冲突和合作情况下的决策科学,它广泛应用于经济学、政治学、生物学等领域。
在博弈论中,经典案例可以帮助我们理解各种策略和结果,下面将介绍几个经典的博弈案例。
1. 囚徒困境(Prisoner's Dilemma):囚徒困境是博弈论中最著名的案例之一。
假设有两个囚犯被逮捕,但检察官没有足够的证据来定罪。
如果两人都坦白认罪,他们将每人被判6个月的徒刑;如果两人都保持沉默,他们将只被判2个月的徒刑;如果一个人坦白认罪而另一个人保持沉默,坦白的人将被判1年刑,沉默的人将被无罪释放。
在这个案例中,每个囚犯都面临着合作(保持沉默)和背叛(坦白认罪)的选择,他们必须考虑对方的动作来做出最佳的选择。
尽管每个囚犯都会选择坦白认罪,这样他们能够获得较短的刑期,但合作(保持沉默)是最好的策略,因为这样两人都只会被判2个月的徒刑。
2. 非零和博弈(Non-zero Sum Game):非零和博弈是指在博弈中,各方的利益不是完全相反的。
一个典型的例子是坐在两个对面的人之间有一块饼的案例。
这两个人都可以选择合作或背叛,如果两人都合作,他们将平分饼的一半;如果一个人背叛而另一个人合作,背叛的人将获得全部饼;如果两人都背叛,他们将不会有任何饼。
在这个案例中,为了最大化自己的利益,每个人都会选择背叛,因为这样他们有机会获得全部饼。
然而,如果他们能够建立信任和合作,他们可以共同获得更多的饼。
3. 报复博弈(Tit for Tat Game):报复博弈是另一个经典的案例,它出现在许多情况下,比如政治、商业等。
这个案例可以被描述为一种策略,其中一个团队以对抗和报复的方式回应对手的行动。
一个经典的例子是在政治竞选中,如果一个候选人发起攻击广告,另一个候选人就会以类似的攻击广告回应。
这种博弈往往会导致恶性循环,双方都会不断升级攻击,最终导致双方的声誉受损。
然而,一个更好的策略是采取合作和积极的行动来推动利益最大化。
三方博弈案例
三方博弈案例三方博弈是指三个参与者之间的博弈,其中每个参与者的利益相互影响,需要通过策略选择来实现最优利益。
以下是十个三方博弈案例:1. 拍卖场景。
三个竞拍者参与一件物品的竞拍,每个竞拍者都希望以最低的价格买到物品,但同时也要防止其他竞拍者买走物品。
这个场景中,竞拍者之间的策略选择会影响到最终的买家和价格。
2. 竞争市场。
三个公司在同一个市场上竞争,每个公司都希望获得最大的市场份额,但同时也要考虑其他公司的竞争策略。
这个场景中,每个公司的定价和营销策略会影响到市场份额和利润。
3. 购房市场。
三个买家在同一个房源上竞争,每个买家都希望以最低的价格买到房子,但同时也要考虑其他买家的竞争策略。
这个场景中,每个买家的出价和谈判策略会影响到最终的购房者和价格。
4. 网络游戏。
三个玩家在同一个游戏中竞争,每个玩家都希望获得最高的游戏分数,但同时也要考虑其他玩家的行动。
这个场景中,每个玩家的游戏策略和团队合作会影响到最终的游戏结果。
5. 汽车市场。
三个汽车制造商在同一个市场上竞争,每个制造商都希望获得最大的市场份额,但同时也要考虑其他制造商的竞争策略。
这个场景中,每个制造商的产品质量和价格策略会影响到市场份额和利润。
6. 体育比赛。
三个运动员在同一个比赛项目中竞争,每个运动员都希望获得最高的比赛成绩,但同时也要考虑其他运动员的表现。
这个场景中,每个运动员的训练和比赛策略会影响到最终的比赛结果。
7. 电商平台。
三个卖家在同一个电商平台上竞争,每个卖家都希望获得最大的销售额,但同时也要考虑其他卖家的竞争策略。
这个场景中,每个卖家的产品质量和价格策略会影响到销售额和利润。
8. 政治竞选。
三个政治候选人在同一个选区竞选,每个候选人都希望赢得选举,但同时也要考虑其他候选人的竞选策略。
这个场景中,每个候选人的政策和宣传策略会影响到选民的投票决策。
9. 股票市场。
三个股票交易者在同一个股票市场上竞争,每个交易者都希望获得最大的收益,但同时也要考虑其他交易者的交易策略。
博弈论的经典案例五篇
博弈论的经典案例五篇博弈论主要研究公式化了的激励结构间的相互作用,是研究具有斗争或竞争性质现象的数学理论和方法。
本站为大家整理的相关的博弈论的经典案例供大家参考选择。
博弈论的经典案例篇一囚徒困境学习管理学或经济学的人一定都了解一些博弈论方面的知识。
在博弈论中有一个经典案例囚徒困境,非常耐人回味。
“囚徒困境”说的是两个囚犯的故事。
这两个囚徒一起做坏事,结果被警察发现抓了起来,分别关在两个独立的不能互通信息的牢房里进行审讯。
在这种情形下,两个囚犯都可以做出自己的选择:或者供出他的同伙(即与警察合作,从而背叛他的同伙),或者保持沉默(也就是与他的同伙合作,而不是与警察合作)。
这两个囚犯都知道,如果他俩都能保持沉默的话,就都会被释放,因为只要他们拒不承认,警方无法给他们定罪。
但警方也明白这一点,所以他们就给了这两个囚犯一点儿刺激:如果他们中的一个人背叛,即告发他的同伙,那么他就可以被无罪释放,同时还可以得到一笔奖金。
而他的同伙就会被按照最重的罪来判决,并且为了加重惩罚,还要对他施以罚款,作为对告发者的奖赏。
