算法分析考试题

合集下载

算法分析复习题目及答案.

算法分析复习题目及答案.

一、选择题1、二分搜索算法是利用( A )实现的算法。

A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( A )。

A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式。

A、分支界限法B、动态规划法C、贪心法D、回溯法4、在下列算法中有时找不到问题解的是( B )。

A、蒙特卡罗算法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5. 回溯法解旅行售货员问题时的解空间树是( A )。

A、子集树B、排列树C、深度优先生成树D、广度优先生成树6.下列算法中通常以自底向上的方式求解最优解的是( B )。

A、备忘录法B、动态规划法C、贪心法D、回溯法7、衡量一个算法好坏的标准是( C )。

A 运行速度快B 占用空间少C 时间复杂度低D 代码短8、以下不可以使用分治法求解的是( D )。

A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题9. 实现循环赛日程表利用的算法是( A )。

A、分治策略B、动态规划法C、贪心法D、回溯法10、下列随机算法中运行时有时候成功有时候失败的是( C )A 数值概率算法B 舍伍德算法C 拉斯维加斯算法D 蒙特卡罗算法11.下面不是分支界限法搜索方式的是( D )。

A、广度优先B、最小耗费优先C、最大效益优先D、深度优先12.下列算法中通常以深度优先方式系统搜索问题解的是( D )。

A、备忘录法B、动态规划法C、贪心法D、回溯法13.备忘录方法是那种算法的变形。

( B )A、分治法B、动态规划法C、贪心法D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为( B )。

A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是( B )。

A、最小堆B、最大堆C、栈D、数组16.最长公共子序列算法利用的算法是( B )。

A、分支界限法B、动态规划法C、贪心法D、回溯法17.实现棋盘覆盖算法利用的算法是( A )。

数据结构与算法分析考试试题

数据结构与算法分析考试试题

数据结构与算法分析考试试题一、选择题(共 20 小题,每小题 3 分,共 60 分)1、在一个具有 n 个元素的顺序表中,查找一个元素的平均时间复杂度为()A O(n)B O(logn)C O(nlogn)D O(n²)2、以下数据结构中,哪一个不是线性结构()A 栈B 队列C 二叉树D 线性表3、一个栈的入栈序列是 1,2,3,4,5,则栈的不可能的出栈序列是()A 5,4,3,2,1B 4,5,3,2,1C 4,3,5,1,2D 1,2,3,4,54、若一棵二叉树的先序遍历序列为 ABCDEFG,中序遍历序列为CBDAEGF,则其后序遍历序列为()A CDBGFEAB CDBFGEAC CDBAGFED BCDAGFE5、具有 n 个顶点的无向完全图的边数为()A n(n 1)B n(n 1) / 2C n(n + 1) / 2D n²6、以下排序算法中,在最坏情况下时间复杂度不是O(n²)的是()A 冒泡排序B 选择排序C 插入排序D 快速排序7、在一个长度为 n 的顺序表中,删除第 i 个元素(1≤i≤n)时,需要向前移动()个元素。

A n iB iC n i + 1D n i 18、对于一个具有 n 个顶点和 e 条边的有向图,其邻接表表示中,所有顶点的边表中边的总数为()A eB 2eC e/2D n(e 1)9、以下关于哈夫曼树的描述,错误的是()A 哈夫曼树是带权路径长度最短的二叉树B 哈夫曼树中没有度为 1 的节点C 哈夫曼树中两个权值最小的节点一定是兄弟节点D 哈夫曼树中每个节点的权值等于其左右子树权值之和10、用邻接矩阵存储一个具有 n 个顶点的无向图时,矩阵的大小为()A nB n²C (n 1)²D (n + 1)²11、下列关于堆的描述,正确的是()A 大根堆中,每个节点的值都大于其左右子节点的值B 小根堆中,每个节点的值都小于其左右子节点的值C 堆一定是完全二叉树D 以上都对12、在一个具有 n 个单元的顺序存储的循环队列中,假定 front 和rear 分别为队头指针和队尾指针,则判断队满的条件是()A (rear + 1) % n == frontB (front + 1) % n == rearC rear == frontD rear == 013、已知一个图的邻接表如下所示,从顶点 1 出发,按深度优先搜索法进行遍历,则得到的一种可能的顶点序列为()|顶点|邻接顶点|||||1|2, 3||2|4, 5||3|5||4|6||5|6||6| |A 1, 2, 4, 6, 5, 3B 1, 2, 5, 3, 4, 6C 1, 2, 3, 5, 4, 6D 1, 3, 2, 4, 5, 614、对线性表进行二分查找时,要求线性表必须()A 以顺序方式存储,且元素按值有序排列B 以顺序方式存储,且元素按值无序排列C 以链式方式存储,且元素按值有序排列D 以链式方式存储,且元素按值无序排列15、以下算法的时间复杂度为 O(nlogn)的是()A 顺序查找B 折半查找C 冒泡排序D 归并排序16、若某链表最常用的操作是在最后一个节点之后插入一个节点和删除最后一个节点,则采用()存储方式最节省时间。

《算法分析与设计》期末试题及参考答案

《算法分析与设计》期末试题及参考答案

《算法分析与设计》期末试题及参考答案一、简要回答下列问题:1.算法重要特性是什么?2.算法分析的目的是什么?3.算法的时间复杂性与问题的什么因素相关?4.算法的渐进时间复杂性的含义?5.最坏情况下的时间复杂性和平均时间复杂性有什么不同?6.简述二分检索(折半查找)算法的基本过程。

7.背包问题的目标函数和贪心算法最优化量度相同吗?8.采用回溯法求解的问题,其解如何表示?有什么规定?9.回溯法的搜索特点是什么?10.n皇后问题回溯算法的判别函数place的基本流程是什么?11.为什么用分治法设计的算法一般有递归调用?12.为什么要分析最坏情况下的算法时间复杂性?13.简述渐进时间复杂性上界的定义。

14.二分检索算法最多的比较次数?15.快速排序算法最坏情况下需要多少次比较运算?16.贪心算法的基本思想?17.回溯法的解(x1,x2,……x n)的隐约束一般指什么?18.阐述归并排序的分治思路。

19.快速排序的基本思想是什么。

20.什么是直接递归和间接递归?消除递归一般要用到什么数据结构?21.什么是哈密顿环问题?22.用回溯法求解哈密顿环,如何定义判定函数?23.请写出prim算法的基本思想。

二、复杂性分析1、MERGESORT(low,high)if low<high;then mid←(low,high)/2;MERGESORT(low,mid);MERGESORT(mid+1,high);MERGE(low,mid,high);endifend MERGESORT2、procedure S1(P,W,M,X,n)i←1; a←0while i≤ n doif W(i)>M then return endifa←a+ii←i+1 ;repeatend3.procedure PARTITION(m,p)Integer m,p,i;global A(m:p-1)v←A(m);i←mlooploop i←i+1 until A(i) ≥v repeatloop p←p-1 until A(p) ≤v repeatif i<pthen call INTERCHANGE(A(i),A(p))else exitendifrepeatA(m) ←A(p);A(p) ←vEnd PARTITION4.procedure F1(n)if n<2 then return(1)else return(F2(2,n,1,1))endifend F1procedure F2(i,n,x,y)if i≤nthen call F2(i+1,n,y,x+y)endifreturn(y)end F25.procedure MAX(A,n,j)xmax←A(1);j←1for i←2 to n doif A(i)>xmax then xmax←A(i); j←i;endif repeatend MAX6.procedure BINSRCH(A,n,x,j)integer low,high,mid,j,n;low←1;high←nwhile low≤high domid←|_(low+high)/2_|case:x<A(mid):high←mid-1:x>A(mid):low←mid+1:else:j ←mid; returnendcase repeat j ←0 end BINSRCH三、算法理解1、写出多段图最短路经动态规划算法求解下列实例的过程,并求出最优值。

