核电厂系统与设备知识点
核电厂系统及设备讲义
核电厂系统及设备讲义一、核电厂概述核电厂是利用核裂变或核聚变能产生电能的设施。
核电厂通常由核反应堆、发电机、冷却系统、辅助设备等组成。
二、核反应堆核反应堆是核电厂的核心设备,它是进行核裂变或核聚变反应的地方。
核反应堆通常采用压水堆、沸水堆等不同类型。
核反应堆的安全运行是核电厂的关键。
三、发电机核电厂的发电机是将核反应堆产生的热能转化为电能的装置。
发电机通过转动产生电能,供给电网使用。
四、冷却系统核电厂的冷却系统用于散热,避免核反应堆过热。
冷却系统通常采用水冷却或气冷却的方式。
五、安全系统核电厂的安全系统包括应急关闭系统、防护系统等。
这些系统是核电厂保障安全运行的关键。
六、辅助设备核电厂的辅助设备包括控制系统、监测设备、燃料装置等。
这些设备为核电厂的正常运行提供支持。
七、废物处理系统核电厂产生的废物处理是核电厂运行的重要环节。
废物处理系统包括核废料处理设施、废水处理设施等。
以上就是核电厂系统及设备的简要介绍,核电厂作为清洁能源的重要组成部分,在全球范围内发挥着重要作用。
随着技术的不断发展,核电厂的安全性和效率将得到进一步提升。
八、安全防护设施核电厂的安全防护设施是保障核反应堆安全运行的重要一环。
其中包括核反应堆容器、保护壳和防辐射屏障等。
这些设施能够有效隔离放射性物质,确保辐射对周围环境和人员的影响得到最小化。
九、辐射监测系统核电厂使用辐射监测系统对反应堆周围环境和工作人员进行实时监测,以确保辐射水平在安全范围内。
这些监测系统包括气体采样装置、人员穿戴的辐射监测仪器等,能够及时警报,保障人员和环境的安全。
十、应急预案核电厂拥有完善的应急预案,对各种可能的事故和突发状况进行了充分的预案和演练。
一旦发生紧急情况,核电厂能够迅速启动应急预案,以及时有效地应对和解决问题。
十一、燃料处理系统核电厂的燃料处理系统负责燃料元件的储存、运输和辐射监测。
燃料元件是核反应堆的关键部件,核电厂需要对其进行精心管理和维护,以确保核反应堆的正常运行。
核电厂系统及设备
核电厂系统及设备
核电厂系统及设备主要包括以下几个方面:
1. 核反应堆:核电厂的核反应堆是核电厂最核心的部分,它通过核裂变或核聚变反应产生巨大的热能。
核反应堆通常由燃料组件、燃料棒、燃料元件、反应堆堆芯、堆腔和控制系统等组成。
2. 蒸汽发生器:核反应堆释放的热能会被用来加热水,产生高温高压的蒸汽。
蒸汽发生器是核电厂中的关键设备,它通过将核反应堆排出的高温冷却剂与次级回路中的冷却剂进行热交换,将水加热为蒸汽。
3. 主蒸汽管道系统:主蒸汽管道系统连接了蒸汽发生器和汽轮机,将高温高压的蒸汽输送到汽轮机中,通过汽轮机的转动产生动力,驱动发电机发电。
4. 汽轮机和发电机:汽轮机是核电厂中的关键设备之一,它通过蒸汽的高速流动驱动转子旋转,产生机械能。
发电机则将机械能转化为电能,通过电力传输系统将电能输送到电网中。
5. 冷却系统:核电厂需要通过冷却系统将发电过程中产生的余热散发出去,保持核电厂的正常运行温度。
常用的冷却系统包括河水冷却系统、冷却塔系统等。
6. 安全系统:核电厂的安全系统是保证核反应堆运行安全的重要设备。
安全系统包括事故监测预警系统、应急冷却系统、安全容器等,用来应对可能发生的异常事故或紧急情况。