当然,如果这两个囚犯互相背叛的话,两个人都会被按照最重的罪来判决,谁也不会得到奖赏。
那么,这两个囚犯该怎么办呢?是选择互相合作还是互相背叛?从表面上看,他们应该互相合作,保持沉默,因为这样他们俩都能得到最好的结果:自由。
但他们不得不仔细考虑对方可能采取什么选择。
A犯不是个傻子,他马上意识到,他根本无法相信他的同伙不会向警方提供对他不利的证据,然后带着一笔丰厚的奖赏出狱而去,让他独自坐牢。
这种想法的诱惑力实在太大了。
但他也意识到,他的同伙也不是傻子,也会这样来设想他。
所以A犯的结论是,唯一理性的选择就是背叛同伙,把一切都告诉警方,因为如果他的同伙笨得只会保持沉默,那么他就会是那个带奖出狱的幸运者了。
而如果他的同伙也根据这个逻辑向警方交代了,那么,A犯反正也得服刑,起码他不必在这之上再被罚款。
所以其结果就是,这两个囚犯按照不顾一切的逻辑得到了最糟糕的报应:坐牢。
博弈论案例
改变方案一:减量方案。投食仅原来的一半 分量。结果是小猪大猪都不去踩踏板了。小猪去 踩,大猪将会把食物吃完;大猪去踩,小猪将也 会把食物吃完。谁去踩踏板,就意味着为对方贡 献食物,所以谁也不会有踩踏板的动力了。 改变方案二:增量方案。投食为原来的一倍 分量。结果是小猪、大猪都会去踩踏板。谁想吃, 谁就会去踩踏板。反正对方不会一次把食物吃完。 小猪和大猪相当于生活在物质相对丰富的“共产 主义”社会,所以竞争意识却不会很强。
他们面临着两难的选择——坦白或抵赖。显然最好的策略 是双方都抵赖,结果是大家都只被判一年。但是由于两人 处于隔离的情况下无法串供。所以,按照亚当· 斯密的理论, 每一个人都是从利己的目的出发,他们选择坦白交代是最 佳策略。因为坦白交代可以期望得到很短的监禁———3 个月,但前提是同伙抵赖,显然要比自己抵赖要坐10年牢 好。这种策略是损人利己的策略。不仅如此,坦白还有更 多的好处。如果对方坦白了而自己抵赖了,那自己就得坐 10年牢。太不划算了!因此,在这种情况下还是应该选择 坦白交代,即使两人同时坦白,至多也只判5年,总比被 判 10年好吧。所以,两人合理的选择是坦白,原本对双 方都有利的策略(抵赖)和结局(被判1年刑)就不会出现。
对于游戏规则的设计者来说,这个规则的成本相 当高(每次提供双份的食物);而且因为竞争不 强烈,想让猪们去多踩踏板的效果并不好。 改变方案三:减量加移位方案。投食仅原来 的一半分量,但同时将投食口移到踏板附近。结 果呢,小猪和大猪都在拼命地抢着踩踏板。等待 者不得食,而多劳者多得。每次的收获刚好消费 完。 对于游戏设计者,这是一个最好的方案。成本不 高,但收获最大。
这样两人都选择坦白的策略以及因此被判5年的结局被 称为“纳什均衡”。因为,每一方在选择策略时都没有 “共谋”,他们只是选择对自己最有利的策略,而不考虑 社会福利或任何其他对手的利益。 “囚徒的两难选择”有 着广泛而深刻的意义。个人理性与集体理性的冲突,各人 追求利己行为而导致的最终结局是一个“纳什均衡”,也 是对所有人都不利的结局。他们两人都是在坦白与抵赖策 略上首先想到自己,这样他们必然要服长的刑期。只有当 他们都首先替对方着想时,或者相互合谋(串供)时,才可 以得到最短时间的监禁的结果。“纳什均衡”首先对亚 当· 斯密的“看不见的手”的原理提出挑战。按照斯密的理 论,在市场经济中,每一个人都从利己的目的出发,而最 终全社会达到利他的效果。
十大博弈论经典案例
十大博弈论经典案例1.《囚徒困境》。
囚徒困境是博弈论中最著名的案例之一。
在这个案例中,两名囚犯被捕,但检察官没有足够的证据来判定他们犯罪。
如果两名囚犯都沉默,他们将被判处较轻的刑罚;如果其中一人选择交代,而另一人保持沉默,那么交代的囚犯将获得豁免,而另一人将被判处重刑;如果两人都交代,他们将被判处较重的刑罚。
在这种情况下,每个囚犯都面临着一个困境,无论对方选择什么,自己都会受到损失。
2.《合作博弈》。
合作博弈是指参与者之间可以进行合作的博弈。
在合作博弈中,参与者可以通过合作来获得更好的结果。
例如,两家公司可以通过合作来共同开发新产品,从而获得更大的利润。
合作博弈强调参与者之间的合作和协调,以实现共同的利益。
3.《竞争博弈》。
竞争博弈是指参与者之间存在竞争关系的博弈。
在竞争博弈中,参与者的利益往往是相互对立的。
例如,两家公司在市场上竞争销售同一种产品,它们的利润往往是相互竞争的。
竞争博弈强调参与者之间的竞争和对抗,以争取最大的利益。
4.《博弈的策略》。
在博弈中,参与者可以选择不同的策略来影响结果。
策略是参与者在博弈中可以采取的行动。
不同的策略选择会导致不同的结果,而博弈论就是研究参与者如何选择最优策略以达到最大利益的学科。
5.《信息不对称博弈》。
信息不对称博弈是指参与者在博弈中拥有不同的信息。
在这种情况下,有一方可能掌握更多的信息,从而在博弈中占据优势。
信息不对称博弈强调信息的重要性,以及如何在信息不对称的情况下做出最优决策。
6.《博弈的均衡》。
博弈的均衡是指在博弈中参与者达到一种稳定状态的结果。
在这种状态下,参与者不会再改变自己的策略,因为任何单方面的改变都不会给自己带来更好的结果。