设计与算法分析考试题库

设计与算法分析考试题库

设计与算法分析考试题库一、选择题(每题2分,共20分)1. 在算法分析中,时间复杂度用来衡量算法的什么?A. 可读性B. 执行速度C. 资源消耗D. 可维护性2. 以下哪个排序算法的时间复杂度为O(n^2)?A. 快速排序B. 归并排序C. 选择排序D. 堆排序3. 动态规划与分治算法的主要区别是什么?A. 递归使用B. 子问题重叠C. 问题分解方式D. 算法效率4. 递归算法的基本原理是什么?A. 循环调用B. 重复执行C. 问题分解D. 迭代求解5. 在图算法中,深度优先搜索(DFS)和广度优先搜索(BFS)的主要区别在于?A. 搜索顺序B. 搜索深度C. 使用的数据结构D. 搜索效率6. 哈希表的冲突解决方法中,开放定址法和链地址法的主要区别是什么?A. 存储方式B. 冲突处理机制C. 访问速度D. 空间利用率7. 贪心算法在解决优化问题时,其选择的策略是?A. 随机选择B. 局部最优C. 全局最优D. 动态选择8. 以下哪个算法是解决最近公共祖先问题的?A. 二分查找B. 欧拉路径C. 弗洛伊德算法D. 树的深度优先搜索9. 算法的时间复杂度为O(1)表示该算法的执行时间与输入规模的大小?A. 成正比B. 成反比C. 无关D. 指数关系10. 在大O符号中,O(1)、O(log n)、O(n)、O(n log n)、O(n^2)、O(2^n),按算法效率从高到低排序正确的是?A. O(1), O(log n), O(n), O(n log n), O(n^2), O(2^n)B. O(2^n), O(n^2), O(n log n), O(n), O(log n), O(1)C. O(1), O(log n), O(n log n), O(n), O(n^2), O(2^n)D. O(1), O(n), O(log n), O(n log n), O(n^2), O(2^n)二、简答题(每题10分,共30分)11. 简述二分查找算法的基本思想及其时间复杂度。

算法分析考试题

算法分析考试题

1. )(n T 给定数组a[0:n-1],试设计一个算法,在最坏情况下用n+[logn]-2次比较找出a[0:n-1] 中的元素的最大值和次大值. (算法分析与设计习题 2.16 ) (分治法)a 、 算法思想用分治法求最大值和次大值首先将问题划分,即将划分成长度相等的两个序列,递归求出左边的最大值次大值,再求出右边的的最大值次大值,比较左右两边,最后得出问题的解。

b 、复杂度分析:把问题划分为左右两种的情况,需要分别递归求解,时间复杂度可如下计算:有递推公式为:T(n)=1 n=1T(n)= 2T(n/2)+1 n>1所以,分治算法的时间复杂度是n+[logn]-2,当n 为奇数时,logn 取上线,当n 为偶数时,logn 取下线。

//不知道为什么会-2!C 、代码实现:#include <stdio.h>int a[100]; void maxcmax(int i,int j,int &max,int &cmax){int lmax,lcmax,rmax,rcmax;int mid;if (i==j){ max=a[i];cmax=a[i];}else if (i==j-1)if (a[i]<a[j]){max=a[j];cmax=a[i];}else{max=a[i];cmax=a[j];}else{mid=(i+j)/2;maxcmax(i,mid,lmax,lcmax);maxcmax(mid+1,j,rmax,rcmax);if(lmax>rmax)if(lcmax>rmax){max=lmax;。

cmax=lcmax;}else{max=lmax;cmax=rmax;}elseif(rcmax>lmax){if(rmax==rcmax){max=rmax;cmax=lmax;}else{max=rmax;cmax=rcmax;}}。

算法考试试题及答案

算法考试试题及答案

一、填空题(本题10分,每空1分)1、算法的复杂性是的度量,是评价算法优劣的重要依据。

2、设n为正整数,利用大“O(·)”记号,将下列程序段的执行时间表示为n的函数,则下面程序段的时间复杂度为。

i=1; k=0;while(i<n) { k=k+10*i;i++; }3、计算机的资源最重要的是和资源。

因而,算法的复杂性有和之分。

4、f(n)= 6×2n+n2,f(n)的渐进性态f(n)= O( )5、递归是指函数或者通过一些语句调用自身。

6、分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相且和原问题相同。

二、选择题(本题20分,每小题2分)1、分支限界法和回溯法都是在问题的解空间树T上搜索问题的解,二者( )。

A.求解目标不同,搜索方式相同B.求解目标不同,搜索方式也不同C.求解目标相同,搜索方式不同D.求解目标相同,搜索方式也相同2、回溯法在解空间树T上的搜索方式是( )。

A.深度优先B.广度优先C.最小耗费优先D.活结点优先3、在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( )。

A.回溯法B.分支限界法C.回溯法和分支限界法D.回溯法求解子集树问题4、以下关于判定问题难易处理的叙述中正确的是( )。

A.可以由多项式时间算法求解的问题是难处理的B.需要超过多项式时间算法求解的问题是易处理的C.可以由多项式时间算法求解的问题是易处理的D.需要超过多项式时间算法求解的问题是不能处理的5、设f(N),g(N)是定义在正数集上的正函数,如果存在正的常数C和自然数N0,使得当N≥N0时有f(N)≤Cg(N),则称函数f(N)当N充分大时有上界g(N),记作f(N)=O(g(N)),即f(N)的阶( )g(N)的阶。

A.不高于B.不低于C.等价于D.逼近6、对于含有n个元素的子集树问题,最坏情况下其解空间的叶结点数目为( )。

《算法设计与分析》考试题目及答案

《算法设计与分析》考试题目及答案

《算法分析与设计》期末复习题一、选择题1.应用Johnson法则的流水作业调度采用的算法是(D)A. 贪心算法B. 分支限界法C.分治法D. 动态规划算法2.Hanoi塔问题如下图所示。

现要求将塔座A上的的所有圆盘移到塔座B上,并仍按同样顺序叠置。

移动圆盘时遵守Hanoi塔问题的移动规则。

由此设计出解Hanoi塔问题的递归算法正确的为:(B)Hanoi塔4. 算法分析中,记号O表示(B),记号Ω表示(A),记号Θ表示(D)。

A.渐进下界B.渐进上界C.非紧上界D.紧渐进界E.非紧下界5. 以下关于渐进记号的性质是正确的有:(A)A.f(n)(g(n)),g(n)(h(n))f(n)(h(n))=Θ=Θ⇒=ΘB. f(n)O(g(n)),g(n)O(h(n))h(n)O(f(n))==⇒=C. O(f(n))+O(g(n)) = O(min{f(n),g(n)})D. f(n)O(g(n))g(n)O(f(n))=⇔=6.能采用贪心算法求最优解的问题,一般具有的重要性质为:(A)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。

