最新角速度与线速度的定义及公式

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、角速度是单位时间内转过的弧度(角度),线速度是单位时间内走过的距离,二者都是矢量。

角速度:连接运动质点和圆心的半径在单位时间内转过的弧度叫做“角速度”。角速度的单位是弧度/秒,读作弧度每秒。它是描述物体转动或一质点绕另一质点转动的快慢和转动方向的物理量。物体运动角位移的时间变化率叫瞬时角速度(亦称即时角速度),单位是弧度?秒-1。

对于匀速圆周运动,角速度ω是一个恒量,可用运动物体与圆心联线所转过的角位移Δθ和所对应的时间Δt之比表示ω=△θ/△t。

2、线速度:质点(或物体上各点)作曲线运动(包括圆周运动)时所具有的即时速度。它的方向沿运动轨道的切线方向,故又称切向速度。它是描述作曲线运动的质点运动快慢和方向的物理量。物体上各点作曲线运动时所具有的即时速度,其方向沿运动轨道的切线方向。

在匀速圆周运动中,线速度的大小等于运动质点通过的弧长(S)和通过这段弧长所用的时间(△t)的比值。即v=S/△t,在匀速圆周运动中,线速度的大小虽不改变,但它的方向时刻在改变。它和角速度的关系是v=ωR。线速度的单位是米/秒。

线速度

在匀速圆周运动中,线速度的大小等于运动质点通过的弧长(S)和通过这段弧长所用的时间(△t)的值。即v=S/△t,也是v=2πr/T,在匀速圆周运动中,线速度的大小虽不改变,但它的方向时刻在改变。它和角速度的关系是v=ωr

v=ωr=2πrf=2πnr=2πr/T

当运动质点做圆周运动的同时也做另一种平动时,例如汽车车轮上的某一定点,此时该质点的线速度为做圆周运动的线速度(w*r)与平动运动的速度(v')的矢量之和:v=w*r+v'

角速度

角速度的矢量性:v=ω×r,其中,×表示矢量相乘(叉乘),方向由右手螺旋定则确定,r为矢径,方向由圆心向外。

匀速圆周运动中的角速度:对于匀速圆周运动,角速度ω是一个恒量,可用运动物体与圆心联线所转过的角位移Δθ和所对应的时间Δt之比表示

ω=△θ/△t,还可以通过V(线速度)/R(半径)求出。

角速度就是在物理学中描述物体转动时在单位时间内转过角度以及转动方向的矢量(更准确地说,是伪矢量),通常用希腊字母Ω或ω来表示。

在国际单位制中,单位是“弧度/秒”,但是也可以以其他单位来作度量,例如:“度/秒”、“度/小时” 等等。当在度量单位时间内的转动周数时(例如:每分钟转动周数),则以转速来描述转动速度快慢。

角速度的方向垂直于转动平面,可通过右手定则来确定。

转速也就是(Rotational Speed),是指单位时间内,物体做圆周运动的次数,用符号"n"表示;其国际标准单位为r/S (转/秒)或 r/min (转/分),也有表示为RPM (转/分,主要为日本和欧洲采用,我国采用国际标准)。当单位为r/S时,数值上与频率相等,即n=f=1/T,T为作圆周运动的周期。圆周上某点对应的线速度为:v=2π*R*n,R为该点对应的旋转半径。

相关文档
最新文档