博弈的均衡是博弈论中非常重要的概念,它可以帮助我们预测参与者的行为和结果。
7.《博弈的合作与对抗》。
在博弈中,合作和对抗是两种常见的行为方式。
合作可以带来共同的利益,而对抗则是为了争取最大的利益。
在实际的博弈中,参与者往往需要权衡合作和对抗之间的关系,以达到最优的结果。
博弈论经典案例
博弈论经典案例1. 恶魔的游戏 (Devil's game)这是一种博弈论的思想实验,假设有两个玩家 A 和 B 同时选择一个数字,如果两个数字相等,则 A 赢;如果两个数字不相等,则 B 赢。
问题在于,无论 A 和B 怎样选择,是否存在一种策略,使得 A 有必胜的把握?答案是不存在这样的必胜策略。
因为无论 A 和 B 怎样选择,都有 50% 的概率两个数字相等,这个概率不受选择策略的影响。
所以,这个游戏是一个“随机游戏”,任何一方都没有必胜策略。
2. 囚徒困境 (Prisoner's dilemma)囚徒困境是最著名的博弈论案例之一。
在这个游戏里,有两个人被抓住了,被判处各自坐牢20 年。
检察官给他们一个选择:如果两个人都认罪,那么各坐8 年;如果其中一个人认罪,而另一个人不认罪,那么认罪的人不用坐牢,而不认罪的人要坐 30 年;如果两个人都不认罪,那么各坐 20 年。
问题在于,两个人应该做什么选择才能最大化自己的利益?这个游戏的特殊之处在于,两个人之间的合作可以带来更大的利益,但是他们又互相不信任。
如果两个人都认罪,那么他们的利益是最小的,但是这么做可以避免另一个人的背叛,因此是一种安全策略。
如果两个人都不认罪,那么他们的利益也不是最大的,因为他们错失了合作的机会。
最终,由于信任问题,两个人可能会都选择认罪,而得到不太理想的结果。
3. 鸽子和猫 (Pigeon and Cat)这是一个有趣的案例。
假设有一个狭长的走廊,有一只鸽子和一只猫在两端等待。
如果鸽子朝左走,那么猫就会朝右走;如果鸽子朝右走,那么猫就会朝左走。
如果两只动物在同一个地方相遇,那么鸽子就会被吃掉。
问题在于,这个走廊有多长时,鸽子才有足够的概率逃脱?答案是 2/3。
如果走廊长度小于等于 2/3,那么猫可以直接守在鸽子的对面,而鸽子无法逃脱。
如果走廊长度大于 2/3,那么猫不得不冒着追错方向的风险前进,这就给了鸽子逃脱的机会。
精编博弈论经典案例资料
精编博弈论经典案例资料在我们的生活中,博弈论的身影无处不在。
从日常的购物决策到商业竞争,从国际关系到体育比赛,博弈论为我们提供了一种理解和预测人类行为的有力工具。
接下来,让我们一起走进几个经典的博弈论案例,感受其中的智慧与策略。
案例一:囚徒困境假设有两个犯罪嫌疑人 A 和 B 被警方抓获,但警方没有足够的证据指控他们。
于是,警方将两人分别关押,并分别告知他们以下政策:如果 A 和 B 都保持沉默(不坦白),那么两人都将被判刑 1 年;如果 A 坦白而 B 沉默,那么 A 将被释放,B 将被判刑 5 年;如果 B 坦白而 A 沉默,那么 B 将被释放,A 将被判刑 5 年;如果 A 和 B 都坦白,那么两人都将被判刑 3 年。
从理性的角度来看,对于 A 来说,如果 B 坦白,那么自己坦白会被判 3 年,沉默会被判 5 年,所以坦白更好;如果 B 沉默,那么自己坦白会被释放,沉默会被判 1 年,还是坦白更好。
同样的逻辑对于 B也适用。
最终的结果往往是A 和B 都选择坦白,两人都被判刑3 年。
然而,从整体的最优结果来看,如果两人都保持沉默,总共只需要判刑2 年。
这个案例反映了个体理性与集体理性之间的冲突。
在现实生活中,类似的情况也经常出现。
比如在商业竞争中,企业之间为了争夺市场份额,可能会采取过度降价的策略,最终导致双方的利润都受到损失。
案例二:智猪博弈猪圈里有一头大猪和一头小猪。
猪圈的一头有一个饲料槽,另一头安装着控制饲料供应的按钮。
按一下按钮会有 10 个单位的饲料进槽,但谁按按钮就需要先付出 2 个单位的成本。
而且,大猪吃的速度快,如果小猪去按按钮,大猪会在小猪跑回来之前吃掉大部分饲料;如果大猪去按按钮,小猪也能吃到一部分饲料。
如果小猪按按钮,大猪等待,那么大猪能吃到 9 个单位的饲料,小猪只能吃到 1 个单位的饲料(扣除成本后净收益为-1);如果大猪按按钮,小猪等待,那么大猪能吃到 6 个单位的饲料,小猪能吃到 4 个单位的饲料;如果大猪小猪都去按按钮,那么大猪能吃到 7 个单位的饲料,小猪能吃到 3 个单位的饲料(扣除成本后净收益为 1);如果大猪小猪都等待,那么双方都吃不到饲料。
博弈论经典案例
博弈论经典案例在我们的生活中,博弈论的身影无处不在。
从日常的下棋对弈,到商业世界中的竞争策略,再到国际政治舞台上的大国博弈,博弈论都发挥着重要的作用。
接下来,让我们一起走进几个经典的博弈论案例,来领略其中的智慧与策略。
案例一:囚徒困境假设有两个犯罪嫌疑人 A 和 B 被警方抓获,但警方没有足够的证据指控他们。
