浙教版九年级数学上册期末复习试卷 (2063)

合集下载

浙教版九年级数学上册期末数学试卷(word解析版)

浙教版九年级数学上册期末数学试卷(word解析版)

九年级第一学期期末数学试卷一、选择题(本题有10小题,每小题4分,共40分.)1.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.下列事件中,是必然事件的是()A.射击运动员射击一次,命中靶心B.掷一次骰子,向上一面的点数是6C.经过有交通信号灯的路口,恰好遇到红灯D.将油滴在水中,油浮在水上面3.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)4.用配方法解方程x2+1=8x,变形后的结果正确的是()A.(x+4)2=15B.(x+4)2=17C.(x﹣4)2=15D.(x﹣4)2=17 5.用直角尺检查某圆弧形工件,根据下列检查的结果,能判断该工件一定是半圆的是()A.B.C.D.6.已知正六边形的边长为4,则这个正六边形外接圆的半径为()A.2B.C.D.47.正比例函数y=kx与反比例函数(k是常数,且k≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.8.某服装店在“元旦”期间搞促销活动,一款服装原价400元,连续两次降价a%后售价为225元,下列所列方程中,正确的是()A.400(1+a%)2=225B.400(1﹣2a%)=225C.400(1﹣a%)2=225D.400(1﹣a2%)=2259.已知二次函数y=﹣x2+2x+a(a<0),当x=n时,y>0,则当x=n﹣2时,y的取值范围为()A.y>0B.y<0C.y=0D.不能确定10.对于平面上的点P和一条线l,点P与线l上各点的连线中,最短的线段的长度叫做点P 到线l的距离,记为d(P,l).以边长为6的正方形ABCD各边组成的折线为l,若d(P,l)=2,则满足这样条件的所有P点组成的图形(实线图)是()A.B.C.D.二、填空题(本大题共6小题,每小题5分,共30分.在答题卷的相应空格上填上正确的答案.)11.抛物线y=x2﹣1与y轴的交点坐标是.12.如图是用计算机模拟抛掷一枚啤酒瓶盖试验的结果.由此可以推断,抛掷该啤酒瓶盖一次,“凸面向上”的概率是(精确到0.001).13.如图,把一个半径为24cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是cm.14.已知反比例函数y=,若y>﹣1,则x的取值范围是.15.如图,在一块长22m,宽为14m的矩形空地内修建三条宽度相等的小路,其余部分种植花草.若花草的种植面积为240m2,则小路宽为m.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC.把△ABC绕点B逆时针旋转得到△DBE,连接AE.当旋转角α(0°≤α≤180°)为度时,AE∥BC.三、解答题(本题有8小题,共80分.第17∼20题每题8分,第21题10分,第22,23题每题12分,第24题14分.)17.解方程:(1)5x(x﹣3)=2(x﹣3);(2)x2﹣4x+5=0.18.小明和爸爸玩“石头”、“剪刀”、“布”的游戏.游戏规则:每局游戏每人用一只手可以出石头、剪刀、布三种手势中的一种;石头赢剪刀,剪刀赢布,布赢石头;若两人出相同手势,则算平局.(1)在一局游戏中,小明决定出“剪刀”,求他赢爸爸的概率;(2)用列举法求一局游戏中两人出现平局的概率.19.如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上,∠BED=30°.(1)求∠AOD的度数;(2)若OA=2,求AB的长.20.一条抛物线由抛物线y=2x2平移得到,对称轴为直线x=﹣1,并且经过点(1,1).(1)求该抛物线的解析式,并指出其顶点坐标;(2)该抛物线由抛物线y=2x2经过怎样平移得到?21.如图,在边长为1的正方形网格中,线段AB绕某点顺时针旋转90°得到线段A1B1,点A与点A1是对应点,点B与点B1是对应点.(1)在图中画出旋转中心O(保留画图痕迹);(2)求旋转过程中点A经过的路径长.22.如图,取一根长1米的质地均匀木杆,用细绳绑在木杆的中点O处并将其吊起来,在中点的左侧距离中点30cm处挂一个重9.8牛的物体,在中点O右侧用一个弹簧秤向下拉,使木杆保持平衡,改变弹簧秤与中点O的距离L(单位:cm),看弹簧秤的示数F(单位:牛,精确到0.1牛)有什么变化.小慧在做此《数学活动》时,得到下表的数据:L/cm510152025303540F/牛58.860.219.614.711.89.88.47.4结果老师发现其中有一个数据明显有错误.(1)你认为当L=cm时所对应的F数据是明显错误的;(2)在已学过的函数中选择合适的模型求出F与L的函数关系式;(3)若弹簧秤的最大量程是60牛,求L的取值范围.23.如图,在⊙O中,弦AB与半径OA形成的夹角∠A=60°,OA=2,点C是优弧上的一动点,切线CD与射线AB相交于点D.(1)∠O与∠D满足的数量关系是;(2)当∠D=90°时,求阴影部分的面积;(3)当∠AOC是多少度时,△BCD为等腰三角形?通过推理说明理由.24.蔗糖是决定杨梅果实中糖度的主要成分.某果农种植东魁杨梅,5月26日检测到杨梅果实中的蔗糖含量为2%.从5月27日开始到6月1日,测量出蔗糖含量数据,并根据这些数据建立蔗糖含量变化率y(蔗糖含量变化率=当天的蔗糖含量﹣上一天的蔗糖含量/上一天的蔗糖含量×100%)与生长天数x(x=0表示5月26日)的函数关系是:y=﹣0.0021x2+0.063x﹣0.21.根据这一函数模型解决下列问题:(1)这种杨梅果实中蔗糖含量增长最快的是哪一天?请说明理由;(2)求出这种杨梅果实中蔗糖含量在哪一天最高;(3)当蔗糖含量高时,杨梅口感最好.计划用6天时间采摘完这批杨梅,请给这位果农提出采摘日期的合理化建议.参考答案一、选择题(本题有10小题,每小题4分,共40分.每小题有且只有一个答案正确,请在答题卷上填涂正确答案的代号,选错、多选和不选都不得分.)1.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,也是中心对称图形.故选:A.2.下列事件中,是必然事件的是()A.射击运动员射击一次,命中靶心B.掷一次骰子,向上一面的点数是6C.经过有交通信号灯的路口,恰好遇到红灯D.将油滴在水中,油浮在水上面【分析】根据随机事件,必然事件,不可能事件的特点判断即可.解:A.射击运动员射击一次,命中靶心,这是随机事件,故A不符合题意;B.掷一次骰子,向上一面的点数是6,这是随机事件,故B不符合题意;C.经过有交通信号灯的路口,恰好遇到红灯,这是随机事件,故C不符合题意;D.将油滴在水中,油浮在水上面,这是必然事件,故D符合题意;故选:D.3.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.4.用配方法解方程x2+1=8x,变形后的结果正确的是()A.(x+4)2=15B.(x+4)2=17C.(x﹣4)2=15D.(x﹣4)2=17【分析】先移项得到x2﹣8x=﹣1,然后进行配方得到(x﹣4)2=15,据此选项正确选项.解:∵x2+1=8x,∴x2﹣8x=﹣1,∴x2﹣8x+16﹣16=﹣1,∴(x﹣4)2=15,故选:C.5.用直角尺检查某圆弧形工件,根据下列检查的结果,能判断该工件一定是半圆的是()A.B.C.D.【分析】根据90°的圆周角所对的弦是直径进行判断.解:因为90°的圆周角所对的弦是直径,所以选项B中的圆弧为半圆形.故选:B.6.已知正六边形的边长为4,则这个正六边形外接圆的半径为()A.2B.C.D.4【分析】如图,求出圆心角∠AOB=60°,得到△OAB为等边三角形,即可解决问题.解:如图,AB为⊙O内接正六边形的一边;则∠AOB==60°,∵OA=OB,∴△OAB为等边三角形,∴AO=AB=4.∴这个正六边形外接圆的半径为4,故选:D.7.正比例函数y=kx与反比例函数(k是常数,且k≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.【分析】因为k的符号不明确,所以应分两种情况讨论.解:k>0时,函数y=kx与y=同在一、三象限,C选项符合;k<0时,函数y=kx与y=同在二、四象限,无此选项.故选:C.8.某服装店在“元旦”期间搞促销活动,一款服装原价400元,连续两次降价a%后售价为225元,下列所列方程中,正确的是()A.400(1+a%)2=225B.400(1﹣2a%)=225C.400(1﹣a%)2=225D.400(1﹣a2%)=225【分析】利用经过两次降价后的价格=原价×(1﹣每次降价的百分数)2,即可得出关于a的一元二次方程,此题得解.解:依题意得:400(1﹣a%)2=225,故选:C.9.已知二次函数y=﹣x2+2x+a(a<0),当x=n时,y>0,则当x=n﹣2时,y的取值范围为()A.y>0B.y<0C.y=0D.不能确定【分析】根据抛物线的对称轴是直线x=1和二次函数的性质解答.解:由二次函数y=﹣x2+2x+a(a<0)知抛物线与x轴有两个交点.∴Δ=22+4a>0.又∵该抛物线的对称轴是直线x=1且当x=n时,y>0,∴0<n<2.∴n﹣2<0,∴当x=n﹣2时,y的取值范围为y<0.故选:B.10.对于平面上的点P和一条线l,点P与线l上各点的连线中,最短的线段的长度叫做点P 到线l的距离,记为d(P,l).以边长为6的正方形ABCD各边组成的折线为l,若d(P,l)=2,则满足这样条件的所有P点组成的图形(实线图)是()A.B.C.D.【分析】首先根据题目给的信息,可以确定正方形内外都有满足条件的点,可排除A选项,再比较BCD选项的不同点进行分析即可选出答案.解:根据题目条件,此正方形内外均有满足d(P,l)=2的点,因此可排除A选项,其次,正方形内部满足d(P,l)=2的点应是一个小正方形,可排除D选项,最后,正方形外部满足d(P,l)=2的点4个角落应是圆弧形,可排除B选项,故选:C.二、填空题(本大题共6小题,每小题5分,共30分.在答题卷的相应空格上填上正确的答案.)11.抛物线y=x2﹣1与y轴的交点坐标是(0,﹣1).【分析】将x=0代入抛物线解析式,求出相应的y的值,即可得到抛物线y=x2﹣1与y轴解:∵抛物线y=x2﹣1,∴当x=0时,y=﹣1,即抛物线y=x2﹣1与y轴的交点坐标是(0,﹣1),故答案为:(0,﹣1).12.如图是用计算机模拟抛掷一枚啤酒瓶盖试验的结果.由此可以推断,抛掷该啤酒瓶盖一次,“凸面向上”的概率是0.440(精确到0.001).【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.解:由图知,随着抛掷次数的逐渐增大,“凸面向上”的频率逐渐稳定在常数0.440附近,所以可以推断,抛掷该啤酒瓶盖一次,“凸面向上”的概率是0.440,故答案为:0.440.13.如图,把一个半径为24cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是8cm.【分析】设圆锥底面半径为rcm,利用弧长公式得到2πr=,然后解关于r 的方程即可.解:设圆锥底面半径为rcm,根据题意得2πr=,解得r=8,即圆锥底面半径是8cm.故答案为:8.14.已知反比例函数y=,若y>﹣1,则x的取值范围是x<﹣3或x>0.【分析】由k的值,可以得到该函数图象在第几象限,从而可以得到相应的不等式,从而可以得到x的取值范围.解:∵y=,∴该函数图象在第一、三象限,当x<0时,y<0;当x>0时,y>0;∴当y>﹣1时,则>﹣1,x<0,解得,x<﹣3或x>0,故答案为:x<﹣3或x>0.15.如图,在一块长22m,宽为14m的矩形空地内修建三条宽度相等的小路,其余部分种植花草.若花草的种植面积为240m2,则小路宽为2m.【分析】设小路宽为xm,则种植花草部分的面积等同于长(22﹣x)m,宽(14﹣x)m的矩形的面积,根据花草的种植面积为240m2,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.解:设小路宽为xm,则种植花草部分的面积等同于长(22﹣x)m,宽(14﹣x)m的矩形的面积,依题意得:(22﹣x)(14﹣x)=240,整理得:x2﹣36x+68=0,解得:x1=2,x2=34(不合题意,舍去).故答案为:2.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC.把△ABC绕点B逆时针旋转得到△DBE,连接AE.当旋转角α(0°≤α≤180°)为30或150度时,AE∥BC.【分析】分两种情形:如图1中,过点E作EQ⊥BC于点Q,根点A作AP⊥BC于点P.证明EQ=BE,可得∠EBQ=30°,如图2中,当AE∥BC时,同法可证∠EBQ=30°,解:如图1中,过点E作EQ⊥BC于点Q,根点A作AP⊥BC于点P.∵AB=AC,AP⊥BC,∴BP=PC,∴AP=BC,∵AE∥BC,AP⊥BC,EQ⊥BC,∴EQ=AP=BC,∵BE=BC,∴EQ=BE,∴∠EBC=30°,如图2中,当AE∥BC时,同法可证∠EBQ=30°,∴∠CBE=180°﹣30°=150°,故答案为:30或150.三、解答题(本题有8小题,共80分.第17∼20题每题8分,第21题10分,第22,23题每题12分,第24题14分.)17.解方程:(1)5x(x﹣3)=2(x﹣3);(2)x2﹣4x+5=0.【分析】(1)方程移项后,利用因式分解法求出解即可;(2)法1:方程利用公式法求出解即可;法2:方程利用配方法求出解即可.解:(1)移项得:5x(x﹣3)﹣2(x﹣3)=0,分解因式得:(5x﹣2)(x﹣3)=0,所以5x﹣2=0或x﹣3=0,解得:x1=,x2=3;(2)法1:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=16﹣20=﹣4<0,∴原方程无实数根;法2:方程整理得:x2﹣4x=﹣5,配方得:x2﹣4x+4=﹣1,即(x﹣2)2=﹣1<0,则此方程无实数根.18.小明和爸爸玩“石头”、“剪刀”、“布”的游戏.游戏规则:每局游戏每人用一只手可以出石头、剪刀、布三种手势中的一种;石头赢剪刀,剪刀赢布,布赢石头;若两人出相同手势,则算平局.(1)在一局游戏中,小明决定出“剪刀”,求他赢爸爸的概率;(2)用列举法求一局游戏中两人出现平局的概率.【分析】(1)直接由概率公式求解即可;(2)用列表法列举出9种等可能结果,其中一局游戏中两人出现平局的结果有3种,再由概率公式求解即可.解:(1)在一局游戏中,小明决定出“剪刀”,则他赢爸爸的概率为;(2)列表如下:石头剪刀布石头(石头,石头)(石头,剪刀)(石头,布)剪刀(剪刀,石头)(剪刀,剪刀)(剪刀,布)布(布,石头)(布,剪刀)(布,布)总共有9种等可能结果,其中一局游戏中两人出现平局的结果有3种,即(石头,石头)、(剪刀,剪刀)、(布,布),∴一局游戏中两人出现平局的概率为=.19.如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上,∠BED=30°.(1)求∠AOD的度数;(2)若OA=2,求AB的长.【分析】(1)连接OB,由∠DEB=30°,推出∠DOB=60°,由OD⊥AB,根据垂径定理即可推出∠AOD=60°;(2)根据(1)所推出的结论,求出OC=1,利用勾股定理求出AC,可得结论.解:(1)连接OB,则∠BOD=2∠BED=2×30°=60°,∵OD⊥AB∴∠AOD=∠BOD=60°;(2)∵OD⊥AB,∠AOD=60°,∴∠OAC=30°,∴OC=OA=2=1,∴AC=,∴AB=2AC=2.20.一条抛物线由抛物线y=2x2平移得到,对称轴为直线x=﹣1,并且经过点(1,1).(1)求该抛物线的解析式,并指出其顶点坐标;(2)该抛物线由抛物线y=2x2经过怎样平移得到?【分析】(1)根据平移的规律平移后的抛物线为y=2(x+1)2+k,代入点(1,1),即可求出解析式;(2)由抛物线的顶点式即可求得顶点坐标,根据左加右减,上加下减可得出答案.解:(1)设所求抛物线为y=2(x+1)2+k,∵过(1,1),则1=2(1+1)2+k,解得k=﹣7,∴所求抛物线为y=2(x+1)2﹣7;∴顶点坐标是(﹣1,﹣7).(2)所求抛物线y=2(x+1)2﹣7是由抛物线y=2x2向左平移1个单位长度,再向下平移7个单位长度得到.21.如图,在边长为1的正方形网格中,线段AB绕某点顺时针旋转90°得到线段A1B1,点A与点A1是对应点,点B与点B1是对应点.(1)在图中画出旋转中心O(保留画图痕迹);(2)求旋转过程中点A经过的路径长.【分析】(1)根据旋转的性质可得,点O为线段AA1、BB1的垂直平分线的交点;(2)根据弧长公式计算即可.解:(1)画出线段AA1、BB1的垂直平分线,交点即为点O,(2)由勾股定理得,OA==2,∴点A经过的路线长为.22.如图,取一根长1米的质地均匀木杆,用细绳绑在木杆的中点O处并将其吊起来,在中点的左侧距离中点30cm处挂一个重9.8牛的物体,在中点O右侧用一个弹簧秤向下拉,使木杆保持平衡,改变弹簧秤与中点O的距离L(单位:cm),看弹簧秤的示数F(单位:牛,精确到0.1牛)有什么变化.小慧在做此《数学活动》时,得到下表的数据:L/cm510152025303540F/牛58.860.219.614.711.89.88.47.4结果老师发现其中有一个数据明显有错误.(1)你认为当L=10cm时所对应的F数据是明显错误的;(2)在已学过的函数中选择合适的模型求出F与L的函数关系式;(3)若弹簧秤的最大量程是60牛,求L的取值范围.【分析】(1)根据表格数据,可发现L与F的乘积为定值294,从而可得答案;(2)根据FL=294,可得F与L的函数解析式;(3)根据弹簧秤的最大量程是60牛,即可得到结论.解:(1)根据杠杆原理知F•L=30×9.8.当L=10cm时,F=29.4牛顿.所以表格中数据错了;(2)根据杠杆原理知F•L=30×9.8.∴F与L的函数关系式为:;(3)当F=60牛时,由得L=4.9,根据反比例函数的图象与性质可得L≥4.9,∵由题意可知L≤50,∴L的取值范围是4.9cm≤L≤50cm.23.如图,在⊙O中,弦AB与半径OA形成的夹角∠A=60°,OA=2,点C是优弧上的一动点,切线CD与射线AB相交于点D.(1)∠O与∠D满足的数量关系是∠O+∠D=210°;(2)当∠D=90°时,求阴影部分的面积;(3)当∠AOC是多少度时,△BCD为等腰三角形?通过推理说明理由.【分析】(1)根据切线性质得:∠C=90°,进而根据四边形内角是360°可求得结果;(2)连接OB,BC,可推出△AOB是等边三角形.进而得出∠BOC=∠AOC﹣∠AOB=60°.从而求得S扇形OBC,连接BC,则△BOC是等边三角形,从而求出∠BCD,进而计算出△BCD的面积,进一步求得结果;(3)设∠AOC=x,连接BC,在上任取一点Q,连接AQ,CQ,可求得∠CBD=,由(1)可得:∠D=210°﹣x,当BD=BC时,从而2∠D+∠DBC=180°,从而求得,当CD=BC和当BD=CD时,同样方法求得结果.解:(1)∵DC是⊙O的切线,∴∠C=90°,∵∠O+∠A+∠D+∠C=360°,∴∠O+60°+∠D+90°=360°,∴∠O+∠D=210°,故答案是:∠O+∠D=210°;(2)如图1,连接OB,BC,∵∠D=90°,∠AOC+∠D=210°,∴∠AOC=120°.∵∠A=60°,OA=OB,∴△AOB是等边三角形.∴∠BOC=∠AOC﹣∠AOB=60°.∴S扇形OBC=,连接BC,则△BOC是等边三角形,∴∠BCD=30°,在Rt△BCD中,BD=,∴CD=,∴==,∵S△BOC==,∴S四边形BOCD=S△BCD+S△BOC=,∴S阴=S四边形BOCD﹣S扇形OBC=;(3)如图2,设∠AOC=x,连接BC,在上任取一点Q,连接AQ,CQ,∵=,∴∠Q==,∵点A、B、C、Q共圆,∴∠CBD=∠Q=,由(1)可得:∠D=210°﹣x,当BD=BC时,∴∠D=∠BCD,由∠D+∠BCD+∠CBD=180°得,2∠D+∠DBC=180°,∴2(210°﹣x)+=180°,∴x=160°,即:∠BOC=160°,当CD=BC时,∴∠D=∠DBC,∴210°﹣x=,∴x=140°,当BD=CD时,即:∠BOC=140°,∴∠DBC=∠DCB,∴2∠DBC+∠D=180°,∴2×+(210°﹣x)=180°,综上所述,∠AOC为140°或160°.24.蔗糖是决定杨梅果实中糖度的主要成分.某果农种植东魁杨梅,5月26日检测到杨梅果实中的蔗糖含量为2%.从5月27日开始到6月1日,测量出蔗糖含量数据,并根据这些数据建立蔗糖含量变化率y(蔗糖含量变化率=当天的蔗糖含量﹣上一天的蔗糖含量/上一天的蔗糖含量×100%)与生长天数x(x=0表示5月26日)的函数关系是:y=﹣0.0021x2+0.063x﹣0.21.根据这一函数模型解决下列问题:(1)这种杨梅果实中蔗糖含量增长最快的是哪一天?请说明理由;(2)求出这种杨梅果实中蔗糖含量在哪一天最高;(3)当蔗糖含量高时,杨梅口感最好.计划用6天时间采摘完这批杨梅,请给这位果农提出采摘日期的合理化建议.【分析】(1)求出顶点横坐标即可得答案;(2)求出y=0时x的值,即可得答案;(3)在杨梅果实中蔗糖含量最高的6天采摘,而当x>26时,含糖量降低的速度比x=23时上升的速度快,解可得到答案.解:(1)∵y=﹣0.0021x2+0.063x﹣0.21=﹣0.0021(x﹣15)2+0.2625,∴在第15天,即6月10日,这种杨梅果实中蔗糖含量增长最快;(2)当蔗糖含量比前一天增加时,y>0,当蔗糖含量比前一天减少时,y<0,∴先要求使y=0时对应的x的值,当y=0时,﹣0.0021x2+0.063x﹣0.21=0,整理得:x2﹣30x+100=0,解这个方程得:x1=15﹣5,x2=15+526.18,∵x是整数,x=26时,y>0,蔗糖含量比第25天增加;而当x=27时,y<0,蔗糖含量比第26天减少;∴这种杨梅果实中蔗糖含量从增加到减少的临界时间是第26天,即6月21日这种杨梅果实中蔗糖含量最高;(3)根据(2)知,当4≤x≤26时,随着时间增加,蔗糖含量增加,大约当x=26时,杨梅果实中蔗糖含量最高,当x≥27时,蔗糖含量随着时间的增加而降低,根据二次函数的性质,当x>26时,比x=23离对称轴x=15远,∴当x>26时,含糖量降低的速度比x=23时上升的速度快,∴在第23,24,25,26,27,28天(即6月18日——6月23日)采摘可以保证蔗糖含量高,口感好,建议在这几天采摘.。