广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按(A)策略,从根结点出发搜索解空间树。

A.广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块(A)是回溯法中遍历排列树的算法框架程序。

A.B.C.D.10.x[k]的个数。

11. 常见的两种分支限界法为(D)A. 广度优先分支限界法与深度优先分支限界法;B. 队列式(FIFO)分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式(FIFO)分支限界法与优先队列式分支限界法;12. k带图灵机的空间复杂性S(n)是指(B)A.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最大方格数。

算法分析与设计试题及答案

算法分析与设计试题及答案

算法分析与设计试题及答案一、选择题1. 下列哪个是属于分治算法的例子?A. 冒泡排序B. 归并排序C. 顺序查找D. 选择排序答案:B2. 在排序算法中,时间复杂度最优的是:A. 冒泡排序B. 插入排序C. 归并排序D. 快速排序答案:C3. 哪个不是动态规划的特点?A. 具有重叠子问题B. 通过递归求解C. 需要保存子问题的解D. 具有最优子结构答案:B4. 在图的广度优先搜索算法中,使用的数据结构是:A. 栈B. 队列C. 数组D. 堆栈答案:B5. 在最小生成树算法中,下列哪个不属于贪心策略?A. Kruskal算法B. Prim算法C. Dijkstra算法D. Prim-Kruskal混合算法答案:C二、简答题1. 请简述分治算法的思想和应用场景。

答案:分治算法的思想是将原问题分解成若干个规模较小且类似的子问题,然后解决子问题,最后将子问题的解合并得到原问题的解。

其应用场景包括排序算法(如归并排序、快速排序)、搜索算法(如二分查找)等。

2. 什么是动态规划算法?请给出一个动态规划算法的示例。

答案:动态规划算法是一种通过将问题分解成子问题并解决子问题来解决复杂问题的方法。

它的特点是具有重叠子问题和最优子结构性质。

以斐波那契数列为例,可以使用动态规划算法求解每一项的值,而不需要重复计算。

3. 图的深度优先搜索和广度优先搜索有什么区别?答案:图的深度优先搜索(Depth First Search,DFS)是一种先访问子节点再访问兄弟节点的遍历算法,通常使用递归或者栈实现。

而广度优先搜索(Breadth First Search,BFS)则是以层次遍历的方式展开搜索,使用队列来实现。

DFS更适合用于搜索路径,BFS则适用于寻找最短路径等。

4. 请简述贪心算法的特点及其应用场景。

答案:贪心算法的特点是每一步都采取当前状态下最优的选择,以期望得到全局最优解。

然而,贪心算法并不一定能求解所有问题的最优解,但对于一些特定问题,贪心算法往往能得到近似最优解。

算法分析与设计试题

算法分析与设计试题

一、选择题(20分)1.最长公共子序列算法利用的算法是(B )。

A、分支界限法B、动态规划法C、贪心法D、回溯法2.实现棋盘覆盖算法利用的算法是(A )。

A、分治法B、动态规划法C、贪心法D、回溯法3.下面是贪心算法的基本要素的是(C )。

A、重叠子问题B、构造最优解C、贪心选择性质D、定义最优解4.回溯法的效率不依赖于下列哪些因素( D )A.满足显约束的值的个数B. 计算约束函数的时间C. 计算限界函数的时间D. 确定解空间的时间5.下面哪种函数是回溯法中为避免无效搜索采取的策略(B )A.递归函数 B.剪枝函数C。

随机数函数 D.搜索函数6.采用最大效益优先搜索方式的算法是(A )。

A、分支界限法B、动态规划法C、贪心法D、回溯法7.贪心算法与动态规划算法的主要区别是(B )。

A、最优子结构B、贪心选择性质C、构造最优解D、定义最优解8. 实现最大子段和利用的算法是(B )。

A、分治策略B、动态规划法C、贪心法D、回溯法9.优先队列式分支限界法选取扩展结点的原则是(C )。

A、先进先出B、后进先出C、结点的优先级D、随机10.下列算法中通常以广度优先方式系统搜索问题解的是(A)。

A、分支限界法B、动态规划法C、贪心法D、回溯法二、填空题(22分每空2分)1.算法是由若干条指令组成的有穷序列,且要满足输入、输出、确定性和有限性四条性质。

2、大整数乘积算法是用分治法来设计的。

3、以广度优先或以最小耗费方式搜索问题解的算法称为分支限界法。

4、舍伍德算法总能求得问题的一个解。

5、贪心选择性质是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。

6.快速排序template<class Type>void QuickSort (Type a[], int p, int r){if (p<r) {int q=Partition(a,p,r);QuickSort (a,p,q-1); 哈密顿环问题的算法可由回溯法设计实现。

算法分析试题.doc

算法分析试题.doc

1-1什么叫数据?什么叫数据元素?什么叫数据项?1-2什么叫数据的物理结构?什么叫数据的存储结构?什么叫数据的操作?1-3数据结构课程主要讨论哪三个方面的问题?1-4分别画岀线性结构、树结构和图结构的逻辑示意图。

1-5什么叫类型?什么叫数据类型?什么叫抽象数据类型?1-6怎样利用抽象数据类型设计大型软件?1-7什么叫算法?算法的5个性质是什么?1-8根据算法的性质解释算法和程序的区别?1-9评判算法的优劣有哪几种方法?1-10什么叫算法的时间复杂度?怎样表示算法的时间复杂度?1-11设n为已在算法前边定义的整数类型,并已知n为正整数,分析下列各算法中加下划线语句的执行次数,并给出各算法的吋间复杂度T(n)o(1)int i = 1, k = 0;while (i < n-1){k = k+ 10* i:i 二i + 1;}(2)int i = 1, k = 0;do{k 二k + l()*i:i 二i + 1;} while (i != n);(3)inti= 1J = 1;while (i <= n && j <= n){i= i+ l;j=j+ 1;}(4)int x = n; /* n > 1 */int y = 0;while(x >= (y+l)*(y+l))y++;(5)int i, j, k, x = 0;for (i = 0; i < n; i++)for(j = 0;j<i;j++)for (k = 0; k < j; k++)x = x + 2;1-12设求解同一个问题有三种算法,三种算法各白的时间复杂度分别为0(/丿,0(2”丿和0(Mg n),哪种算法最可取?为什么?1-13按增长率从小到大的顺序排列下列各纽函数:(1)2," , (3/2) “, (2/3) \ (4/3) “(2)n, n?Z2> n2Z?, n!, n"(3)lb n, nxlb n, n2-1什么叫线性表?2-2什么叫顺序存储结构?什么叫链式存储结构?2-3给出线性表的抽象数据类型定义。