于是,警方将两人分别关押在不同的房间进行审讯,并分别向他们提出相同的条件:如果 A 坦白而 B 不坦白,那么 A 将被释放,B 将被判处 10 年有期徒刑;如果 B 坦白而 A 不坦白,那么 B 将被释放,A 将被判处 10 年有期徒刑;如果 A 和 B 都坦白,那么两人都将被判处 8 年有期徒刑;如果 A 和 B 都不坦白,那么两人都将被判处 1 年有期徒刑。
对于 A 和 B 来说,他们都面临着两种选择:坦白或不坦白。
从 A的角度来看,如果 B 坦白,那么自己坦白将被判处 8 年有期徒刑,不坦白将被判处 10 年有期徒刑,所以坦白是更好的选择;如果 B 不坦白,那么自己坦白将被释放,不坦白将被判处 1 年有期徒刑,还是坦白更好。
同样的道理,B 也会做出这样的推理。
最终的结果往往是 A 和 B 都选择坦白,两人都被判处 8 年有期徒刑。
这个结果对于他们来说并不是最优的,因为如果两人都不坦白,他们都只需要被判处1 年有期徒刑。
但由于彼此之间缺乏信任和沟通,以及对自身利益的考虑,导致了这样一个非最优的结果。
囚徒困境揭示了个体理性与集体理性之间的冲突。
在很多情况下,人们为了追求自身的最大利益,最终却导致了整体利益的受损。
案例二:智猪博弈假设猪圈里有一头大猪和一头小猪,猪圈的一头有一个猪食槽,另一头安装着控制猪食供应的按钮。
按一下按钮会有 10 个单位的猪食进槽,但谁按按钮就会首先付出 2 个单位的成本。
若大猪先到槽边,大猪吃到 9 个单位,小猪只能吃到 1 个单位;若同时到槽边,大猪吃 7个单位,小猪吃 3 个单位;若小猪先到槽边,大猪吃 6 个单位,小猪吃 4 个单位。
十大博弈论经典案例
十大博弈论经典案例博弈论是研究冲突和合作行为的数学理论,主要研究各方在一定规则下作出决策的过程。
在现实生活中,博弈论可以帮助我们分析各种决策情境,揭示行为背后的逻辑。
下面介绍十大博弈论经典案例,展示不同情境下的决策策略及其结果。
1. 囚徒困境囚徒困境是博弈论中最著名的案例之一。
两名囚徒被单独关押,检察官给每人下达选择“合作”或“背叛”的指令。
如果两人都合作,各自判刑较轻;如果其中一人背叛而另一人合作,则背叛者判刑为0,而合作者将被重判;如果两人都背叛,两者皆受重刑。
在这种情况下,每名囚徒都会选择背叛,因为无论另一人选择什么,背叛都是最优选择。
2. 霍巴和鲍勃游戏霍巴和鲍勃游戏是研究博弈过程中的信任和合作的实例。
霍巴拥有100美元,可以选择分享给鲍勃一部分;鲍勃可以选择保留所有款项或回馈一部分给霍巴。
如果鲍勃选择合作并分享款项,那么霍巴会获得更多回报;反之,如果鲍勃保留所有款项,霍巴就会损失。
通过这一博弈,可以观察到信任和合作如何影响双方的回报。
3. 石头剪刀布石头剪刀布是一种简单的博弈,展示了不完全信息博弈的情形。
两名玩家同时出示石头、剪刀或布中的一种手势,胜利者根据规则确定。
在这个博弈中,玩家需要考虑对手可能的策略,选择最佳的手势进行应对。
4. 抢手织物抢手织物是关于资源分配的博弈。
多位玩家竞相争夺一种有限资源,但资源数量不足以满足所有玩家的需求。
玩家需要权衡合作和竞争的策略,以最大化自己的利益。
这个案例揭示了在资源有限的情况下,合作和竞争之间的平衡。
5. 拍卖博弈拍卖博弈是在资源分配中常见的情景。
卖家将物品提供给潜在买家,买家通过出价来竞争物品,最高出价者将得到物品。
在这种情况下,买家需要权衡自己对物品的价值以及出价策略,以获得最大的利益。
6. 鸿门宴鸿门宴是中国古代著名的博弈案例之一。
项羽与刘邦在鸿门相会,项羽有机会消灭刘邦,但最终刘邦却逆袭成功。
这个案例揭示了在战略选择上的巧妙和胜负的关键。
博弈论经典案例
博弈论经典案例在我们的生活中,博弈论的身影无处不在。
从商业竞争到日常决策,从国际关系到体育赛事,博弈论为我们理解和预测人们的行为提供了有力的工具。
接下来,让我们一起探讨几个经典的博弈论案例。
“囚徒困境”是博弈论中最为著名的案例之一。
假设有两个嫌疑犯被警察抓住,但警方没有足够的证据指控他们。
于是,警察将两人分别审讯,并给出了以下的条件:如果两人都保持沉默(不坦白),那么他们都会被判刑 1 年;如果一人坦白而另一人沉默,坦白的人将被释放,沉默的人将被判刑 10 年;如果两人都坦白,那么他们都会被判刑8 年。
从个体的角度来看,每个嫌疑犯都有两个选择:坦白或沉默。
对于嫌疑犯 A 来说,如果嫌疑犯 B 选择沉默,那么 A 坦白会被释放,沉默则判刑 1 年,所以 A 会选择坦白;如果 B 选择坦白,那么 A 坦白判刑8 年,沉默判刑 10 年,A 还是会选择坦白。
同理,对于嫌疑犯 B 也是如此。
因此,最终的结果往往是两人都选择坦白,分别被判刑 8 年。
这个案例反映了个体理性与集体理性之间的冲突。
从个体的角度出发,选择坦白似乎是最优的,但从整体的角度来看,两人都沉默才是最优的结果。
另一个经典案例是“智猪博弈”。
在一个猪圈里,有一头大猪和一头小猪。
猪圈的一端有一个食槽,另一端有一个控制食物供应的按钮。
按一下按钮,会有 10 份食物进入食槽,但按按钮需要付出 2 份食物的体力成本。
如果大猪先去按按钮,小猪在食槽边等待,大猪回来时只能吃到 6 份食物,小猪能吃到 4 份;如果小猪先去按按钮,大猪在食槽边等待,小猪回来时只能吃到 1 份食物,大猪能吃到 9 份;如果两者同时去按按钮,回来后大猪能吃到 7 份食物,小猪能吃到 3 份。