浙教版九年级上册数学期末考试试题含答案

浙教版九年级上册数学期末考试试题含答案

浙教版九年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.在平面直角坐标系中,下列二次函数的图象开口向上的是( )A .2yB .221y x x =-++C .22y x x =-+D .20.5y x x =-+ 2.下列属于随机事件的是( )A .从装满红球的口袋随意摸一个球是红球B .抛一个硬币,正好反面朝上C .从一副扑克牌任抽2张都是红心5D .抛一枚骰子两次出现点数之和为13 3.已知34x y =,则下列结论一定成立的是( ) A .3x =,4y = B .1y x -= C .34x y = D .74x y y += 4.Rt ABC ∆中,斜边12AB =,其重心与外心之间的距离为( )A .2B .3C .4D .65.若点A 在⊙O 内,点B 在⊙O 外,OA =3,OB =5,则⊙O 的半径r 的取值范围是( ) A .0<r <3 B .2<r <8 C .3<r <5D .r >5 6.在平面直角坐标系中,将抛物线()21y x =+向右平移2个单位,再向下平移4个单位,得到的抛物线解析式是( )A .()234y x =+-B .()214y x =--C .()234y x =++D .()214y x =-+ 7.角α,β满足045αβ<<<︒︒,下列是关于角α,β的命题,其中错误..的是( )A .0sin α<B .0tan 1β<<C .cos sin βα<D .sin cos βα< 8.已知二次函数()()20y a x m a =->的图象经过点()1,A p -,()3,B q ,且p q <,则m 的值不可能...是( )A .2-B .C .0D .529.如图,30MAN ∠=︒,O 是MAN ∠内部一点,O 与MAN ∠的边AN 相切于点B ,与边AM相交于点C ,D ,AB =OE CD ⊥于E ,OB ,则弦CD 的长是( )A .B .C .4D .10.如图,E ,F ,G ,H 分别是矩形ABCD 四条边上的点,连结EG ,HF 相交于点O ,//EG AD ,//FH AB ,矩形BFOE ∽矩形OGDH ,连结AC 交EG ,FH 于点P ,Q .下列一定能求出BPQ ∆面积的条件是( )A .矩形BFOE 和矩形OGDH 的面积之差B .矩形ABCD 与矩形BFOE 的面积之差C .矩形BFOE 和矩形FCGO 的面积之差D .矩形BFOE 和矩形EOHA 的面积之差二、填空题11.比例式453x=中x 的值等于___________. 12.为估计种子的发芽率,做了10次试验.每次种了1000颗种子,发芽的种子都是950颗左右,预估该种子的发芽率是___________.13.如图,点D 在钝角ABC 的边BC 上,连接AD ,45B ∠=︒,CAD CDA ∠=∠,:5:7CA CB =,则CAD ∠的余弦值为__________.14.如图,直线AB 与抛物线2y ax bx c =++(0a >)相交于()2,5A -,()5,12B 两点,点P 是抛物线上位于直线AB 下方的点,则点P 的横坐标m 的取值范围是___________.15.如图,点A ,B ,C 都在O 上,2tan 3ABC ∠=,将圆O 沿BC 翻折后恰好经过弦AB 的中点D ,则BC AB 的值是___________.16.如图,矩形OABC 中,3OA =,5AB =,抛物线2y x bx c =++的顶点为P ,且经过点(),M m n 和()4,N m n +,其中点M ,N 位于矩形OABC 的内部(不含边界),则MNP ∆的面积是___________,b c +的取值范围是___________.三、解答题17.计算:22sin60cos 30tan 45︒+︒.18.端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得 元购物券,最多可得 元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.19.由36个边长为1的小正方形组成的66⨯网格中,线段AB 的两个端点在格点上. (1)如图1,C ,D 也在格点上,连结AB ,CD 相交于点O ,求AO BO 的值和OC 的长;(2)如图2,仅用无刻度直尺在线段AB 上找一点M ,使得23AM MB =.20.如图,在东西方向的海岸线l 上有长为300米的码头海岸AB ,在码头的最西端A 处测得轮船M 在它的北偏东45︒方向上;同一时刻,在A 处正东方向距离A 处50米的C 处测得轮船M 在北偏东37︒方向上.(1)求轮船M 到海岸线l 的距离;(结果保留整数米)(2)如果轮船M 沿着南偏东22︒的方向就行,那么该轮船能否行至码头海岸AB 靠岸?请说明理由.(参考数据:sin 370.60︒≈,tan 370.75︒≈,sin 220.37︒≈,tan 220.40︒≈) 21.如图,在锐角ABC ∆,4AB BC ==,以BC 为直径画O 交AC 于点D ,过点D 作DE AB ⊥于点E .(1)求证:DE 是O 的切线;(2)当4AC AE =时,求阴影部分弓形的面积.22.(1) 抛物线y =ax 2+c 经过点A (2,3),点B (-1,-3)两点,求该抛物线的解析式.(2) 如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3 m ,水柱落地处离池中心3 m ,水管应多长?23.ABC ∆和ADE ∆均是等腰直角三角形,其中90ACB AED ∠=∠=︒.如图1,开始时,//DE AC ,现在固定ABC ∆将ADE ∆绕着点A 按顺时针方向旋转α(0180α︒<<︒). (1)当ADE ∆中的DE 边旋转到与ABC ∆的某条边平行时,旋转角α的度数是 ; (2)如图2,连结BD ,CE ,求证:ABD ACE ∆∆∽;(3)若2AB AD =,在ADE ∆的旋转过程中,当C ,D ,E 三点在同一条直线上时,请画出图形求DBC ∠的度数.24.定义:若一个三角形存在两个内角之差是第三个内角的两倍,则称这个三角形为关于第三个内角的“差倍角三角形”.例如,在ABC ∆中,100A ∠=︒,60B ∠=︒,20C ∠=︒,满足2A B C ∠-∠=∠,所以ABC ∆是关于C ∠的“差倍角三角形”.(1)若等腰ABC ∆是“差倍角三角形”,求等腰三角形的顶角A ∠的度数;(2)如图1,ABC ∆中,3AB =,8AC =,9BC =,小明发现这个ABC ∆是关于C ∠的“差倍角三角形”.他的证明方法如下:证明:在BC 上取点D ,使得1BD =,连结AD ,(请你完成接下去的证明)(3)如图2,五边形ABCDE 内接于圆,连结AC ,AD 与BE 相交于点F ,G ,AB BC DE ==,ABE ∆是关于AEB ∠的“差倍角三角形”.①求证:四边形CDEF 是平行四边形;②若1BF =,设AB x =,CDEFAEG S y S ∆=四边形,求y 关于x 的函数关系式.参考答案1.A【分析】二次函数y =ax 2+bx +c (a ≠0),①当a >0时,抛物线y =ax 2+bx +c (a ≠0)的开口向上;②当a <0时,抛物线y =ax 2+bx +c (a ≠0)的开口向下,据此判断即可.【详解】解:A 、∵a0,∴2y =的图象开口向上,故本选项符合题意;B 、∵a =﹣1<0,∴y =﹣x 2+2x +1的图象开口向下,故本选项不符合题意;C 、∵a =﹣2<0,∴y=﹣2x2+x的图象开口向下,故本选项不符合题意;D、∵a=﹣0.5<0,∴y=﹣0.5x2+x的图象开口向下,故本选项不符合题意;故选:A.【点睛】本题考查二次函数的图象和性质,解答本题的关键是明确题意,利用二次函数的性质解答.2.B【分析】根据事件发生的可能性大小判断.【详解】解:A、从装满红球的口袋随意摸一个球是红球,是必然事件;B、抛一枚硬币,正好反面朝上,是随机事件;C、从一副扑克牌中任抽2张都是红心5,是不可能事件;D、抛一枚骰子两次出现点数之和为13,是不可能事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.D【分析】根据比例的基本性质以及合比性质进行判断,即可得出结论.【详解】解:A.由34xy=,不能得到x=3,y=4,故本选项错误;B.由34xy=,不能得到y﹣x=1,故本选项错误;C.由34xy=,可得4x=3y;由34xy=,可得xy=12,故本选项错误;D.由34xy=,可得3114xy+=+,即74x yy+=,故本选项正确.故选:D.本题主要考查了比例的性质.利用“两内项之积等于两外项之积”是解题的关键.4.A【分析】根据直角三角形的性质得到162CD AB==,根据重心的性质求解即可;【详解】∵直角三角形的外心是斜边的中点,∴162CD AB==,∵M是Rt ABC∆的重心,∴123DM DC==;故答案选A.【点睛】本题主要考查了直角三角形的性质,三角形的重心和三角形的外心,准确计算是解题的关键.5.C【分析】直接根据点与圆的位置关系的判定方法求解.【详解】解:∵点A在半径为r的⊙O内,点B在⊙O外,∴OA小于r,OB大于r,∵OA=3,OB=5,故选:C .【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.6.B【分析】找出抛物线的顶点坐标,将其按要求平移后可得出新抛物线的顶点坐标,进而即可得出抛物线的解析式.【详解】解:∵抛物线y=(x+1)2的顶点坐标为(-1,0),∴平移后抛物线的顶点坐标为(1,-4),∴平移后抛物线的解析式为y=(x-1)2-4.故选:B .【点睛】本题考查了二次函数图象与几何变换,通过平移顶点找出平移后抛物线的解析式是解题的关键.7.C【分析】由角α,β满足045αβ<<<︒︒,确定锐角三角函数的增减性,sin α随α的增大而增大,cos β随β的增大而减小,tan β随β的增大而增大,利用45°函数值的分点即可确定答案.【详解】解:角α,β满足045αβ<<<︒︒,sin α随α的增大而增大,cos β随β的增大而减小, tan β随β的增大而增大,A.∵sin 45︒∴0<sin α选项A 正确,不合题意; B .∵tan 45=1︒,∴0tan 1β<<,选项B 正确,不合题意;C .sin 45︒cos 45︒,cos βα>cos sin βα>,选项C 不正确,符合题意;D .sin 45︒cos 45︒,cos 22αβ><,sin cos βα<,选项D 正确,不符合题意. 故选择:C .【点睛】本题考查锐角三角函数值的大小比较问题,掌握函数的增减性质利用45°函数值的特殊关系是解题关键.8.D【分析】根据二次函数图象上点的坐标特征得到m +1<3﹣m 或m ≤﹣1,解得即可.【详解】解:∵二次函数y =a (x ﹣m )2(a >0),∴抛物线的开口向上,对称轴为直线x =m ,∵图象经过点A (﹣1,p ),B (3,q ),且p <q ,∴m +1<3﹣m 或m ≤﹣1解得m <1,故选:D .【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键. 9.C【分析】延长BO 交AM 点F ,计算BF ,后计算OB ,OC ,OE ,最后,运用垂径定理计算即可.【详解】如图,延长BO 交AM 点F ,连接OC ,∵O 与MAN ∠的边AN 相切,∴∠ABF=90°,∵30MAN ∠=︒,AB =∴∠AFB=60°,∠FOE=30°,设EF=x ,则OF=2x ,,∵OB,∴OB=3x,∴BF=OB+OF=5x,∴∴∴⊥,∵OE CD∴在直角三角形OCE中,,根据垂径定理,得CD=2CE=4,故选C.【点睛】本题考查了切线的性质,直角三角形的性质,垂径定理,会用延长线段BO构造特殊的直角三角形是解题的关键.10.A【分析】设BF=a,BE=b,BE=b,AE=kb,根据△AEP∽△ABC,△FQC∽△ABC,分别用含a、b、k的式子表示出EP、FQ,利用割补法表示出△BPQ面积,即可求解.【详解】解:设BF=a ,BE=b ,BE=b ,AE=kb ,∵EP ∥BC ,∠AEP=∠ABC=90°,∴△AEP ∽△ABC , ∴==1AE EP k AB BC k +, ∴ ()111k k EP BC k a ka k k ==+=++, 同理,△FQC ∽△ABC ,∴==1FQ FC k AB BC k +, ∴()111k k FQ BA k b kb k k ==+=++, ∵BPQ ABC ABP BQC S S S S =--△△△△()()()()1111111222k a k b k b ka k a kb =++-+-+ ()2112ab k =-, ∵2BEOF HOGD S ab S k ab ==矩形矩形,, ∴BPQ S ()12BEOFHOGD S S =-矩形矩形 . 故选:A【点睛】本题为三角形相似知识的综合,综合性较强,根据题意设出参数,根据相似表示出相关线段,恰当利用割补法进行转换是解题关键.11.154【分析】根据比例的性质列出方程,通过解方程求得x 的值即可.【详解】解:∵453x=, ∴4x =15,解得x =154, 故答案为:154.【点睛】本题主要考查了比例的性质.利用“两内项之积等于两外项之积”列出方程是解题的关键.12.95%【分析】根据发芽率的意义,求出发芽的种子数占实验种子总数的百分比即可.【详解】解:(950×10)÷(1000×10)×100%=95%,故答案为:95%.【点睛】本题考查频率估计概率,理解发芽率的意义是正确计算的前提.13【分析】作AH⊥BC于H,设AC═CD=5k,则BC=7k,设AH=BH=x,在Rt△ACH中,利用勾股定理求得x的值(x用k表示,求得的值需淘汰不构成钝角三角形的值),然后表示AD,DH,利用余弦的定义即可求得.【详解】解:如图作AH⊥BC于H,CA CB=,∵CAD CDA∠=∠,:5:7设AC═CD=5k,BC=7k,∵∠B=45°,∠AHB=90°,∴AH=BH,设AH=BH=x,在Rt△ACH中,∵AH2+HC2=AC2,∴x 2+(7k-x )2=(5k )2,解得x=3k 或4k ,当x=4k 时,即AH=4k ,HC=7k-4k=3k ,AH>HC ,此时根据大边对大角,∠HAC<∠HCA ,又∠HAC+∠HCA=90°,∴∠HAC<45°,∴∠BAC<90°,与△ABC 为钝角三角形矛盾,故x=4k 舍去,当x=3k 时,∴BH=AH=3k ,HC=7k-3k=4k ,DH=k ,∴AD =,∴cos cosDH CAD ADH AD ∠=∠===【点睛】 本题考查解直角三角形,等腰三角形的判定定理,勾股定理,一元二次方程的应用等.解决本题的关键是作辅助线构造直角三角形,注意作辅助线时尽量不要破坏已给的角. 14.25m -<<【分析】先求出直线AB 的解析式为:7y x =+,点P 是抛物线上位于直线AB 下方的点,点P 的横坐标满足27x ax bx c +>++,由27x ax bx c +=++的两根为x 1=-2,x 2=5,不等式的解集是25x -<<,点P 的横坐标m 的取值范围即可求出.【详解】解:直线AB 与抛物线2y ax bx c =++(0a >)相交于()2,5A -,()5,12B 两点, 设直线AB 的解析式为:y kx b =+,由直线过A 、B 代入解析式得25512k b k b -+=⎧⎨+=⎩, 解得17k b =⎧⎨=⎩,直线AB 的解析式为:7y x =+,点P 是抛物线上位于直线AB 下方的点,点P 的横坐标满足27x ax bx c +>++,由27x ax bx c +=++的两根为x 1=-2,x 2=5,不等式的解集是25x -<<.∴点P 的横坐标m 的取值范围是25m -<<.故答案为:25m -<<.【点睛】本题考查直线解析式的求法,方程的解,利用图像解不等式,掌握直线解析式的求法,方程的解,利用图像解不等式,根据点P 的位置构造不等式27x ax bx c +>++是解题关键.15【分析】如图,连接AC ,CD ,过点C 作CE ⊥AB 于E .设AD =DB =2a .想办法用a 表示BC 即可解决问题.【详解】解:如图,连接AC ,CD ,过点C 作CE ⊥AB 于E .∵D 为AB 的中点,设AD =DB =2a∵∠ABC =∠CBD ,∴AC CD =,∴CA =CD ,∵CE ⊥AD ,∴AE =ED =a ,∴BE =DE +DB =3a , ∵2tan 3∠==C EC EB AB , ∴EC =2a ,∴BC =,∴BC AB ==【点睛】本题考查圆周角定理,圆心角、弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.8 42b c -<+<【分析】根据题意,先把抛物线的一次项系数和常数项用含,m n 的式子表示出来,从而表示出点P 的坐标,再利用两点间的距离求出MN 的长,和点P 到MN 的距离,即可求出三角形的面积;再根据点M ,N 在矩形内部求出,m n 的范围,进而可求b c +的范围【详解】点M 和点N 的纵坐标均为n 可知,M 与N 关于对称轴对称,点M (m 、n )点N (4m +、n )∴MN 的距离为:44m m +-=∴点P 的横坐标为:2m +抛物线2y x bx c =++的对称轴为:2b x =- 22b m ∴-=+ 24b m ∴=--将点 M (m 、n )代入2y x bx c =++得:2m bm c n ++=,则24c m m n =++①,点P 为抛物线的顶点,则点P 的纵坐标为:22244416164444ac b c m m c m m a ----==---,将①式代入得P 点的坐标为(2m +、4n -)∴点P 到MN 的距离为:()44n n --=14482PMN S ∴=⨯⨯=△ 2224424b c m m m n m m n +=--+++=++-②点M 在矩形的内部,045m m >⎧∴⎨+<⎩01m ∴<<点N 在矩形的内部03n ∴<<代入②式有:42b c -<+<故答案为:①8;②42b c -<+<【点睛】本题考查了二次函数的性质以及二次函数图像上点的特征,解题关键是用含,m n 式子表示出点P 的坐标,结合题意求出,m n 的范围17.74【分析】分别把各角的三角函数值代入原式,再由二次根式混合运算的法则进行计算即可.【详解】解:原式221=⎝⎭, 314, 74=. 【点睛】本题考查了特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键.18.(1)20,80;(2)58. 【分析】(1)若两次都转向“10元”,该顾客最少可得20元购物券,若两次都转向“40元”,最多可得80元购物券.(2)画树状图或列表即可求得所有等可能的结果与该顾客所获购物券金额不低于50元的情况,然后利用概率公式求解即可求得答案.【详解】解:(1)画树状图得:则该顾客最少可得20元购物券,最多可得80元购物券;故答案为:20,80;(2)画树状图得:∵共有16种等可能的结果,该顾客所获购物券金额不低于50元的有10种情况, ∴该顾客所获购物券金额不低于50元的概率为:105168. 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.(1)34,157;(2)见解析 【分析】(1)由//AB CD ,可证AOC BOD ∆∆∽,由性质知34AO CO AC BO DO BD ===,由勾股定理求出5CD ,利用比例即可求出CO 的长;(2)从A 向左取两个格为E ,过B 向右取三个格为F ,连结EF 交AB 与点M ,构造相似,利用相似比即可求出M 满足条件.【详解】解:(1)由图知:3AC =,4BD =,∵//AB CD ,∴A B ∠=∠,C D ∠=∠.∴AOC BOD ∆∆∽, ∴34AO CO AC BO DO BD ===,∵5CD , ∴31577CO CD ==, (2)从A 向左取两个格为E ,过B 向右取三个格为F ,连结EF 交AB 与点M , ∵AE ∥BF ,∴∠A=∠B ,∠E=∠F ,∴△AEM ∽△BFM , ∴AE AM 2==BF BM 3, 如图,点M 是所求作的点.【点睛】本题考查网格作图问题,与平行线性质,相似三角形的判定与性质,掌握网格作图经常利用相似或全等解决问题.20.(1)轮船M 到海岸线l 的距离为200米;(2)该轮船能行至码头海岸AB 靠岸【分析】(1)过点M 作MD ⊥AC 交AC 的延长线于D ,设DM=x ,解直角三角形即可得到结论; (2)作∠DMF=22°,交l 于点F .解直角三角形即可得到结论.【详解】解:(1)过点M 作MD ⊥AC 交AC 的延长线于D ,设DM=x ,∵在Rt △CDM 中,CD=DM•tan ∠CMD=x•tan37°,又∵在Rt △ADM 中,∠MAC=45°,∴AD=DM ,∵AD=AC+CD=50+x•tan37°,∴50+x•tan37°=x , ∴50502001tan 3710.75x ︒=≈=--, 答:轮船M 到海岸线l 的距离约为200米;(2)作∠DMF=22°,交l 于点F ,在Rt △DMF 中,DF=DM•tan ∠FMD=DM•tan22°≈200×0.40=80(米),∴AF=AC+CD+DF=DM+DF≈200+80=280<300,所以该轮船能行至码头AB 靠岸.【点睛】本题考查了解直角三角形的应用-方向角问题,读懂题目信息并作出辅助线构造成直角三角形是解题的关键.21.(1)见解析;(2)23π【分析】(1)连接OD ,由等腰三角形的性质得到,∠A =∠C,∠ODC =∠C ,∠A =∠ODC,可得OD ∥AB,根据平行线的性质得到OD ⊥DE ,于是得到DE 是⊙O 的切线;(2)根据等腰三角形的性质得到AD =CD ,根据直角三角形的性质得到∠ADE =30°,求得∠A =60°,然后根据扇形和三角形的面积公式即可得到结论.【详解】解:(1)连结OD ,∵O D O C =,∴∠=∠C ODC .∵AB BC =,∴C A ∠=∠.∴A ODC ∠=∠.∴OD ∥AB .∵DE AB ⊥,∴DE OD ⊥,而OD 是圆O 的半径,∴DE 是O 的切线.(2)连结BD ,∵BD ⊥AC ,AB =BC ,∴AD =CD ,∵AC =4AE ,∴AD =2AE ,∵∠AED =90°,∴∠ADE =30°,∴∠A =60°,∴∠ABD =∠CBD =30°,∴∠COD =60°,AD =CD =12AB =2,BD =∴2602112360223S BD CD ππ⨯⨯=-⨯⨯⋅=阴影【点睛】本题考查了切线的判定和性质,等腰三角形的性质,直角三角形的性质,扇形面积的计算,正确的作出辅助线是解题的关键.22.(1)y=2x 2-5;(2)2.25m.【分析】(1)把点A (2,3),点B (-1,-3)代入y=ax 2+c ,解方程组即可得到结论;(2)先求出顶点坐标,然后设抛物线的解析式为y=a (x-1)2+3(0≤x≤3),将(3,0)代入求得a 值,则x=0时得的y 值即为水管的长.【详解】解:(1)把点A (2,3),点B (-1,-3)代入y=ax 2+c 得,433a c a c +=⎧⎨+=-⎩, 解得:25a c =⎧⎨=-⎩, ∴该抛物线的解析式为:y=2x 2-5;(2)∵在距池中心的水平距离为1m 时达到最高,高度为3m ,∴抛物线的顶点坐标为(1,3),∴设抛物线的解析式为:y=a (x-1)2+3(0≤x≤3),代入(3,0)求得:a=-.将a 值代入得到抛物线的解析式为: y=34-(x-1)2+3(0≤x≤3), 令x=0,则y=94=2.25. 故水管长为2.25m ;【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.23.(1)45︒或90︒;(2)见解析;(3)图见解析,15DBC ∠=︒或75︒.【分析】(1)分2种情况进行讨论:AB ∥DE 、BC ∥DE ,分别画出图形,计算出度数即可;(2)根据等腰直角三角形的性质得出AC AE AB AD ==,∠BAC=∠DAE=45°,即可得出∠BAD=∠CAE ,从而证得△ABD ∽△ACE ;(3)由(2)可知,△ABD ∽△ACE ,得到∠ABD=∠ACE=90°,根据AB=2AD 得出∠ACE=30°,即可得出∠DBC=15°或75°.【详解】解:(1)当△ADE 中的DE 边旋转到与△ABC 的某条边平行时,旋转角α的度数是45°,90°.①当AB ∥DE 时,α=45°;②当DE ∥BC 时,α=90°;∴旋转角α的所有可能的度数为45°,90°.故答案为45°,90°;(2)∵△ABC 和△ADE 均是等腰直角三角形,其中∠ACB=∠AED=90°.∴AC AE AB AD =,∠BAC=∠DAE=45°,∴∠BAC+∠DAC=∠DAE+∠DAC ,即∠BAD=∠CAE ,∴△ABD ∽△ACE ;(3)如图,由BAD CAE ∆∆∽得,ABD ACE ∠=∠,2ACABAE AD ==.在Rt ACE ∆中,90AEC ∠=︒,2AC AE =,∴30ACE ∠=︒,∴30ABD ACE ∠=∠=︒.∴453015DBC ∠=︒-︒=︒.如图,在BAD CAE ∆∆∽得,ABD ACE ∠=∠,2AC AB AE AD==. 在Rt ACE ∆中,90AEC ∠=︒,2AC AE =,∴30ACE ∠=︒,∴30ABD ACE ∠=∠=︒.∴453075DBC ∠=+=︒︒︒.∴15DBC ∠=︒或75︒.【点睛】本题考查了作图-旋转变换,等腰直角三角形的性质,三角形相似的判定和性质,熟练掌握性质定理是解题的关键.24.(1)108A ∠=︒;(2)见解析;(3)①见解析;②22421x y x -=- 【分析】(1)利用“差倍角三角形”的意义,建立方程求解,即可得出结论;(2)先判断出∠C=∠BAD ,进而判断出∠CAD=∠ADC ,即可得出结论;(3)①先判断出∠CAD=∠ABE ,进而得出AC ∥DE ,即可得出结论;②先判断出△ABF ∽△EBA ,得出BE=x 2进而得出CD=x 2-1,AE=x 2-1,AF=21x x-,再判断出221-x x ,即可得出结论【详解】解:(1)设等腰三角形的顶角∠A 为2x ,则等腰三角形的底角为90°-x ,∵等腰△ABC 是“差倍角三角形”,∴90°-x-2x=2×2x ,∠A=2x=108°,∴顶角∠A 的度数为108°;(2)∵3AB =,1BD =,9BC =, ∴ABBDBC AB =.又∵B B ∠=∠,∴BAD BCA ∆∆∽.∴BAD C ∠=∠.设BAD C α∠=∠=.∵8CA CD ==, ∴1902DAC ADC α∠=∠=︒-. ∴3902B α︒∠=-,1902BAC α∠=︒+.∴2BAC B C ∠-∠=∠.∴ABC ∆是差倍角三角形.(3)①证明:连结CE ,∵BC DE =,∴ECD BEC ∠=∠,∴BE CD ∥.∵AB BC DE ==,∴AEB BAC DAE ∠=∠=∠.∵ABE ∆是关于AEB ∠的差倍角三角形,∴2FAG BAE BAC DAE BAE AEB ABE ∠=∠-∠-∠=∠-∠=∠.∴FAG ABE ADE ∠=∠=∠.∴//AC DE .∴四边形CDEF 是平行四边形②∵∠BAF=∠AEB ,∠ABF=∠EBA ,∴△ABF ∽△EBA , ∴ABBFAFBE AB AE ==, ∴2221AB x BE x BF ===,∴EF=BE-BF=x 2-1,∵四边形CDEF 是平行四边形,∴CD=EF=x 2-1,∵AE CD =,∴AE=CD=x 2-1, ∴222(1)1AB AE x x x AF BE x x ⋅--===,过点B 作BM ⊥AC 于M ,EN ⊥AC 于N ,∴BM ∥EN ,∴△BFM ∽△EFN , ∴211BMBFEN EF x ==-, ∴211BM EN x =-过点G 作GH ⊥AE 于H ,∵∠BAC=ACB=∠AEG=∠EAG ,∴△ABC ∽△AGE , ∴BM AC GH AE=, ∴22222112111(1)EN x x x x GH GH x x x ---===--, ∴221EN x GH x-=, ∴22222221421112CDEFAEG S DE EN DE EN x x x y S AE GH x x x AE GH ∆⋅--===⋅=⋅=--⋅四边形. 【点睛】此题是圆的综合题,主要考查了相似三角形的判定和性质,圆周角定理,新定义,平行四边形的判定和性质,构造出相似三角形判断出221EN x GH x-=是解本题的关键.。