除了以上几个方面的设备,核电厂还包括辅助设备,如控制系统、通风系统、水处理设备、废物处理设备等,这些设备都是核电厂正常运行的重要保障。
同时,核电厂还有辐射防护设备、工业液体废物贮存系统等,保障人员的安全和环境的保护。
核电厂电气系统与设备
1.成套配电装置的特点(1)、电气设备布置在封闭或半封闭的金属外壳内,相间和对地距离可以缩小,结构紧揍,占地面积小。
(2)、所有电器元件已在工厂组装成一整体,现场安装工作量大大减小,有利缩短建设周期,也便于扩建和搬迁。
(3)、运行可靠性高,维护方便(4)、耗用钢材较多,造价较高。
2.发电机与配电装置的连接有三种方式,即用电缆、敞露母线、封闭母线连接。
3.电气主接线图一般画成单线图4.核电厂主要有三种主接线:高压开关站主接线、发变组接线、厂用电接线。
5.在两组母线间,装有三个断路器,可引接二个回路,又称为二分之三接线。
6.双母线接线特点(1)、检修任一组母线时,不会停止对用户连续供电。
(2)、运行调度灵活,通过倒换操作可形成不同的运行方式(3.)在特殊需要时,可以用母联与系统进行同期或解列操作。
7.厂用耗电量占发电厂全部发电量的百分数,称为厂用电率。
8.厂用电系统的主要功能是在任何工况下:(1)为核电厂的厂用点设备提供安全可靠的电源。
(2)并对与核安全有关的系统和设备提供应急电源,以确保核电站的安全运行。
励磁方式分为:用直流发电机作为励磁电源的直流励磁机励磁系统;用硅整流器装置将交流转化成直流后供给励磁的整流器励磁系统用直流发电机作为励磁电源的直流励磁机励磁系统用硅整流器将交流转化成直流后供给励磁的整流器励磁系统。
同步发电机并联运行的优点1.电能的供应可以相互调剂,合理使用2.增加供电的可靠性3.提高供电的质量,电网的电压和频率能保持在要求的恒定范围内4.系统愈大,负载就愈趋均匀,不同性质的负载,互相起补偿作用。
5.联成大电力系统,有可能使发电厂布局更加合理。
同步电动机的异步起动方法首先将同步电动机的励磁绕组通过一个电阻短接。
第二步,将同步电动机的定子绕组接通三相交流电源。
第三步,当同步电动机的转速达到同步转速的95%左右时,将励磁绕组与直流电源接通,则转子磁极就有了确定的极性,依靠转子磁场与定子磁场之间的吸引力将转子逐渐牵入同步。
核电厂系统与设备(第四讲)
(2011—2012学年第2学期)
主讲:田丽霞
1
1. 概述
• 蒸汽发生器是压水堆核电厂一、二回路的枢 纽,它将反应堆产生的热量传递给蒸汽发生 器二次侧,产生蒸汽推动汽轮机作功。
• 蒸汽发生器是分隔一、二次侧介质的屏障, 它对于核电厂的安全运行起十分重要的作用。
2
3
4
5
蒸汽出口管嘴 1 蒸汽限流器 2
上封头 3
三级分离器 4 上人孔 5
一二级汽水分离器 6 上筒体 7
给水管环 8
管束弯头防震条 9 锥形筒体 10
U形管 11 下筒体 12 支撑板 13 下降管套筒 14
20 给水管嘴
流量分配板 15
下筒体加厚段管板 16 一次侧筒体隔板 17 下封头 18 一次侧进出水管嘴
12
• 因此,各核电国家都把改进和研究蒸汽发 生器技术作为完善压水堆核电厂技术的重 要环节,制定了庞大的改进研究计划,其 中包括蒸汽发生器热工水力、腐蚀与传热 管材料的研制、蒸汽发生器结构设计的改 进、无损探伤技术、传热管振动、磨损疲 劳研究和二回路水质控制等。这些课题涉 及多种学科。
13Biblioteka 蒸汽发生器的分类:31