对于小猪来说,无论大猪是否去按按钮,等待总是比去按按钮更有利。
而大猪知道小猪会选择等待,所以大猪只能去按按钮。
这个案例在商业中也有很多应用。
比如在市场竞争中,小企业往往会选择等待大企业开拓市场、承担风险,然后再跟进模仿。
十大博弈论经典案例
十大博弈论经典案例1. 约翰·冯·诺伊曼的合作博弈。
约翰·冯·诺伊曼提出了合作博弈的概念,这是一种让参与者通过合作来达成共同利益的博弈形式。
最经典的案例就是囚徒困境,两名犯人被捕,如果他们都保持沉默,那么警察就没有足够的证据定罪,但如果其中一个人选择交待另一个人,那么他可以减轻自己的刑罚,而另一个人将面临更严重的处罚。
这个案例展示了合作博弈中的困境和冲突。
2. 纳什均衡。
约翰·纳什提出了纳什均衡的概念,这是一种在博弈中参与者通过最优化自己的策略来达到一种平衡状态。
经典案例是《美丽心灵》中的情景,两个人面对同一个女孩的选择,他们的最优策略是不知道对方的选择的情况下做出自己的选择,这样才能达到最优的结果。
3. 最优反应原则。
最优反应原则是博弈论中的一个重要概念,它指的是在博弈中参与者根据对手的策略选择自己的最优反应。
一个经典案例是企业之间的价格竞争,如果一家企业降低价格,另一家企业的最优反应可能是跟随降价,但如果两家企业都降价,最终可能会导致双方利润下降。
4. 博弈中的信息不对称。
信息不对称是博弈论中一个重要的概念,它指的是在博弈中参与者拥有不同的信息,这可能会导致不公平的结果。
一个经典案例是二手车市场,卖家通常比买家更了解车辆的情况,这就造成了信息不对称,导致买家很难做出理性的决策。
5. 博弈中的策略与信任。
在博弈中,策略和信任是非常重要的因素。
一个经典案例是国际贸易谈判,各国之间需要通过博弈来确定最优的贸易政策,同时也需要建立信任关系,否则很难达成协议。
6. 零和博弈与非零和博弈。
零和博弈是指参与者的利益完全对立,一方的利益损失就是另一方的利益增加,而非零和博弈则是指参与者的利益可以同时增加。
经典案例是资源的分配,如果资源有限,那么参与者之间的博弈就是零和博弈,但如果资源可以通过合作来增加,那么就可以转变为非零和博弈。
7. 演化博弈论。
演化博弈论是一种研究博弈中策略演化和稳定状态的理论,经典案例是动物群体中的合作行为,通过博弈来解释为什么动物会选择合作而不是竞争,以及合作行为是如何在群体中传播和演化的。
十大博弈论经典案例
十大博弈论经典案例博弈论是一门研究决策制定和互动行为的学科,它通过分析参与者之间的策略选择和结果影响来研究决策的最优解。
在博弈论中,经典案例可以帮助我们理解博弈论的基本概念和原理。
下面将介绍十大博弈论经典案例。
1. 战略井字棋战略井字棋是一种基于井字棋游戏的扩展形式,其中每个玩家都可以选择放置一个标记或阻止对手放置标记。
这个案例展示了零和博弈的情况,即一方的收益等于另一方的损失。
这种情况下,每个玩家都会采取最佳策略,因此博弈结果是可预测的。
2. 牛市与熊市的博弈股票市场中牛市和熊市的交替是博弈论的典型应用场景。
在牛市中,投资者倾向于买入股票以获取更高的回报;而在熊市中,投资者倾向于卖出股票以避免损失。
这种情况下,每个投资者都要权衡风险与收益,并根据市场走势调整策略。
3. 囚徒困境囚徒困境是博弈论中的经典案例,用于研究自利个体之间的合作问题。
两名犯人被抓获,检察官分别与他们单独交谈,给他们提供选择:合作或背叛对方。
根据他们的选择不同,将得到不同的判决。
这个案例展示了合作和背叛之间的博弈以及结果的影响。
4. 社交网络中的网络效应社交网络中的网络效应也是博弈论的研究领域之一。
人们在社交网络中的决策往往受到他人决策的影响。
例如,在社交媒体上,用户参与与否、跟随与否都会受到其他用户的决策影响。
这种情况下,每个个体的策略选择会受到网络效应的影响。
5. 价格竞争价格竞争是博弈论中的常见案例,特别是在市场竞争中。
公司之间的价格竞争会影响到市场份额和利润。
根据博弈论的原理,公司会在选择价格时考虑对手的策略,并权衡自身利益和市场需求。
在价格竞争中,涉及到策略的选择和博弈结果的分析。
6. 拍卖拍卖是博弈论中的经典案例之一,也是交易理论的重要组成部分。
在拍卖中,买方和卖方之间进行价格竞争,竞拍者的策略选择和出价会影响最终交易结果。
拍卖中涉及到的博弈与策略选择有助于了解经济交易中的决策制定。
7. 博弈与金融市场博弈论在金融市场中的应用也非常广泛。
博弈论案例分析
博弈论案例分析在经济学、政治学、社会学以及商业策略中,博弈论是一个重要的分析工具。
它研究在具有相互依赖关系的决策者之间如何做出最优决策。
以下是几个典型的博弈论案例分析:1. 囚徒困境囚徒困境是博弈论中最著名的例子之一。
它描述了两个被捕的罪犯面临的决策问题。
每个囚犯可以选择合作(保持沉默)或背叛(供出对方)。
如果两人都合作,他们都会被轻判;如果两人都背叛,他们都会被重判;如果一个合作而另一个背叛,背叛者将被释放,而合作者将受到最重的惩罚。