浙教版九年级上册数学期末考试试卷附答案

浙教版九年级上册数学期末考试试卷附答案

浙教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.若32y x =,则x yx +的值为()A .32B .5C .52D .122.在一个不透明的盒子中有1个白球和3个红球,它们除颜色外其余都相同,从盒子里任意摸出1个球,摸到白球的概率是()A .12B .13C .14D .153.将抛物线2y x =-向左平移3个单位,再向上平移5个单位,则平移后的抛物线解析式为()A .2(3)5y x =-++B .2(3)5y x =-+-C .2(3)5y x =--+D .2(3)5y x =---4.如图,在△ABC 中,DE ∥BC ,AD=6,DB=3,AE=4,则EC 的长为()A .1B .2C .3D .45.往直径为26cm 的圆柱形容器内装入一些水以后,截面如图所示,若水的最大深度为8cm ,则水面AB 的宽度为()A .12cmB .18cmC .20cmD .24cm6.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C ,D ,则tan ADC ∠的值为()A .21313B .31313C .23D .327.10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A 、B 、C 、D 、E 、O 均是正六边形的顶点.则点O 是下列哪个三角形的外心()A .AEDB .ABD △C .BCD △D .ACD△8.如图,半径为10的扇形AOB 中,90AOB ∠=︒,C 为弧AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D ,E .若图中阴影部分的面积为10π,则CDE ∠=()A .30°B .36︒C .54︒D .45︒9.如图,CD 是Rt ABC 斜边AB 上的高,8AC =,6BC =,点O 是CD 上的动点,以O 为圆心作半径为1的圆,若该圆与ABC 重叠部分的面积为π,则OC 的最小值为()A .54B .43C .75D .5310.已知ABC 为直角三角形,且30A ∠=︒,若ABC 的三个顶点均在双曲线(0)ky k x=>上,斜边AB 经过坐标原点,且B 点的纵坐标比横坐标少3个单位长度,C 点的纵坐标与B 点横坐标相等,则k =()A .4B .92C .32D .5二、填空题11.正五边形每个内角的度数是_______.12.在一个有10万人的小镇随机调查了1000人,其中有100人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是_______.13.如图,已知⊙O 上三点A ,B ,C ,切线PA 交OC 延长线于点P ,若2OP OC =,则ABC ∠=_______.14.如图所示,正方形的顶点A 在矩形DEFG 的边EF 上,矩形DEFG 的顶点G 在正方形的边BC 上.已知正方形的边长为4,DG 的长为6,则DE 的长为_______.15.如图,已知二次函数2(0)y ax bx c a =++<的图象与x 轴交于不同两点,与y 轴的交点在y 轴正半轴,它的对称轴为直线1x =.有以下结论:①0abc >,②0a c ->,③若点()11,y -和()22,y 在该图象上,则12y y <,④设1x ,2x 是方程20ax bx c ++=的两根,若2am bm c p ++=,则()()120p m x m x --≤.其中正确的结论是____________(填入正确结论的序号).16.如图,直角ABC 的直角边长4AB BC ==,D 是AB 中点,线段PQ 在边AC 上运动,322PQ =PDBQ 面积的最大值为_______,周长的最小值为_______.三、解答题17.(1)计算:022sin 30(2021)tan 60π︒+--︒.(2)已知线段4a =,9b =,求线段a ,b 的比例中项.18.在一个不透明的盒子中有3个颜色、大小、形状完全相同的小球,小球上分别标有1,2,3这3个号码.(1)搅匀后从中随机抽出1个小球,抽到1号球的概率是_______.(2)搅匀后先从中随机抽出1个小球(不放回),再从余下的2个球中随机抽出1个球,求抽到的2个小球的号码的和为奇数的概率.19.如图,某海防哨所(O )发现在它的北偏西30°,距离哨所500m 的A 处有一艘船,该船向正东方向航行,经过3分钟到达哨所东北方向的B 处,求该船的航速.(精确到1/km h )20.如图,在ABC 中,点D ,E ,F 分别在AB ,BC ,AC 边上,//DE AC ,//EF AB .(1)求证:BDE EFC :△△.(2)若35AF FC =,EFC 的面积是25,求ABC 的面积.21.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x (元/千克)55606570销售量y (千克)70605040(1)求y (千克)与x (元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?22.如图,在ABC 中,点O 是BC 中点,以O 为圆心,BC 为直径作圆刚好经过A 点,延长BC 于点D ,连接AD .已知CAD B ∠=∠.(1)求证:①AD 是⊙O 的切线;②ACD BAD :△△;(2)若8BD =,1tan 2B =,求⊙O 的半径.23.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,ABC 中,点D 是BC 边上一点,连接AD ,若2AD BD CD =⋅,则称点D 是ABC 中BC 边上的“好点”.(1)如图2,ABC 的顶点是43⨯网格图的格点,请仅用直尺画出(或在图中直接描出)AB 边上的“好点”;(2)ABC 中,14BC =,3tan 4B =,tan 1C =,点D 是BC 边上的“好点”,求线段BD 的长;(3)如图3,ABC 是⊙O 的内接三角形,点H 在AB 上,连结CH 并延长交⊙O 于点D .若点H 是BCD △中CD 边上的“好点”.①求证:OH AB ⊥;②若//OH BD ,⊙O 的半径为r ,且3r OH =,求CHDH的值.24.如图,在平面直角坐标系中,抛物线y =ax 2+bx +3(a ≠0)与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C ,且∠OBC =30°,OB =3OA .(1)求抛物线y =ax 2+bx +3的解析式;(2)点P 为直线BC 上方抛物线上的一动点,P 点横坐标为m ,过点P 作PF //y 轴交直线BC 于点F ,写出线段PF 的长度l 关于m 的函数关系式;(3)过点P 作PD ⊥BC 于点D ,当 PDF 的周长最大时,求出 PDF 周长的最大值及此时点P 的坐标.参考答案【分析】由32y x =,设()30,y k k =≠则2,x k =再代入求值即可得到答案.【详解】解:32y x =,∴设()30,y k k =≠则2,x k =∴2355.222x y k k k x k k ++===故选:.C 【点睛】本题考查的是比例的基本性质,掌握设参数的方法解决有关比例的问题是解题的关键.2.C 【分析】先求出总球的个数,再用白球的个数除以总球的个数即可得出答案.【详解】解: 不透明的口袋里装有1个白球、3个红球,共有4个球,∴现随机从袋里摸出1个球是白球的概率为14;故选:C .【点睛】本题考查了概率的计算,熟练掌握概率公式是解题的关键.3.A 【分析】根据图象向左平移加,向上平移加,可得答案.【详解】解:将抛物线y=-x 2向左平移3个单位,再向上平移5个单位,平移后抛物线的解析式是y=-(x+3)2+5,故选:A .【点睛】本题考查了二次函数图象与几何变换,函数图象平移的规律是左加右减,上加下减.【详解】试题分析:根据平行线分线段成比例可得AD AEDB EC =,代入计算可得:643EC=,即可解EC=2,故选B .考点:平行线分线段成比例5.D 【分析】连接OB ,过点O 作OC ⊥AB 于点D ,交圆O 于点C ,由题意可知CD 为8,然后根据勾股定理求出BD 的长,进而可得出AB 的长.【详解】如图,连接OB ,过点O 作OC ⊥AB 于点D ,交圆O 于点C ,则AB=2BD ,∵圆的直径为26cm ,∴圆的半径r=OB=13cm ,由题意可知,CD=8cm ,∴OD=13-8=5(cm ),∴()12BD cm ==,∴AB=24cm ,故选:D .【点睛】本题考查了垂径定理的应用,过圆心向弦作垂线构造垂径定理是解题的关键.6.C 【分析】根据圆周角定理可知,∠ABC=∠ADC.在Rt△ACB中,根据锐角三角函数的定义即可求出∠ABC的正切值,从而得出答案.【详解】连接BC、AC.∵∠ADC和∠ABC所对的弧都是 AC,∴根据圆周角定理知,∠ABC=∠ADC,∴在Rt△ACB中,2 tan3ACABCBC∠==,∴tan∠ADC=2 3,故选C.【点睛】本题主要考查锐角三角函数的定义和圆周角的知识点,解答本题的关键是利用圆周角定理把求∠ADC的正切值转化成求∠ABC的正切值.7.D【分析】根据三角形外心的性质,到三个顶点的距离相等,可以依次判断.【详解】答:因为三角形的外心到三角形的三个顶点的距离相等,所以由正六边形性质可知,点O 到A,B,C,D,E的距离中,只有OA=OC=OD.故选:D.【点睛】此题主要考查了三角形外心的性质,即到三角形三个顶点的距离相等.8.B【分析】连接OC ,易得四边形CDOE 是矩形,△DOE ≌△CEO ,根据扇形的面积公式得∠COE=36°,进而即可求解.【详解】解:连接OC ,∵∠AOB =90°,CD ⊥OA ,CE ⊥OB ,∴四边形CDOE 是矩形,∴CD ∥OE ,∴∠DEO =∠CDE ,由矩形CDOE 易得到△DOE ≌△CEO ,∴图中阴影部分的面积=扇形OBC 的面积,∵S 扇形OBC =210360n π⨯=10π,解得:n=36,∴CDE ∠=∠DEO=∠COE=36°.故选B .【点睛】本题考查了扇形面积的计算,矩形的判定与性质,全等三角形的判定和性质,利用扇形OBC 的面积等于阴影的面积是解题的关键.9.D【分析】根据勾股定理求出AB=10,由OC 取最小值时,O 与BC 相切,证明△OCP ∽△BCD ∽△BAC 得出::3:4:5OP PC CO =,从而求出OC 的最小值.【详解】解:2S r ππ==∵圆O 的半径为1,且圆与ABC 重叠部分的面积为π,∴此圆全部在△ABC 内,如图,在Rt ABC 中,8AC =,6BC =,∴10AB =若OC 取最小值时,O 与BC 相切,设切点为P ,连接OP ,则OP ⊥BC∵CD ⊥AB∴∠OPC=∠CDB∵∠OCP=∠BCD∴△OCP ∽△BCD同理可证△BAC ∽△BCD∴△OCP ∽△BCD ∽△BAC∵::6:8:103:4:5BC AC AB ==∴::3:4:5OP PC CO =又∵OP=1∴OC=15533⨯=故选:D .【点睛】此题主要考查了相似三角形的判定与性质,勾股定理以及直线与圆的位置关系,证明△OCP ∽△BCD ∽△BAC 是解答此题的关键.10.B【分析】设(,)(0)k B x k x>,再分别表示出B ,C ,由直角三角形的性质得出BC OB =,联立方程组求出k 的值即可.【详解】解:在k y x =中,设(,)(0)k B x k x >,则3k x x+=,(,)k C x x ∵AB 经过坐标原点,∴(,)k A x x--∵ABC 为直角三角形,且30A ∠=︒,∴∠60B =︒∴1,22BC AB AB BC ==又∵2AB OB=∴BC OB=∴3k x x ⎪+=⎪⎩解得,92=k 故选:B .【点睛】本题属于反比例函数综合题,考查了反比例函数的性质,待定系数法,中心对称的性质等知识,解题的关键是学会利用中心对称的性质解决问题.11.108︒【分析】先求出正n 边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:∵正多边形的内角和为2180()n -⨯︒,∴正五边形的内角和是5218540(0)-⨯︒=︒,则每个内角的度数是5405108︒÷=︒.故答案为:108︒【点睛】此题主要考查了多边形内角和,解题的关键是熟练掌握基本知识.12.10%【分析】由随机调查了1000人,其中100人看中央电视台的早间新闻,直接利用概率公式求解即可求得答案.【详解】解:∵随机调查了1000人,其中100人看中央电视台的早间新闻,∴在该镇随便问一个人,他看中央电视台早间新闻的概率大约是:10=10%100,故答案为:10%.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.13.30︒【分析】如图,连接,OA 先证明2,OP OA =再证明90,OAP ∠=︒利用三角函数求解60AOP ∠=︒,从而可得答案.【详解】解:如图,连接,OA ,2,OA OC OP OC == 2,OP OA ∴=PA 是O 的切线,90,OAP ∴∠=︒1cos ,2OA AOP OP ∴∠==60AOP ∴∠=︒,,AC AC= 11603022ABC AOC ∴∠=∠=⨯︒=︒,故答案为:30.︒【点睛】本题考查的是圆周角定理,圆的切线的性质,锐角三角函数的应用,掌握以上知识是解题的关键.14.83【分析】根据两角对应相等得出 AED CGD ,再根据相似三角形的性质得出=AD DE DG DC,从而得出DE 的长;【详解】解:∵四边形ABCD 是正方形,∴AD=DC=4,∠ADC=∠C=90°,∴∠GDC+∠ADG=90°,∵四边形DEFG 是矩形,∴∠EDG=∠E =90°,∴∠EDA+∠ADG=90°,∴∠GDC=∠EDA∴ AED CGD ,∴=AD DE DG DC ,∵DG=6∴4=64DE ∴83DE =【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的性质和判定是解题的关键15.③④【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】解:∵抛物线的开口向下,对称轴在原点的右边,与y 轴交于正半轴,∴a <0,b >0,c >0,∴abc <0,∴结论①错误;∵抛物线的对称轴为x=1,∴12ba -=,∴b=-2a ;∵c+a+b >0,∴c-a >0,∴a-c <0,∴结论②错误;∵抛物线的对称轴为直线x=1,抛物线的开口向下,∵点()11,y -和()22,y 在该图象上,∴()11,y -与x=1的距离比()22,y 与x=1的距离远;∴12y y <,∴结论③正确;∵2am bm c p ++=,1x ,2x 是方程20ax bx c ++=的两根,当0p a+b+c <≤时,12m ≤≤x x ;∴()()120<--p m x m x ;当p=0时,()()12=0--p m x m x 当p <0时,()()120<--p m x m x ∴()()120p m x m x --≤∴结论④正确;③④故答案为:【点睛】本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.16.11222+【分析】(1)连接DQ ,则可得四边形PDBQ DPQ BDQ S S S =+△△,根据已知条件分别表示出DPQ S 和BDQ S ,再根据AC 和PQ 的值求得四边形PDBQ 面积的最大值;(2)如图,作D 关于AC 的对称点1D ,连接1DD 交AC 于点G ,作1E//D AC ,1=D E AC ,设1BH D E ⊥于点H ,交AC 于点F ,据此可得,四边形1PD EQ 为平行四边形,因为四边形PDBQ的周长2BD PQ DP BQ EQ BQ =+++=++,周长最小,则EQ BQ +的值最小,即这三点共线时,EQ BQ +的值最小,此时EQ BQ BE +=,再根据勾股定理求得BE 的长即可.【详解】(1)如图,连接DQ ,∴四边形PDBQ DPQ BDQ S S S =+△△,∵直角ABC 的直角边长4AB BC ==,D 是AB 中点,∴ABC 为等腰直角三角形,122BD AD AB ===,∴AC =设AP x =,∴AQ AP PQ x =+=+,∴CQ AC AQ x x =-==,设DPQ V 底边PQ 上的高为1h ,∴2h ===∴113222DPQ S PQ h =⨯⨯=⨯△,设BDQ △底边PQ 上的高为2h ,∴22h AQ ==,∴2113222222BDQ S BD h x x =⨯⨯=⨯⨯=+△,∴四边形PDBQ 3332222S x x =++=+,∴当x 最大时,四边形PDBQ 的面积最大,∵x 的最大值AC PQ =-=∴四边形PDBQ 的面积最大值1132=;(2)如图,作D 关于AC 的对称点1D ,连接1DD 交AC 于点G ,作1E//D AC ,1=D E AC ,∴四边形1PD EQ 为平行四边形,1DG AG D G ==,∴1DP D P EQ ==,又∵四边形PDBQ 的周长2BD PQ DP BQ EQ BQ =+++=++,∴周长最小,则EQ BQ +的值最小,即这三点共线时,EQ BQ +的值最小,∴此时EQ BQ BE +=,设1BH D E ⊥于点H ,交AC 于点F ,∴BF AC ⊥,∴1DG AG D G FH ===∴BF AF ==∴BH BF FH =+==∴1FG D H AF AG ==-==∴112EH D E D H =-==,∴在Rt BEH 中,BE ==∴四边形PDBQ 的周长最小值2=.【点睛】本题考查了等腰直角三角形的性质、三角形的面积、四边形面积、四边形周长等知识,解答本题的关键是正确的作出辅助线.17.(1)1-;(2)6.【分析】(1)先计算特殊角的正弦与正切值、零指数幂,再计算实数的混合运算即可得;(2)根据比例中项的定义列出式子计算即可得.【详解】(1)原式21212⨯+-=113=+-1=-;(2)设线段a ,b 的比例中项为x ,则::a x x b =,4a = ,9b =,4::9x x ∴=,解得6x =或6x =-(不符题意,舍去),即线段a ,b 的比例中项为6.【点睛】本题考查了特殊角的正弦与正切值、零指数幂、比例中项,熟记各定义和运算法则是解题关键.18.(1)13;(2)23【分析】(1)用列举法列出所有可能出现的结果,其中“抽到1号”的有1种,即可求出概率;(2)用列表法表示所有可能出现的结果,找出“和为奇数”的情况,进而求出相应的概率.【详解】(1)共有3种可能出现的结果,其中“抽到1号球”的有1种,∴“抽到1号球”的概率为13;(2)用列表法表示出所有可能出现的结果情况如下:∴由表可知,共有6种等可能结果,其中其中“和为奇数”的有4种,∴4263P ==.【点睛】本题考查了列举法、列表法求随机事件发生的概率,列举出所有可能出现的结果是解答本题的关键.19.14/km h【分析】设AB 与正北方向线交于点C ,根据已知及三角函数求得AC 、OC 的长,再根据等腰直角三角形的性质求得BC 的长,利用AB=AC+BC 求出AB 的长,再除以该船航行的时间即可求解;【详解】如图所示:设AB 与正北方向线交于点C ,∵在Rt △AOC 中,∠AOC=30°,OA=500m ,∴sin 30250AC OA m =︒= ,cos30OC OA =︒= ,∵△OBC 是等腰直角三角形,∴BC OC ==,∴250AB AC BC =+=+,∴该船的航速为:2503=5100060+÷+【点睛】本题考查了解直角三角形的知识,解一般三角形的问题一般可以转化为解直角三角形的问题,解决方法为构造直角三角形,难度一般;20.(1)见解析;(2)64【分析】(1)由平行线的性质可得∠DEB=∠FCE ,∠DBE=∠FEC ,再根据相似三角形的判定可得结论;(2)先根据35AF FC =得出58CF AC =,再根据相似三角形的判定与性质即可得出答案.【详解】(1)∵DE ∥AC ,∴∠DEB=∠FCE ,∵EF ∥AB ,∴∠DBE=∠FEC ,∴△BDE ∽△EFC ;(2)∵35AF FC =,∴58CF AC =,∵//EF AB ,∴△BAC ∽△EFC ,∴22564⎛⎫== ⎪⎝⎭ EFC ABC CF AC S S ,∵25= EFC S ,∴64= ABC S ,即△ABC 的面积为64.【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的判定和性质是本题的关键.21.(1)2180y x =+﹣;(2)60元/千克或80元/千克;(3)70元/千克;800元【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x 的方程,然后解一元二次方程组即可;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【详解】解:(1)设y 与x 之间的函数表达式为y kx b =+(0k ≠),将表中数据(55,70)、(60,60)代入得:55706060k b k b +=⎧⎨+=⎩,解得:2180k b =-⎧⎨=⎩,∴y 与x 之间的函数表达式为2180y x =-+;(2)由题意得:()()502180600x x --+=,整理得214048000x x -+=:,解得126080x x ==,,答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;(3)设当天的销售利润为w 元,则:()()502180w x x =--+22(70)800x =-+﹣,∵﹣2<0,∴当70x =时,w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.【点睛】本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.22.(1)①见解析;②见解析;(2)3r =【分析】(1)①直接用直径所对圆周角是90°进行解题即可;②找到∠CAD=∠ABD 和∠ADC=∠BDA ,两个角相等即可证明两个三角形相似;(2)利用锐角三角函数和相似三角形的性质即可求出半径的长度;【详解】(1)①如图所示,连接AO ,由BC 是直径得90BAC ∠= ,∵OB=OA ,∴∠B=∠OAB ,∵∠CAD=∠B ,∴∠OAD=∠OAC+∠CAD=∠OAC+∠OAB=90°,∴AD 为圆的切线;②在△ACD 和△BAD 中,∠CAD=∠ABD ,∠ADC=∠BDA ,∴△ACD ∽△BAD(2)由(1)知△ACD ∽△BAD ∴DA DC AC DB DA AB==,∵1tan 2B =,∴1tan 2AC B AB ==,∴12DA DC DB DA ==,则2AD CD =,即182AD AD BD ==,得AD=4,∴122CD AD ==,∴BC=BD-CD=8-2=6,∴半径3r =;【点睛】本题考查了直径所对圆周角等于90°,相似三角形的判定以及锐角三角函数,正确掌握知识点是解题的关键;23.(1)见解析;(2)5或10;(3)①见解析;②23.【分析】(1)分两种情况讨论,如图①,取格点,,E F 且2,3,EF AC CE CB ====连接CF 交AB 于,D 如图②,取格点,N 且//,,CA BN BN CA =连接CN 交AB 于,D 则两种情况都满足2.CD AD BD = 从而可作出图形;(2)作BC 边上的高AH ,由3tan 4AH B BH ==tan 1,AH C CH ==可得:4,,3BH AH CH AH ==再列方程414,3AH AH +=求解6,8,6,AH BH CH ===设BD x =,则由222,AD AH DH =+2AD BD CD =⋅可得22(8)6(14)x x x -+=-,解方程可得答案;(3)①首先证得,AHC DHB ∽则该相似三角形的对应边成比例:,AH CH DH BH=即••AH BH CH DH =,由点H 是BCD △中CD 边上的“好点”,可得2•,BH CH DH =再证明,AH BH =再利用垂径定理的推论可得结论;②如图④,连接,AD 证明90,ABD ∠=︒可得AD 是直径,所以,,A O D 共线,设,OH x =则3,OA OD x ==2,BD x =再分别求解,,CH DH 从而可得答案.【详解】解:(1)如图①,取格点,,E F 且2,3,EF AC CE CB ====连接CF 交AB 于,D 如图②,取格点,N 且//,,CA BN BN CA =连接CN 交AB 于,D 则两种情况都满足2,CD AD BD = 即D 为ABC 中边AB 上的“好点”.理由如下:如图①,90ACB CEF ∠=∠=︒,2,4,EF AC CE CB ====(),CEF BCA SAS ∴ ≌,ECF CBA ∴∠=∠90,ECF BCD ∠+∠=︒ 90BCD CBA ∴∠+∠=︒,90CDB ∴∠=︒,∴90CDA CDB ∠=∠=︒,,ACD CBD ∴ ∽,CDADBD CD ∴=2,CD AD BD ∴= 如图②, 矩形,ANBC ,CD ND AD BD ∴===2.CD AD BD ∴= (2)如图③,作BC 边上的高AH ,3tan 4AHB BH ==tan 1,AHC CH ==4,,3BH AH CH AH ∴==14,BC BH CH =+= ∴414,3AH AH +=6,8,6,AH BH CH ∴===设BD x =,则8,14,DH x CD x =-=- 222,AD AH DH =+2AD BD CD =⋅,∴22(8)6(14)x x x -+=-,215500,x x ∴-+=()()5100,x x ∴--=∴5x =或10x =,经检验:5x =或10x =都符合题意,所以BD 的长为5或10.(3)①∵,,CHA BHD ACH DBH ∠=∠∠=∠∴,AHC DHB ∽∴,AH CH DH BH =即••AH BH CH DH =,∵点H 是BCD △中CD 边上的“好点”,2•,BH CH DH ∴=2•,BH AH BH ∴=,BH AH ∴=.OH AB ∴⊥②2.3CH DH =理由如下:如图④,连接,AD //,OH BD ,OH AB ⊥∴90,ABD ∠=︒∴AD 是直径,所以,,A O D 共线,3,r OH = ∴设,OH x =则3,OA OD x ==2,BD x ∴=22223642,AB AD BD x x x ∴=-=-=,OH AB ⊥ 22222,483,AH BH x HD BD HB x x x ∴===+=+=2•,BH CH DH =22,3BH CH x DH ∴==2.3x CH DH ∴=【点睛】本题考查的是直角三角形斜边上的中线等于斜边的一半,三角形的中位线的性质,勾股定理的应用,相似三角形的判定与性质,解直角三角形的应用,垂径定理,圆周角定理,掌握以上知识是解题的关键.24.(1)y =﹣13x 2+3;(2)l==213m -+;(3,P 15)4【分析】(1)由抛物线y =ax 2+bx +3的表达式知:C (0,3),根据∠OBC =30°,得B (0),而OB =3OA ,得A0),再用待定系数法即可得y =﹣13x 2+3;(2)延长PF 交x 轴于点E ,先由B (0),C (0,3)得直线BC 的表达式为y=3-x +3,设点P (m,21333m -++),则点F (m,3-m +3),故PF =l=213m -+;(3)先证明∠OBC =30°=∠P ,在Rt △PDF 中,PD =cos30°⋅PF,DF =sin30°⋅PF =12PF ,故△PDF 的周长=PD +PF +DF+1+12)PF,可知PF 最大时,△PDF 的周长最大,而当m=2时,l 最大=94,即PF 最大为94,即可得到答案.【详解】解:(1)由抛物线y =ax 2+bx +3的表达式知:C (0,3),∴OC =3,∵∠OBC =30°,∴OB=tan 30°OC∴B(0),又OB =3OA,即3OA ,∴OA∴A(0),将A(0),B(0)代入y =ax 2+bx +3,得:0330273a a ⎧=-+⎪⎨=++⎪⎩,解得:13a b ⎧=-⎪⎪⎨⎪=⎪⎩∴y =﹣13x 2+3;(2)延长PF 交x 轴于点E,如图:设直线BC 表达式为y =sx +t ,将B(0),C (0,3)代入得:3t t ⎧+⎪⎨=⎪⎩,解得3s t ⎧=⎪⎨⎪=⎩∴直线BC 的表达式为y=3-x +3,设点P (m,2133m -++),则点F (m,+3),∴PF =l=21(3)(3)3m -++--+=213m -;(3)∵∠OBC =30°,∴∠BFE =60°=∠PFD ,∵PD ⊥BC ,∴∠P =30°,在Rt △PDF 中,PD =cos 30°⋅PFPF ,DF =sin 30°⋅PF =12PF,∴△PDF 的周长=PD +PF +DF 12)PF PF ,∴PF 最大时,△PDF 的周长最大,而由(2)知:PF =l =213m -=219()324x --+,∴当m l 最大=94,即PF 最大为94,此时,△PDF∴点P 的坐标为15()24,△PDF 的周长最大值为278+.【点睛】本题考查二次函数综合应用,涉及待定系数法、二次函数图象上点坐标的特征、解直角三角形、三角形周长等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度.。

浙教版九年级上册数学期末测试卷【及含答案】

浙教版九年级上册数学期末测试卷【及含答案】

浙教版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如图,以点O为位似中心,把△ABC中放大到原来的2倍得到△A′B′C′.以下说法错误的是()A.△ ABC∽△ A′ B′ C′B.点C,O,C′三点在同一条直线上C. AB∥ A′ B′D. AO:AA′=1:22、设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+a上的三点,则y1, y2, y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y23、一元二次方程(m+1)x2-2x-1=0有两个相等的实数根,则m等于()A.-6B.-1C.-2D.14、如图,四边形ABCD为正方形,AB=1,把△ABC绕点A逆时针旋转60°得到△AEF,连接DF,则DF的长为()A. B. C. D.5、在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是()A. B. C. D.6、如图,是的直径,弦与交于点,,,则等于()A. B. C. D.7、如图,在平面直角坐标系中,等腰直角三角形ABC的边AB在x轴的正半轴上,∠ABC=90°,点B在点A的右侧,点C在第一象限将△ABC绕点A逆时针旋转75°得到△ADE,点C的对应点E恰好落在y轴的正半轴上,若点A的坐标为(1,0),则边AB的长为()A. B. C.2 D.8、同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图所示看到的万花简的一个图案,如图中所有小三角形均是全等的等边三角形,其中的四边形AEFG可以看成是把四边形ABCD以A为旋转中心()A.顺时针旋转60°得到B.逆时针旋转60°得到C.顺时针旋转120°得到D.逆时针旋转120°得到9、△ABC在如图所示的平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O旋转180°后得到△A2B2C2.则下列说法正确的是()A.A1的坐标为(3,1) B.S四边形ABB1A1=3 C.B2C=2D.∠AC2O=45°10、已知二次函数y=2(x-3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=-3;③其图象顶点坐标为(3,-1);④当x<3时,y随x 的增大而减小.则其中说法正确的有()A.1个B.2个C.3个D.4个11、如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为( )A.1B.2C.3D.412、已知y=ax2+bx的图象如图所示,则y=ax-b的图象一定过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限13、如图,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它绕点C旋转一定角度,扶起平放在地面上(如图),则灰斗柄AB绕点C转动的角度为()A.75°B.25°C.115°D.105°14、如图,已知抛物线的图象与x轴交于两点,其对称轴与x轴交于点C其中两点的横坐标分别为-1和1下列说法错误的是()A. B. C. D.当时,y随x的增大而减小15、设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣x2﹣2x+2上的三点,则y1, y2, y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2二、填空题(共10题,共计30分)16、如图,在矩形中,是边的中点,连接交对角线于点,若,,则的长为________.17、把抛物线y=x2向右平移4个单位,所得抛物线的解析式为________.18、如图,AB是⊙O的直径,点C是半径OA的中点,过点C作DE⊥AB,交⊙O 于D,E两点,过点D作直径DF,连结AF,则∠DFA=________.19、如图,在Rt△ABC内画有边长为9,6,x的三个正方形,则x的值为________.20、已知:如同,△ABC内接于⊙O,且半径OC⊥AB,点D在半径OB的延长线上,且∠A=∠BCD=30°,AC=2,则由,线段CD和线段BD所围成图形的阴影部分的面积为________.21、平面直角坐标系中,以原点O为圆心,2为半径作⊙O,则点A(2,2)与⊙O的位置关系为________.22、如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC和∠BOC互补,则弦BC的长度为________.23、、是半径为的上的两条弦,且,,那么,的弦心距________,圆周角所对的弧等于________.24、如图,在3×3的方格中(共有9个小格),每个小方格都是边长为1的正方形,O、B、C是格点,则扇形OBC的面积等于________(结果保留π)25、已知y=(a+2)x2+x﹣3是关于x的二次函数,则常数a应满足的条件是________ .三、解答题(共5题,共计25分)26、如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=3,AB=5,求的值.27、有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机抽取1张,求小红第二次取出的数字能够整除第一次取出的数字的概率.28、如图,为的中点,求的周长.29、如图,分别是的边,上的点,,,,,求的长.30、在一个不透明的袋子中装有三个完全相同的小球,分别标有数字1,2,3,从袋子中随机取出一个小球,用小球上的数字作为十位数字,然后放回,再取出一个小球,用小球上的数字作为个位数字,这样组成一个两位数.(1)请用列表法或画树状图的方法求出能组成哪些两位数?(2)求组成的两位数能被2整除的概率.参考答案一、单选题(共15题,共计45分)1、D2、A3、C4、A5、C6、D7、A8、D9、D11、C12、C13、D14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

浙教版九年级上期期末数学试卷(含答案)

浙教版九年级上期期末数学试卷(含答案)

