(完整版)二元一次方程组知识点整理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 二元一次方程组 知识点整理
知识点1:二元一次方程(组)的定义
1、二元一次方程的概念
含有两个未知数,且所含未知数的项的次数都是1的方程叫做二元一次方程 注意:1、(1)方程中的元指的是未知数,即二元一次方程有且只有两个未知数. (2)含有未知数的项的次数都是1.
(3)二元一次方程的左右两边都必须是等式. (三个条件完全满足的就是二元一次方程)
2.含有未知数的项的系数不等于零,且两未知数的次数为1。 即若ax m
+by n
=c 是二元一次方程,则a ≠0,b ≠0且m=1,n=1
例1:已知(a -2)x -by
|a|-1
=5是关于x 、y 的二元一次方程,则a =______,b =_____.
例2:下列方程为二元一次方程的有_________
①y x =-52,②14=-x ,③2=xy ,④3=+y x ,⑤22
=-y x ,⑥22=-+y x xy ,⑦71
=+y x
⑧y x 23+,⑨1=++c b a 【巩固练习】
下列方程中是二元一次方程的是( ) A .3x-y 2
=0 B .2x +1y =1 C .3x -5
2
y=6 D .4xy=3 2、二元一次方程组的概念
由两个二元一次方程所组成的方程组叫二元一次方程组
注意:①方程组中有且只有两个未知数。②方程组中含有未知数的项的次数为1。③方程组中每个方程均为整式方程。 例:下列方程组中,是二元一次方程组的是( )
A 、2284
23119 (23754624)
x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨
⎨
⎨
⎨+=-==-=⎩⎩⎩⎩ 【巩固练习】1,已知下列方程组:(1)32x y y =⎧⎨=-⎩,(2)324x y y z +=⎧⎨-=⎩,(3)1310x y x y ⎧+=⎪⎪
⎨⎪-=⎪⎩
,(4)30x y x y +=⎧⎨-=⎩,
其中属于二元一次方程组的个数为( )
A .1 B. 2 C . 3 D . 4 1、 若75331
3=+--m n m y x
是关于x 、y 二元一次方程,则m =_________,n =_________。
知识点2:二元一次方程组的解定义
一般地,使二元一次方程组中两个方程左右两边的值都相等的两个未知数的值叫做二元一次方程组的解。 类型题1 根据定义判断 例:方程组⎩⎨
⎧=+=-4
22
y x y x 的解是( )
A .⎩⎨
⎧==21
y x
B .⎩⎨
⎧==1
3
y x
C .⎩⎨
⎧-==2
y x
D .⎩⎨
⎧==0
2
y x
【巩固练习】1,当1-=m x ,1+=m y 满足方程032=-+-m y x ,则=m _________. 2、下面几个数组中,哪个是方程7x+2y=19的一个解( )。 A 、 3
1x y =⎧⎨
=-⎩ B 、
3
1x y =⎧⎨=⎩ C 、 3
1x y =-⎧⎨
=⎩ D 、 3
1
x y =-⎧⎨
=-⎩ 类型题2 已知方程组的解,而求待定系数。
此类题型只需将解代入到方程中,求出相应系数的值,从而求代数式的值
例1:已知⎩⎨
⎧==12y x -是方程组⎩⎨⎧=++=-2
74123ny x y mx 的解,则m 2-n 2
的值为_________.
例2: 若满足方程组⎩⎨
⎧=-+=-6
)12(4
23y k kx y x 的x 、y 的值相等,则k =_______.
【巩固练习】 1、若方程组⎩⎨
⎧=++=-10
)1(23
2y k kx y x 的解互为相反数,则k 的值为 。
2、若方程组⎪⎩⎪⎨⎧=+=+52243y b
ax y x 与⎪⎩⎪⎨⎧=-=-5
24
3y x by x a 有相同的解,则a= ,b= 。 ,类型3 列方程组求待定字母系数是常用的解题方法.
例: 若⎩⎨⎧-==20y x ,⎪⎩
⎪
⎨⎧==311y x 都是关于x 、y 的方程ax +by =6的解,则a +b 的值为
例: 关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨
⎧-==11y x ,⎩⎨⎧==1
2
y x ,则这个二元一次方程是
【巩固练习】 如果⎩⎨⎧=-=21y x 是方程组⎩
⎨⎧=-=+10
cy bx by ax 的解,那么,下列各式中成立的是 ( )
A 、a +4c =2
B 、4a +c =2
C 、a +4c +2=0
D 、4a +c +2=0
知识点3:二元一次方程组的解法
方法一:代入消元法 【典型例题】 例
27838100
x y x y -=⎧⎨
--=⎩
我们通过代入消去一个未知数,将方程组转化为一个一元一次方程来解,这种解法叫做代入消元法。 用代入消元法解二元一次方程组的步骤:
(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来. (2)把(1)中所得的方程代入另一个方程,消去一个未知数. (3)解所得到的一元一次方程,求得一个未知数的值.
(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解. 【巩固练习】1,方程x 4y 15-+=-用含y 的代数式表示,x 是( )
A .x 4y 15-=-
B .x 154y =-+
C .x 4y 15=+
D .x 4y 15=-+ 2、把方程7x 2y 15-=写成用含x 的代数式表示y 的形式,得( )
A .x=
215152715157 (7)
7
2
2x x y
x x B x C y D y ----=
=
=
3、用代入法解方程组2521
38
x y x y +=-⎧⎨
+=⎩较为简便的方法是( )
A .先把①变形
B .先把②变形
C .可先把①变形,也可先把②变形
D .把①、②同时变形 方法二:加减消元法
例:对于方程组:20
240x y x y +=⎧⎨+=⎩
分析:这个方程组的两个方程中,y 的系数有什么关系?•利用这种关系你能发现新的消元方法吗? 解:②-①得,()()2x y x y 4022+-+=- 即x 18=, 把x 18=代入①得y 4=。 所以 4
y ⎧⎨
=⎩x=18
定义:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加减,就能消去这个未知数,得到一个一元一次方程这种方法叫做加减消元法 ,简称加减法。 例1、方程组231
534
m n m n +=⎧⎨
+=⎩中,n 的系数的特点是 ,所以我们只要将两式 ,•就可以消去未知数,