在这种情况下,尽管两人都合作是最优的集体结果,但个体理性导致他们最终选择背叛对方。
2. 纳什均衡纳什均衡是博弈论中的一个核心概念,由数学家约翰·纳什提出。
它指的是在一个非合作博弈中,每个参与者都选择了自己的最优策略,前提是其他参与者的策略是已知的。
在囚徒困境中,纳什均衡就是两人都选择背叛,因为无论对方如何选择,背叛都是每个囚犯的最优策略。
3. 公共物品的提供公共物品的提供是博弈论在现实世界中的一个应用。
公共物品具有非排他性和非竞争性,即一个人使用公共物品不会减少其他人的使用,且无法阻止未付费者使用。
这导致了一个“搭便车”的问题,即个体可能倾向于不支付公共物品的成本,而是依赖其他人的支付。
博弈论可以用来分析如何通过激励机制来解决这个问题,比如通过征税或罚款。
4. 拍卖理论拍卖理论是博弈论在经济活动中的一个应用。
它研究在不同拍卖规则下,买家和卖家如何制定策略以达到最优结果。
例如,在英式拍卖中,价格逐步上升,直到只剩下一个出价者;而在荷兰式拍卖中,价格从高到低下降,直到有人接受当前价格。
博弈论可以帮助分析在不同拍卖形式下,参与者如何制定出价策略以最大化自己的利益。
5. 冷战时期的核威慑冷战时期,美国和苏联之间的核威慑是一个典型的博弈论案例。
双方都拥有能够摧毁对方的核武器,但任何一方首先使用核武器都会导致灾难性的后果。
这种情况下,双方都有动机保持克制,以避免触发全面的核战争。
博弈论的经典案例
博弈论的经典案例
博弈论是一种应用数学,研究决策制定和策略执行的科学。
它通
过分析参与者之间的决策和互动,来预测他们可能的行为和结果。
以下是几个经典的博弈论案例:
1.囚徒困境
囚徒困境是一个经典的博弈论案例,指两名罪犯之间的博弈,在
这个博弈中,两人都被指控犯有某个罪行,但没有足够的证据来定罪。
如果两人都认罪,每个人都将受到较重的惩罚;如果一人认罪,而另
一人不认罪,认罪者将获得更轻的惩罚,而不认罪者将受到较重的惩罚。
如果两人都不认罪,双方将受到较轻的惩罚。
这个案例是研究合
作和背叛的标准案例。
2.拍卖
拍卖是博弈论的另一种重要应用场景。
在拍卖中,卖家出售商品,并邀请买家进行竞价。
买家之间的竞争可能导致卖家得到更好的价格,但是买家也可能会在竞争中付出更高的价格。
不同的拍卖机制和规则
可以产生非常不同的结果和效率。
3.企业竞争
企业竞争是博弈论的又一个重要应用。
企业之间的竞争不仅仅基
于产品差异和价格,在决策制定和市场营销策略上也需要考虑对手的
行为和策略。
企业之间的竞争还涉及到潜在的谈判和合作机会。
博弈论的经典案例不仅帮助我们了解现实生活中的决策制定和行为模式,而且还提供了解决方案的方法。
随着科技的发展,博弈论在金融、政治、军事、环境等领域的应用正在不断扩展。
博弈论经典案例
博弈论经典案例1. 囚徒困境:这是一种经典的博弈论案例,两名囚犯被关押在不同的牢房中,警方缺乏确凿的证据将他们定罪,决定让他们进行交涉。
如果两人都认罪,每人将会被判刑5年;如果一个人认罪而另一个人保持沉默,认罪的人将会被判刑1年,而保持沉默的人将被判无期徒刑;如果两人都保持沉默,每人将被判刑3年。
在这种情况下,每个囚犯都面临着是否信任对方合作的决策。
2. 麦氏定理:这是美国经济学家约翰·N·纳什于1950年提出的经典问题。
假设有两家咖啡店A和B,它们的位置一个在城市的北边,另一个在南边。
两家咖啡店需要决定每天早上的开门时间。
如果A咖啡店在北边开门,而B咖啡店在南边也同样开门,北部居民会去A店,南部居民会去B店,两家店的收入会平均分。
但是,如果A店在北边开门,而B店在南边关门,南部居民不得不去北边排队等待,这将导致北边的队伍变长,北部居民也会选择去B店。
麦氏定理指出,当两家店选择不同的开门时间时,总是有一种策略,使得两家店的收入之和最大。
3. 社交圈中的追逐游戏:在一个社交聚会上,一对情侣分手后,男方试图追回女方。
男方完成了一连串的行动,女方必须在每个行动之后做出回应。
游戏的目标是让女方接受男方的求爱。
这个案例涉及到博弈论中的策略选择和不确定性。
4. 价格竞争:在一场市场竞争中,两家公司决定销售产品的价格。
低价通常会吸引更多的消费者,但是公司也需要考虑到自己的成本和利润。
每家公司需要在出售产品的定价上权衡竞争和利润之间的平衡。
这个案例涉及到博弈论中的纳什均衡和即时反应策略。
5. 投标博弈:在一场拍卖中,多个竞争者竞相出价,以获得拍卖品。
每个竞争者必须决定自己的出价,以获得最大的利润。
这个案例涉及到博弈论中的最优出价和风险评估。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典的博弈案例【篇一:经典的博弈案例】博弈论的几个经典例子散文吧>>博弈论的几个经典例子请点击上面“m龙的微观”欢迎订阅关注!一、囚徒困境故事讲的是,两个嫌疑犯作案后被警察抓住,分别关在不同的屋子里接受审讯。
警察知道两人有罪,但缺乏足够的证据。
警察告诉每个人:如果两人都抵赖,各判刑一年;如果两人都坦白,各判八年;如果两人中一个坦白而另一个抵赖,坦白的放出去,抵赖的判十年。
于是,每个囚徒都面临两种选择:坦白或抵赖。