浙教版九年级(上)期末数学试卷一、选择题(每题4分,共48分)1.(4分)下列数学符号中,是中心对称图形的是()A.±B.≥C.≌D.~2.(4分)若a5=b8,则b−aa等于()A.35B.53C.85D.583.(4分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.当x=﹣1时,y有最大值是2C.对称轴是x=﹣1D.顶点坐标是(1,2)4.(4分)如图,已知AB∥CD∥EF,BD:DF=1:2,那么下列结论中,正确的是()A.AC:AE=1:3B.CE:EA=1:3C.CD:EF=1:2D.AB:EF=1:25.(4分)如图,点A,B,C,D在⊙O上,AC是⊙O的直径,若∠CAD=25°,则∠ABD的度数为()A.25°B.50°C.65°D.75°6.(4分)平面直角坐标系中,⊙P的圆心坐标为(﹣4,﹣5),半径为5,那么⊙P与y轴的位置关系是()A.相交B.相离C.相切D.以上都不是7.(4分)如图1是一个小区入口的双翼闸机,它的双翼展开时,双翼边缘的端点A与B之间的距离为8cm(如图2),双翼的边缘AC=BD=60cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A .60√3+8B .60√2+8C .64D .688.(4分)《九章算术》中“今有勾八步,股有十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形的容圆(内切圆)直径是多少?”( )A .4步B .5步C .6步D .8步9.(4分)如图,在平面直角坐标系中,A 点坐标为(1,6),B 点坐标为(5,2),点C 为线段AB 的中点,点C 绕原点O 顺时针旋转90°,那么点C 的对应点坐标及旋转经过的路径长为( )A .(﹣4,3),52πB .(﹣4,3),32πC .(4,﹣3),52πD .(4,﹣3),32π 10.(4分)如图,扇形AOB 的圆心角是直角,半径为2√3,C 为OB 边上一点,将△AOC 沿AC 边折叠,圆心O 恰好落在弧AB 上,则阴影部分面积为( )A .3π﹣4√3B .3π﹣2√3C .3π﹣4D .2π11.(4分)如图,抛物线y =ax 2+2ax ﹣3a (a >0)与x 轴交于A ,B ,顶点为点D ,把抛物线在x 轴下方部分关于点B 作中心对称,顶点对应D ′,点A 对应点C ,连接DD ′,CD ′,DC ,当△CDD ′是直角三角形时,a 的值为( )A .12或√32B .13或√32C .13或√33D .12或√3312.(4分)在面积为144的正方形ABCD 中放两个正方形BMON 和正方形DEFG (如图),重合的小正方形OPFQ 的面积为4,若点A 、O 、G 在同一直线,则阴影部分面积为( )A .36B .40C .44D .48二、填空题(每题4分,共24分)13.(4分)正六边形的每个内角的度数是 度.14.(4分)如图,矩形ABCD 中,AD =2,AB =4,剪去一个矩形AEFD 后,余下的矩形EBCF ∽矩形BCDA ,则CF 的长为 .15.(4分)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有以下结论:①abc >0;②a +b +c <0;③4a +b =0;④若点(1,y 1)和(3,y 2)在该图象上,则y 1=y 2,其中正确的结论是 (填序号).16.(4分)创“平安海曙”是我们每个海曙人的愿望,某小区在摸彩球活动中,将质地大小完全相同,上面标有“平”“安”“海”“曙”的四个彩球放入同一个袋子,某居民在袋子中随机摸出一个彩球后不放回,再摸出一个,摸出的两个彩球能拼成“平安”的概率是.17.(4分)如图,点B、E、C在一直线上,△BEA,△CED在直线BC同侧,BE=BA=4,CE=CD=6,∠B=∠C=α,当tanα2=12时,△ADE外接圆的半径为.18.(4分)如图抛物线y=﹣x2﹣2x+3与x轴交于A,B,与y轴交于点C,点P为顶点,线段P A上有一动点D,以CD为底边向下作等腰三角形△CDE,且∠DEC=90°,则AE的最小值为.三、解答题(第19题6分,第20、21题各8分,第22、23、24题各10分,第25题12分,第26题14分)19.(6分)计算:8sin260°+tan45°﹣4cos30°.20.(8分)浙江省新高考有一项“6选3”选课制,高中学生张胜和李利已选了化学和生物,现在他们还需要从“物理、政治、历史、地理”四科中选一科参加考试,若这四科被选中的机会均等:(1)直接写出张胜从四门学科中选中“地理”的概率是.(2)请用列表或画树状图的方法,求出他们恰好都选中“地理”的概率.21.(8分)我国于2019年6月5日首次完成运载火箭海上发射,达到了发射技术的新高度.如图,运载火箭海面发射站点M与岸边雷达站N处在同一水平高度.当火箭到达点A处时,测得点A距离发射站点M的垂直高度为9千米,雷达站N测得A处的仰角为37°,火箭继续垂直上升到达点B处,此时海岸边N处的雷达测得B处的仰角为70°,根据下面提供的参考数据计算下列问题:(1)求火箭海面发射站点M与岸边雷达站N的距离;(2)求火箭所在点B处距发射站点M处的高度.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)22.(10分)已知二次函数y=﹣x2+bx+c的图象与直线y=﹣x+3相交于x轴上的点A,y轴上的点B.顶点为P.(1)求这个二次函数的解析式;(2)现将抛物线向左平移m个单位,当抛物线与△PBA有且只有一个公共点时,求m的值.23.(10分)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=8cm,AE=4cm,求⊙O的半径.24.(10分)自2019年3月开始,我国生猪、猪肉价格持续上涨,某大型菜场在销售过程中发现,从2019年10月1日起到11月9日的40天内,猪肉的每千克售价与上市时间的关系用图1的一条折线表示:猪肉的进价与上市时间的关系用图2的一段抛物线y=a(x﹣30)2+100表示.(1)a=;(2)求图1表示的售价p与时间x的函数关系式;(3)问从10月1日起到11月9日的40天内第几天每千克猪肉利润最低,最低利润为多少?25.(12分)若过三角形一边中点画一直线与另一边相交(交点不为中点),截原三角形所得三角形与原三角形相似,则称中点与交点确定的线段为这条相交边的“中似线段”,把中似线段的两端点与相交边的中点构成的三角形称为“中似三角形”.(1)如图1,在△ABC中,AB=8,AC=7,BC=6,D为AB中点,DF为AC边的中似线段,△DEF为中似三角形”,直接写出DF=,△DEF的周长=.(2)如图2,在△ABC中,D为AB中点,AC边的中似线段DF恰好经过点C,△DEC为中似三角形.①当AB=8时,求AC的长;②求CD的值.DE(3)如图3,在△ACB中,∠C=Rt∠,BC=4a,D为AB中点,DF为AC边上的中似线段,中似△DEF的外接圆⊙O与BC边相切,求⊙O的半径(用含a的代数式表示).x2+4与x轴交于点A,B,与y轴交于点Q,点P为OQ的中点,经过点A,26.(14分)如图1,已知抛物线y=−14P,B的圆的圆心为点M,点C为圆M优弧AB上的一个动点.(1)直接写出点P,A,B的坐标:P;A;B;(2)求tan∠ACB的值;x2+4沿x轴翻折所得的抛物线交y轴与点D,若BC经过点D时,求线段AC,PC的长;(3)将抛物线y=−14(4)若BC的中点为E,AE交翻折后的抛物线于点F,直接写出AE的最大值和此时点F的坐标.期末模拟卷(一)一、选择题(每题4分,共48分)1.【解答】解:A、不是中心对称图形,是轴对称图形,故本选项不合题意;B、既不是中心对称图形也不是轴对称图形,故本选项不合题意;C、既不是中心对称图形也不是轴对称图形,故本选项不合题意;D、既是中心对称图形又是轴对称图形,故本选项不合题意.故选:D.2.【解答】解:∵a5=b8,∴a=58b,则b−aa =b−58b58b=35.故选:A.3.【解答】解:二次函数y=(x﹣1)2+2的图象的开口向上,故A错误;当x=1时,函数有最小值2,故B错误;对称轴为直线x=1,故C错误;顶点坐标为(1,2),故D正确.故选:D.4.【解答】解:∵AB∥CD∥EF,BD:DF=1:2,∴AC:AE=1:3,故A选项正确;CE:EA=2:3,故B选项错误;CD:EF的值无法确定,故C选项错误;AB:EF的值无法确定,故D选项错误;故选:A.5.【解答】解:∵AC是⊙O的直径,∴∠ADC=90°,∴∠ACD=90°﹣∠CAD=90°﹣25°=65°,∴∠ABD=∠ACD=65°.故选:C.6.【解答】解:∵⊙P的圆心坐标为(﹣4,﹣5),∴⊙P到y轴的距离d为4∵d=4<r=5∴y轴与⊙P相交故选:A.7.【解答】解:过点A作AE⊥PC于点E,过点B作BF⊥QD于点F,∵AC=60cm,∠PCA=30°,AC=30(cm),∴AE=12由对称性可知:BF=AE,∴通过闸机的物体最大宽度为2AE+AB=60+8=68(cm).故选:D.8.【解答】解:根据勾股定理得:斜边为√82+152=17,=3(步),即直径为6步,则该直角三角形能容纳的圆形(内切圆)半径r=8+15−172故选:C.9.【解答】解:如图,设将点C绕原点O顺时针旋转90°到C'处,过点C作CE⊥x轴于E,过点C'作C'F⊥x轴于F,∵A点坐标为(1,6),B点坐标为(5,2),点C为线段AB的中点,∴点C坐标为(3,4),∴CE=4,OE=3,∴OC=√CE2+OE2=√9+16=5,∵将点C绕原点O顺时针旋转90°到C'处,∴CO=C'O,∠COC'=90°,∴∠COE+∠C'OF=90°,又∵∠COE+∠OCE=90°,∴∠C'OF=∠OCE,又∵OC =OC ',∠CEO =∠C 'FO =90°,∴△COE ≌△OC 'F (AAS ),∴CE =OF =4,C 'F =OE =3,∵点C '在第四象限,∴点C '(4,﹣3),∴点C 旋转经过的路径长=90°×π×5180°=52π, 故选:C .10.【解答】解:连接OD ,∵△AOC 沿AC 边折叠得到△ADC ,∴OA =AD ,∠OAC =∠DAC ,又∵OA =OD ,∴OA =AD =OD ,∴△OAD 是等边三角形,∴∠OAC =∠DAC =30°,∵扇形AOB 的圆心角是直角,半径为2√3,∴OC =2,∴阴影部分的面积是:90π×(2√3)2360−(2√3×22×2)=3π﹣4√3, 故选:A .11.【解答】解:∵y =ax 2+2ax ﹣3a =a (x +3)(x ﹣1)=a (x +1)2﹣4a , ∴点A 的坐标为(﹣3,0),点B (1,0),点D (﹣1,﹣4a ),∴D ′(3,4a ),C (5,0),∵△CDD ′是直角三角形,∴当∠DD ′C =90°时,4a =12×(5﹣1)=2,得a =12,当∠D ′CD =90°时,CB =12DD ′,∴5﹣1=12√[3−(−1)]2+[4a −(−4a)]2,解得,a 1=√32,a 2=−√32(舍去),由上可得,a 的值是12或√32, 故选:A .12.【解答】解:由题意可得,AB =12,OQ =2,设正方形BMON 的边长为x ,则AN =12﹣x ,NO =x ,OQ =2,QG =12﹣x , ∵AN ∥OQ ,∴∠NAO =∠QOG ,∵∠ANO =∠OQG =90°,∴△ANO ∽△OQG ,∴AN OQ =NO QG , 即12−x 2=x 12−x ,解得,x 1=8,x 2=18(舍去),即BN =8,则EF =12﹣x +2=6,∴阴影部分的面积是:144﹣82﹣62+4=48,故选:D .二、填空题(每题4分,共24分)13.【解答】解:根据多边形的内角和定理可得:正六边形的每个内角的度数=(6﹣2)×180°÷6=120°.14.【解答】解:∵四边形ABCD 是矩形,∴AD =BC =2,AB =DC =4,∵四边形EFBC 是矩形,∴EF =BC =2,CF =BE ,∵余下的矩形EBCF ∽矩形BCDA ,∴BC CD=CF BC , 即24=CF 2,∴CF =1,故答案为:1.15.【解答】解:观察图象可知c =0,∴abc =0,故①错误,∵x =1时,y <0,∴a +b +c <0,故②,∵对称轴x =−b 2a=2,∴4a +b =0.故③正确,∵点(1,y 1)和(3,y 2)关于对称轴对称, ∴y 1=y 2,故④正确, 故答案为②③④. 16.【解答】解:列表如下:平 安 海 曙 平 安平 海平 曙平 安 平安 海安 曙安 海 平海 安海 曙海 曙平曙安曙海曙由表可知共有12种等可能结果,其中摸出的两个彩球能拼成“平安”的有2种结果, 所以摸出的两个彩球能拼成“平安”的概率为212=16,故答案为:16.17.【解答】解:如图,过点B 作BH ⊥AB 于H ,过点C 作CO ⊥DE 交BH 的延长线于O ,过点O 作OT ⊥BC 于T .∵BA =BE ,BH ⊥AE , ∴BH 垂直平分线段AE , ∵CD =CE ,CO ⊥DE , ∴CO 垂直平分线段DE , ∴点O 是△ADE 的外心,∵∠OBC =12∠ABE =12α,∠OCB =12∠DCE =12α, ∴∠OBC =∠OCB , ∴OB =OC ,∵OT ⊥BC , ∴BT =CT =5, ∵tan 12α=12=OT BT ,∴OT =52,∵ET =BT ﹣BE =1,∴OE =√OT 2+ET 2=√(52)2+12=√292, ∴△ADE 的外接圆的半径为√292. 故答案为√292. 18.【解答】解:抛物线y =﹣x 2﹣2x +3与x 轴交于A ,B ,与y 轴交于点C ,则点A 、B 、C 的坐标分别为(﹣3,0)、(1,0)、(0,3),函数的对称轴为x =﹣1,故点P (﹣1,4),由点A 、P 的坐标得,直线AP 的表达式为:y =2x +6,设点D (m ,2m +6); 过点E 作x 轴的平行线交y 轴于点N ,交过D 点与y 轴的平行线于点M ,设点E (a ,b ),则ME =a ﹣m ,DM =2m +6﹣b ,CN =3﹣b ,EN =﹣a , ∵∠DEM +∠EDM =90°,∠DEM +∠CEN =90°, ∴∠EDM =∠CEN ,∵ED =ED ,∠EMD =∠CNE =90°, ∴△EMD ≌△CNE (AAS ), ∴CN =ME ,DM =EN ,即3﹣b =a ﹣m ,﹣a =2m +6﹣b , 解得:a =−12(3+m ),b =3m+92,故点E (−3+m 2,3m+92),则AE 2=(﹣3+3+m 2)2+(3m+92)2=52m 2+12m +452,当m =﹣2.4时,AE 2取得最小值8.1, 故AE 的最小值为9√1010,故答案为:9√1010.三、解答题(第19题6分,第20、21题各8分,第22、23、24题各10分,第25题12分,第26题14分) 19.【解答】解:原式=8×(√32)2+1﹣4×√32=8×34+1﹣2√3=6+1﹣2√3 =7﹣2√3.20.【解答】解:(1)由题意可得,张胜从四门学科中选中“地理”的概率是14, 故答案为:14;(2)设物理、政治、历史、地理分别用A 、B 、C 、D 表示, 树状图如下图所示,故一共有16种可能性,其中他们都选地理的可能性只有一种, 则他们恰好都选中“地理”的概率是116.21.【解答】解:(1)∵在Rt △AMN 中,AM =9千米,∠ANM =37°, ∴MN =AMtan37°=90.75=12(千米).答:火箭海面发射站点M 与岸边雷达站N 的距离为12千米; (2)∵在Rt △BMN 中,∠BNM =70°, ∴tan ∠BNM =tan70°=BMMN∴BM =MN •tan70°=12•tan70°=12×2.75=33(千米). 答:火箭所在点B 处距发射站点M 处的高度为33千米.22.【解答】解:(1)∵直线y =﹣x +3交于x 轴上的点A ,y 轴上的点B , ∴A (3,0),B (0,3),把A 、B 的坐标代入y =﹣x 2+bx +c 得{−9+3b +c =0c =3,解得{b =2c =3,∴二次函数的解析式为y =﹣x 2+2x +3;(2)当抛物线经过点B 时,抛物线与△PBA 有且只有一个公共点, ∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4, ∴P (1,4),将抛物线向左平移m 个单位,P 对应点为(1﹣m ,4),∴平移后的抛物线解析式为y=﹣(x﹣1+m)2+4,把B(0,3)代入得,3═﹣(﹣1+m)2+4,解得m1=2,m2=0(舍去),把A(3,0)代入得0=﹣(2+m)2+4,解得m3=﹣4,m4=0(舍去)故m的值为2或﹣4.23.【解答】(1)证明:连接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD为⊙O的半径,∴DE是⊙O的切线;(2)解:∵∠AED=90°,DE=8cm,AE=4cm,∴AD=√DE2+AE2=4√5,连接CD,∵AC是⊙O的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴ADAE =ACAD,∴4√54=4√5,解得AC=20.∴⊙O的半径是10cm.24.【解答】解:(1)把(10,60)代入y =a (x ﹣30)2+100,得到a =−110, 故答案为−110.(2)当0≤x <30时,设P =kx +b , 把(0,60),(10,80)代入得到{b =6010k +b =80,解得{k =2b =60,∴P =2x +60.当30≤x ≤40时,设P =k ′x +b ′,把(30,120),(40,100)代入得到{30k′+b′=12040k′+b′=100,解得{k′=−2b′=180,∴P =﹣2x +180. 综上所述,P ={2x +60,0≤x <30−2x +180,30≤x ≤40.(3)设利润为w .当0≤x <30时,w =2x +60﹣(−110x 2+6x +10)=110x 2﹣4x +50=110(x ﹣20)2+10, ∴当x =20时,w 有最小值,最小值为10(元/千克). 当30≤x ≤40时,w =﹣2x +180﹣(−110x 2+6x +10)=110x 2﹣8x +170=110(x ﹣40)2+10, ∴当x =40时,最小利润w =10(元/千克),综上所述,当20天或40天,最小利润为10元/千克. 25.【解答】解:(1)∵DF 为AC 边的中似线段, ∴△ADF ∽△ACB , ∴ADAC =DFBC =AFAB ,∵D 为AB 的中点,AB =8, ∴AD =4, ∴47=DF 6=AF 8,∴DF =247,AF =327,∵△DEF 为“中似三角形”, ∴AE =72,∴△DEF 的周长为DE +DF +EF =3+247+327−72=152.故答案为:247,152;(2)①∵点D 为AB 的中点, ∴AD =12AB =4, ∵△ACD ∽△ABC , ∴ACAB =AD AC ,∴AC 8=4AC ,∴AC =4√2;②∵△ACD ∽△ABC , ∴∠ACD =∠ABC , 由题意得DE 为中位线, ∴DE ∥BC , ∴∠EDC =∠DCB , ∴△EDC ∽△DCB , ∴DE DC=CD BC,∴CD 2=DE •BC =DE •2DE =2DE 2, ∴CD =√2DE , ∴CDDE =√2;(3)过点O 作BC ,AC 的垂线OM ,ON ,垂直为点M ,N ,∵DF为AC边上的中似线段,∴∠DEF=∠ACB=90°,∠DFE=∠B,∴∠FDA=90°,∴AD⊥DF,∵△DEF为中似三角形,∴E是AC的中点,又D是AB的中点,BC=4a,∴DE=12BC=2a,∵ON⊥AC,∴∠ONF=∠DEF=90°,∴△ONF∽△DEF,∴ONDE =OFDF=12,即ON=a,∵OM⊥BC,ON⊥AC,AC⊥BC,∴四边形ONCM为矩形,∴ON=CM=a,∴BM=4a﹣a=3a,∵在⊙O中,OM⊥BC,OD⊥AB,∴BM=BD=3a,∴AB=2BD=6a,∵在Rt△ABC中,AB=6a,BC=4a,∴AC=√AB2−BC2=2√5a,∵DF与⊙O相切,∴∠FDB=90°,∵∠ACB=90°,∴∠DFE=∠B,又∵∠DEF=∠ACB=90°,∴△EFD∽△CBA,∴EDCA =FDAB,∴2√5a =2r6a,∴r=3√55a.26.【解答】解:(1)对于抛物线y=−14x2+4,令x=0,得到y=4,令y=0,得到x=±4,∴Q(0,4),A(﹣4,0),B(4,0),∴OP=PQ,∴P(0,2),故答案为(0,2),(﹣4,0),(4,0).(2)如图1中,连接MA,MB,设⊙M的半径为r.在Rt△OMB中,BM=r,OB=4,OM=r﹣2由勾股定理得到,r2=42+(r﹣2)2,解得r=5,∵MA=BM,MO⊥AB,∴∠AMO=∠BMO=12∠AMB,∵∠ACB=12∠AMB,∴∠ACB=∠OMB,∵tan∠OMB=OBOM =43,∴tan∠ACB=43.(3)如图2中,连接AD,过点C作CH⊥y轴于H.∵OA =OB =OD =4, ∴∠ADB =90° ∴AD =BD =4√2,∴CD =AD •tan ∠ACB =3√2, ∴AC =5√2.∵∠CHD =∠BOD =90°,∠CDH =∠ODB , ∴△CHD ∽△BOD , ∴BDCD =OBCH =43, ∴CH =3,DH =4, ∴PH =9,∴PC =√CH 2+PH 2=3√10.(4)如图3中,连接CM ,BM ,EM ,取BM 的中点J ,连接AJ ,JE .∵MC =MB ,CE =EB , ∴ME ⊥CB , ∵MJ =JB , ∴JE =12BM =52,∵B (4,0),M (0,﹣3),A (﹣4,0), ∴J (2,−32), ∴AJ =√62+(32)2=3√172, ∵AE ≤AJ +JE , ∴AE ≤3√172+52,∴AE 的最大值为3√172+52,∵直线AJ 的解析式为y =−14x ﹣1, 翻折后的抛物线的解析式为y =14x 2﹣4, 由{y =−14x y =14x 2−4,解得{x =−4y =0或{x =3y =−74, ∴F (3,−74).。

浙教版2022-2023学年九年级上册数学期末复习试卷(含解析)

浙教版2022-2023学年九年级上册数学期末复习试卷(含解析)

浙教版2022-2023学年九年级上册数学期末复习试卷一、选择题(每题3分,共30分)1.已知反比例函数y =k x的图象经过点(2,3),则k 等于()A .2B .3C .-6D .62.若关于x 的一元二次方程x 2+x -k =0有两个实数根,则k 的取值范围是()A .k >-14B .k ≥-14C .k <-14D .k ≤-143.如图,直线AD ∥BE ∥CF ,若ABBC =12,DE =9,则EF 的长是()A .4.5B .18C .9D .124.如图,在Rt △ABC 中,∠C =90°,cos A =13,则tan B 的值为()A .2B .3C .324D .245.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每盒零售价由56元降为31.5元,设平均每次降价的百分率是x ,则根据题意,下列方程正确的是()A .56(1-2x )=31.5B .56(1-x )2=31.5C .31.5(1+x )2=56D .31.5(1+2x )=566.一组数据4,5,6,a ,b 的平均数为5,则a ,b 的平均数为()A .4B .5C .8D .107.如图,在△ABC 中,∠A =45°,∠B =30°,CD ⊥AB ,垂足为点D ,CD =1,则AB 的长为()A .2B .23 C.33+1 D.3+18.如图,△ABC中,点D,E分别在AB,AC上,且ADDB=AEEC=12,下列结论正确的是()A.DE∶BC=1∶2B.△ADE与△ABC的面积比为1∶3 C.△ADE与△ABC的周长比为1∶2D.DE∥BC9.下列方程没有实数根的是()A.x2+4x=10B.3x2+8x-3=0C.x2-2x+3=0D.(x-2)(x-3)=1210.如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从点A出发到点B停止,动点E从点C出发到点A停止.点D运动的速度为1cm/s,点E运动的速度为2cm/s.如果两点同时运动,那么当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是()A.3s或4.8s B.3s C.4.5s D.4.5s或4.8s二、填空题(每题3分,共24分)11.已知α为锐角,且tanα=1,则α=________.12.若x=3是一元二次方程x2-2x+c=0的一个根,则c=________. 13.某学校为了解学生课间体育活动情况,随机抽取本校100名学生对他们喜爱的项目进行调查,整理收集到的数据,绘制成如图所示不完整的统计图.若该校共有800名学生,则估计喜爱“踢毽子”的学生有________名.14.已知m,n是方程x2-2x-1=0的两实数根,则1m+1n=________.15.如图,四边形ABCD和四边形A′B′C′D′是以点O为位似中心的位似图形,若OA∶OA′=3∶5,则四边形ABCD与四边形A′B′C′D′的面积比是________.16.如图,为了测量校园内旗杆AB的高度,九年级数学应用实践小组根据光的反射定律,利用镜子、皮尺和测角仪等工具,按以下方式进行测量:把镜子放在点O处,然后观测者沿着水平直线BO后退到点D,这时恰好能在镜子里看到旗杆顶点A,此时测得观测者观看镜子的俯角α=60°,观测者眼睛与地面距离CD=1.7m,BD=11m,则旗杆AB的高度约为________m(结果取整数,3≈1.7).17.如图,在▱ABCD中,过点B的直线与AC,AD及CD的延长线分别相交于E,F,G.若BE=6,EF=2,则FG等于________.18.在平面直角坐标系中,已知反比例函数y=1x(x>0)的图象,有若干个正方形如图依次叠放,双曲线经过正方形的一个顶点(A1,A2,A3在反比例函数图象上),以此作图,我们可以建立一个“凡尔赛阶梯”,那么A2的坐标为______________.三、解答题(19,20题每题8分,22,23题每题10分,21,24题每题15分,共66分)19.计算或解方程:(1)tan260°+4sin30°·cos45°;(2)x2-2x-15=0.20.已知关于x的方程3x2+2x-m=0有两个不相等的实数根.(1)求m的取值范围;(2)若方程的一个根为-1,求方程的另一个根.21.一个一次函数的截距为1,且经过点A(2,3).(1)求这个一次函数的表达式;(2)点A,B在某个反比例函数图象上,点B的横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC的值.22.如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:△ABE∽△DFA;(2)若AB=6,BC=4,求DF的长.23.一名徒步爱好者来衡阳旅行,他从宾馆C处出发,沿北偏东30°的方向行走2000米到达石鼓书院A处,参观后又从A处沿正南方向行走一段距离,到达位于宾馆C处南偏东45°方向的雁峰公园B处,如图所示.(1)求这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆的最短距离.(2)若这名徒步爱好者以100米/分的速度沿BC从雁峰公园返回宾馆,那么他在15分钟内能否到达宾馆?24.沂水县所产大樱桃色泽艳丽,果肉细腻,汁甜如蜜,个大味美,营养丰富,深受消费者喜爱.夏蔚镇果农张先生几年前种植了甲、乙两个樱桃园,各栽种200棵樱桃树,成活率为99%,现已挂果.为分析收成情况,他分别从两个樱桃园随机抽取5棵树作为样本,并采摘完样本树上的樱桃,每棵树的产量如图所示.(1)分别计算甲、乙两个樱桃园样本数据的平均数;(2)请根据样本估计甲、乙两个樱桃园樱桃的总产量;(3)根据样本,通过计算估计哪个樱桃园的樱桃产量比较稳定.答案一、1.D 2.B 3.B4.D【点拨】因为在Rt△ABC中,∠C=90°,cos A=13,所以cos A=ACAB=13,不妨假设AC=1,则AB=3,由勾股定理求得BC=22,所以tan B=ACBC=122=24,故选D.5.B6.B【点拨】∵一组数据4,5,6,a,b的平均数为5,∴4+5+6+a+b5=5,∴a+b=10,∴a,b的平均数为a+b2=102=5,故选B.7.D【点拨】因为CD⊥AB,AB=AD+DB,所以可在Rt△ADC和Rt△CDB 中分别求出AD和DB的长,进而求出AB的长.8.D【点拨】∵ADDB=AEEC=12,∴AD∶AB=AE∶AC=1∶3.又∵∠A=∠A,∴△ADE∽△ABC,∴DE BC=1∶3,故A错误;∵△ADE∽△ABC,AD AB =1∶3,∴△ADE与△ABC的面积比为1∶9,周长比为1∶3,故B和C错误;∵△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,故D正确.故选D. 9.C10.A【点拨】根据题意,设当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是x s.①若△ADE∽△ABC,则AD∶AB=AE∶AC,即x∶6=(12-2x)12,解得x=3;②若△ADE∽△ACB,则AD AC=AE AB,即x∶12=(12-2x)6,解得x=4.8.所以当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是3s或4.8s.二、11.45°12.-3【点拨】将x=3代入一元二次方程x2-2x+c=0即可求得c的值.13.20014.-2【点方法】可根据根与系数的关系求解,由题意可知m+n=2,mn=-1,则1 m+1n=n+mmn=2-1=-2.15.9∶2516.17【点拨】由题意知∠COD=∠AOB=60°,∠CDO=∠ABO=90°,∴△COD∽△AOB.∵CD=1.7m,∴OD=CDtan60°=1.73≈1(m),∴OB≈11-1=10(m).∵△COD∽△AOB,∴CDAB=ODOB,即1.7AB=110,∴AB=17m.17.16【点思路】根据平行四边形的性质,可知AD∥BC,由此判断△AEF与△CEB相似是解题的关键.)【点拨】∵反比例函数的表达式为y=1x(x>0),∴A3所在的正方形的边长为1,设A2所在的正方形的边长为m,则A2(m,m+1),∴m(m+1)=1,解得m=-1+52(负值舍去),∴A2的坐标为三、19.解:(1)原式=(3)2+4×12×22=3+ 2.(2)原方程可化为(x +3)(x -5)=0,所以x 1=-3,x 2=5.20.解:(1)∵关于x 的方程3x 2+2x -m =0有两个不相等的实数根,∴Δ=22-4×3×(-m )>0,解得m >-13,即m 的取值范围是m >-13.(2)设方程的另一个根为a ,根据根与系数的关系得a +(-1)=-23,解得a =13,即方程的另一个根为13.21.解:(1)由题设这个一次函数的表达式为y =kx +1,把A (2,3)的坐标代入,得3=2k +1,解得k =1,∴这个一次函数的表达式为y =x +1.(2)如图,设反比例函数表达式为y =m x ,把A (2,3)的坐标代入,得3=m 2,解得m =6,∴反比例函数表达式为y =6x .当x =6时,则y =66=1,∴B (6,1),∴AB =(6-2)2+(1-3)2=2 5.∵将点B 向上平移2个单位得到点C ,∴C (6,3),BC =2.∵A (2,3),C (6,3),∴AC ∥x 轴.∵B (6,1),C (6,3),∴BC ⊥x 轴,∴AC ⊥BC ,∴∠ACB =90°,∴△ABC是直角三角形,∴cos ∠ABC =BC AB =225=55.22.(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°.∴∠DAF =∠AEB .∵DF ⊥AE ,∴∠AFD =∠B =90°.∴△ABE ∽△DFA .(2)解:∵E 是BC 的中点,BC =4,∴BE =2.∵AB =6,∴AE =AB 2+BE 2=62+22=210.∵四边形ABCD 是矩形,∴AD =BC =4.∵△ABE ∽△DFA ,∴AB DF =AE AD .∴DF =AB ·AD AE =6×4210=6510.23.解:(1)如图,过点C 作南北方向线l ,作CD ⊥AB 于D 点,根据垂线段最短可知线段CD 的长是从石鼓书院走到雁峰公园的途中与宾馆的最短距离.由题意知,∠1=30°,AB ∥l ,所以∠A =∠1=30°.在Rt △ACD 中,AC =2000米,所以CD =12AC =1000答:这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆的最短距离为1000米.(2)由(1)可知CD =1000米.由题意知,∠2=45°,l ∥AB ,所以∠B =∠2=45°.在Rt △BCD 中,BC =2CD =10002米.设这名徒步爱好者从雁峰公园返回宾馆用了x 分钟,根据题意,得100x =1000 2.解得x =10 2.因为102<15,所以这名徒步爱好者在15分钟内能到达宾馆.24.解:(1)由题图可得,甲的样本数据分别为40,45,54,46,40,∴平均数为(40+45+54+46+40)÷5=45;乙的样本数据分别为43,38,49,42,48,∴平均数为(43+38+49+42+48)÷5=44.(2)估计甲、乙两个樱桃园的总产量为200×99%×(45+44)=17622(千克).(3)甲的样本方差为s2甲=15×[(40-45)2+(45-45)2+(54-45)2+(46-45)2+(40-45)2]=26.4;乙的样本方差为s2乙=15×[(43-44)2+(38-44)2+(49-44)2+(42-44)2+(48-44)2]=16.4.∵s2甲>s2乙,∴估计乙樱桃园的樱桃产量比较稳定.。