图3.30 支撑板四叶梅花形孔
32
e 管束套筒
• 管束套筒包围传热管束,降二次侧水分成 下降通道与上升通道。其下端由支撑块支 撑,留有间隙,使下降通道的水通过,进 入管束区。
33
F 流量分配板
• 在管束下部略高于管板处,有一块流量分 配板。板上钻的管孔比传热管的直径大, 在中心处钻一大孔用于分配流量。流量分 配板与U形管束中间设置的挡块相结合,保 证在平面上给水分布大致均匀并以足够大 的流速冲刷管板表面。
核电厂系统及设备知识
核电厂系统及设备知识反应堆是核电厂的核心设备,用于进行核裂变反应,产生大量热能。
反应堆一般由燃料组件、反应堆压力容器、反应控制系统等组成。
燃料组件是含有放射性核燃料的结构部件,可以产生裂变反应;反应堆压力容器是储存反应堆冷却剂的金属容器,保证核反应的正常进行;反应控制系统用于控制核反应的速率和安全性。
蒸汽发生器是连接反应堆和蒸汽涡轮发电机组的重要设备。
它通过将反应堆冷却剂的热能转移给水,使水蒸发成为高温高压的蒸汽,用于驱动蒸汽涡轮发电机组发电。
蒸汽涡轮发电机组是核电厂的主要发电设备,它将高温高压的蒸汽能量转化为电能。
核电厂的冷却系统用于冷却反应堆和蒸汽发生器,防止核反应过热和爆炸。
冷却系统通常包括主冷却循环、辅助冷却循环和应急冷却系统等。
核电厂的控制系统是对核反应堆进行监控和控制的设备,保证核反应的安全、稳定和高效进行。
此外,核电厂还有辅助设备包括供应水系统、通风系统、废物处理系统等,用于保障核电厂的运行和安全。
总的来说,核电厂的系统和设备是一个密不可分的系统,各部分设备协同工作,确保核反应的安全、高效进行,并将热能转化为电能。
核电厂是人类利用核能进行能源开发的重要手段之一。
尽管核能的利用被一些人质疑其安全性,但是通过严格的安全管理和监控,以及先进的技术和设备,核电厂在为人类提供清洁、高效的能源的同时,也保证了可靠性和安全性。
接下来我们将更加深入地了解核电厂的系统和设备知识。
反应堆是核电厂的核心部件,是核能转变为热能的场所,其内部包含着燃料组件,用以控制和维持反应中子的自持和增殖。
燃料组件一般是由铀或钚等元素的化合物构成,包装在金属或陶瓷的包壳中。
反应堆压力容器则是容纳反应堆冷却剂的主要设备,其壁厚、材料及焊缝质量等都受到严格的监控。
反应堆控制系统则是用于监控和控制核反应的速率和安全性的设备,包括各种传感器、控制棒和自动系统,确保核反应能够达到预期的状态。
蒸汽发生器连接在反应堆之后,通过将反应堆冷却剂的热能转移给水,使水蒸发生成高温高压的蒸汽。
核电厂系统与设备
路漫漫其悠远
核电厂系统与设备
• 能动的安全性 必须依靠能动设备(有源设 备),即需由外部条件加以保证的安全性。
• 后备的安全性 指由冗余系统的可靠度或阻 止放射性物质逸出的多道屏障提供的安全 性保证。
路漫漫其悠远
核电厂系统与设备
• 固有安全性定义为:当反应堆出现异常工况 时,不依靠人为操作或外部设备的强制性干 预,只是由堆的自然安全性和非能动的安全 性,控制反应性或移出堆芯热量,使反应堆 趋于正常运行和安全停闭。
水送到高压安注泵入口,或当泵出口压力高
于一回路压力时直接注入一回路。
路漫漫其悠远
核电厂系统与设备
安全注入系统的主要参数
路漫漫其悠远
核电厂系统与设备
安注启动信号
• 高压和低压安注系统的触发信号由反应堆 保护系统给出。如果自动控制电路故障, 可由控制室手动启动。