算法设计与分析考试题目及答案

算法设计与分析考试题目及答案

算法设计与分析考试题目及答案Revised at 16:25 am on June 10, 2021I hope tomorrow will definitely be better算法分析与设计期末复习题一、 选择题1.应用Johnson 法则的流水作业调度采用的算法是DA. 贪心算法B. 分支限界法C.分治法D. 动态规划算法塔问题如下图所示;现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置;移动圆盘时遵守Hanoi 塔问题的移动规则;由此设计出解Hanoi 塔问题的递归算法正确的为:B3. 动态规划算法的基本要素为C A. 最优子结构性质与贪心选择性质 B .重叠子问题性质与贪心选择性质 C .最优子结构性质与重叠子问题性质 D. 预排序与递归调用4. 算法分析中,记号O 表示B , 记号Ω表示A , 记号Θ表示D ; A.渐进下界 B.渐进上界 C.非紧上界 D.紧渐进界 E.非紧下界5. 以下关于渐进记号的性质是正确的有:A A.f (n)(g(n)),g(n)(h(n))f (n)(h(n))=Θ=Θ⇒=Θ B. f (n)O(g(n)),g(n)O(h(n))h(n)O(f (n))==⇒= C. Ofn+Ogn = Omin{fn,gn} D. f (n)O(g(n))g(n)O(f (n))=⇔=Hanoi 塔A. void hanoiint n, int A, int C, int B { if n > 0 {hanoin-1,A,C, B; moven,a,b;hanoin-1, C, B, A; } B. void hanoiint n, int A, int B, int C { if n > 0 {hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; }C. void hanoiint n, int C, int B, int A { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; }D. void hanoiint n, int C, int A, int B { if n > 0 {hanoin-1, A, C, B; moven,a,b;hanoin-1, C, B, A; }6.能采用贪心算法求最优解的问题,一般具有的重要性质为:AA. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按D策略,从根结点出发搜索解空间树;广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按A策略,从根结点出发搜索解空间树;A.广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块A是回溯法中遍历排列树的算法框架程序;A.B.C.D.10.xk的个数;11. 常见的两种分支限界法为DA. 广度优先分支限界法与深度优先分支限界法;B. 队列式FIFO分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式FIFO分支限界法与优先队列式分支限界法;12. k带图灵机的空间复杂性Sn是指BA.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最大方格数;B.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的方格数的总和;C.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的平均方格数;D.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最小方格数;13. N P类语言在图灵机下的定义为DA.NP={L|L是一个能在非多项式时间内被一台NDTM所接受的语言};B.NP={L|L是一个能在多项式时间内被一台NDTM所接受的语言};C.NP={L|L是一个能在多项式时间内被一台DTM所接受的语言};D.NP={L|L是一个能在多项式时间内被一台NDTM所接受的语言};14. 记号O的定义正确的是A;A.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ fn ≤cgn };B.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ cgn ≤fn };>0使得对所有n≥n0C.Ogn = { fn | 对于任何正常数c>0,存在正数和n有:0 ≤fn<cgn };>0使得对所有n≥n0D.Ogn = { fn | 对于任何正常数c>0,存在正数和n有:0 ≤cgn < fn };15. 记号Ω的定义正确的是B;A.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ fn ≤cgn };B.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ cgn ≤fn };>0使得对所有n≥n0有:C.gn = { fn | 对于任何正常数c>0,存在正数和n0 ≤fn<cgn };D.gn = { fn | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0 ≤cgn < fn };二、 填空题1. 下面程序段的所需要的计算时间为 2O(n ) ;2.3.4. 5.6. 用回溯法解题的一个显着特征是在搜索过程中动态产生问题的解空间;在任何时刻,算法只保存从根结点到当前扩展结点的路径;如果解空间树 中从根结点到叶结点的最长路径的长度为hn,则回溯法所需的计算空间通常为Ohn ;7. 回溯法的算法框架按照问题的解空间一般分为子集树算法框架与排列树算法框架;8. 用回溯法解0/1背包问题时,该问题的解空间结构为子集树结构; 9.用回溯法解批处理作业调度问题时,该问题的解空间结构为排列树结构; 10.用回溯法解0/1背包问题时,计算结点的上界的函数如下所示,请在空格中填入合适的内容:11. n m12. 用回溯法解图的m着色问题时,使用下面的函数OK检查当前扩展结点的每一个儿子所相应的颜色的可用性,则需耗时渐进时间上限Omn;13.;设分分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用fn个单位时间;用Tn表示该分治法解规模为|P|=n的问题所需的计算时间,则有:(1)1 ()(/)()1O nT nkT n m f n n=⎧=⎨+>⎩通过迭代法求得Tn的显式表达式为:log1log()(/)nmk j jmjT n n k f n m-==+∑试证明Tn的显式表达式的正确性;2. 举反例证明0/1背包问题若使用的算法是按照p i/w i的非递减次序考虑选择的物品,即只要正在被考虑的物品装得进就装入背包,则此方法不一定能得到最优解此题说明0/1背包问题与背包问题的不同;证明:举例如:p={7,4,4},w={3,2,2},c=4时,由于7/3最大,若按题目要求的方法,只能取第一个,收益是7;而此实例的最大的收益应该是8,取第2,3 个;3. 求证:Ofn+Ogn = Omax{fn,gn} ;证明:对于任意f1n∈ Ofn ,存在正常数c1和自然数n1,使得对所有n≥n1,有f1n≤ c1fn ;类似地,对于任意g1n ∈ Ogn ,存在正常数c2和自然数n2,使得对所有n≥n2,有g1n ≤c2gn ;令c3=max{c1, c2}, n3 =max{n1, n2},hn= max{fn,gn} ;则对所有的 n ≥ n3,有f1n +g1n ≤ c1fn + c2gn≤c3fn + c3gn= c3fn + gn≤ c32 max{fn,gn} = 2c3hn = Omax{fn,gn} .4. 求证最优装载问题具有贪心选择性质;最优装载问题:有一批集装箱要装上一艘载重量为c 的轮船;其中集装箱i 的重量为Wi;最优装载问题要求确定在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船; 设集装箱已依其重量从小到大排序,x 1,x 2,…,x n 是最优装载问题的一个最优解;又设1min{|1}i i nk i x ≤≤== ;如果给定的最优装载问题有解,则有1k n ≤≤;证明: 四、 解答题1. 机器调度问题;问题描述:现在有n 件任务和无限多台的机器,任务可以在机器上得到处理;每件任务的开始时间为s i ,完成时间为f i ,s i <f i ;s i ,f i 为处理任务i 的时间范围;两个任务i,j 重叠指两个任务的时间范围区间有重叠,而并非指i,j 的起点或终点重合;例如:区间1,4与区间2,4重叠,而与4,7不重叠;一个可行的任务分配是指在分配中没有两件重叠的任务分配给同一台机器;因此,在可行的分配中每台机器在任何时刻最多只处理一个任务;最优分配是指使用的机器最少的可行分配方案;问题实例:若任务占用的时间范围是{1,4,2,5,4,5,2,6,4,7},则按时完成所有任务最少需要几台机器提示:使用贪心算法画出工作在对应的机器上的分配情况;2. 已知非齐次递归方程:f (n)bf (n 1)g(n)f (0)c =-+⎧⎨=⎩ ,其中,b 、c 是常数,gn 是n 的某一个函数;则fn 的非递归表达式为:nnn i i 1f (n)cb b g(i)-==+∑;现有Hanoi 塔问题的递归方程为:h(n)2h(n 1)1h(1)1=-+⎧⎨=⎩ ,求hn 的非递归表达式;解:利用给出的关系式,此时有:b=2, c=1, gn=1, 从n 递推到1,有: 3. 单源最短路径的求解;问题的描述:给定带权有向图如下图所示G =V,E,其中每条边的权是非负实数;另外,还给定V 中的一个顶点,称为源;现在要计算从源到所有其它各顶点的最短路长度;这里路的长度是指路上各边权之和;这个问题通常称为单源最短路径问题;解法:现采用Dijkstra 算法计算从源顶点1到其它顶点间最短路径;请将此过程填入下表中;4. 请写出用回溯法解装载问题的函数; 装载问题:有一批共n 个集装箱要装上2艘载重量分别为c1和c2的轮船,其中集装箱i 的重量为wi,且121ni i w c c =≤+∑;装载问题要求确定是否有一个合理的装载方案可将这n 个集装箱装上这2艘轮船;如果有,找出一种装载方案;解:void backtrack int i{用分支限界法解装载问题时,对算法进行了一些改进,下面的程序段给出了改进部分;试说明斜线部分完成什么功能,以及这样做的原因,即采用这样的方式,算法在执行上有什么不同;初始时将;也就是说,重量仅在搜索进入左子树是增加,因此,可以在算法每一次进入左子树时更新bestw 的值;43 2 110030maxint10 - {1} 初始 dist5 dist4 dist3 dist2 u S 迭代7. 最长公共子序列问题:给定2个序列X={x 1,x2,…,xm }和Y={y 1,y2,…,yn },找出X 和Y 的最长公共子序列;由最长公共子序列问题的最优子结构性质建立子问题最优值的递归关系;用cij 记录序列Xi 和Yj 的最长公共子序列的长度;其中, Xi={x1,x2,…,xi};Y j={y1,y2,…,yj};当i=0或j=0时,空序列是Xi 和Yj 的最长公共子序列;故此时Cij=0;其它情况下,由最优子结构性质可建立递归关系如下:00,0[][][1][1]1,0;max{[][1],[1][]},0;i j i ji j c i j c i j i j x y c i j c i j i j x y ⎧==⎪=--+>=⎨⎪-->≠⎩在程序中,bij 记录Cij 的值是由哪一个子问题的解得到的;8.1.2.3.4.5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________;6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解;7.