浙教版九年级上册数学期末考试试卷含答案解析

浙教版九年级上册数学期末考试试卷含答案解析

浙教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.从甲、乙、丙、丁四人中任选1名代表,甲被选中的可能性是()A.14B.15C.34D.12.下列说法正确的是()A.对角线相等的四边形是矩形B.有两边及一角对应相等的两个三角形全等C.对角线互相垂直的矩形是正方形D.平分弦的直径垂直于弦3.下列函数中,二次函数是()A.y=8x2+1 B.y=8x+1 C.y=8xD.y=281x4.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.12B.13C.310D.155.下列说法中,正确的是()A.长度相等的两条弧是等弧B.优弧一定大于劣弧C.任意三角形都一定有外接圆D.不同的圆中不可能有相等的弦6.在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则EFFC等于()A.13B.12C.23D.327.如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′C′D′的位置时,顶点B从开始到结束所经过的路程长为()A.20cm B.C.10πcm D.8.下列说法正确的是( )A .长度相等的弧叫等弧B .平分弦的直径一定垂直于该弦C .三角形的外心是三条角平分线的交点D .不在同一直线上的三个点确定一个圆9.二次函数2y ax bx =+的图象如图,若一元二次方程有实数根,则m 的最大值为( )A .3-B .3C .6-D .9二、填空题 10.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为21(4)312y x =--+,由此可知铅球推出的距离是______m .11.布袋中装有4个红球和3个黑球,它们除颜色外没有任何其他区别,小红从中随机摸出1个球,摸出红球的概率是________ .12.一个扇形的半径为3cm ,面积为π2cm ,则此扇形的圆心角为______.13.如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,120AOB ∠=,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少走了__________步(假设1步为0.5米,结果保留整数).(参考1.732,π取3.142)14.把抛物线y=x2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为_____________.15.如图,在ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形的面积之和(即阴影部分)为_____cm2(结果保留π)16.如图,在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻,当甲带球冲到A点时,乙也跟随冲到B点.从数学角度看,此时甲是自己射门好,还是将球传给乙,让乙射门好?答________________.17.已知二次函数y=ax2+bx+c的部分图象如图所示,则关于x的方程ax2+bx+c=0的两个根的和为_____.18.已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是_____.19.如图,边长为4的正方形ABCD内接于⊙O,点E是AB上的一动点(不与点A、B重合),点F是BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:①AE BF=;②△OGH是等腰直角三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+其中正确的是____________.(把你认为正确结论的序号都填上)三、解答题20.如图,在破残的圆形残片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D,已知AB=8 cm,CD=2 cm.求破残的圆形残片的半径.21.如图,等腰梯形的周长为60,底角为30°,腰长为x,面积为y,试写出y与x的函数表达式.22.如图,在Rt△ABC中,∠A=90º,AB=6,BC=10,D是AC上一点,CD=5,DE⊥BC 于E,求线段DE的长.23.如图,⊙O是△ABC的外接圆,C是优弧AB上一点,设∠OAB=α,∠C=β.(1)当β=36°时,求α的度数;(2)猜想α与β之间的关系,并给予证明.(3)若点C平分优弧AB,且BC2=3OA2,试求α的度数.24.布袋里有四个小球,球表面分别标有2、3、4、6四个数字,它们的材质、形状、大小完全相同.从中随机摸出一个小球记下数字为x,再从剩下的三个球中随机摸出一个球记下数字为y,点A的坐标为(x,y).运用画树状图或列表的方法,写出A点所有可能的坐标,并求出点A在反比例函数12yx=图象上的概率.25.如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在BC、CD上,若△ADE∽△CMN,求CM的长.26.小赵投资销售一种进价为每件20元的护眼台灯.销售过程中发现,当月内销售单价不变,则月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y10x500=-+.(1)设小赵每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?并求出最大利润.(2)如果小赵想要每月获得的利润不低于2000元,那么如何制定销售单价才可以实现这一目标?27.如图点O 是等边ABC 内一点,110,AOB BOC α︒∠=∠=,∠ACD=∠BCO ,OC=CD ,(1)试说明:COD 是等边三角形;(2)当150α︒=时,试判断AOD △的形状,并说明理由;(3)当BOC ∠为多少度时,AOD △是等腰三角形参考答案1.A【解析】根据概率公式即可得到结论.【详解】从甲、乙、丙、丁四人中任选1名代表,甲被选中的可能性是14.故选A .【点睛】本题考查了可能性的大小,解题的关键是掌握概率公式.2.C【解析】试题解析:A 、对角线相等的平行四边形是菱形,故错误;B 、有两边及夹角对应相等的两个三角形全等,错误;C 、对角线互相垂直的矩形是正方形,正确;D 、两条直径一定互相平分,但是不一定垂直,错误;故选C .3.A【分析】二次函数的定义:形如2y ax bx c =++( a≠0)的函数叫二次函数.【详解】A 、281y x =+符合二次函数的定义,本选项正确;B 、81y x =+是一次函数;C 、8y x =是反比例函数; D 、281y x =+不是二次函数, 故选A【点睛】本题属于基础应用题,只需学生熟练掌握二次函数的定义,即可完成.4.D【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.【详解】根据题意 :从袋中任意摸出一个球,是白球的概率为=210=15. 故答案为D【点睛】此题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 5.C【解析】【分析】根据等弧的定义对A进行判断;根据劣弧和优弧的定义对B进行判断;根据确定圆的条件对C进行判断;根据弦的定义对D进行判断.【详解】A、长度相等的两条弧不一定是等弧,所以A选项错误;B、在同圆或等圆中,优弧一定大于劣弧,所以B选项错误;C、任意三角形都一定有外接圆,所以C选项正确;D、不同的圆中有相等的弦,所以D选项错误.故选:C.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)6.A【详解】试题分析:如图,∵四边形ABCD为平行四边形,∴ED∥BC,BC=AD,∴△DEF∽△BCF,∴EF DEFC CB=,设ED=k,则AE=2k,BC=3k,∴EFFC=3kk=13,故选A.考点:1.相似三角形的判定与性质;2.平行四边形的性质.7.D【解析】【分析】根据弧长公式可得.【详解】如图:连接DB,B′D,则点B的路径为圆心角为90度的扇形的弧长,=cm故选D.【点睛】此题主要考查了正方形的性质和弧长公式,得出B点运动路线是解题关键.8.D【解析】试题分析:根据等弧的定义对A进行判断;根据垂径定理对B进行判断;根据三角形外心的定义对C进行判断;根据确定圆的条件对D进行判断.解:A、能够完全重合的弧叫等弧,所以A选项错误;B、平分弦(非直径)的直径一定垂直于该弦,所以B选项错误;C、三角形的外心是三边垂直平分线的交点,所以C选项错误;D、不在同一直线上的三个点确定一个圆,所以D选项正确.故选D.考点:圆的认识;垂径定理;确定圆的条件;三角形的外接圆与外心.9.B【分析】根据一元二次方程ax2+bx+m=0有实数根,可以理解为y=ax2+bx和y=-m有交点,结合图像可判断结果.【详解】解:一元二次方程ax2+bx+m=0有实数根,可以理解为y=ax2+bx和y=-m有交点,观察图像可见-m≥-3,∴m≤3,∴m的最大值为3.故选B.【点睛】本题考查的是抛物线与x轴的交点,根据题意判断出a的符号及a、b的关系是解答此题的关键.10.10【分析】y ,求要求铅球推出的距离,实际上是求铅球的落脚点与坐标原点的距离,故可直接令0出x的值,x的正值即为所求.【详解】在函数式21(4)312y x =--+中,令0y =,得 21(4)3012x --+=,解得110x =,22x =-(舍去), ∴铅球推出的距离是10m.【点睛】 本题是二次函数的实际应用题,需要注意的是21(4)312y x =--+中3代表的含义是铅球在起始位置距离地面的高度;当0y =时,x 的正值代表的是铅球最终离原点的距离. 11.47【详解】∵有4个红球3个黑球,∴球的总数=4+3=7,∴随机摸出一个球,摸到红球的概率=47. 故答案为47.12.40°.【详解】 解:根据扇形的面积计算公式可得:23360n =π,解得:n=40°,即圆心角的度数为40°.考点:扇形的面积计算.13.15【详解】【分析】过O 作OC ⊥AB 于C ,分别计算出弦AB 的长和弧AB 的长即可求解.【解答】过O 作OC ⊥AB 于C ,如图,∴AC =BC ,∵120AOB OA OB ∠=︒=,, ∴30A ∠=︒, ∴1102OC OA ==,∴AC =∴AB = 又∵弧AB 的长=120π2040π1803⨯=, 40π7.253∴-≈米15≈步. 故答案为15.【点评】考查了弧长的计算,垂径定理的应用,熟记弧长公式是解题的关键. 14.y =x 2+8x +10 【解析】试题分析:根据题意y=x 2+2x-3=(x+1)2-4向左平移3个单位,然后向下平移2个单位,得:y=(x+1+3)2-4-2=(x+4)2-6=x 2+8x+10,即y=x 2+8x+10. 考点:1.二次函数的图像,2.配方法15.23π.【分析】图中阴影部分的面积就是两个扇形的面积,圆A ,B 的半径为2cm ,则根据扇形面积公式可得阴影面积. 【详解】()2260423603603A B πππ∠+∠⨯⨯==(cm 2). 故答案为23π.考点:1、扇形的面积公式;2、两圆相外切的性质. 16.乙射门好 【解析】试题解析:∵∠MBN =∠MCN , 而∠MCN >∠A ,∴∠MBN >∠A ,∴从数学角度看,此时甲将球传给乙,让乙射门好.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 17.2 【详解】解:根据函数的图像可知其对称轴为x=-2ba =1,解得b=-2a ,然后可知两根之和为x 1+x 2=-b a=2.故答案为:2 【点睛】此题主要考查了二次函数的图像与一元二次方程的关系,解题关键是由函数的图像求得对称轴x=-2ba ,然后根据一元二次方程的根与系数的关系x 1+x 2=-b a求解即可. 18.2≤m≤8 【详解】设平移后的解析式为y=y=(x+1)2﹣m , 将B 点坐标代入,得 4﹣m=2,解得m=2, 将D 点坐标代入,得 9﹣m=1,解得m=8,y=(x+1)2向下平移m 个单位(m >0)与正方形ABCD 的边(包括四个顶点)有交点,则m 的取值范围是2≤m≤8.点睛:本题考查了二次函数图象与几何变换,利用了矩形性质和二次函数图象上点的坐标特征,平移的性质的应用,把B ,D 的坐标代入是解题关键. 19.①②④ 【解析】试题分析:①如图1中,连接OB 、OA .∵四边形ABCD 是正方形, ∴∠EOF =∠AOB =90°,∴∠AOE +∠BOE =∠BOF +∠BOE , ∴∠AOE =∠BOF , ∴AE BF =. 所以①正确;②如图1中,在△AOG 和△BOH 中, 45AOG BOH OAG OBH AO BO ∠=∠⎧⎪∠=∠=⎨⎪=⎩, ∴△AOG ≌△BOH ; ∴OG =OH , ∵∠GOH =90°,∴△OGH 是等腰直角三角形. 所以②正确; ③如图1中, ∵△AOG ≌△BOH ,∴四边形OGBH 的面积=△AOB 的面积=14正方形ABCD 的面积,∴四边形OGBH 的面积不发生变化. 所以③错误;④∵△AOG ≌△BOH , ∴AG =BH ,∴BG +BH =BG +AG =BC =4, 设BG =x ,则BH =4-x ,则GH∴当x=2时GH最小,最小值为∴△GBH周长的最小值为4+所以④正确.故答案为:①②④.点睛:考查了圆的综合题,关键是熟练掌握全等三角形的判定和性质,相等的圆心角所对的弧相等,等腰直角三角形的判定,勾股定理,综合性较强,有一定的难度.20.破残的圆形残片的半径为5cm.【解析】【分析】设圆的半径为r cm,根据AB⊥CD和已知条件求出AD=12AB,在Rt△ADO中,利用勾股定理为等量关系列方程,求出半径即可.【详解】在直线CD上取圆心O,连接OA,设半径为rcm,∵弦AB的垂直平分线交弧AB于点C,交弦AB于点D,在Rt△ADO中,OA2=AD2+OD2,∴r2=42+(r-2)2,∴r=5答:破残的圆形残片的半径为5cm.【点睛】本题考查的是垂径定理和勾股定理的应用,垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.21.s=﹣12x2+15x(0<x<60)【解析】【分析】作AE⊥BC,在Rt△ABE中,求出AE=12AB=12x,利用梯形的周长可得出AD+BC的值,代入梯形面积公式即可得出y与x的函数表达式.【详解】作AE⊥BC,在Rt△ABE中,∠B=30°,则AE=12AB=12x,∵四边形ABCD是等腰梯形,∴AD+BC=60-AB-CD=60-2x,∴S=12(AD+BC)×AE=12(60-2x)×12x=-12x2+15x(0<x<60).【点睛】本题考查了根据实际问题抽象二次函数关系式的知识,掌握梯形的面积公式及等腰梯形的性质是解答本题的关键.22.3【详解】试题分析:直接利用相似三角形的判定与性质得出DE的长.试题解析:∵∠C=∠C,∠A=∠DEC,∴△DEC∽△BAC,DE DCAB BC∴=,则5 610 DE=,解得:DE=3.点睛:两组角对应相等,两个三角形相似.23.(1)β=54°;(2)α与β之间的关系是α+β=90°;证明见解析;(3)α=30°.【解析】【分析】(1)连接OB,根据同弧所对的圆周角是圆心角的一半和等腰三角形的性质解答即可;(2)根据(1)的方法解答即可;(3)过O作OE⊥AC于E,连接OC,证明,得到△ABC为正三角形,得到答案.【详解】(1)连接OB,则OA=OB,∴∠OAB=∠OBA,∵∠C=36°,∴∠AOB=72°,∵∠OAB=12(180°﹣∠AOB)=54°,即β=54°;(2)α与β之间的关系是α+β=90°;证明:∵∠OBA=∠OAB=α,∴∠AOB=180°﹣2α,∵∠AOB=2∠β,∴180°﹣2α=2∠β,∴α+β=90°;(3)∵点C平分优弧AB,∴AC=BC,又∵BC2=3OA2,∴,过O作OE⊥AC于E,连接OC,由垂径定理可知,∴∠AOE=60°,∠OAE=30°,∴∠ABC=60°,∴△ABC为正三角形,则α=∠CAB﹣∠CAO=30°.【点睛】本题考查的是三角形的外接圆、垂径定理和锐角三角函数的知识,综合性较强,需要学生灵活运用所学的知识,正确作出辅助线构造直角三角形进行解答.24.1 3【详解】试题分析:先画树状图展示所有12种等可能的结果数,然后写出12个点的坐标;根据反比例函数图象上点的坐标特征可判断有两个点在函数12yx=图象上,然后根据概率公式求解.试题解析:依题意列表得:由上表可得,点A的坐标共有12种结果,其中点A在反比例函数12yx=上的有4种:(2,6)、(3,4)、(4,3)、(6,2),∴点A在反比例函数12yx=上的概率为41123.=25.试题分析:∵正方形ABCD 的边长为2,AE=EB , ∴AE=×2=1, 在Rt △ADE 中,DE===,∵△ADE ∽△CMN , ∴=, 即=,解得CM=.考点:相似三角形的性质;正方形的性质.51点评:本题考查了相似三角形对应边成比例的性质,正方形的性质,根据相似三角形对应顶点的字母放在对应位置上确定出对应边是解题的关键.26.(1)当销售单价定为35元时,每月获得的利润最大,最大利润为2250元;(2)如果小赵想要每月获得的利润不低于2000元,那么他的销售单价应不低于30元而不高于40元. 【解析】试题分析:(1)根据总利润=单利润×销售量即可得到函数关系式,再根据二次函数的性质即得结果;(2)先求得利润为2000元时对应的销售单价,再根据二次函数的性质即可求得结果. (1)由题意得w=(x -20)·y=(x -20)·(10500x -+)21070010000x x =-+- 当352bx a=-=时,;(2)由题意得210700100002000x x -+-= 解得x 1 =30,x 2 =40即小赵想要每月获得2000元的利润,销售单价应定为30元或40元 ∵100a =-< ∴抛物线开口向下 ∴当30≤x≤40时,w≥2000答:(1)当销售单价定为35元时,每月可获得最大利润,且最大利润为2250元; (2)如果小赵想要每月获得的利润不低于2000元,那么他的销售单价应不低于30元而不考点:二次函数的应用点评:解答本题的关键是读懂题意,找到等量关系,正确列出函数关系式,同时熟练掌握二次函数的最值的求法.27.(1)见解析;(2)△AOD是直角三角形,理由见解析;(3) 110°或125°或140°时,△AOD 是等腰三角形.【分析】(1)根据CO=CD,∠OCD=60°,然后根据等边三角形的判定方法即可得到△COD是等边三角形;(2)先求得∠ADC=∠BOC=α=150°,再利用△COD是等边三角形得∠CDO=60°,于是可计算出∠ADO=90°,由此可判断△AOD是直角三角形;(3)先利用α表示出∠ADO=α-60°,∠AOD=190°-α,再进行分类讨论:当∠AOD=∠ADO 时,△AOD是等腰三角形,即190°-α=α-60°;当∠AOD=∠DAO时,△AOD是等腰三角形,即2(190°-α)+α-60°=180°;当∠ADO=∠DAO时,△AOD是等腰三角形,即190°-α+2(α-60°)=180°,然后分别解方程求出对应的α的值即可.【详解】(1)∵∠ACD=∠BCO∴∠ACD+∠ACO=∠BCO+∠ACO=60°又∵CO=CD∴△COD是等边三角形;(2)∵△COD是等边三角形∴CO=CD又∵∠ACD=∠BCO,AC=BC∴△ACD≌△BCO(SAS)∴∠ADC=∠BOC=α=150°,∵△COD是等边三角形,∴∠ADC=∠BOC=α=150°,∵△COD是等边三角形,∴∠CDO=60°,∴∠ADO=∠ADC−∠CDO=90°,∴△AOD是直角三角形;(3)∵△COD是等边三角形,∴∠CDO=∠COD=60°,∴∠ADO=α−60°,∠AOD=360°−60°−110°−α=190°−α,当∠AOD=∠ADO时,△AOD是等腰三角形,即190°−α=α−60°,解得α=125°;当∠AOD=∠DAO时,△AOD是等腰三角形,即2(190°−α)+α−60°=180°,解得α=140°;当∠ADO=∠DAO时,△AOD是等腰三角形,即190°−α+2(α−60°)=180°,解得α=110°,综上所述,∠BOC的度数为110°或125°或140°时,△AOD是等腰三角形.【点睛】此题考查等腰三角形的判定,旋转的性质,等边三角形的判定与性质,解题关键在于掌握判定定理.。