• 中压安注系统不需要外电源或启动信号就 能快速响应。当反应堆冷却剂压力低于安 注箱的压力时就开始向一回路系统的冷段 注水,保证快速冷却堆芯。
• 手动启动。
路漫漫其悠远
核电厂系统与设备
启动信号触发后的保护动作
安注信号除立即启动RIS系统执行安注过程外, 还实施下列保护动作,包括:
• 反应堆紧急停堆(实际上应已停堆,这里是为 了确认),汽轮机脱扣;
• 启动应急柴油发电机; • 隔离主给水系统(ARE),并停运主给水泵; • 启动电动辅助给水泵;
核电厂系统与设备
路漫漫其悠远
2020/11/19
核电厂系统与设备
1 核反应堆的安全系统
• 在核电厂的设计、建造和运行过程中,必须 坚持和确保安全第一的原则。三哩岛和切尔 诺贝利两次重大事故的发生,使人们对反应 堆安全性提出了更高的要求。提出应以固有 安全(Inherent Safety)概念贯穿于核电厂 设计安全的新论点。
核电厂系统与设备(第五讲)
• 对于较快的负荷变化,如每分钟±5%额定 功率的线性功率变化,或±10%额定功率 的功率阶跃改变,化容系统与稳压器共同 承担容积补偿。一般说来,化容系统分担 上述过程中容积变化的30%~40%。
• 对于一回路小的泄漏,由化容系统提供足 够的补给水。
表4-2压水堆冷却剂的放射性(电功率1000MW,冷 却剂温度303oC,燃料破损率1%)
(2)水质指标控制
• 水除了载热和慢化中子外,还发生一系列 的反应,其中包括:水和其中杂质的中子活 化反应,水的辐射分解,水对材料的腐蚀及 腐蚀产物的活化、迁移和沉积,裂变产物 从破损的燃料元件中逃逸及其随冷却剂的 转移等。
• 常用的pH值控制剂有两种,它们是氢氧化 锂和氢氧化铵。
⑤ 电导率
• 电导率是水中离子总浓度的一个指标,单 位(uS/cm)水越纯净,电导率越低。电导 率是水纯度的一个度量标准。
• 冷却剂中加入硼酸和pH值控制剂后,电导 率已不能有效地反映冷却剂的纯度,而只 能规定一个允许范围,具体取值大小取决 于硼酸和pH值控制剂的添加量。通常电导 率范围为1~40 。
• 容积控制就是通过CVCS吸收稳压器不能全 部吸收的那部分一回路水容积的变化的量, 维持稳压器水位在一个整定的范围内。
• 一回路水容积变化的原因主要是温度的改 变,如下图所示:
从图可见当反应堆冷却剂系统RCP从冷态(60℃)增 温到热态(291℃)时,其比容增加将近40%;
图(1) 水的比容随温度变化曲线
图(2) 容积控制原理
3 水质控制
化容系统在设计规定的燃料包壳破损率 (一般为0.5%)情况下,应能保证冷却剂达到 规定的放射性水平和水质指标。 (1)放射性水平的控制 ① 水及其中杂质的活化; ② 裂变产物的释放; ③ 腐蚀产物的活化; ④ 化学添加物的活化
核电厂系统与设备复习资料
组成:堆芯(燃料组件、堆芯功能组件);堆芯支撑结构;反应堆压力容器;控制棒传动 机构。
(1) 堆芯结构: 分区装料的优点与缺点:
1. 燃料组件: A. 燃料元件:
-4-
《核电厂系统与设备复习资料》
组成:下端塞;锆合金包壳;UO2 芯块;氧化铝块;因科镍弹簧;上端塞;充 气孔。
作用:产生核裂变并释放热量的部件。 燃料包壳:防止核燃料与反应堆冷却剂接触,以避免裂变产物逸出造成放射性
制室、应急柴油发电机厂房、汽轮发电机厂房等。 (2 )三废区: 主要由废液储存、处理厂房、固化厂房、弱放废物库、固体废物储存库、