以深度优先方式系统搜索问题解的算法称为_____________;背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________;9.动态规划算法的两个基本要素是___________和___________;10.二分搜索算法是利用_______________实现的算法;二、综合题50分1.写出设计动态规划算法的主要步骤;2.流水作业调度问题的johnson算法的思想;3.若n=4,在机器M1和M2上加工作业i所需的时间分别为ai 和bi,且a 1,a2,a3,a4=4,5,12,10,b1,b2,b3,b4=8,2,15,9求4个作业的最优调度方案,并计算最优值;4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间从根出发,左1右0,并画出其解空间树,计算其最优值及最优解;5.设S={X1,X2,···,Xn}是严格递增的有序集,利用二叉树的结点来存储S中的元素,在表示S的二叉搜索树中搜索一个元素X,返回的结果有两种情形,1在二叉搜索树的内结点中找到X=Xi ,其概率为bi;2在二叉搜索树的叶结点中确定X∈Xi ,Xi+1,其概率为ai;在表示S的二叉搜索树T中,设存储元素Xi的结点深度为C i ;叶结点Xi,Xi+1的结点深度为di,则二叉搜索树T的平均路长p为多少假设二叉搜索树Tij={Xi ,Xi+1,···,Xj}最优值为mij,Wij= ai-1+bi+···+bj+aj,则mij1<=i<=j<=n递归关系表达式为什么6.描述0-1背包问题;三、简答题30分1.流水作业调度中,已知有n个作业,机器M1和M2上加工作业i所需的时间分别为ai 和bi,请写出流水作业调度问题的johnson法则中对ai和bi的排序算法;函数名可写为sorts,n2.最优二叉搜索树问题的动态规划算法设函数名binarysearchtree答案:一、填空1.确定性有穷性可行性 0个或多个输入一个或多个输出2.时间复杂性空间复杂性时间复杂度高低3. 该问题具有最优子结构性质4.{BABCD}或{CABCD}或{CADCD}5.一个最优解6.子问题子问题子问题7.回溯法8. on2n omin{nc,2n}9.最优子结构重叠子问题10.动态规划法二、综合题1.①问题具有最优子结构性质;②构造最优值的递归关系表达式;③最优值的算法描述;④构造最优解;2. ①令N1={i|ai<bi},N2={i|ai>=bi};②将N1中作业按ai的非减序排序得到N1’,将N2中作业按bi的非增序排序得到N2’;③N1’中作业接N2’中作业就构成了满足Johnson法则的最优调度;3.步骤为:N1={1,3},N2={2,4};N 1’={1,3}, N2’={4,2};最优值为:384.解空间为{0,0,0,0,1,0,0,0,1,1,0,0,0,1,1,1,0,1, 1,1,0,1,1,1}; 解空间树为:该问题的最优值为:16 最优解为:1,1,0 5.二叉树T 的平均路长P=∑=+ni 1Ci)(1*bi +∑=nj 0dj *aj{mij=0 i>j6.已知一个背包的容量为C,有n 件物品,物品i 的重量为W i ,价值为V i ,求应如何选择装入背包中的物品,使得装入背包中物品的总价值最大; 三、简答题 1.void sortflowjope s,int n {int i,k,j,l;fori=1;i<=n-1;i++ag=0 k++; ifk>n break;ag==0ifsk.a>sj.a k=j; swapsi.index,sk.index; swapsi.tag,sk.tag;} }l=i;<sj.b k=j;swapsi.index,sk.index; ag,sk.tag; }mij=Wij+min{mik+mk+1j} 1<=i<=j<=n,mii-1=0}2.void binarysearchtreeint a,int b,int n,int m,int s,int w{int i,j,k,t,l;fori=1;i<=n+1;i++{wii-1=ai-1;mii-1=0;}forl=0;l<=n-1;l++Init-single-sourceG,s2. S=Φ3. Q=VGQ<> Φdo u=minQS=S∪{u}for each vertex 3do 4四、算法理解题本题10分根据优先队列式分支限界法,求下图中从v1点到v9点的单源最短路径,请画出求得最优解的解空间树;要求中间被舍弃的结点用×标记,获得中间解的结点用单圆圈○框起,最优解用双圆圈◎框起;五、算法理解题本题5分设有n=2k个运动员要进行循环赛,现设计一个满足以下要求的比赛日程表:①每个选手必须与其他n-1名选手比赛各一次;②每个选手一天至多只能赛一次;③循环赛要在最短时间内完成;1如果n=2k,循环赛最少需要进行几天;2当n=23=8时,请画出循环赛日程表;六、算法设计题本题15分分别用贪心算法、动态规划法、回溯法设计0-1背包问题;要求:说明所使用的算法策略;写出算法实现的主要步骤;分析算法的时间;七、算法设计题本题10分通过键盘输入一个高精度的正整数nn的有效位数≤240,去掉其中任意s个数字后,剩下的数字按原左右次序将组成一个新的正整数;编程对给定的n 和s,寻找一种方案,使得剩下的数字组成的新数最小;样例输入178543S=4样例输出13一、填空题本题15分,每小题1分1.规则一系列运算2. 随机存取机RAMRandom Access Machine;随机存取存储程序机RASPRandom Access Stored Program Machine;图灵机Turing Machine3. 算法效率4. 时间、空间、时间复杂度、空间复杂度5.2n6.最好局部最优选择7. 贪心选择最优子结构二、简答题本题25分,每小题5分1、分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同;对这k个子问题分别求解;如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止;将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解;2、“最优化原理”用数学化的语言来描述:假设为了解决某一优化问题,需要依次作出n个决策D1,D2,…,Dn,如若这个决策序列是最优的,对于任何一个整数k,1 < k < n,不论前面k个决策是怎样的,以后的最优决策只取决于由前面决策所确定的当前状态,即以后的决策Dk+1,Dk+2,…,Dn也是最优的;3、某个问题的最优解包含着其子问题的最优解;这种性质称为最优子结构性质;4、回溯法的基本思想是在一棵含有问题全部可能解的状态空间树上进行深度优先搜索,解为叶子结点;搜索过程中,每到达一个结点时,则判断该结点为根的子树是否含有问题的解,如果可以确定该子树中不含有问题的解,则放弃对该子树的搜索,退回到上层父结点,继续下一步深度优先搜索过程;在回溯法中,并不是先构造出整棵状态空间树,再进行搜索,而是在搜索过程,逐步构造出状态空间树,即边搜索,边构造;5、PPolynomial问题:也即是多项式复杂程度的问题;NP就是Non-deterministicPolynomial的问题,也即是多项式复杂程度的非确定性问题;NPCNP Complete问题,这种问题只有把解域里面的所有可能都穷举了之后才能得出答案,这样的问题是NP里面最难的问题,这种问题就是NPC问题;三、算法填空本题20分,每小题5分1、n后问题回溯算法1 Mj&&Li+j&&Ri-j+N2 Mj=Li+j=Ri-j+N=1;3 tryi+1,M,L,R,A4 Aij=05 Mj=Li+j=Ri-j+N=0 2、数塔问题; 1c<=r2trc+=tr+1c 3trc+=tr+1c+1 3、Hanoi 算法 1movea,c2Hanoin-1, a, c , b 3Movea,c 4、1pv=NIL 2pv=u3 v ∈adju 4Relaxu,v,w四、算法理解题本题10分五、18天2分;2当n=23=8时,循环赛日程表3分;六、算法设计题本题15分 1贪心算法 Onlogn ➢ 首先计算每种物品单位重量的价值Vi/Wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包;若将这种物品全部装入背包后,背包内的物品总重量未超过C,则选择单位重量价值次高的物品并尽可能多地装入背包;依此策略一直地进行下去,直到背包装满为止; ➢ 具体算法可描述如下:void Knapsackint n,float M,float v,float w,float x {Sortn,v,w; int i;for i=1;i<=n;i++ xi=0; float c=M;for i=1;i<=n;i++ {if wi>c break; xi=1; c-=wi; }if i<=n xi=c/wi; }2动态规划法 Oncmi,j 是背包容量为j,可选择物品为i,i+1,…,n 时0-1背包问题的最优值;由0-1背包问题的最优子结构性质,可以建立计算mi,j 的递归式如下;void KnapSackint v,int w,int c,int n,int m11 {int jMax=minwn-1,c;for j=0;j<=jMax;j++ /mn,j=0 0=<j<wn/ mnj=0;1 2 3 4 5 6 7 82 1 43 6 5 8 73 4 1 2 7 8 5 64 3 2 1 8 7 6 55 6 7 8 1 2 3 4 6 5 8 7 2 1 4 37 8 5 6 3 4 1 28 7 6 5 4 3 2 1for j=wn;j<=c;j++ /mn,j=vn j>=wn/mnj=vn;for i=n-1;i>1;i--{ int jMax=minwi-1,c;for j=0;j<=jMax;j++ /mi,j=mi+1,j 0=<j<wi/mij=mi+1j;for j=wi;j<=c;j++/mn,j=vn j>=wn/mij=maxmi+1j,mi+1j-wi+vi;}m1c=m2c;ifc>=w1m1c=maxm1c,m2c-w1+v1;}3回溯法 O2ncw:当前重量 cp:当前价值 bestp:当前最优值voidbacktrack int i//回溯法 i初值1{ifi>n //到达叶结点{ bestp=cp; return; }ifcw+wi<=c //搜索左子树{cw+=wi;cp+=pi;backtracki+1;cw-=wi;cp-=pi;}ifBoundi+1>bestp//搜索右子树backtracki+1;}七、算法设计题本题10分为了尽可能地逼近目标,我们选取的贪心策略为:每一步总是选择一个使剩下的数最小的数字删去,即按高位到低位的顺序搜索,若各位数字递增,则删除最后一个数字,否则删除第一个递减区间的首字符;然后回到串首,按上述规则再删除下一个数字;重复以上过程s次,剩下的数字串便是问题的解了;具体算法如下:输入s, n;while s > 0{ i=1; //从串首开始找while i < lengthn && ni<ni+1{i++;}deleten,i,1; //删除字符串n的第i个字符s--;}while lengthn>1&& n1=‘0’deleten,1,1; //删去串首可能产生的无用零输出n;。