浙教版九年级上册数学期末考试试题附答案

浙教版九年级上册数学期末考试试题附答案

浙教版九年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.已知O 的半径为5,点P 在O 内,则OP 的长可能是()A .7B .6C .5D .42.若32a b =,则a bb -的值是()A .2B .12C .32D .523.下列选项中的事件,属于必然事件的是()A .在一个只装有白球的袋中,摸出黄球B .a 是实数,0a >C .明年元旦那天温州的最高气温是10℃D .两个正数相加,和是正数4.将抛物线22y x =-向左平移1个单位,得到的抛物线表达式为()A .221y x =-+B .()221y x =-+C .221y x =--D .()221y x =--5.已知一个扇形的半径长为3,圆心角为60°,则这个扇形的面积为()A .12πB .πC .3π2D .3π6.如图,梯形ABCD 中,AD ∥BC ,∠B =∠ACD =90°,AB =2,DC =3,则△ABC 与△DCA 的面积比为()A .2∶3B .2∶5C .4∶9D7.如图,在O 中,点B 是 AC 上一点,若100AOC ∠=︒,则ABC ∠的度数是()A .80°B .100°C .120°D .130°8.将进货价为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨1元,其销售量就减少5个,设这种商品的售价为x 元时,获得的利润为y 元,则下列关系式正确的是()A .()()352005y x x =--B .()()354005y x x =--C .()()402005y x x =--D .()()403755y x x =--9.已知二次函数221y ax ax =+-(其中x 是自变量),当1≥x 时,y 随x 的增大而减小,且32x -≤≤时,y 的最小值为9-,则a 的值为()A .1-B .43-C .83-D .103-10.如图,在ABC 中,90ACB ∠=︒,以ABC 的各边为边分别作正方形ACDE ,正方形BCFG 与正方形ABMN ,AN 与FG 相交于点H ,连结NF 并延长交AE 于点P ,且2NF FP =.记ABC 的面积为1S ,FNH △的面积为2S ,若1221S S -=,则BC 的长为()A .6B .C .8D .9二、填空题11.若一个正多边形的一个内角等于135°,那么这个多边形是正_____边形.12.若线段4a =,9b =,则线段a ,b 的比例中项为______.13.下表记录了一名篮球运动员在罚球线上投篮的结果:投篮次数n 4882124176230287328投中次数m 335983118159195223投中频率m n0.690.720.670.670.690.680.68根据表格,这名篮球运动员投篮一次,投中的概率约为______.(结果精确到0.01)14.如图,在ABC 中,30C ∠=︒,100ABC ∠=︒,将ABC 绕点A 顺时针旋转至ADE (点B 与点D 对应),连结BD ,若//BD AE ,则CAD ∠的度数为______度.15.如图,矩形ABCD 中,6AB =,以点D 为圆心,CD 长为半径的圆弧与以BC 为直径的半圆O 相交于点E ,若 BE的度数为60°,则直径BC 长为______.三、解答题16.如图1是某校园运动场主席台及遮阳棚,其侧面结构示意图如图2所示.主席台(矩形ABCD )高2AD =米,直杆5DE =米,斜拉杆EG ,EH 起稳固作用,点H 处装有一射灯.遮阳棚边缘曲线FHG 可近似看成抛物线的一部分,G 为抛物线的最高点且位于主席台边缘BC 的正上方,若点E ,H ,C 在同一直线上,且1DF =米,4EG =米,60AEG ∠=︒,则射灯H 离地面的高度为______米.17.(1)计算:()()0211432⎛⎫---- ⎪⎝⎭.(2)先化简,再求值:()()()422a a a a --+-,其中31a =.18.一个不透明的布袋里装有2个红球,1个白球,它们除颜色外其余都相同.(1)摸出1个球,记下颜色后不放回...,再摸出1个球,求两次摸出的球恰好颜色相同的概率(要求画树状图或列表).(2)现再将n 个白球放入布袋,搅匀后,使摸出1个球是白球的概率为57,求n 的值.19.如图,在ABC 中,CD 是角平分线,DE 平分CDB ∠交BC 于点E ,且//DE AC .(1)求证:2CD CA CE =⋅.(2)若22CE BE ==,求CD 的长.20.如图,在66⨯的正方形网格中,点A ,B ,C 均在格点上,请按要求完成下列作图:①仅用无刻度直尺;②保留作图痕迹.(1)在图1中画一个ADE ,使得ADE ∽ACB △,且相似比为1:2.(2)在图2中以AB 为直径的半圆上找一点P ,画出PBA ∠,使得22.5PBA ∠=︒.21.如图抛物线y =ax 2+bx +c 交x 轴于A (﹣1,0)、B (4,0)两点,交y 轴于点C (0,2),动点P 从点O 出发,以每秒1个单位长度的速度沿x 轴正方向运动,过点P 作x 轴的垂线,交抛物线于点E ,交直线BC 于点F ,点P 运动到B 点即停止运动,连接CE ,设点P 运动的时间为t 秒.(1)求抛物线y =ax 2+bx +c 的表达式;(2)当t =32时,求△CEF 的面积;(3)当△CEF 是等腰三角形时,求出此时t 的值.22.如图,AB 为O 的直径,C ,D 为O 上不同于A ,B 的两点,且OC 平分ACD ∠,延长AC 与DB 交于点E ,过点C 作CF OC ⊥交DE 于点F .(1)求证:A E ∠=∠.(2)若5BF =,34BD OB =,求O 的半径.23.如图所示的矩形ABCD 是一张平面设计图纸,它由甲、乙、丙三个部分构成,已知240AB BC ==cm ,点E ,F 在BC 和CD 上,BE CE ≥,且CE CF =.设CE x =(cm ).(1)当甲部分的面积是乙部分面积的4倍时,求丙部分的面积.(2)若甲、乙、丙三个部分分别用不同的材料打印,且每平方厘米的材料价格依次为3元、6元、2元,要使乙部分的面积不小于220cm ,且x 取整数,求打印该矩形图纸所需材料的最省费用.24.如图,AC 是四边形ABCD 外接圆O 的直径,AB =BC ,∠DAC =30°,延长AC 到E 使得CE =CD ,作射线ED 交BO 的延长线与F ,BF 交AD 与G .(1)求证:△ADE 是等腰三角形;(2)求证:EF 与⊙O 相切;(3)若AO=2,求△FGD的周长.参考答案1.D【分析】根据点在圆内,点到圆心的距离小于圆的半径进行判断.【详解】解:∵⊙O的半径为5,点P在⊙O内,∴5OP<,故选:D.【点睛】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P 在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.2.B【分析】根据32ab=可设a=3k,b=2k,代入约去k即可得.【详解】解:∵32 ab=,∴可设a=3k,b=2k,∴a bb-=322k kk-=12,故选:B.【点睛】本题主要考查比例的性质,熟练掌握设k法求比例式的值是解题的关键.3.D【分析】必然事件是一定发生的,根据这个定义便可找到答案.【详解】解:A、在一个只装有白球的袋中,摸出黄球,是不可能事件,故A不符合题意.B、a是实数,0a>,当a=0时,不成立,故是可能事件,故B不符合题意.C、明年元旦那天温州的最高气温是10℃,是可能事件,故C不符合题意.D、两个正数相加,和一定是正数,故是必然事件.故本题选:D.【点睛】本题考查不可能事件、可能事件、必然事件的定义,属于基础题4.B【分析】根据“左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,把抛物线y=-2x2向左平移1个单位,则平移后的抛物线的表达式为y=-2(x+1)2,故选:B.【点睛】本题考查了二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.5.C【分析】根据计算公式直接套用求解即可.【详解】根据题意,得260333602S ππ⨯⨯==,故选C .【点睛】本题考查了扇形的面积计算问题,熟记扇形面积计算公式,准确判断计算条件是解题的关键.6.C 【详解】试题分析:∵AD ∥BC ∴∠ACB=∠DAC 又∵∠B=∠ACD=90°∴△ABC ∽△DCA∴S △ABC :S △DCA =AB 2:CD 2=22:32=4:9故选C考点:相似三角形的判定与性质7.D 【分析】在优弧AC 上取点D ,连接AD 、CD ,由∠AOC=100°求出∠ADC=12∠AOC ,根据四边形ABCD 是圆内接四边形,得到∠ADC+∠ABC=180°,即可求出∠ABC 的度数.【详解】在优弧AC 上取点D ,连接AD 、CD ,∵∠AOC=100°,∴∠ADC=12∠AOC=50°,∵四边形ABCD 是圆内接四边形,∴∠ADC+∠ABC=180°,∴∠ABC=180°-50°=130°,故选:D .【点睛】此题考查圆周角定理:同弧所对的圆周角等于圆心角的一半,圆内接四边形的性质:圆内接四边形的对角互补.8.B 【分析】根据售价减去进价表示出实际的利润.【详解】解:设这种商品的售价为x 元时,获得的利润为y 元,根据题意可得:[](35)2005(40)y x x =---即y=(x-35)(400-5x ),故选:B .【点睛】本题考查了二次函数的应用,解题的关键是理解“商品每上涨1元,其销售量就减少5个”.9.A 【分析】先根据解析式确定对称轴,再根据当1≥x 时,y 随x 的增大而减小,判断抛物线的开口方向,利用对称轴和二次函数的增减性确定最小值时的自变量,仔细求解即可.【详解】∵二次函数221y ax ax =+-,∴抛物线的对称轴为x=-1,∵当1≥x 时,y 随x 的增大而减小,∴抛物线开口向下即a <0,且x=2时的函数值小于x=1时的函数值,∵3112-+=-,∴(-3,m )和(1,m )是抛物线上的对称点,∴当32x -≤≤时,y 的最小值为x=2时的函数值,∵y 的最小值为9-,∴8a-1=-9,解得a=-1,故选A .【点睛】本题考查了二次函数的开口,对称性,增减性和最值,熟练掌握二次函数的性质灵活求解是解题的关键.10.D 【分析】过点N 作NQ ⊥EA ,交EA 的延长线于点Q ,设正方形ACDE 的边长为a ,正方形BCFG 的边长为b ,利用AAS 证出△NAQ ≌△BAC ,用a 和b 表示出各线段长,然后根据平行线分线段成比例定理求出a 和b 的关系,然后根据面积关系列出方程即可求出b 的值.【详解】解:过点N 作NQ ⊥EA ,交EA 的延长线于点Q ,设正方形ACDE 的边长为a ,正方形BCFG 的边长为b∴NQ ∥FA ,∠NAQ +∠ANQ=90°,AF=CF -AC=b -a ∴∠FAN=∠ANQ ,QR=AF=b -a ,FR=AQ ,112S ab =∵∠ACB=90°∴∠BAC +∠FAN=90°∴∠NAQ=∠BAC∵∠Q=∠ACB=90°,NA=BA ∴△NAQ ≌△BAC ∴AQ=AC=a ,NQ=BC=b∴FR=AQ=a ,NR=NQ -QR=b -(b -a )=a∴△NRF 为等腰直角三角形∴∠NFR=45°∵FR ∥PQ ∴2NR NF RQ FP ==,∠FPA=∠NFR=45°∴2a b a=-,△FAP 为等腰直角三角形∴23a b =,AP=AF=b -a=13b ∴PNA S =△12AP NQ ⋅=216b ,112S ab ==213b ∵FR ∥PQ ,2NF FP=∴△FNH ∽△PNA ,23NF NP =∴2249PNA S NF S NP ⎛⎫== ⎪⎝⎭△∴2242927PNA S S b ==△∵1221S S -=即221221327b b -=解得:b=9或-9(不符合实际,舍去)即BC=9故选D .【点睛】此题考查的是正方形的性质、全等三角形的判定及性质和相似三角形的判定及性质,掌握正方形的性质、全等三角形的判定及性质和相似三角形的判定及性质是解题关键.11.八【详解】360°÷(180°-135°)=812.6【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.【详解】解:设线段a,b的比例中项为x,∵线段x是a,b的比例中项,∴x2=ab,即x2=36,∴x=6(负数舍去),故答案为:6.【点睛】本题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数.13.0.68【分析】根据频率估计概率的方法结合表格数据可得答案.【详解】解:这名篮球运动员投篮一次,投中的概率约为0.68,故答案为:0.68.【点睛】本题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.14.30【分析】由旋转的性质可得:∠E=∠C,∠ADE=∠ABC,AD=AB,根据平行线的性质得出∠ADB=50°,再利用等腰三角形的性质得出结果.【详解】由旋转的性质可得:∠E=∠C,∠ADE=∠ABC,AD=AB,∵BD∥AE,∴∠BDE+∠E=180°,∵∠E=∠C=30°,∠ADE=∠ABC=100°,∴∠ADB=50°,∵AD=AB,∴∠ABD=∠ADB=50°,∴∠BAD=180°-∠ABD-∠ADB=80°,∵∠BAC=180°-∠C-∠ABC=50°,∴∠CAD=∠BAD-∠BAC=30°,故答案为:30.【点睛】本题考查了旋转的性质,平行线的性质及等腰三角形的性质,解题的关键是熟练掌握旋转的性质.15.【分析】连接BE 、OE 、CE ,由圆周角定理及其推论可得30BCE ∠=︒,利用矩形的性质及等边三角形的判定和性质得出6CE =,由特殊三角函数值即可求解.【详解】解:连接BE 、OE 、CE ,∵BC 是O 的直径,∴90BEC ∠=︒,∵ BE的度数是60°,∴60BOE ∠=︒∴1=302BCE BOE ∠=∠︒,∵四边形ABCD 是矩形,∴6AB CD ==,90DCB ∠=︒,∴903060DCE DCB BCE ∠=∠-∠=︒-︒=︒,∵6CD DE ==,∴CDE △是等边三角形,∴6CE =,在Rt BEC △中,∵6cos cos30CE BCE BC BC ∠=︒==,∴6cos30BC ==︒故答案为:【点睛】本题考查了圆周角定理及其推论,四边形的性质,等边三角形的判定和性质以及特殊三角函数值.16.4.5【分析】首先建立以AB 为x 轴,以AD 为y 轴的直角坐标系,过点G 作GQ ⊥AD 交AE 于Q ,再得出抛物线的解析式为y=-163及直线EC 解析式为y=-563,最后求出H 的纵坐标即可得解.【详解】解:如图所示,建立以AB 为x 轴,以AD 为y 轴的直角坐标系,过点G 作GQ ⊥AD 交AE 于Q ,∵AD=2,DE=5,DF=1,∴D(0,2),E(0,7),F(0,3),∵GQ ⊥AD,EG=4,∠AEG=60°,∴34232=∴2216122EG GQ -=-=,∴AQ=AE-EQ=7-2=5,∴5),0),2),∵5)为抛物线顶点,∴设抛物线的解析式为:,将点F(0,3)代入解析式得,即12a+5=3,解得a=-16,故抛物线解析式为:y=-16,设直线EC 解析式为:y=kx+b(k≠0),将E(0,7),,2)代入解析式联立,得:72b b =⎧⎪⎨=+⎪⎩,解得:7b k =⎧⎪⎨=⎪⎩直线解析式为:y=-56x+7,∴H 同时在抛物线与直线EC 上联立得(21567y x y ⎧=--+⎪⎪⎨⎪=+⎪⎩,解得:舍去)即Hy=7+,得H的纵坐标为:7=4.5,故射灯离地面高度4.5米.故答案为:4.5.【点睛】本题考查了解直角三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形.17.(1)5;(2)44a -+,-【分析】(1)先算乘方,算术平方根以及零指数幂,再算加减法,即可求解;(2)通过整式的运算法则,先化简,再代入求值,即可.【详解】解:(1)原式1213=+-+5=;(2)()()()422a a a a --+-()2244a a a =---44a =-+,当1a =+时,原式)44414a =-+=-⨯+=-.【点睛】本题主要考查实数的运算以及整式的化简求值,熟练掌握实数运算法则和整式的运算法则,是解题的关键.18.(1)13;(2)4n =【分析】(1)依据题意,先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率;(2)根据概率公式列方程,解方程即可求得n 的值.【详解】(1)树状图如下:∴一共有6种等可能的结果,两次摸出的球恰好颜色不同的有2种,∴两次摸出的球恰好颜色不同的概率为:2163P ==.(2)由题意得:1537n P n +==+解得:n=4.经检验,n=4是所列方程的解,且符合题意,∴4n =.【点睛】本题主要考查列表法,树状图法和概率公式,解题的重点在于要分析出所有等可能出现的结果,而解题的关键在于要根据概率公式求解或列方程.19.(1)见解析;(2)CD =【分析】(1)根据角平分线定义及平行线性质可得A CDE ∠=∠,再利用相似三角形的判定可证明ACD △∽DCE ,最后根据相似三角形的性质即可得出结论.(2)由已知22CE BE ==,可求出2CE =,1BE =,利用角平分线定义及平行线性质可得BCD CDE ∠=∠,推出2DE CE ==,再根据平行线分线段成比例性质求出6CA =,结合212CD CA CE =⋅=即可求得结果.【详解】(1)证明:∵CD 是角平分线,∴ACD DCE ∠=∠.∵DE 平分CDB ∠,∴CDE EDB∠=∠又∵//DE AC ,∴A EDB∠=∠∴A CDE ∠=∠,∴ACD △∽DCE ,∴CA CD CD CE=,∴2CD CA CE=⋅(2)解:∵22CE BE ==,∴2CE =,1BE =,∵CD 平分CDB ∠,∴ACD BCD ∠=∠,又∵//DE AC ,∴ACD CDE ∠=∠,∴BCD CDE ∠=∠,∴2DE CE ==,∵//DE AC ,∴13DE BE CA BC ==,∴6CA =,∴212CD CA CE =⋅=,∴CD =.【点睛】本题主要考查了相似三角形的判定与性质,掌握相似三角形的判定与性质以及平行线分线段成比例性质的综合应用是解题的关键.20.(1)见解析;(2)见解析【分析】(1)由ADE ∽ACB △,且相似比为1:2可直接进行作图;(2)由题意及圆周角定理可直接进行作图.【详解】解:(1)由ADE ∽ACB △,且相似比为1:2,如图所示:(2)根据圆周角定理可确定点P 的位置,然后可作如图所示:【点睛】本题主要考查圆周角定理及相似三角形的性质,熟练掌握圆周角定理及相似三角形的性质是解题的关键.21.(1)213222y x x =-++;(2)4532;(3)2或32或45【分析】(1)利用待定系数法把三个坐标点代入即可求表达式;(2)结合题意利用一次函数求出点E ,F 的坐标即可求面积;(3)分别用含t 的表达式表示点E ,F 的坐标,当△CEF 为等腰三角形,分为①当CE =CF 时②当CE =EF 时③当CF =EF 时三种情况分别求解即可.【详解】解:(1)将A (﹣1,0)、B (4,0),C (0,2)代入抛物线y =ax 2+bx +c ,得016402a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得12322a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴213222y x x =-++;(2)由题意知:当t =32时,P (32,0),设直线BC 的解析式为y =kx +b ,则有402k b b +=⎧⎨=⎩,∴122k b ⎧=-⎪⎨⎪=⎩,∴122y x -+=,∵PF ⊥x 轴,∴点P ,E ,F 的横坐标均为32,∴分别代入一次函数和二次函数求出两点坐标:F 3524⎛⎫ ⎪⎝⎭,,E 32528⎛⎫ ⎪⎝⎭,,∴13125534522284232CEF S EF ⎛⎫=⨯⨯=⨯-⨯= ⎪⎝⎭ ;(3)P (t ,0),则)F (t ,-122t +),E (t ,213222t t -++),∵△CEF 为等腰三角形,①当CE =CF 时,此时EF 的中点的纵坐标为2,∴214222t t -++=,∴t =2或t =0(舍),∴t =2;②当CE =EF 时,222221313122222t t t t t t +-+=-++()()解得32t =;(0t =不合题意舍去)③当CF =EF 时,2222211312222t t t t +-=-++()()解得4t +=4t =综上所述:t 的值为2或32或4.【点睛】此题考查二次函数的综合应用,有一定难度,利用坐标点结合图像解题是关键.22.(1)见解析;(2)8【分析】(1)根据角平分线和半径相等证//OC DE ,再用平行线的性质证明即可;(2)设3BD x =,4OB x =,根据(1)中的等角,得到AB=BE ,CE=CD ,列方程即可.【详解】(1)证明:∵OC=OA,∴ACO A ∠=∠.∵∠A=∠D ,∴∠D=∠ACO∵OC 平分ACD ∠,∴ACO OCD ∠=∠,∴OCD D ∠=∠.∴//OC DE ,∴E ACO ∠=∠,∴E A ∠=∠.(2)解:∵34BD OB =,∴设3BD x =,4OB x =,由(1)得E D ∠=∠,∴CD=CE ,∵//OC DE .CF OC ⊥,∴CF DE ⊥,∴35EF DF x ==+.∴310BE x =+,∵E A ∠=∠,∴AB BE =,即3108x x +=,解得2x =∴半径48OB x ==.【点睛】本题考查了圆周角的性质、等腰三角形的性质、平行线的判定与性质,解题关键是准确把握已知,合理利用已知条件,设未知数列方程.23.(1)550;(2)所需材料的最省费用为1958元【分析】(1)根据题意分别用x 表示出甲、乙、丙三个部分的面积,利用4S S =甲乙,便可求出CE 的值,从而求出丙的面积.(2)根据题意表示出三者的费用总和,利用乙部分的面积不小于220cm ,且x 取整数,找到X 的取值范围,根据二次函数性质和特征便可求解.【详解】解(1)由题意得:()14020400202S x x =⨯-=-甲,212S x =乙,()22112040400202040022S x x x x =⨯---=-++丙,∵4S S =甲乙,∴214002042x x -=⨯,解得110x =,220x =-(舍去)∴21204005502S x x =-++=丙.(2)()222113204006220400220200022y x x x x x x ⎛⎫=-++⨯+-++=-+ ⎪⎝⎭费用对称轴为直线20522x -=-=⨯,∵21202S x =≥乙,∴x ≥BE CE ≥,∴20x x -≥,∴10x ≤,∴10x ≤且x 为整数,∴x 的最小整数为7∴当7x =时,22720720001958y =⨯-⨯+=最小答:所需材料的最省费用为1958元.【点睛】本题考查二次函数的应用问题,能够把具体的问题抽象为数学函数问题才是关键.24.(1)见解析;(2)见解析;(3)【分析】(1)由圆周角定理可得∠ADC =90°,由等腰三角形的性质和直角三角形的性质可求∠E =∠DAC =30°,可得AD =DE ,可得结论;(2)先证△OCD 是等边三角形,可得∠ODC =60°,可得∠ODE =90°,可得结论;(3)由等腰三角形的性质可得BO ⊥AC ,可证△FGD 是等边三角形,可得FD =DG =FG ,由直角三角形的性质可求DG 的长,即可求解.【详解】(1)∵AC 是直径,∴∠ADC =90°,∵∠DAC =30°,∴∠ACD =60°,∵CE=CD,∴∠E=∠CDE,∵∠CDE+∠E=∠ACD=60°,∴∠E=30°=∠CDE,∴∠E=∠DAC,∴AD=DE,∴△ADE是等腰三角形;(2)如图,连接OD,∵OC=OD,∠OCD=60°,∴△OCD是等边三角形,∴∠ODC=60°,∴∠ODE=∠ODC+∠CDE=90°,又∵OD是半径,∴EF是⊙O的切线;(3)∵AB=BC,AO=CO,∴BO⊥AC,∴∠AOG=∠EOF=90°,∵∠DAC=∠E=30°,∴∠AGO=∠F=60°,∴∠F=∠FGD=60°,∴△FGD是等边三角形,∴FD=DG=FG,∵AO=2,∠DAC=30°,∠ADC=∠AOG=90°,∴AC =4,DC =12AC =2,AD =AG =2OG ,AO ,∴OG AG∴DG∴△FGD 的周长=3×DG =【点睛】本题是圆的综合题,考查了圆周角定理,切线的判定,直角三角形的性质,等腰三角形的性质,灵活运用这些性质进行推理是本题的关键.。

【完整版】浙教版九年级上册数学期末测试卷

【完整版】浙教版九年级上册数学期末测试卷

浙教版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y 的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个2、下列各式中,y是x的二次函数的是( )A. B. C. D.3、如图,以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D 为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD等于()A.20°B.40°C.65°D.70°4、下列说法正确的是()A.打开电视看CCTV—5频道,正在播放NBA篮球比赛是必然事件B.某一种彩票中奖概率是,那么买1000张这种彩票就一定能中奖C.度量一个三角形的内角和是360°,这是不可能事件D.小李掷一硬币,连续5次正面朝上,则他第6次掷硬币时,正面朝上的概率是15、如图,已知在▱ABCD中,E为AD的中点,CE的延长线交BA的延长线于点F,则下列选项中的结论错误的是()A.FA:FB=1:2B.AE:BC=1:2C.BE:CF=1:2D.S:S△ABE =1:4△FBC6、二次函数(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>;④a-b+c>0;⑤若,且,则.其中正确的有().A.①②③B.②④C.②⑤D.②③⑤7、某中学在建党九十周年时,举行了“童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是( )A. B. C. D.8、如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140°B.70°C.60°D.40°9、把八个完全相同的小球平分为两组,每组中每个分别写上1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点P(x,y)落在直线y=﹣x+5上的概率是()A. B. C. D.10、二次函数y=ax2+bx+c的图象如图所示,则反比例函数与一次函数y=bx+c在同一坐标系中的大致图象是()A. B. C. D.11、二次函数的图象如图所示,则下列结论中正确的是()A.a>0B.b>0C.c>0D.b 2-4ac>012、已知,那么下列等式中,不一定正确的是()A. B. C. D.13、在平面直角坐标系中,将线段OA绕原点O逆时针旋转90°,记点A(﹣1,)的对应点为A1,则A1的坐标为()A.(, 1)B.(1,)C.(﹣,﹣1)D.(﹣1,﹣)14、如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠COB、∠B 的度数是()°.A.10°和40°B.10°和50°C.40°和50°D.10°和60°15、某鱼塘里养了100条鲤鱼、若干条草鱼和50条罗非鱼,通过多次捕捞实验后发现,捕捞到草鱼的频率稳定在0.5左右,可估计该鱼塘中草鱼的数量为()A.150B.100C.50D.200二、填空题(共10题,共计30分)16、如图,在中,,,点D为AC上一点,作交BC于点E,点C关于DE的对称点为点O,以OA为半径作⊙O 恰好经过点C,并交直线DE于点M,N则MN的值为________.17、已知,则的值为________.18、如图,点A、B、C在O0上,切线CD与OB的延长线交于点D.若∠A=30°,CD= ,则⊙O的半径长为________.19、平面直角坐标系xoy中,将点A(2,3)绕(-2,-1)旋转90°后的坐标是________.20、把一个正多边形放大到原来的2.5倍,则原图与新图的相似比为________21、抛物线的y=(x﹣3)2﹣2的最小值为________.22、定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m, 1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣1时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x轴所得的线段长度大于;③当m<0时,函数在时,y随x的增大而减小;④当m≠0时,函数图象经过x轴上一个定点.其中正确的结论有________.(只需填写序号)23、如图,点P是边长为5的正方形ABCD内一点,且PB=2,PB⊥BF,垂足为点B,请在射线BF上找一点M,使得以B,M,C为顶点的三角形与ABP相似,则BM=________.24、如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为________.25、如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是________.三、解答题(共5题,共计25分)26、如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.27、某兴趣小组开展课外活动.如图,小明从点M出发以1.5米/秒的速度,沿射线MN方向匀速前进,2秒后到达点B,此时他(AB)在某一灯光下的影长为MB,继续按原速行走2秒到达点D,此时他(CD)在同一灯光下的影子GD仍落在其身后,并测得这个影长GD为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点F,此时点A,C,E三点共线.(1)请在图中画出光源O点的位置,并画出小明位于点F时在这个灯光下的影长FH(不写画法);(2)求小明到达点F时的影长FH的长.28、解不等式组写出符合不等式组的整数解,并求出这些整数解中能使关于x的方程:2x+k=﹣1的解为非负数的概率.29、已知抛物线y=ax2+bx+3与y轴的交点为A,点A与点B关于抛物线的对称轴对称,二次函数y=ax2+bx+3的y与x的部分对应值如下表:x …﹣1 0 1 3 4 …y …8 0 0 …(1)抛物线的对称轴是多少,点A,B的坐标是什么?(2)求二次函数y=ax2+bx+3的解析式;(3)已知点M(m,n)在抛物线y=ax2+bx+3上,设△BAM的面积为S,求S与m的函数关系式、画出函数图象.并利用函数图象说明S是否存在最大值,为什么?30、如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径,扇形的圆心角,求该圆锥的母线长.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、C5、C6、D7、D8、B9、B10、D11、D12、A13、C14、D15、A二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、29、。

浙教版九年级数学上册期末试卷及答案

浙教版九年级数学上册期末试卷及答案

九年级数学(上)期末模拟试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有 一项是符合题目要求的.请将答案填写在题后括号内)1.如果□+2=0,那么“□”内应填的实数是( )A .-2B .-12C .12D . 2 2.在Rt ⊿ABC 中,若各边的长度同时都扩大2倍,则锐角A 的正弦值与余弦值的情况( )A .都扩大2倍B .都缩小2倍C .都不变D .正弦值扩大2倍, 余弦值缩小2倍3.路程s 与时间t 的大致图象如下左图所示,则速度v 与时间t 的大致图象为( )oA .B .C .D .4.小明与两位同学进行乒乓球比赛,用“手心、手背”游戏确定出场顺序. 设每人每次出手心、手背的可能性相同. 若有一人与另外两人不同,则此人最后出场.三人同时出手一次, 小明最后出场比赛的概率为( )A .12?? ?B .13C .14D .155.如图, 在ABCD 中, AB=10, AD=6, E 是AD 的中点, 在AB •上取一点F,• 使 △CBF ∽△CDE, 则BF 的长是( )A.5 D.1.86. 从1到9这九个自然数中任取一个,是2的倍数或是3的倍数的概率为( ) A .19 B .29 C .23 D . 597.如图,小正方形的边长均为l ,则下列图中的三角形(阴影部分)与△ABC 相似的是( )A B C D8.如图,己知△ABC ,任取一点O ,连AO ,BO ,CO ,并取它们的中点D ,E ,F ,得△DEF ,则下列说法正确的个数是( )①△ABC 与△DEF 是位似图形; ②△ABC 与△DEF 是相似图形;③△ABC 与△DEF 的周长比为1:2;④△ABC 与△DEF 的面积比为4:1.A .1B .2C .3D .4 9.已知二次函数c bx ax y ++=2的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N ((-1,y 2),K (8,y 3)也在二次函数c bx ax y ++=2的图象上,则下列结论正确的是( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 3<y 1<y 2 D .y 1<y 3<y 210.在一次1500米比赛中,有如下的判断: 甲说: 丙第一 , 我第三; 乙说: 我第一, 丁第四; 丙说: 丁第二, 我第三.结果是每人的两句话中都只说对了一句,则可判断第一名是( )A .甲B .乙C .丙D .丁二、填空题(本大题共6小题,每小题5分,共30分,请将答案填在横线上)11.己知平顶屋面 (截面为等腰三角形) 的宽度l 和坡顶的设计倾角α(如图),则设计高度h 为_________.(第11题图) (第14题图) (第15题图) 12.有一个直角梯形零件ABCD ,AB CD ∥,斜腰AD 的长为10cm ,120D ∠=,则该零件另A FD E C BFE D C B A 一腰BC 的长是__________cm .(结果不取近似值)13.在一张复印出来的纸上,一个等腰三角形的底边长由原图中的3 cm 变成了6 cm ,则腰长由原图中的2 cm 变成了 cm .14.二次函数2y ax bx c =++和一次函数y mx n =+的图象如图所示,则2ax bx c mx n ++≤+时,x 的取值范围是____________.15.如图,四边形ABCD 是长方形,以BC 为直径的半圆与AD 边只有一个交点,且AB =x ,则阴影部分的面积为___________.16.有一个Rt △ABC ,∠A=90︒,∠B=60︒,AB=1,将它放在平面直角坐标系中,使斜边BC 在x 轴上,直角顶点A 在反比例函数y=x 上,则点C 的坐标为_________.三、解答题(本大题共8小题,共80分,解答应写出文字说明、证明过程或演算过程)17.(本题满分8分)在圣诞节,小明自己动手用纸板制作圆锥形的圣诞老人帽.圆锥帽底面直径为18 cm ,母线长为36 cm ,请你计算制作一个这样的圆锥帽需用纸板的面积(精确到个位).18.(本题满分8分)九(1)班将竞选出正、副班长各1名,现有甲、乙两位男生和丙、丁两位女生参加竞选.请用列表或画树状图的方法求出两位女生同时当选正、副班长的概率.19.(本题满分8分)课堂上,师生一起探究知,可以用己知半径的球去测量圆柱形管子的内径.小明回家后把半径为5 cm 的小皮球置于保温杯口上,经过思考找到了测量方法,并画出了草图(如图).请你根据图中的数据,帮助 小明计算出保温杯的内径.20.(本题满分8分)在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积v (单位:m 3)的反比例函数,它的图象如图所示.(1)求ρ与v 之间的函数关系式并写出自变量v 的取值范围;(2)求当310m v =时气体的密度ρ.21.(本题满分10分)如图,在菱形ABCD 中,点E 在CD 上,连结AE 并延长与BC 的延长线交于点F .(1)写出图中所有的相似三角形(不需证明);(2)若菱形ABCD 的边长为6,DE :AB=3:5,试求CF 的长.22.(本题满分12分)如图,AB 是⊙O 的直径,点P 是⊙O 上的动点(P 与A ,B 不重合),连结AP ,PB ,过点O 分别作OE ⊥AP 于E ,OF ⊥BP 于F .(1)若AB=12,当点P 在⊙O 上运动时,线段EF 的长会不会改变.若会改变,请说明理由;若不会改变,请求出EF 的长;FE P O BAC BA (2)若AP=BP ,求证四边形OEPF 是正方形.23.(本题满分12分)课堂上,周老师出示了以下问题,小明、小聪分别在黑板上进行了板演,请你也解答这个问题: 在一张长方形ABCD 纸片中,AD =25cm, AB =20cm. 现将这张纸片按如下列图示方式折叠,分别求折痕的长.(1) 如图1, 折痕为AE;(2) 如图2, P ,Q 分别为AB ,CD 的中点,折痕为AE;(3) 如图3, 折痕为EF .24.(本题满分14分)如图,△ABC 中,A C =BC ,∠A =30°,AB= 现将一块三角板中30°角的顶点D 放在AB 边上移动,使这个 30°角的两边分别与△ABC 的边AC ,BC 相交于点E, F ,连结DE ,DF ,EF ,且使DE 始终与AB 垂直.设AD x =,△DEF 的面积为y .(1)画出符合条件的图形,写出与△ADE 一定相似的三角形(不包括此三角板),并说明理由;(2)问EF 与AB 可能平行吗?若能,请求出此时AD 的长;若不能,请说明理由;(3)求出y 与x 之间的函数关系式,并写出自变量x 的取值范围.当x 为何值时,y 有最大值?最大值是为多少? .参考答案一、选择题(本大题共10小题,每小题4分,共40分) 1.A 2.C 3.A 4.C 5.D6.C 7.B 8.C 9.B 10.B二、填空题(本大题共6小题,每小题5分,共30分) 11.tan 2l α 12. 53 13. 4 14. 21x -≤≤ 15. 214x π 16. (12,0),(72,0),(72-,0),(12-,0) 三、解答题(本大题共8小题,共80分)17.(本题满分8分)解:S rl π= ………………………………………………………2分936π=⨯=324π≈1018cm 2. …………………………………………6分 18.(本题满分8分)解:树状图分析如下:………………………………………………………4分 由树状图可知,两位女生当选正、副班长的概率是212=16. ………………………4分 (列表方法求解略)19.(本题满分8分)解: 连OD, ∵ EG =8, OG =3, ……………………………………………3分∴ GD =4, ……………………………………………3分 故保温杯的内径为8 cm . ……………………………………………2分20.(本题满分8分)解:(1)10(0)v vρ=>. ………………………………………………4分 (2)当310m v =时,ρ=1kg/m 3 . ………………………………………………4分21.(本题满分10分)解:(1)△ECF ∽△ABF ,△ECF ∽△EDA ,△ABF ∽△EDA . ………………………3分(2)∵ DE :AB=3:5, ∴ DE :EC=3:2, ………………………………2分 ∵ △ECF ∽△EDA , ∴CF CE AD DE =, …………………………………………2分 ∴ 2643CF =⨯=. …………………………………………3分 22.(本题满分12分)解:(1)EF 的长不会改变. ………………………………………………2分∵ OE ⊥AP 于E ,OF ⊥BP 于F ,∴ AE=EP ,BF=FP , …………………………………………2分 ∴162EF AB ==. …………………………………………2分 (2)∵AP=BP ,又∵OE ⊥AP 于E ,OF ⊥BP 于F ,∴ OE=OF , …………………………………………3分 ∵ AB 是⊙O 的直径,∴∠P=90°, …………………………………………1分 ∴ OEPF 是正方形. …………………………………………2分 (或者用12OE BP =,12OF AP =, ∵ AP=BP ,∴ OE=OF 证明) 23.(本题满分12分)解:(1)∵ 由折叠可知△ABE 为等腰直角三角形,∴ A E AB =cm . …………………………………………3分(2) ∵ 由折叠可知,AG =AB ,∠GAE =∠BAE ,∵ 点P 为AB 的中点,∴ AP =12AB , ∴ AP =12AG , 在Rt △APG 中,得∠GAP =60°,∴ ∠EAB =30°, ………………………………2分在Rt △EAB 中, AE =23AB =403cm . ……………………………………2分(3)过点E 作EH ⊥AD 于点H ,连BF ,由折叠可知 DE =BE ,∵ AF =FG ,DF =AB ,GD =AB , ∴ △ABF ≌△GDF ,又 ∵ ∠GDF =∠CDE ,GD =CD , ∴ Rt △GDF ≌Rt △CDE ,∴ DF =DE =BE ,在Rt △DCE 中, DC 2+CE 2=DE 2,∵ CB =25, CD =20,202 + CE 2=(25-CE )2,∴ CE =4.5,BE =25-4.5=20.5,HF =20.5-4.5=16,……………………………2分 在Rt △EHF 中,∵ EH 2 + HF 2=FE 2, 202 + 162=FE 2,∴ EF . …………………………………………3分24.(本题满分14分)解:(1)图形举例:图形正确得2分.△ADE ∽△BFD ,∵ DE ⊥AB ,∠EDF=30°, ∴∠FDB=60°,∵ ∠A=∠B ,∠AED=∠FDB , …………………………………………1分 ∴ △ADE ∽△BFD . …………………………………………1分(2)EF 可以平行于AB , …………1分此时,在直角△ADE 中,在直角△DEF 中,EF=3x , …………1分在直角△DBF 中, ∵ BD=x , ∴ 2x , …………………1分而DF=2EF , 2x =23x ,∴x = ………………………………………………………………2分(3))y x x =,即21244y x x =-+,3x ≤≤ …………………………………………………………………………3分当x =y 最大=8. ……………………………………………2分。