特种洗衣房和特种汽车库等组成。 (3 )供排水区: 主要由循环水泵房、输水隧洞、排水渠道、淡水净化处理车间、消防站、
高压消防泵房、排水泵房等组成。 (4 ) 动力供应区: 主要由冷冻机站、压缩空气及液氮储存气化站、辅助锅炉房等组成。 (5 ) 检修及仓库区: 包括检修车间、材料仓库、设备综合仓库及危险品仓库等。 (6 ) 厂前区: 包括电厂行政办公大楼及汽车、消防、保安及生活服务设施。 3、核岛厂房主要有反应堆厂房、核辅助厂房、燃料厂房、主控制室等。 反应堆厂房与汽轮机厂房的相对位置有两种形式: 一种是汽轮机厂房与反应堆厂房 呈L形布置, 另一种是汽机厂房与反应堆厂房呈T形布置。L形布置方法厂房布局紧凑, 占地少, 特别是由几个单元机组并列时, 汽机厂房可以合在一起, 以减少汽机厂房内 重 型吊车台数, 若端部再接维修车间, 则设备检修更为方便。图 2 .8 为 L 形布置的 双机组 核电厂平面布置图。但是, 这种布置, 在汽轮机厂房与反应堆厂房之间需设置 防止汽轮机飞车时叶片对安全壳冲击的屏障。采用 T 形布置方式时, 汽轮机叶片飞射 方向不会危及反应堆厂房, 但厂房面积相对大些。 4、其循环水系统的标高布置, 是确定厂区标高的两个重要因素之一。这两个因素是: (1 ) 厂区地坪的标高应位于千年一遇的最高潮位以上; (2 ) 将凝汽器布置在适当标高位置上, 使得循环水回路中有适当的虹吸效应, 并使核
核电厂系统设备复习资料
1.核能在人类生产和生活中的应用的主要形式是核电。
2.压水堆核电厂主要由压水反应堆、反应堆冷却剂系统、蒸汽和动力转换系统、循环水系统、发电机和输配电系统及辅助系统组成。
3.通常把反应堆、反应堆冷却剂系统及其辅助系统合称为核供气系统。
4.核辅助系统主要用来保证反应堆和一回路系统的正常运行。
5.核电厂选址应考虑核电厂本生特性、厂址自然条件和技术要求以及辐射安全等三方面。
6.划分安全等级的目的是提供分级设计标准。
7.安全分级的主要目的是正确选择用于设备、制造和检验的规范和标准。
8.安全一级主要包括组成反应堆冷却剂系统承压边界的所有部件。
安全一级设备选用的设计等级为一级,质量为A组。
9.我国的核安全法规将抗震类别分为三类,即抗震Ⅰ类,抗震Ⅱ类和非抗震类(NA)。
10.核系统有三道屏障,第一道是燃料棒包壳,第二道是一回路系统的承压边界,第三道是安全壳。
11.反应堆冷却剂系统可分为冷却系统、压力调节系统和超压保护系统。
12.在堆芯热功率不变的情况下,提高冷却剂的质量流量可以减少堆出入口温差。
13.核电厂的一回路系统由若干并联的环路组成,环路数不小于2,一般采用2~4条环路并联形成。
14.一回路的工作压力、冷却剂的反应堆进出口温度、流量等参数的选择,直接影响了核电厂的安全性和经济性。
15.一般压水堆核电厂一回路系统的工作压力约为15MPa。
16.冷却剂在反应堆的进出口温度为280~300℃。
17.一回路系统的总阻力约为0.6~0.8MPa。
18.压水堆本体由堆芯、堆芯支撑结构、反应堆压力容器及控制棒传动机构组成。
19.反应堆冷却剂流过堆芯时起慢化剂作用。
20.燃料元件是产生核裂变并释放热量的部件。
21.控制棒组件分两类:黑棒束组件,灰棒束组件。
22.堆芯下部支撑结构是堆芯的主要包容件,他是以吊篮结构为特征的组合体。