然而,不管同伙选择什么,每个囚徒的最优选择是坦白:如果同伙抵赖、自己坦白的话放出去,不坦白的话判一年,坦白比不坦白好;如果同伙坦白、自己坦白的话判八年,不坦白的话判十年,坦白还是比不坦白好。
结果,两个嫌疑犯都选择坦白,各判刑八年。
如果两人都抵赖,各判一年,显然这个结果好。
但这个帕累托改进办不到,因为它不能满足人类的理性要求。
囚徒困境所反映出的深刻问题是,人类的个人理性有时能导致集体的非理性——聪明的人类会因自己的聪明而作茧自缚。
二、旅行者困境两个旅行者从一个以出产细瓷花瓶著称的地方旅行回来,他们都买了花瓶。
提取行李的时候,发现花瓶被摔坏了,于是他们向航空公司索赔。
航空公司知道花瓶的价格大概在八九十元的价位浮动,但是不知道两位旅客买的时候的确切价格是多少。
于是,航空公司请两位旅客在100元以内自己写下花瓶的价格。
如果两人写的一样,航空公司将认为他们讲真话,就按照他们写的数额赔偿;如果两人写的不一样,航空公司就认定写得低的旅客讲的是真话,并且原则上按这个低的价格赔偿,同时,航空公司对讲真话的旅客奖励2元,对讲假话的旅客罚款2元。
为了获取最大赔偿而言,本来甲乙双方最好的策略,就是都写100元,这样两人都能够获赔100元。
可是不,甲很聪明,他想:如果我少写1元变成99元,而乙会写100元,这样我将得到101元。
何乐而不为?所以他准备写99元。
可是乙更聪明,他算计到甲要算计他写99元,于是他准备写98元。
想不到甲还要更聪明一个层次,估计到乙要写98元来坑他,于是他准备写97元……大家知道,下象棋的时候,不是说要多“看”几步吗,“看”得越远,胜算越大。
你多看两步,我比你更强多看三步,你多看四步,我比你更老谋深算多看五步。
在花瓶索赔的例子中,如果两个人都“彻底理性”,都能看透十几步甚至几十步上百步,那么上面那样“精明比赛”的结果,最后落到每个人都只写一两元的地步。
事实上,在彻底理性的假设之下,这个博弈唯一的纳什均衡,是两人都写0。
三、是竞争也是劫持四、酒吧博弈问题(bar problem)酒吧博弈问题是美国人w. b.arthur1994年在《美国经济评论》发表的题为《归纳论证和有界理性》一问中提出的,然后他又从1999年的《科学》杂志上发表的《复杂性和经济学》一文中阐述了这个博弈。
该博弈是说:有一群人,例如n=100,每个周末,均要决定是去一酒吧活动还是呆在家里。
酒吧的容量是有限的,假定是60人。
如果某人预测去酒吧的人超过60人,那么他决定去还是不去?......每个参与者或决策者面临的信息只是以前去酒吧的人数,只能根据以前的人数的信息来归纳出策略来。
这是一个典型的动态博弈问题。
......通过计算机的模型实验,阿瑟得出了一个有意思的结果:不同的行动者是根据自己的归纳来行动的,并且,去酒吧的人数没有一个固定的规律,然而,经过一段时间以后,去的平均人数总是趋于60。
阿瑟说,预测者自组织到一个均衡系统中去和不去的人群,或形成一个生态稳定系统。
......这就是酒吧问题。
酒吧问题所反映的是这样一个社会现象,正象阿瑟教授说的那样,我们在许多行动中,要猜测别人的行动,然而我们没有更多关于他人的信息,我们只有通过分析过去的历史来预测未来。
五、枪手博弈今天,我讲一个有关博弈论的经典故事。
彼此痛恨的甲、乙、丙三个枪手准备决斗。
甲枪法最好,十发八中;乙枪法次之,十发六中;丙枪法最差,十发四中。
先提第一个问题:如果三人同时开枪,并且每人只发一枪;第一轮枪战后,谁活下来的机会大一些?一般人认为甲的枪法好,活下来的可能性大一些。
但合乎推理的结论是,枪法最糟糕的丙活下来的几率最大。
我们来分析一下各个枪手的策略。
枪手甲一定要对枪手乙先开枪。
因为乙对甲的威胁要比丙对甲的威胁更大,甲应该首先干掉乙,这是甲的最佳策略。
同样的道理,枪手乙的最佳策略是第一枪瞄准甲。
乙一旦将甲干掉,乙和丙进行对决,乙胜算的概率自然大很多。
枪手丙的最佳策略也是先对甲开枪。
乙的枪法毕竟比甲差一些,丙先把甲干掉再与乙进行对决,丙的存活概率还是要高一些。
我们计算一下三个枪手在上述情况下的存活几率:甲:24%(被乙丙合射40% x 60% = 24%)乙:20%(被甲射100% - 80% = 20%)丙:100%(无人射丙)通过概率分析,我们发现枪法最差的丙存活的几率最大,枪法好于丙的甲和乙的存活几率远低于丙的存活几率。
但是,上面的例子隐含一个假定,那就是甲乙丙三人都清楚地了解对手打枪的命中率。
但现实生活中,因为信息不对称,比如枪手甲伪装自己,让枪手乙和丙认为甲的枪法最差,在这种情况下,最终的幸存者一定是甲。
所以,无论是历史,还是现实,那些城府很深的**雄往往能成为最后的胜利者。
这样的例子,对你的职场生涯或者官场生涯是否很有启发呢?我们继续假定,甲乙丙三人互相不了解对手的枪法水平。
在这种情况下,甲被乙射、甲被丙射、甲被乙丙射及甲不被乙丙射的机率各为25%,按贝氏(bayes)定理计算甲的存活率:甲活率:31%([被乙射:25% x 40% = 10%] + [被丙射:25% x 60% = 15%] + [被乙丙射:25% x 40% x 60% = 6%])。