浙教版九年级上册数学期末试卷

浙教版九年级上册数学期末试卷

浙教版九年级上册数学期末试卷一、选择题(每题2分,共20分)1、在一个等边三角形中,它的边长是10,则它的高是()A. 5B. 10C. 5√3D. 10√32、如果二次函数的图像经过原点,那么()A.该函数的解析式为y=2x²B.该函数的解析式为y=2(x-1)²C.该函数的解析式为y=2x²-1D.该函数的解析式为y=2x²+13、在一个直角三角形中,如果其中一个锐角为30°,则另一个锐角的度数为()A. 60°B. 45°C. 75°D. 90°4、如果一个正方形的面积是25平方米,那么它的周长是()A. 5米B. 10米C. 15米D. 20米5、在一个等腰梯形中,下底是上底的2倍,上底与下底之间的距离是h米,且该梯形的面积是S平方米,则这个梯形的上底长度为()A. S/hB. S/2hC. 2S/hD. S/2h二、填空题(每题3分,共30分)6、若方程x²+mx+n=0有两个相等的实数根,则m、n满足的关系式是____________。

61、如果一个三角形的三边长分别为a、b、c,且满足a²+b²=c²,那么这个三角形是________三角形。

611、如果二次函数的图像的顶点坐标为(2, -3),且经过点(5,1),则这个二次函数的解析式为________。

6111、在一个矩形中,矩形的长是宽的2倍,若矩形的宽为w米,则矩形的长为________米。

在一个等腰梯形中,上底与下底之间的距离是4米,若等腰梯形的下底长度为6米,上底长度为3米,则这个梯形的面积为________平方米。

三、解答题(每题10分,共40分)11、一个容器盛满了浓度为90%的酒精,倒出10升后,剩余的酒精浓度为80%,求该容器的容量。

111、如果一元二次方程x²-6x+9=0的两个根都是整数,求该方程的根。

浙教版九年级数学上学期期末试题(含答案)

浙教版九年级数学上学期期末试题(含答案)

1浙教版九年级上学期期末数学试题及答案一、单选题1.若,则的值是()A .2B .3C .D . 【答案】C【分析】比例的基本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项,根据两内项之积等于两外项之积可得答案.【详解】解:∵3x =2y ,∴x :y =2:3,故选:C .【点睛】此题主要考查了比例的性质,关键是掌握两内项之积等于两外项之积.2.“抛一枚均匀硬币,落地后正面朝上”这一事件是( )A .必然事件B .随机事件C .确定事件D .不可能事件【答案】B【详解】随机事件.根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.3.如图所示,A ,B ,C 是上的三点,若,则的度数为()A .23°B .26°C .29°D .32°【答案】C【分析】根据同弧所对的圆周角等于圆心角的一半,即可得到答案.【详解】解:∵∠AOB =58°,∴∠ACB =29°,故选C .【点睛】本题考查圆周角定理的运用,解题的关键是根据同弧所对的圆周角等于圆心角的一半解答.4.抛物线与y 轴交点的坐标是()A .(0,3)B .(3,0)C .(1,0)D .(0,1) 【答案】A【分析】将代入抛物线,求得即可.【详解】解:将代入抛物线得,,即与y 轴交点的坐标是,故选:A【点睛】此题考查了二次函数与坐标轴的交点,解题的关键掌握与与y 轴交点,横坐标为0.5.如图,在矩形中,,.若以点B 为圆心,以4cm 长为半径作OB ,则下列选项中的32x y =:x y 2332O 58O ∠=︒C∠243y x x =-+0x =y 0x =243y x x =-+3y =(0,3)ABCD 3cm AB =4cm AD =各点在外的是()A .点AB .点BC .点CD .点D【答案】D【分析】根据勾股定理求出BD 的长,进而得出点A ,C ,D 与⊙B 的位置关系.【详解】解:连接BD ,在矩形ABCD 中,AB =3,AD =4,∵∠B =90°,∴BD 5,∵AB =3<4,BD =5>4,BC =4,∴点D 在⊙B 外,点C 在⊙B 上,点A 在⊙B 内.故选:D .【点睛】此题主要考查了点与圆的位置关系,矩形的性质,勾股定理,解决本题的关键是掌握点与圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离OP =d ,则有:①如果点P 在圆外,那么d >r ;②如果点P 在圆上,那么d =r ;③如果点P 在圆内,那么d <r .反之也成立.6.二次函数的图象如图所示,则该函数在所给自变量的取值范围内,函数值y 的取值范围是()A .B .C .D .【答案】C【分析】先根据二次函数是顶点式,开口向上,可求出二次函数的最小值,然后结合函数图像求出最大值即可得到答案.【详解】解:∵二次函数的解析式为,1>0, ∴当时,二次函数有最小值, ∵由函数图像可知,二次函数的最大值为3,∴当时,, 故选C .【点睛】本题主要考查了二次函数图像的性质,解题的关键在于能够利用数形结合的思想进行求解.B ==23324y x ⎛⎫=-+ ⎪⎝⎭()13x ≤≤1y ≥13y ≤≤334y ≤≤03≤≤y 23324y x ⎛⎫=-+ ⎪⎝⎭()13x ≤≤32x =3413x ≤≤334y ≤≤37.从分别标有号数1到10的10张除标号外完全一样的卡片中,随意抽取一张,其号数为3的倍数的概率是()A .B .C .D . 【答案】C【分析】用3的倍数的个数除以数的总数即为所求的概率.【详解】解:∵1到10的数字中是3的倍数的有3,6,9共3个,∴卡片上的数字是3的倍数的概率是. 故选:C .【点睛】本题考查概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.8.如图,D 是等边△ABC 外接圆上的点,且∠CAD =20°,则∠ACD 的度数为( )A .20°B .30°C .40°D .45°【答案】C【分析】根据圆内接四边形的性质得到∠D=180°-∠B=120°,根据三角形内角和定理计算即可.【详解】∴∠B =60°,∵四边形ABCD 是圆内接四边形,∴∠D =180°−∠B =120°,∴∠ACD =180°−∠DAC −∠D =40°,故选C.9.如图,抛物线y =﹣(x+m )2+5交x 轴于点A ,B ,将该抛物线向右平移3个单位后,与原抛物线交于点C ,则点C 的纵坐标为()A .B .C .3D . 【答案】B【分析】将抛物线y =﹣(x+m )2+5向右平移3个单位后得到y =﹣(x+m ﹣3)2+5,然后联立组成方程组求解即可.【详解】解:将抛物线y =﹣(x+m )2+5向右平移3个单位后得到y =﹣(x+m ﹣3)2+5,根据题意得:, 解得:, 71012310110310AC 5211413422()5{(3)5y x m y x m =-++=-+-+32{114x m y =-=∴交点C 的坐标为(,), 故选:B .【点睛】考查了抛物线与坐标轴的交点坐标等知识,解题的关键是了解抛物线平移规律,并利用平移规律确定平移后的函数的解析式.10.如图,在面积为144的正方形ABCD 中放两个正方形BMON 和正方形DEFG ,重合的小正方形OPFQ 的面积为4,若点A ,O ,G 在同一直线上,则阴影部分面积为()A .36B .40C .44D .48【答案】D【分析】先求出AB =12,OQ =2,设正方形BMON 的边长为x ,则AN =12-x ,NO =x ,QG =12-x ,然后证明△ANO ∽△OQG ,得到,即,求出x =8,由此即可求解. 【详解】解:∵正方形ABCD 的面积为144,正方形OPFQ 的面积为4,∴AB =12,OQ =2,设正方形BMON 的边长为x ,则AN =12-x ,NO =x ,QG =12-x ,∵四边形BMON 和四边形OPFQ 都是正方形,∴∠ANO =∠BNO =∠OQF =∠OQG =∠POQ =90°,∴AN ∥OQ ,∴∠NAO =∠QOG ,∴△ANO ∽△OQG ,∴,即, 解得:或(舍去),∴BN =8,∴EF =12-x +2=6,∴阴影部分面积=144-82-62+4=48,故选D .【点睛】本题主要考查了正方形的性质,相似三角形的性质与判定,平行线的性质与判定,解题的关键在于能够熟练掌握相似三角形的性质与判定条件.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题 a 、b 的比例中项,且a =4,b =9,则x =_____.32m -114=AN NO OQ QG12=212x x x--=AN NO OQ QG 12=212x x x--8x =18x =5【答案】6【分析】根据已知线段a =4,b =9,线段x 是a ,b 的比例中项,列出等式,利用两内项之积等于两外项之积即可得出答案.【详解】解:∵线段x 是线段a 、b 的比例中项,且a =4,b =9,∴=, ∴x 2=ab =4×9=36,∴x =±6(负值舍去).故答案为:6.【点睛】本题考查了成比例线段,理解比例的性质是解题的关键.12.若二次函数的图象经过点,则的值为______________.【答案】10【分析】直接把点代入到二次函数解析式中求解即可.【详解】解:∵二次函数的图象经过点,∴,故答案为:10.【点睛】本题考查了求二次函数的函数值,解题的关键在于能够熟练掌握二次函数的函数值的求解方法.13.已知圆中40°圆心角所对的弧长为3π,则这个圆的周长_____.【答案】27π.【分析】圆周角等于360°,先求得圆周角与40°的圆心角之间的倍数关系,再乘以40°的圆心角所对的弧长.【详解】解:×3π=27π, 故这个圆的周长是27π,故答案为:27π.【点睛】主要考查了圆的周长与弧长之间的关系.14.如图,在中,E 为CD 上一点,连结BE 并延长交AD 延长线于点F .如果,那么____________.【答案】4【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的面积比等于相似比的平方就可得到答案.【详解】解:如图,∵四边形ABCD 是平行四边形,∴DC ∥AB ,CD =AB .∴△DFE ∽△AFB ,∴. ∵DE :EC =2:3,∴DE :DC =DE :AB =2:5,∴ a x x b23y x x =+()2,P a a ()2,P a 23y x x =+()2,P a 22324610a =+⨯=+=36040ABCD □:2:3DE EC =:DEF ABF S S =△△2()DEF ABF S DE S AB=:425DEF ABF S S =:△△故答案为:4:25或. 【点睛】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.15.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中剩余的编号为1~7的小正方形中任意一个涂黑,则所得图案是一个轴对称图形的概率是_________.【答案】. 【详解】试题分析:将图中剩余的编号为1-7的小正方形中任意一个涂黑共7种情况,其中涂黑3,4,7,1,6有5种情况可使所得图案是一个轴对称图形(如图),故其概率是.考点:1.轴对称图形;2.几何概率.16.如图,半圆的直径,将半圆绕点B 顺时针旋转45°得到半圆,与AB 交于点P ,那么AP 的长为_____________.【答案】【分析】连接,由题意可得,,为直径,可得,可得为等腰直角三角形,即可求解.【详解】解:连接,如下图:由题意可得,,∵为直径, 4255757O 10AB =O O '10-A P '45A BP '∠=︒A B '90A PB '∠=︒A BP 'A P '45A BP '∠=︒A B '7∴,∴为等腰直角三角形,,由勾股定理得,,解得故答案为:【点睛】此题考查了圆周角定理,等腰直角三角形的判定与性质,勾股定理以及旋转的性质,解题的关键是掌握并灵活运用相关性质进行求解.17.如图,一张扇形纸片OAB ,,,将这张扇形纸片折叠,使点A 与点O 重合,折痕为CD ,则图中未重叠部分(即阴影部分)的面积为__________.【答案】【分析】根据阴影部分的面积等于S 扇形OBD 面积减去S 弓形OD 面积计算即可.【详解】解:由折叠可知,S 弓形AD=S 弓形OD ,DA =DO ,∵OA=OD ,∴AD =OD =OA ,∴△AOD 为等边三角形,∴∠AOD =60°,∠DOB =60°,∵AD =OD =OA =6,∴CD=,∴S 弓形AD =S 扇形ADO ﹣S △ADO 6π﹣, ∴S 弓形OD =6π﹣,阴影部分的面积=S 扇形BDO ﹣S 弓形OD (6π﹣ 故答案为:【点睛】本题考查了扇形面积与等边三角形的性质,熟练运用扇形公式是解题的关键.18.如图,AB 是半圆O 的直径,D 是半圆O 上一点,C 是的中点,连结AC 交BD 于点E ,连结AD ,若BE =4DE ,CE =6,则AB 的长为_____.【答案】【分析】90A PB '∠=︒A BP 'A P PB '=222A P A B ''=BP A P '==AP AB BP =-=10-120AOB ∠=︒6OA =260613602π⋅=-⨯2606360π⋅=-BD如图,连接OC 交BD 于K .设DE =k .BE =4k ,则DK =BK =2.5k ,EK =1.5k ,由AD ∥CK ,推出AE :EC =DE :EK ,可得AE =4,由△ECK ∽△EBC ,推出EC 2=EK•EB ,求出k 即可解决问题.【详解】解:如图,连接OC 交BD 于K .∵,∴OC ⊥BD ,∵BE =4DE ,∴可以假设DE =k .BE =4k ,则DK =BK =2.5k ,EK =1.5k ,∵AB 是直径,∴∠ADK =∠DKC =∠ACB =90°,∴AD ∥CK ,∴AE :EC =DE :EK ,∴AE :6=k :1.5k ,∴AE =4,∵△ECK ∽△EBC ,∴EC 2=EK•EB ,∴36=1.5k×4k ,∵k >0,∴k,∴BC=,∴AB=故答案为:.【点睛】本题考查相似三角形的判定和性质,垂径定理,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.三、解答题1、1、2,乙同学口袋中也有三张卡片,分别写着数字 1、2、2,两人各自从自己的口袋中随机摸出一张卡片,若两人摸出的卡片上的数字之和为偶数,则甲胜;否则乙胜.求甲胜的概率.【答案】. 【分析】先列出表格,从而可得两人摸出的卡片上的数字之和的所有可能结果,再找出两人摸出的卡片上的数字之和为偶数的结果,然后利用概率公式进行计算即可得.【详解】解:由题意,所有可能的结果列表如下:CD BC =36499由表可知,一共有9种等可能结果,其中,两人摸出的卡片上的数字之和为偶数的结果有4种,则甲胜的概率为, 答:甲胜的概率是. 【点睛】本题考查了利用列举法求概率,正确利用表格列出所有可能的结果是解题关键.20.如图,在的正方形网格中,网线的交点称为格点,点,,都是格点.已知每个小正方形的边长为1.(1)画出的外接圆,并直接写出的半径是多少.(2)连结,在网络中画出一个格点,使得是直角三角形,且点在上.【答案】(1;(2)作图见解析【分析】(1)作AB 和BC 的垂直平分线,交点即为点O 的位置,在网格中应用勾股定理即可求得半径;(2)只能是或,直接利用网格作图即可.【详解】解:(1)作AB 和BC 的垂直平分线,交点即为点O ,如图:,;(2)当是直角三角形时,且点在上,只能是或,利用网格作图如下:49P =4966⨯A B C ABC O O AC P PAC △P O 90PAC ∠=︒90PCA ∠=︒=PAC △P O 90PAC ∠=︒90PCA ∠=︒.【点睛】本题考查尺规作图、确定圆的条件,掌握三角形外接圆圆心是三边线段垂直平分线的交点是解题的关键. 21.如图,在矩形ABCD 中,点E 、F 分别在边AD 、DC 上,△ABE ∽△DEF ,AB=6,AE=9,DE=2,求EF 的长.【分析】利用相似三角形的对应边成比例,求出DF 的长度,在直角三角形DEF 中,利用勾股定理求出斜边EF 长【详解】解:∵△ABE ∽△DEF ,∴ , ∴DF=3在矩形ABCD 中,∠D=90°. ∴在Rt △DEF 中,22.如图,AB 是的直径,弦于点M ,连结CO ,CB .(1)若,,求CD 的长度;(2)若平分,求证:.【答案】(1)8;(2)证明见详解【分析】(1)根据垂径定理得出CM =DM ,再由已知条件得出圆的半径为5,在Rt △OCM 中,由勾股定理得出CM 即可,从而得出CD ;(2)过点O 作ON ⊥BC ,垂足为N ,由角平分线的性质得出OM =ON ,从而得出CB =CD .【详解】解:(1)∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CM =DM ,∵AM =2,BM =8,∴AB =10,∴OA =OC =5,在Rt △OCM 中,OM 2+CM 2=OC 2, AB AE DE DF692AB AE DE ===,,69=2DF∴EF DE =O CD AB ⊥2AM =8BM =CO DCB ∠CD CB =11∴CM 4,∴CD =8;(2)过点O 作ON ⊥BC ,垂足为N ,∵CO 平分∠DCB ,∴OM =ON ,∵CO =CO∴Rt △COM ≌Rt △CON∴CM =CN∴CB =CD .【点睛】本题考查了垂径定理,圆周角定理以及勾股定理,掌握定理的内容并熟练地运用是解题的关键.23.我市绿色和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外贸商李经理按市场价格10元/千克在我市收购了2000千克香菇存放入冷库中.请根据李经理提供的预测信息(如下图)帮李经理解决以下问题:(1)若存放天后,将这批香菇一次性出售,设这批香菇的销售总金额.....为元,试写出与之间的函数表达式;(销售总金额=销售单价×销售量)(2)将这批香菇仔放多少天后出售可获得最大利润..?最大利润是多少?【答案】(1)(1≤x ≤110,且x 为整数);(2)这批香菇存放100天后出售可获得最大利润,最大利润是30000元.【分析】(1)根据等量关系“销售总金额=(市场价格+0.5×存放天数)×(原购入量6×存放天数)”列出函数关系式; (2)根据等量关系“利润=销售总金额收购成本各种费用”列出函数关系式并求最大值.【详解】解:(1)由题意y 与x 之间的函数关系式为:y =(10+0.5x )(2000-6x )=3x 2+940x +20000(1≤x ≤110,且x 为整数);(2)设利润为w ,由题意得w =3x 2+940x +2000010×2000340x=3(x 100)2+30000∵a =3<0,∴抛物线开口方向向下,∴x =100时,w 最大=30000,∴李经理将这批香菇存放100天后出售可获得最大利润,最大利润是30000元.【点睛】此题主要考查了二次函数的应用以及二次函数的最值求法,根据函数关系式求出以及最值公式求出是解题关键. 24.如图直角坐标系中,O 为坐标原点,抛物线y=﹣x 2+6x+3交y 轴于点A ,过A 作AB ∥x 轴,交抛物线于点B ,连结OB .点P 为抛物线上AB 上方的一个点,连结PA ,作PQ ⊥AB 垂足为H ,交OB 于点Q .(1)求AB 的长;(2)当∠APQ=∠B 时,求点P 的坐标;(3)当△APH 面积是四边形AOQH 面积的2倍时,求点P 的坐标.=x y yx 2394020000y x x =-++----------【答案】(1)AB=6;(2)P (4,11);(3)P (4,11)或P (3,12).【分析】(1)先求得点A (0,3),令,解得x=0或6,故点B (6,3),即可求解;(2)证明△ABO ~△HPA ,则,即可求解; (3)当△APH 的面积是四边形AOQH 的面积的2倍时,则2(AO+HQ )=PH ,即可求解.【详解】解:(1)对于,令x=0,则y=3,故点A (0,3),令,解得x=0或6,故点B (6,3),故AB=6;(2)设P (,),∵∠APQ=∠B ,∠AHP=∠OAB=90°,∴△ABO ~△HPA ,故, ∴, 解得m=4.∴P (4,11);(3)当△APH 的面积是四边形AOQH 的面积的2倍时,则2(AO+HQ )=PH ,∵HQ ∥OA ,∴,即, ∴HQ=, ∴, 解得:m 1=4,m 2=3,∴P (4,11)或P (3,12).【点睛】本题考查了二次函数的性质,相似三角形的判定和性质,平行线分线段成比例定理,图形的面积计算等,解题的关键是灵活运用所学知识解决问题.2633y x x =-++=HP AH AB AO=263y x x =-++2633y x x =-++=m 263m m -++HP AH AB AO =2663m m m -+=HQ BH AO AB =636HQ m -=62m -262362m m m -⎛⎫+=-+ ⎪⎝⎭。

(典型题)浙教版九年级上册数学期末测试卷

(典型题)浙教版九年级上册数学期末测试卷

浙教版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如图,在△ABC中,点D、E分别在AB、AC边上,且DE∥BC,若=,则的值等于()A. B.3 C. D.2、如图,中,,,点在的延长线上,且连接并延长,过作于点,若,则的面积为()A.1B.2C.D.3、如图,AB是⊙O的直径,点C、D在⊙O上,若∠ABD=50°.则∠BCD的度数为()A.25°B.30°C.35°D.40°4、盒子中有白色兵乓球8个和黄色乒乓球若干个,为求得黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为()A.24个B.32个C.48个D.72个5、已知抛物线y=-2(x-3)2+5,则此抛物线()A.开口向下,对称轴为直线x=-3B.顶点坐标为(-3,5)C.最小值为5D.当x>3时y随x的增大而减小6、如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是()A.5B.6C.7D.87、对于抛物线y=﹣3(x﹣2)2+1,下列说法中错误的是()A.抛物线开口向下B.对称轴是直线x=2C.顶点坐标是(2,1) D.抛物线与x轴没有交点8、如图,在中,,将△AOC绕点O顺时针旋转后得到,则AC边在旋转过程中所扫过的图形的面积为().A. B. C. D.9、下列说法正确的是()A.一个游戏的中奖概率是0.1,则做10次这样的游戏一定会中奖;B.一组数据6,8,7,8,8,9,10的众数和中位数都是8;C.为了解全国中学生的心理健康情况,应该采用普查的方式; D.甲组数据方差,乙组数据方差,则乙组数据比甲组数据稳定.10、如图,正方形ABCD的四个顶点分别在⊙O上,点P在上不同于点C的任意一点,则∠BPC的度数是()A.45°B.60 °C.75 °D.90 °11、如图,在正六边形ABCDEF外作正方形DEGH,连接AH,则tan∠HAB等于()A.3B.C.2D.12、点P是半径为10的圆O所在平面上的一点,且点P到点O的距离为8.则过点P的直线l与圆O的位置关系为()A.相交B.相切C.相离D.相交、相切、相离都有可能13、如图,Rt△ABC绕O点旋转90°得Rt△BDE,其中∠ACB=∠E= 90°,AC=3,DE=5,则OC的长为()A. B. C. D.14、如图,四边形ABCD为平行四边形,E、F为CD边的两个三等分点,连接AF、BE交于点G,则S△EFG :S△ABG=()A.1:3B.3:1C.1:9D.9:115、如图,在直角坐标系中,已知点P的坐标为(1,0),进行如下操作:将线段OP0按逆时针方向旋转60°,再将其长度伸长为OP的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转60°,长度伸长为OP1的2倍,得到线段OP2,如此重复操作下去,得到线段OP3, OP4,…则P32的坐标为()A.(﹣2 31, 2 31)B.(2 31, 2 31)C.(﹣2 32,2 32) D. (2 32, 2 32)二、填空题(共10题,共计30分)16、如图,正方形MNOK和正六边形ABCDEF的边长相等,边OK与边AB重合.将正方形在正六边形内绕点B顺时针旋转,使边KM与边BC重合,则KM旋转的度数是________°.17、若二次函数y=x2+2x+m的图象与x轴没有公共点,则m的取值范围是________.18、如图,矩形纸片ABCD中,BC=5,AB=3,点P是BC边上的动点(点P不与点B、C重合).现将△PCD沿PD翻折,得到△PC′D;作∠BPC′的角平分线,交AB于点E.设BP=x,BE=y,则y与x的函数关系式为________.19、如图,AC是⊙O的直径,点B在⊙O上,已知AC=10,BC=8.点D,E分别在边AC,BC上运动,且BD⊥DE。

(真题汇编)浙教版九年级上册数学期末测试卷

(真题汇编)浙教版九年级上册数学期末测试卷

浙教版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如图,取一张长为、宽为的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边应满足的条件是()A. B. C. D.2、如图,在△ABC中,点D,E分别在AB,AC边上,且DE∥BC,若AD:DB=3:2,AE=6,则EC等于()A.10B.4C.15D.93、小敏用一根长为8cm的细铁丝围成矩形,则矩形的最大面积是()A.4cm 2B.8cm 2C.16cm 2D.32cm 24、如图,四边形ABCD为平行四边形,E、F为CD边的两个三等分点,连接AF、BE交于点G,则S△EFG :S△ABG=()A.1:3B.3:1C.1:9D.9:15、对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.与x轴有两个交点D.顶点坐标是(1,2)6、已知0<x<1,10<y<20,且y随x的增大而增大,则y与x的关系式不可以是()A.y=10x+10B.y=﹣10(x﹣1)2+20C.y=10x2+10 D.y=﹣10x+207、如图,△ABC是等腰三角形,AB=AC=3,BC=1.点D在AB边上,点E在CB 的延长线上,已知AD=1,BE=1,连接ED并延长交AC于点F,则线段AF的长为()A. B. C. D.18、下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A.正三角形B.正方形C.正五边形D.正六边形9、如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是()A.20cmB.18cmC.2 cmD.3 cm10、如图,在△ABC中,D、E分别是边AB、AC上的点,且DE∥BC,若AD:DB =2:3,则△ADE与△ABC的面积比等于()A.2:3B.4:5C.4:9D.4:2511、一个不透明的盒子装有m个除颜色外完全相同的球,其中有4个白球,每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过如此大量重复试验,发现摸到白球的频率稳定在0.2左右,则m的值约为( )A.8B.10C.20D.4012、如图,四边形ABCD是⊙O的内接四边形,若∠A=70°,则∠C的度数是()A.100°B.110°C.120°D.130°13、已知抛物线y=x2﹣2bx+4的顶点在x轴上,则b的值一定是()A.1B.2C.﹣2D.2或﹣214、如图,菱形ABCD中,AB=AC,点E,F在AB,BC上,AE=BF,AF,CE交于G,GD和AC交于H,则下列结论中成立的有()个.①△ABF≌△CAE;②∠AGC=120°;③DG=AG+GC;④AD2=DH•DG;⑤△ABF≌△DAH.A.2B.3C.4D.515、将二次函数y=x2﹣2x化为y=(x﹣h)2+k的形式,结果为()A.y﹣(x﹣1)2B.y=(x﹣1)2﹣1C.y=(x+1)2+1D.y=(x﹣1)2+1二、填空题(共10题,共计30分)16、如图,在矩形中,对角线,交于点,过点作,交的延长线于点,若,,则的长为________.17、如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为________.18、如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为________.19、如图,四边形ABCD是⊙O的内接四边形,点D是的中点,点E是上的一点,若∠CED=40°,则∠ADC=________度.20、如图,△ABC中,∠ACB=90°,sinA= ,AC=12,将△ABC绕点C顺时针旋转90°得到△A'B'C,P为线段A′B'上的动点,以点P为圆心,PA′长为半径作⊙P,当⊙P与△ABC的边相切时,⊙P的半径为________.21、如图,在中,,在同一平面内,将绕点逆时针旋转得到,连接,则的值是________.22、将抛物线y=x2-2x+3向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为________.23、如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是________.24、如图,已知⊙O上三点,,,切线交延长线于点,若,则________.25、如图,长方形ABCD中,AB=1,以点A为圆心,长方形的长AD为半径画弧,交BC于点E,交AB的延长线于点F,若AE恰好平分∠BAD,则阴影部分的面积为________.三、解答题(共5题,共计25分)26、一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.27、如图,在△ABC中,AC=BC,CD是AB边上的高线,且有2CD=3AB,又E,F 为CD的三等分点,求证:∠ACB+∠AEB+∠AFB=180°.28、如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B (3,5)、C(1,2).(1)在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.①旋转角为多少度?②写出点B2的坐标.29、观察如图所示的图案,分析它们分别是将哪个基本图形经过哪些变换后得到的.30、《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD 于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB=()寸,CD=()寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.参考答案一、单选题(共15题,共计45分)1、B2、B3、A4、C5、D6、D7、B8、A9、C10、D11、C12、B13、D14、D15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、30、。