算法设计与分析试卷试题(A)(附答案)

算法设计与分析试卷试题(A)(附答案)

chengcheng算法分析考试试卷(A卷)课程名称算法分析编号题号一二三四总分得分评阅人一、填空题(每小题3分,共30分)1、一个算法的优劣可以用空间复杂度与时间复杂度来衡量。

2、这种不断回头寻找目标的方法称为回溯法。

3、直接或间接地调用自身的算法称为递归算法。

4、 记号在算法复杂性的表示法中表示紧致界。

5、由分治法产生的子问题往往是原问题较小模式,这就为使用递归技术提供了方便。

6、建立计算模型的目的是为了使问题的计算复杂性分析有一个共同的客观尺度。

7、下列各步骤的先后顺序是②③④①。

①调试程序②分析问题③设计算法④编写程序。

8、最优子结构性质的含义是问题最优解包含其子问题最优解。

9、贪心算法从初始阶段开始,每一个阶段总是作一个使局部最优的贪心选择。

10、拉斯维加斯算法找到的解一定是正确的。

二、选择题(每小题2分,共20分)1、哈夫曼编码可利用( C )算法实现。

A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是基本计算模型的是( B )。

A、RAMB、ROMC、RASPD、TM3、下列算法中通常以自顶向下的方式求解最优解的是( C)。

A、分治法B、动态规划法C、贪心法D、回溯法chengcheng 4、在对问题的解空间树进行搜索的方法中,一个活结点有多次机会成为活结点的是( A )A、回溯法B、分支限界法C、回溯法和分支限界法D、动态规划5、秦始皇吞并六国使用的远交近攻,逐个击破的连横策略采用了以下哪种算法思想? BA、递归;B、分治;C、迭代;D、模拟。

6、FIFO是( A )的一搜索方式。

A、分支界限法B、动态规划法C、贪心法D、回溯法7、投点法是( B )的一种。

A、分支界限算法B、概率算法C、贪心算法D、回溯算法8、若线性规划问题存在最优解,它一定不在( C )A.可行域的某个顶点上 B.可行域的某条边上 C.可行域内部 D.以上都不对9、在一般输入数据的程序里,输入多多少少会影响到算法的计算复杂度,为了消除这种影响可用( B )对输入进行预处理。

算法分析复习题

算法分析复习题

一、单项选择题:1、算法的五大特征是确定性、有穷性、输入、输出和可行性。

其输入至少是( A )个。

A、0B、1C、n D、-12、大整数的乘法是利用的算法( C )。

A、贪心法B、动态规划法C、分治策略D、回溯法3、采用贪心算法的最优装载问题的主要计算量在于将集装箱依其重量从小到大排序,故算法的时间复杂度为( B )。

A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)4、一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( B )。