乙活率:23%([被甲射:25% x 20% = 5%] + [被丙射:25% x 60% = 15%] + [被甲丙射:25%x20%x60% = 3%])。
丙活率:17%([被甲射:25% x 20% = 5%] + [被乙射:25% x 40% = 10%] + [被甲乙射:25% x 20% x 40% = 2%])。
在枪手互相不知道对手命中率的信息的情况下,这时命中率最高的枪手甲存活的几率最大,枪法最差的丙存活的可能性最小。
我们现在回到甲乙丙都知道对手命中率的情形,进行第二轮枪战的分析。
在第一轮枪战后,丙有可能面对甲,也可能面对乙,甚至同时面对甲与乙,除非第一轮中甲乙皆死。
尽管第一轮结束后,丙极有可能获胜(即甲乙双亡),但是第二轮开始,丙就一定处于劣势,因为不论甲或乙,他们的命中率都比丙的命中率为高。
这就是枪手丙的悲哀。
能力不行的丙玩些花样虽然能在第一轮枪战中暂时获胜。
但是,如果甲乙在第一轮枪战中没有双亡的话,在第二轮枪战结束后,丙的存活的几率就一定比甲或乙为低。
第二轮枪战中甲乙丙存活的几率粗算如下:(1) 假设甲丙对决:甲的存活率为60%,丙的存活率为20%。
(2) 假设乙丙对决:乙的存活率为60%,丙的存活率为40%。
这似乎说明,能力差的人在竞争中耍弄手腕能赢一时,但最终往往不能成事。
我们现在用严格的概率方法计算一下两轮枪战后,甲乙丙各自的存活的几率。
(1) 第一轮:甲射乙,乙射甲,丙射甲。
甲的活率为24%(40% x 60%),乙的活率为20%(100% - 80%),丙的活率为100%(无人射丙)。
(2) 第二轮:情况1:甲活乙死(24% x 80% = 19.2%)甲射丙,丙射甲——甲的活率为60%,丙的活率为20%。
情况2:乙活甲死(20% x 76% = 15.2%)乙射丙,丙射乙——乙的活率为60%,丙的活率为40%。
情况3:甲乙皆活(24% x 20% = 4.8%)重复第一轮。
情况4:甲乙皆死(76% x 80% = 60.8%)枪战结束。
甲的活率为12.672%(19.2% x 60%) + (4.8% x 24%) = 12.672%乙的活率为10.08%(15.2% x 60%) + (4.8% x 20%) = 10.08%丙的活率为75.52%(19.2% x 20%) + (15.2% x 40%) + (4.8% x 100%) + (60.8% x 100%) = 75.52%通过对两轮枪战的详细概率计算,我们仍然发现枪法最差的丙存活的几率最大,枪法较好的甲和乙的存活几率仍远低于丙的存活几率。
对于这样的例子,有人会发出“英雄创造历史,庸人繁衍子孙”的感叹。
我们现在改变游戏规则,假定甲乙丙不是同时开枪,而是他们轮流开一枪。
在这个例子中,我们发现丙的机会好于他的实力,丙不会被第一枪干掉,并且他可能极有机会在下一轮中先开枪。
先假定开枪的顺序是甲、乙、丙,甲一枪将乙干掉后(80%的几率),就轮到丙开枪,丙有40%的几率一枪将甲干掉。
即使乙躲过甲的第一枪,轮到乙开枪,乙还是会瞄准枪法最好的甲开枪,即使乙这一枪干掉了甲,下一轮仍然是轮到丙开枪。
无论是甲或者乙先开枪,乙都有在下一轮先开枪的优势。
如果是丙先开枪,情况又如何呢?丙可以向甲先开枪,即使丙打不中甲,甲的最佳策略仍然是向乙开枪。
但是,如果丙打中了甲,下一轮可就是乙开枪打丙了。
因此,丙的最佳策略是胡乱开一枪,只要丙不打中甲或者乙,在下一轮射击中他就处于有利的形势。
我们通过这个例子,可以理解人们在博弈中能否获胜,不单纯取决于他们的实力,更重要的是取决于博弈方实力对比所形成的关系。
在上面的例子中,乙和丙实际上是一种联盟关系,先把甲干掉,他们的生存几率都上升了。
我们现在来判断一下,乙和丙之中,谁更有可能背叛,谁更可能忠诚?任何一个联盟的成员都会时刻权衡利弊,一旦背叛的好处大于忠诚的好处,联盟就会破裂。
在乙和丙的联盟中,乙是最忠诚的。
这不是因为乙本身具有更加忠诚的品质,而是利益关系使然。
只要甲不死,乙的枪口就一定会瞄准甲。
但丙就不是这样了,丙不瞄准甲而胡乱开一枪显然违背了联盟关系,丙这样做的结果,将使乙处于更危险的境地。
合作才能对抗强敌。
只有乙丙合作,才能把甲先干掉。
如果,乙丙不和,乙或丙单独对甲都不占优,必然被甲先后解决。
六、智猪博弈猪圈里有两头猪,一头大猪,一头小猪。
猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。
如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。
当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。
那么,两只猪各会采取什么策略?答案是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。
原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。