2022-2023学年浙教版九年级上期末复习数学试卷含答案解析

2022-2023学年浙教版九年级上期末复习数学试卷含答案解析

2022-2023学年浙教版九年级上期末复习数学试卷一.选择题(共10小题,满分40分,每小题4分)1.⊙O 的半径为5,点A 与圆心O 的距离为OA =4,则点A 与⊙O 的位置关系为( ) A .点A 在⊙O 内B .点A 在⊙O 上C .点A 在⊙O 外D .以上三种情况都有可能2.若=,则下列变形错误的是( )A .=B .=C .3a =2bD .2a =3b 3.将抛物线y =2x 2﹣4x +1向下平移2个单位,再向右平移3个单位,则平移后抛物线的函数表达式为( ) A .y =2(x +2)2+1B .y =2(x ﹣4)2+1C .y =2(x +2)2﹣3D .y =2(x ﹣4)2﹣34.一个不透明的盒子中装有4个形状、大小质地完全相同的小球,这些小球上分别标有数字﹣1、0、2和3.从中随机地摸取一个小球,则这个小球所标数字是正数的概率为( )A .B .C .D .5.如图,点A ,B ,C 是⊙O 上的三点,∠BAC =40°,则∠OBC 的度数是( )A .80°B .40°C .50°D .20°6.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC .若S △BDE :S △ADE =1:2.则S △DOE :S △AOC 的值为( )A .B .C .D .7.如图,将△ABC 绕点A 逆时针旋转40°得到△ADE ,AD 与BC 相交于点F ,若∠E =80°且△AFC 是以线段FC 为底边的等腰三角形,则∠BAC 的度数为( )A.55°B.60°C.65°D.70°8.二次函数y=﹣2x2+4x图象的顶点坐标是()A.(﹣1,2)B.(﹣1,1)C.(1,1)D.(1,2)9.如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于()A.B.πC.πD.2π10.如图,已知E是正方形ABCD的边AD的延长线上一点,BE交AD于点F,若CD=6,FD=2,则ED 的长是()A.2B.3C.4D.5二.填空题(共6小题,满分30分,每小题5分)11.若二次函数的解析式y=(x﹣m)(x﹣1)(1≤m≤2),若函数过(p,t)点和(p+6,t)点,则t 的取值范围是.12.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有个.13.圆心角为120°,半径为2的扇形的弧长是.14.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则BE=.15.抛物线的顶点在原点,且过点(3,﹣27),则这条抛物线的解析式为.16.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断前有米.三.解答题(共8小题,满分80分)17.(7分)如图,⊙O的弦AB、CD的延长线相交于点P,且PA=PC.求证:=.18.(8分)有甲、乙两组卡片,卡片上除数字外完全相同,甲组有三张,分别标有数字1、﹣2、3.乙组有二张,分别标有数字﹣1、2.小明闭眼从甲组中随机抽出一张,记录其标有的数字为x,再从乙组中随机抽出一张,记录其标有的数字为y,这样就确定点P的一个坐标为(x,y).(1)用列表或画树状图的方法写出点P的所有可能坐标;(2)求点P落在第四象限的概率.19.(10分)如图,在△ABC中,∠C=90°,AC=12cm,BC=16cm,D、E分别是AC、AB的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为2cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为4cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s.解答下列问题:(1)当t为何值时,以点E、P、Q为顶点的三角形与△ADE相似?(2)当t为何值时,△EPQ为等腰三角形?20.(9分)如图,在每个边长都为1的正方形组成的网格中,小正方形的顶点叫做格点.线段AB的端点A、B均在格点上.(1)线段AB的长等于.(2)将线段AB逆时针旋转90°得到线段BC,在图中画出BC,并连接AC.(3)在线段AB上确定一点D,连接CD,使得△BCD和△ACD的面积比为4:3.要求:以上作图只用无刻度的直尺画图,保留作图痕迹,不写画法.21.(10分)在平面直角坐标系xOy中,抛物线T:y=a(x+4)(x﹣m)与x轴交于A,B两点,m>﹣3,点B在点A的右侧,抛物线T的顶点为记为P.(1)求点A和点B的坐标;(用含m的代数式表示)(2)若a=m+3,且△ABP为等腰直角三角形,求抛物线T的解析式;(3)将抛物线T进行平移得到抛物线T',抛物线T'与x轴交于点B,C(4,0),抛物线T'的顶点记为Q.若0<a<,且点C在点B的右侧,是否存在直线AP与CQ垂直的情形?若存在,求m的取值范围;若不存在,请说明理由.22.(10分)如图,△ABC内接于⊙O(AC>BC),AB是⊙O的直径,E,C,D是⊙O上的点,,连结ED分别交AC,AB于点F,G.(1)求证:△EFA∽△BCA.(2)若BC=5,BG=4,求AE的长.23.(12分)2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品.某商家以每套34元的价格购进一批冰墩墩和雪容融套件.若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.(1)设冰墩墩和雪容融套件每套售价定为x元时,求该商品销售量y与x之间的函数关系式;(2)求每套售价定为多少元时,每天销售套件所获利润W最大,最大利润是多少元?24.(14分)有一组邻边相等,且另外两边也相等的四边形叫做“筝形”,如图1,四边形ABCD中,AD =CD,AB=BC,那么四边形ABCD是筝形.(1)如图1,如果筝形ABCD的周长是20,AD=CD=4,那么AB=;(2)在探索筝形的性质时,发现筝形有一组对角相等,如图1,筝形ABCD中,AD=DC,AB=BC,那么∠A=∠C,请证明这个结论;(3)如图2,筝形ABCD中,AD=DC=,∠ADC=90°,∠DAB=105°,求筝形ABCD的面积.参考答案解析一.选择题(共10小题,满分40分,每小题4分)1.解:∵OA=4,⊙O的半径为5,∴OA<r,∴点A在⊙O内,故选:A.2.解:由=得3a=2b,A、由等式性质可得:3a=2b,变形正确;B、由等式性质可得:3a=2b,变形正确;C、变形正确;D、2a=3b与3a=2b不一致,变形错误.故选:D.3.解:抛物线y=2x2﹣4x+1可化y=2(x﹣1)2﹣1,将抛物线y=2x2﹣4x+1向下平移2个单位,再向右平移3个单位,则平移后的抛物线解析式为y=2(x﹣1﹣3)2﹣1﹣2,即y=2(x﹣4)2﹣3,故选:D.4.解:根据题意可得:在4个小球中,其中标有正数的有2个,分别是2,3,故从中随机地摸取一个小球,则这个小球所标数字是正数的概率为:=.故选:C .5.解:∵∠BOC =2∠BAC ,∠BAC =40°∴∠BOC =80°,∵OB =OC ,∴∠OBC =∠OCB =(180°﹣80°)÷2=50°故选:C .6.解:∵S △BDE :S △CDE =1:2,∴BE :EC =1:2,∴BE :BC =1:3,∵DE ∥AC ,∴△BDE ∽△BAC ,△DOE ∽△AOC ,∴==,∴S △DOE :S △AOC =()2=, 故选:B .7.解:∵将△ABC 绕点A 逆时针旋转40°得到△ADE ,∴∠E =∠C =80°,∠BAD =40°,又∵△AFC 是以线段FC 为底边的等腰三角形,∴AC =AF ,∴∠C =∠AFC =80°,∴∠CAF =180°﹣∠C ﹣∠AFC =180°﹣80°﹣80°=20°,∴∠BAC =∠BAD +∠CAF =40°+20°=60°.故选:B .8.解:∵y =﹣2x 2+4x =﹣2(x ﹣1)2+2,∴顶点坐标为(1,2),故选:D .9.解:连接OC ,如图,∵△ABC 为等边三角形,∴∠AOC =120°,S △AOB =S △AOC ,∴图中阴影部分的面积=S 扇形AOC ==π.故选:C .10.解:∵四边形ABCD是正方形,∴BC=CD=6,AD∥BC,∴△DEF∽△CEB,∴=,即=,解得:ED=3;故选:B.二.填空题(共6小题,满分30分,每小题5分)11.解:设直线y=t与抛物线的交点为(x1,t),(x2,t),由题意|x1﹣x2|=6,由,消去y得到,x2﹣(m+1)x+m﹣t=0,∴x1+x2=m+1,x1x2=m﹣t,∵(x1+x2)2﹣4x1x2=36,∴(m+1)2﹣4(m﹣t)=36,∴t=,设y′=m2﹣2m,∵y′=(m﹣1)2﹣1,当1≤m≤2时,﹣1≤y′≤0,∴≤t≤9,故答案为≤t≤9.12.解:设袋中白球有x个,根据题意,得=0.75,解得x=5.所以袋中白球有5个.故答案为5.13.解:l===π.故答案为:π.14.解:∵AB⊥CD,AB是⊙O的直径,∴CE=ED=CD=4cm,在Rt△OEC中,OE===3cm,∴BE=OB﹣OE=5﹣3=2(cm),故答案为:2cm.15.解:∵抛物线的顶点在原点,∴设抛物线的表达式:y=ax2,∵抛物线过点(3,﹣27),∴9a=﹣27,∴a=﹣3,∴y=﹣3x2,故答案为:y=﹣3x2.16.解:如图:树离地面9米,即如图所示AB=9米,树的顶部落在离底部12米即如图所示AC=12米,在Rt△ABC中,由勾股定理得:AB2+AC2=BC2,则92+122=BC2,∴BC=15米,∴AB+BC=24米,即树折断前有24米.故答案为:24.三.解答题(共8小题,满分80分)17.证明:连接AC、OA、OB、OC、OD,如图所示,∵PA=PC,∴∠PAC=∠PCA,∵∠PAC=∠BOC,∠PCA=∠AOD,∴∠BOC=∠AOD,∴=,∴﹣=﹣,即=.18.解:(1)画树状图为:共有6种等可能的结果数,它们是(1,﹣1),(1,2),(﹣2,﹣1),(﹣2,2),(3,﹣1),(3,2);(2)点P在第四象限的结果为2个,∴点P落在第四象限的概率==.19.解:(1)如图1中,在Rt△ABC中,AC=12cm,BC=16cm,∴AB==20cm.∵D、E分别是AC、AB的中点.AD=DC=6cm,AE=EB=10cm,DE∥BC且DE=BC=8cm,①PQ⊥AB时,∵∠PQB=∠ADE=90°,∠AED=∠PEQ,∴△PQE∽△ADE,∴,由题意得:PE=8﹣2t,QE=4t﹣10,即,解得t=;②如图2中,当PQ⊥DE时,△PQE∽△DAE,∴,∴,∴t=,∴当t为s或s时,以点E、P、Q为顶点的三角形与△ADE相似.(2)如图3中,当点Q在线段BE上时,由EP=EQ,可得8﹣2t=10﹣4t,t=1.如图4中,当点Q在线段AE上时,由EQ=EP,可得8﹣2t=4t﹣10,解得t=3.如图5中,当点Q在线段AE上时,由EQ=QP,可得(8﹣2t):(4t﹣10)=4:5,解得t=.如图6中,当点Q在线段AE上时,由PQ=EP,可得(4t﹣10):(8﹣2t)=4:5,解得t=.综上所述,t=1或3或或秒时,△PQE是等腰三角形.20.解:(1)线段AB的长==,故答案为;(2)如图,线段BC即为所求;(3)如图,点D即为所求.取点E,F,连接AE,BF使得AE=3,BF=4,连接EF与AB交于点D,∵AE∥BF,∴△BDF∽△ADE,∴==,∴×BD•BC:×AD•BC=4:3,∴△BCD和△ACD的面积比为4:3.21.解:(1)令y=0,则(x+4)(x﹣m)=0,解得x=﹣4或x=m,∴A(﹣4,0),B(m,0);(2)∵a=m+3,∴y=(m+3)(x+4)(x﹣m)=(m+3)(x2+4x﹣mx﹣4m),∴P(m﹣2,(﹣m﹣3)()2),∵△ABP为等腰直角三角形,∵AB=m+4,∴AB=(m+4)=(m+3)()2,解得m=﹣2或m=﹣5,∵m>﹣3,∴m=﹣2,∴y=x2+6x+8;(3)存在直线AP与CQ垂直的情形,理由如下:∵y=a(x+4)(x﹣m),∴P(m﹣2,),由题意可知抛物线T'的解析式为y=a(x﹣m)(x﹣4),∴Q(,),设直线AP的解析式为y=kx+b,∴,解得,∴y=﹣(m+4)x﹣2a(m+4),同理可求直线CQ的解析式为y=﹣(m﹣4)x+2a(m﹣4),联立方程组,解得,设直线AP与直线CQ的交点为M,∴M(﹣m,am2﹣8a),过点M作NM⊥x轴交于N,∵AM⊥CQ,∴∠AMQ=90°,∴∠AMN+∠NMC=90°,∵∠AMN+∠NAM=90°,∴∠NMC=∠NAM,∴△AMN∽△MCN,∴=,∴(am2﹣8a)2=(﹣m+4)(4+m),∴a2=,∵0<a<,∴0<<,解得﹣3<m<4.22.(1)证明:∵,∴∠EAC=∠BAC,∠E=∠CBA,∴△EFA∽△BCA.(2)解:∵AB为⊙O直径,∴∠ACB=90°.∵△EFA∽△BCA.∴∠EFA=∠C=90°,.又∵∠CAE=∠CAB,AF=AF,∴△AEF≌△AFG(ASA),∴AE=AG,EF=FG.∵∠AEG=∠ABD,∠AGE=∠BGD,∴△AEG∽△DBG,∴,设EF=FG=2x.AE=AG=5x,∴AB=5x+4,∴,∴x=,∴.23.解:(1)根据题意,得y=200﹣×4(x﹣48)=﹣2x+296,∴y与x之间的函数关系式:y=﹣2x+296;(2)根据题意,得W=(x﹣34)(﹣2x+296)=﹣2(x﹣91)2+6498,∵a=﹣2<0,∴抛物线开口向下,W有最大值,=6498,当x=91时,W最大值答:每套售价定为:91元时,每天销售套件所获利润最大,最大利润是6498元.24.解:(1)∵四边形ABCD为筝形,∴AB=BC,∵筝形ABCD的周长是20,AD=CD=4,∴AB=BC=×(20﹣2×4)=6,故答案为:6;(2)如图1,连接DB,在△ABD和△CBD中,,∴△ADB≌△CDB(SSS),∴∠A =∠C ;(3)∵∠ADC =90°,AD =CD =,∴△ACD 是等腰直角三角形.∴AC =AD =2, ∵四边形ABCD 为筝形,∴∠DAB =∠DCB =105°,∵△ADC 是等腰直角三角形,∴∠DAC =∠DCA =45°,∴∠BAC =∠BCA =60°,∴△ABC 是等边三角形,∵AD =CD ,AB =BC ,∴BD 是AC 的中垂线,∴BD ⊥AC ,∴AO =CO =1,∠ABO =30°,∴OB =OA =,∴S 筝形ABCD =S △ADC +S △ABC =AD •CD +AC •OB =××+×2×=1+.。

(精练)浙教版九年级上册数学期末测试卷

(精练)浙教版九年级上册数学期末测试卷

浙教版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、一个布袋里装有5个红球、3个黄球和2个白球,除颜色外其他都相同,搅匀后任意摸出一个球,是白球的概率为( ) A. B.C. D.2、直角三角形的两边长分别为16和12,则此三角形的外接圆半径是( ) A.8或6 B.10或8 C.10 D.83、如图,点E 是平行四边形ABCD 的边AD 上的中点,AC 、BE 相交于点F ,则S △AEF :S △CBF =( )A.1:4B.1:2C.1:9D.4:14、抛物线y=﹣x 2向右平移1个单位,再向上平移2个单位得到( ) A.y=﹣(x ﹣1) 2+2 B.y=﹣(x+1) 2+2 C.y=﹣(x ﹣1) 2﹣2 D.y=﹣(x+1) 2﹣25、如图,四边形ABCD 和A′B′C′D′是以点O 为位似中心的位似图形,若OA :OA′=2:3,则四边形ABCD 与四边形A′B′C′D′的面积比为( )A.4:9B.2:5C.2:3D.:6、二次函数y=3(x-2)2-1的图象的顶点坐标是( )A.(2,-1)B.(-2,-1)C.(2,1)D.(-2,1)7、如图,在▱ABCD中,点E、F分别在边AD、BC上,且EF∥CD,G为边AD延长线上一点,连接BG,则图中与△ABG相似的三角形有()个.A.1B.2C.3D.48、如图,⊙O的半径为1,分别以⊙O的直径AB上的两个四等分点O1, O2为圆心,为半径作圆,则图中阴影部分的面积为()A.πB. πC. πD.2π9、如图,是半圆,连接AB,点O为AB的中点,点C,D在上,连接AD,CO,BC,BD,OD.若∠COD=62°,且AD∥OC,则∠ABD的大小是()A.26°B.28°C.30°D.32°10、如图,在⊙O中,=2,则下列结论正确的是()A.AB>2CDB.AB=2CDC.AB<2CDD.以上都不正确11、如图,在△ABC中,AC=BC=4,∠ACB=90°,若点D是AB的中点,分别以点A,B为圆心,AB长为半径画弧,交AC于点E,交BC于点F,则图中阴影部分的面积是()A.16﹣2πB.16﹣πC.8﹣2πD.8﹣π12、如图,AC是⊙O的弦,AC=4,点B是⊙O上的一个动点,且∠ABC=45°,若点M,N分别是AC,BC的中点,则MN的最大值为()A. B.4 C.6 D.13、在大力发展现代化农业的形势下,现有、两种新玉米种子,为了了解它们的出芽情况,在推广前做了五次出芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量100 300 500 1000 3000 出芽率0.99 0.94 0.96 0.98 0.97出芽率0.99 0.95 0.94 0.97 0.96下面有三个推断:①当实验种子数量为100时,两种种子的出芽率均为0.99,所以、两种新玉米种子出芽的概率一样;②随着实验种子数量的增加,种子出芽率在0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97;③在同样的地质环境下播种,种子的出芽率可能会高于种子.其中合理的是()A.①②③B.①②C.①③D.②③14、有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图6②,…,则第10次旋转后得到的图形与图①~④中相同的是()A.图①B.图②C.图③D.图④15、一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其它区别,现从这个盒子中随机摸出一个球,摸到红球的概率为( )A. B. C. D.二、填空题(共10题,共计30分)16、从长度分别为lcm、2cm、5cm、7cm、9cm的5根木棒中随机抽取一根,能与长度分别为3cm和5cm的木棒围成三角形的概率为________.17、小松调查了七年级(1)班50名同学最喜欢的篮球明星,结果如下:B BC A A B CD C B C A D D B AC C B AA B D A C C A B A C A B C D A C C A C AA A A C A DBC C A其中A代表科比,B代表库里,C代表詹姆斯,D代表格里芬,用扇形统计图表示该班同学最喜欢的篮球明星的情况,则表示喜欢科比的扇形的圆心角是________(用度分秒表示).18、如图,正方形OABC的边长为8,A、C两点分别位于x轴、y轴上,点P在AB上,CP交OB于点Q,函数y=的图像经过点Q,若S△BPQ =S△OQC,则k的值为________.19、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=2.点P是△ABC内部的一个动点,且满足∠PAC=∠PCB,则线段BP长的最小值是________.20、在半径为4cm的圆中,长为4cm的弦所对的圆周角的度数为________21、已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(-2,0),抛物线的对称轴为直线x=2,则线段AB的长为________.22、如图,在平面直角坐标系中抛物线y=x2﹣3x+2与x轴交于A、B两点,与y轴交于点C,点D是对称轴右侧抛物线上一点,且tan∠DCB=3,则点D的坐标为________.23、如图,将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB′,边AC绕着点A逆时针旋转β(0°<β<90°)得到AC′,连结B′C′,当α+β=60°时,我们称△AB′C’是△ABC的“蝴蝶三角形”,已知一直角边长为2的等腰直角三角形,那么它的“蝴蝶三角形”的面积为________.24、小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为________.25、如图所示,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(-1,0)和B(2,0),当y<0时,x的取值范围是________ .三、解答题(共5题,共计25分)26、已知抛物线的顶点为(2,3),且经过点(3,1),求此抛物线对应的函数解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
九年级数学上册期末复习试卷
学校:
__________
一、选择题
1.(2分)烟花厂为扬州烟花三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度(m)h 与飞行时间(s)t 的关系式是2
52012
h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( ) A .3s
B .4s
C .5s
D .6s
2.(2分)如图,AB 是⊙O 直径,130AOC ∠=,则D ∠=( ) A .65
B .25
C .15
D .35
3.(2分)如图,DEF △是由ABC △经过位似变换得到的,点O 是位似中心,D E F ,,分别是OA OB OC ,,的中点,则DEF △与ABC △的面积比是( ) A .1:6 B .1:5
C .1:4
D .1:2
4.(2y =ax 2+bx+c 的图象如图所示,下列结论:
;(2)a +c<b ;(3) b c - 4a c >0;(4) 14 a -1
2 b +c>0,
(1)其中正确的结论有( )
A .1个
B .2个
C .3个
D .4个
5.(2分)二次函数2
2
,,04y ax bx c b ac x y =++===-且时,则( ) A .=4y -最大 B .=4y -最小 C .=3y -最大 D .=3y -最小 6.(2分) 抛物线y=x 2+6x+8与y 轴交点坐标( ) A .(0,8)
B .(0,-8)
C .(0,6)
D .(-2,0)(-4,0)
7.(2分)抛物线y=(x+3)2-2的顶点在( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
8.(2分)如图,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,
走到场地边缘B 后,再沿着与半径OB 夹角为α的方向行走.按照这种方式,小华第四次走到场地边缘E 处时,∠AOE =56º,则α的度数是( ) A .52º
B .60º
C .72º
D .76º
9.(2分)二次函数y =2(x -1)2+1先向左平移l 个单位,再向上平移1个单位后得解析式为 y =2x 2+bx +c ,则b, c 分别为( ) A .-8, 0
B .-8, 2
C . 0, 2
D .0, 0
10.(2分)下列结论错误..
的是( ) A .所有的正方形都相似 B .所有的等边三角形都相似 C .所有的菱形都相似
D .所有的正六边形都相似
11.(2分)如图,用不同颜色的马赛克覆盖一个圆形的台面,估计15°的圆心角的扇形部分大约需要 35 片马赛克片. 已知每箱装有 125 片马赛克片,那么要铺满整个台面需购买马赛克( )
A .6 箱
B .7 箱
C .8 箱
D .9 箱
12.(2分)反比例函数的图象在第一象限内经过点A ,过点A 分别向x 轴,y 轴引垂线,垂足分别为P Q ,,已知四边形APOQ 的面积为4,那么这个反比例函数的解析式为( ) A .4
y x
=
B .4
x y =
C .4y x =
D .2y x
=
13.(2分)二次函数2
y ax bx c =++的图像如图所示,则点c Q a b ⎛⎫ ⎪⎝⎭
,在( ) A .第一象限 B .第二象限 C .第三象限
D .第四象限
评卷人 得分
二、填空题
14.(3分)已知双曲线x
k
y =
经过点(-1,3),如果A (11,b a ),B (22,b a )两点在该双曲线上,且1a <2a <0,那么1b 2b . 15.(3分)已知反比例函数8
y x
=-
的图象经过点P (a-1,4),则a=_____.
-1
16.(3分)已知抛物线y =x 2-mx+m -1与x 轴的两交点及顶点组成的三角形面积为8,则m 的值为 . 解答题
17.(3分)双曲线y =k
x 和一次函数y =ax +b 的图象的两个交点分别是A(-1,-4),B(2,
m),
则a +2b =____________. 18.(3分)若
582=+b b a ,则b
a
=_______________. 19.(3分)一次函数21y x =-+的图象经过抛物线2+1(0)y x mx m =+≠的顶点,则 m= . 20.(3分)己将二次函数23(2)4y x =+-的图象向右平移 1 个单位,再向上平移 3 个单位得到 .
21.(3分) 已知反比例函数k
y x
=
图象经过(-1,3),则当x=2时,y= . 22.(3分)抛物线y =ax 2+2ax +a 2+2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是_____________.
23.(3分)如图,AB 是半圆的直径,O 是圆心,C 是半圆上一点,E 是弧AC 的中点,OE 交弦AC 于D .若AC=8cm ,DE=2cm ,则OD 的长为 .
24.(3分)圆锥的侧面展开图的面积是215πcm ,母线长为5cm ,则圆锥的底面半径长为 cm . 评卷人 得分
三、解答题
25.(6分)如图,已知E 是矩形ABCD 的边CD 上一点,BF AE ⊥于F ,试说明:
ABF EAD △∽△.
12
41
23-1-2
-3-1-2y x
A
O
B C D
26.(6分)巳知直线y =kx +b 经过点A(3,0),且与抛物线y =ax 2相交于B(2,2)和C 两点.
(1)求直线和抛物线的函数解析式,并确定点C 的坐标; (2)在同一直角坐标系内画出直线和抛物线的图象;
(3)若抛物线上的点D ,满足S △OBD =2S △OAD ,求点D 的坐标.
27.(6分)如图,二次函数的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D . (1)求D 点的坐标. (2)求一次函数的解析式.
(3)根据图象写出使一次函数值大于二次函数的值的x 的取值范围.
28.(6分)已知y 是x 的反比例函数,当x=3时,y=4,则当x=2时求函数y 的值. 6.
29.(6分)已知二次函数y =-x 2+4x .
(1)用配方法把该函数化为y =a (x -h )2+k (其中a 、h 、k 都是常数且a ≠0)的形式,并指出函数图象的对称轴和顶点坐标; (2)求这个函数图象与x 轴的交点坐标.
30.(6分)已知反比例函数y =k x (k ≠0),当x =-3时,y =4
3.求: (1)y 关于x 的函数解析式及自变量的取值范围; (2)当x =-4时,函数y 的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B 2.B 3.C 4.C
5.C 6.A 7.C 8.A 9.C 10.C 11.B 12.A
二、填空题
14.< 15. 16.-2或6 17.-2 18.5
2
-
19.4
20.23(1)1y x =+- 21.32
-
22.(1,0) 23.3 24.3
三、解答题
25.略
26.(1) y =-2x +6, y =1
2 x 2,C(-6,18); (2)略;
(3)D 1(-1, 12 ),D 2 (12 ,18 ). 27.(1)由图可得C (0,3).
∵抛物线是轴对称图形,且抛物线与x 轴的两个交点为A (-3,0)、B (1,0), ∴抛物线的对称轴为1x =-,D 点的坐标为(-2,3). (2)设一次函数的解析式为y kx b =+,
将点D (-2,3)、B (1,0)代入解析式,可得
23
0k b k b -+=⎧⎨
+=⎩
,解得1,1k b =-=. ∴一次函数的解析式为1y x =-+.
(3)当21x x <->或时,一次函数的值大于二次函数的值.
29.(1)4)2(2
+--=x y ,对称轴直线2=x ,顶点坐标(2,4)(2))0,4(),0,0(. 30.(1))0(4
≠-
=x x
y (2)1.。

相关文档
最新文档