A、重叠子问题B、最优子结构性质C、贪心选择性质D、定义最优解5、设一个算法的输入规模为n,Dn是所有输入的集合,任一输入I∈Dn,P(I)是I出现的概率,有=1,T(I)是算法在输入I下所执行的基本语句次数,则该算法的平均执行时间为(D)。

A、B、C、D、6、把递归算法转化为非递归算法有如下两种基本方法:(1)直接用循环结构的算法替代递归算法。

(2)用( A )模拟系统的运行过程,通过分析只保存必须保存的信息,从而用非递归算法替代递归算法。

A、栈B、队列C、顺序表D、链表7、算法分析中,记号 表示(A)。

A、渐进下界B、渐进上界C、非紧上界D、紧渐进界9、贪心算法与动态规划算法的主要区别是(B )。

A、最优子结构B、贪心选择性质C、构造最优解D、定义最优解10、回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。

A、广度优先B、活结点优先C、扩展结点优先D、深度优先11. 回溯法的问题的解空间树是(B),并不需要在算法运行时构造一棵真正的树结构,然后再在该解空间树中搜索问题的解,而是只存储从根结点到当前结点的路径。

A、顺序方式的二叉树B、虚拟的树C、满二叉树D、完全二叉树12. 应用回溯法求解问题时,首先应该明确问题的解空间。

解空间中满足约束条件的决策序列称为(C)。

A、最优解B、局部最优解C、可行解D、最优子序列解13. 一个问题的最优解包含其子问题的最优解,则称此问题具有(D)性质。

(完整版)算法设计与分析考试题及答案

(完整版)算法设计与分析考试题及答案

一、填空题(20分)1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。

2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。

3.某一问题可用动态规划算法求解的显著特征是____________________________________。

4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。

5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。

6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。

7.以深度优先方式系统搜索问题解的算法称为_____________。

8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。

9.动态规划算法的两个基本要素是___________和___________。

10.二分搜索算法是利用_______________实现的算法。

二、综合题(50分)1.写出设计动态规划算法的主要步骤。

2.流水作业调度问题的johnson算法的思想。

3.若n=4,在机器M1和M2上加工作业i所需的时间分别为a i和b i,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。

4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。

算法设计与分析(试题A卷)

算法设计与分析(试题A卷)

四川师范大学成教×××专业×××层次半脱产形式期末考试期末试卷第1页( 共6页)《算法设计与分析》课程试卷(A)答卷说明:1、考试方式 闭卷2、满分100分一、单项选择题(每小题3分,共30分)1、动态规划算法的基本要素为( )。

A 、最优子结构性质与贪心选择性质B 、重叠子问题性质与贪心选择性质C 、最优子结构性质与重叠子问题性质D.、预排序与递归调用2、算法分析中,记号O 表示( ),记号Ω表示( ),记号Θ表示( )。

A 、渐进下界B 、渐进上界C 、非紧上界D 、紧渐进界E 、非紧下界3、以下关于渐进记号的性质是正确的有:( )A 、f (n)(g(n)),g(n)(h(n))f (n)(h(n))=Θ=Θ⇒=ΘB 、f (n)O(g(n)),g(n)O(h(n))h(n)O(f (n))==⇒=C 、O(f(n))+O(g(n)) = O(min{f(n),g(n)})D 、f (n)O(g(n))g(n)O(f (n))=⇔=4、下列算法中通常以自底向上的方式求解最优解的是( )。

四川师范大学成教××专业××层次××形式期末考试 ××试卷 第2页( 共6页) A 、备忘录法 B 、动态规划法 C 、贪心法 D 、回溯法5、衡量一个算法好坏的标准是( )。

A 、运行速度快B 、占用空间少C 、时间复杂度低D 、代码段6、实现棋盘覆盖算法利用的算法是( )。

A 、分治法B 、动态规划法C 、贪心法D 、回溯法7、下面关于NP 问题说法正确的是( )。

A 、NP 问题都是不可能解决的问题B 、P 类问题包含在NP 类问题中C 、NP 完全问题是P 类问题的子集D 、NP 类问题包含在P 类问题中8、矩阵连乘问题的算法可由( )设计实现。

A 、分支界限算法B 、动态规划算法C 、贪心算法9、( )是贪心算法与动态规划算法的共同点。

算法分析与设计(参考题及答案

算法分析与设计(参考题及答案
26.下列不是动态规划算法基本步骤的是()。
A、找出最优解的性质 B、构造最优解
C、算出最优解 D、定义最优解
答案:A
27.对完全二叉树自顶向下,从左向右给节点编号,节点编号为10的父节点编号为( ).
A、0 B、2 C、4 D、6
答案:C
28.下面哪种函数是回溯法中为避免无效搜索采取的策略()
3.贪婪技术并不能够总是找到最优解。
A、正确 B、错误 答案:正确
4.对于任何权重的图,Dijkstra算法总能产生一个正确的解。
A、正确 B、错误 答案:错误
5.对于给定的字符表及其出现的概率,哈夫曼编码是唯一的。
A、正确 B、错误 答案:错误
6.贪婪算法是在每一步中,“贪婪”地选择最佳操作,并希望通过一系列局部的最优选择, 能产生一个整个问题的最优解。
一、单选题 1.下列函数关系随着输入量增大增加最快的是( )
A、log2n B、n2 C、2n D、n!
答案:C
2.实现循环赛日程表利用的算法是()。
A、分治策略 B、动态规划法 C、贪心法 D、回溯法
答案:A
3.最长公共子序列算法利用的算法是()。
A、分支界限法 B、动态规划法 C、贪心法 D、回溯法
答案:某个问题的最优解包含着其子问题的最优解。这种性质称为最优子结构性质。
3.简述动态规划方法所运用的最优化原理。
答案:“最优化原理”用数学化的语言来描述:假设为了解决某一优化问题,需要依次作出n个决策D1,D2,…,Dn,如若这 个决策序列是最优的,对于任何一个整数k,1<k<n,不论前面k个决策是怎样的,以后的最优决策只取决于由前面决策所确定 的当前状态,即以后的决策Dk+1,Dk+2,…,Dn也是最优的。

算法分析大学考试题及答案

算法分析大学考试题及答案

算法分析大学考试题及答案一、选择题(每题2分,共10分)1. 以下哪个算法的时间复杂度是O(n log n)?A. 冒泡排序B. 快速排序C. 选择排序D. 插入排序答案:B2. 在最坏的情况下,下列哪个排序算法的时间复杂度是O(n)?A. 归并排序B. 堆排序C. 二分排序D. 桶排序答案:C3. 动态规划与分治法的区别在于:A. 递归的使用B. 问题分解的方式C. 存储中间结果D. 问题规模的减小答案:C4. 以下哪个不是贪心算法适用的场景?A. 最小生成树B. 霍夫曼编码C. 单源最短路径D. 旅行商问题答案:D5. 在图论中,深度优先搜索(DFS)和广度优先搜索(BFS)的主要区别在于:A. 搜索的顺序B. 是否使用队列C. 是否使用栈D. 搜索的深度答案:A二、简答题(每题5分,共20分)1. 请简述二分查找算法的基本思想及其时间复杂度。

答案:二分查找算法是在有序数组中查找特定元素的一种算法。

它通过比较数组中间的元素与目标值,如果中间元素与目标值相等,则查找成功;如果目标值小于中间元素,则在数组的左半部分继续查找;如果目标值大于中间元素,则在数组的右半部分继续查找。

这个过程递归进行,直到找到目标值或搜索范围为空。

二分查找算法的时间复杂度是O(log n)。

2. 请解释什么是动态规划,并给出一个动态规划的应用实例。

答案:动态规划是一种算法策略,它适用于具有重叠子问题和最优子结构特性的问题。

在动态规划中,问题的解被分解为一系列子问题的解,这些子问题被递归地解决,并存储在表格中以避免重复计算。

动态规划的应用实例包括背包问题、最长公共子序列、矩阵链乘等。

3. 请简述深度优先搜索(DFS)和广度优先搜索(BFS)的工作原理。

答案:深度优先搜索(DFS)是一种通过递归或显式栈来遍历图或树的算法。

它从一个顶点开始,沿着一条路径深入探索,直到无法继续为止,然后回溯并沿着另一条路径继续探索。

广度优先搜索(BFS)则使用队列来遍历图或树,它从一个顶点开始,先探索所有邻近的顶点,然后再探索这些邻近顶点的邻近顶点,依此类推,直到达到目标或遍历完所有顶点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
递归关系:根据上面所述,对于原问题X[aLeft , aRight], Y[bLeft, bRight]。假设切割后的子问题为X[aLeft, x-1],Y[y,bRight]。则求解X[aLeft , aRight], Y[bLeft, bRight]问题的中位数,归结于求解子问题X[aLeft, x-1],Y[y,bRight]的中位数。
T(n)=1n=1
T(n)= 2T(n/2)+n-1n>1
所以,分治算法的时间复杂度是O(nlogn)
c、代码实现
#include<iostream.h>
#define m 10
int MaxSubSum(int a[],int left,int right)
{
int sum=0;
if(left==right) sum=a[left]>0?a[left]:0;
#define d 10
int median(int x[],int y[],int xLeft,int xRight,int yLeft,int yRight){
if(xLeft==xRight)
{
return (x[xLeft]+y[yLeft])/2;
}
int xm=(xLeft+xRight)/2;
{
c[i][j]=c[i-1][j];
b[i][j]=2;
}
else
{
c[i][j]=c[i][j-1];
b[i][j]=3;
}
}
}
void LCS(int i,int j,int *x,int b[m][m])
{
if(i<0||j<0)
return;
if(b[i][j]==1)
{
LCS(i-1,j-1,x,b);
{
int i,j;
for(i=0;i<n;i++)
{
c[0][i]=0;
c[i][0]=0;
}
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
if(x[i]==y[j])
{
c[i][j]=c[i-1][j-1]+1;
b[i][j]=1;
}
else if(c[i-1][j]>=c[i][j-1])
cout<<x[i]<<" ";
}
else if(b[i][j]==2)
LCS(i-1,j,x,b);
else
LCS(i,j-1,x,b);
}
void main()
{
int x[m],y[m],d;
cout<<"请输入元素个数"<<endl;
cin>>d;
cout<<"请输入元素"<<endl;
for(int i=0;i<d;i++)
试设计-O(n*V)时间的动态规划算法,使得|a-b|达到最小,并求出礼物的分割集合
(P77页)(动态规划算法)
8.(4.7)多处最优服务问题P131页(贪婪算法) (与十人打水的问题一样)
a、算法思想:
贪心策略如下:首先对所有服务先按服务时间从小到大进行排序,然后按照排序结果,选出最小的服务站点时间,依次安排服务。
printf("次大数为%d\n",cmax);
return 0;
}
C、运行结果为
2.求数列的最大子段和(要求时间复杂为nlogn) (算法设计与分析吕国英清华大学出版社135页4..3.3二分法变异)(分治法)(也可用动态规划算法参看递归王晓东计算机算法设计与分析第三版p61页)
a、基本思想:
用分治法求最大子段和首先将问题划分,即将一直序列划分成长度相等的两个序列,
b、复杂度分析:
把问题划分为左右两种的情况,需要分别递归求解,时间复杂度可如下计算:
有递推公式为:
T(n)=1n=1
T(n)= 2T(n/2)+1n>1
所以,分治算法的时间复杂度是n+[logn]-2,当n为奇数时,logn取上线,当n为偶数时,logn取下线。//不知道为什么会-2!
C、代码实现:
{
median(x,y,xm+1,xRight,yLeft,ym);
}
else
{
median(x,y,xLeft,xm,ym+1,yRight);
}
}
}
int main()
{
int m;int a[d],b[d];
cout<<"Enter dimension m:"<<endl;
cin>>m;
cout<<"Enter array a:"<<endl;
}
}
void main()
{
int a[m],d;
cout<<"请输入元素个数"<<endl;
cin>>d;
cout<<"请输入元素"<<endl;
for(int i=0;i<d;i++)
cin>>a[i];
cout<<"最大子段和为:"<<MaxSubSum(a,0,d-1)<<endl;
}
运行结果为:
#include <vector>
#include<algorithm>
using namespace std;
using std::vector;
double greedy(vector<int>x,int s)
{
int minx;
{
cin>>x[i];
y[i]=x[i];
}
int c[m][m]={0},b[m][m]={0};
QuickSort(x,0,d-1);
LCSLength(x,y,d,c,b);
cout<<"最长单调递增子序列为:"<<endl;
LCS(d-1,d-1,x,b);
}
结果为:
7.礼物分配问题.两兄弟Alan和Bob,共同分配n个礼物.每个礼物只能分给其中的一个人,且不能分成两个.每个礼物i的价值为vi,为正整数.设a和b分别表示Alan和Bob所收到的礼物的总价值, V= ,为所有礼物的总价值.为使两兄弟高兴,我们希望尽可能地均分这些礼物,即|a-b|打到最小
}
}
}
int main()
{
int n;
int max,cmax;
printf("输入数组长度");
scanf("%d",&n);
printf("输入数组:\n");
for(int i=0;i<n;i++)
{scanf("%d",&a[i]);}
maxcmax(0,n-1,max,cmax);
printf("最大数为%d\n",max);
1. 给定数组a[0:n-1],试设计一个算法,在最坏情况下用n+[logn]-2次比较找出a[0:n-1]中的元素的最大值和次大值. (算法分析与设计习题2.16 )(分治法)
a、算法思想
用分治法求最大值和次大值首先将问题划分,即将划分成长度相等的两个序列,递归求出左边的最大值次大值,再求出右边的的最大值次大值,比较左右两边,最后得出问题的解。
#include <stdio.h>
int a[100];
void maxcmax(int i,int j,int &max,int &cmax)
{
int lmax,lcmax,rmax,rcmax;
int mid;
if (i==j)
{
max=a[i];
cmax=a[i];
}
else if (i==j-1)
{
max=lmax;
cmax=lcmax;
}
else
{
max=lmax;
cmax=rmax;
}
else
if(rcmax>lmax)
{
if(rmax==rcmax)
{
max=rmax;
cmax=lmax;
}
else
{
max=rmax;
cmax=rcmax;
}
}
else
{
max=rmax;
cmax=lmax;
for(int i=0;i<m;i++)
cin>>a[i];
cout<<"Enter array b:"<<endl;
for(int j=0;j<m;j++)
cin>>b[j];
int mid=median(a,b,0,m-1,0,m-1);
cout<<"The median is:"<<mid<<endl;
j--;
R[i]=R[j];
while(i<j&&R[i]<=tmp)
i++;
相关文档
最新文档