23.反应堆压力容器工作在高压、高温、放射性辐照下寿命不少于40年。
24.反应堆冷却剂泵分:全密封泵和轴封泵。
核电厂系统及设备知识
• 系统的净化功能为去除废燃料池和换料水 池中的裂变产物,腐蚀产物及悬浮粒子, 这是通过除盐、过滤和表面去浮来实现的 。
• 系统的充排水功能为:保持废燃料水池所 需的水位。在贮存废燃料期间,废燃料池 是不允许排空的。灌注和排放燃料运输通 道、装料池以及排放换料水池的部份水。
• 后者监测到泵出口低压时自动启动同系列 的另一台泵。以保证足够的供水量。
表4.6 几种主要工况下设备冷却水系统需 要导出的热负荷和供水量
2.3 设备冷却水系统的运 行
(1)正常功率运行
• 在核电厂正常功率运行时,需要设备冷却 水系统带走的热负荷不大,每一机组只需 一台泵和一台热交换器运行,因而只需系 列A或B的任一系列投运即可。若运行着 的泵出口低压或故障不可用,泵出口的压 力检测开关得到的低压信号自动启动该系 列上的第二台泵。
• 除了失水事故外,其它事故引起的停堆事 故后余热去除系统也用来排出上述热量。
1.2 系统描述
• 大亚湾核电厂的余热排出系统流程如图 4.5所示。该系统由两个独立的系列组成 ,每个系列由一台余热排出泵、一台立式 U型管管壳式热交换器及相应的管道、阀 门和仪表组成。整个系统布置在安全壳内 。
• 余热排出系统是一个与反应堆冷却剂系统 并联的低压回路,其入口接二环路热管段 ,冷却剂经余热排出泵进入热交换器,被 壳侧的设备冷却水冷却后,经蓄压箱注入 管线进入1、3环路冷管段。
• 系统能提供池水的充分净化,使电站工作 人员不受限制地接近废燃料贮存区。系统 也能保证废燃料池水的清澈度,以便在换 料操作时能具有良好的可见度。
• 冷却泵和冷却器能力的冗余度为100%; 冷却泵设计成具有冷却需要的流量和压头 ;净化泵设计成具有净化需要的流量和压 头。
核电厂系统及设备知识
核电厂系统及设备知识概述核电厂是一种利用核能发电的设施,它包含了一系列的系统和设备,每个系统和设备都发挥着重要的作用。
本文将介绍核电厂的主要系统和设备,并解释它们的功能和工作原理。
主要系统1.反应堆系统2.蒸汽发生器系统3.蒸汽涡轮机系统4.发电机系统5.控制和保护系统6.辅助系统下面将对每个系统进行详细介绍。
1. 反应堆系统反应堆系统是核电厂的核心组成部分。
它包括核反应堆、燃料组件、冷却剂循环系统和反应堆容器等。
核反应堆是核能发电的关键元素,它通过控制核反应过程来产生热能。
燃料组件是反应堆内用于核反应的燃料,通常使用铀或钚等放射性物质。
冷却剂循环系统用于将冷却剂(如轻水或重水)循环传递到反应堆中,从而控制反应堆的温度。
2. 蒸汽发生器系统蒸汽发生器系统使用反应堆中产生的热能将水转化为蒸汽。
蒸汽发生器是其中的关键设备,它通过将热能传递给水来产生高温高压的蒸汽。
蒸汽发生器中的水一般以自然循环或强制循环方式进行传热。
3. 蒸汽涡轮机系统蒸汽涡轮机系统利用蒸汽的能量驱动涡轮机的转动,从而产生机械能。
涡轮机通常由高压涡轮、中压涡轮和低压涡轮组成,每个涡轮对应一个级别的蒸汽。
这些涡轮通过轴传递机械能给发电机。
4. 发电机系统发电机系统将涡轮机传递过来的机械能转化为电能。
发电机是核电厂中非常重要的设备,它通过利用电磁感应原理将机械能转化为电能。
5. 控制和保护系统控制和保护系统对核电厂的运行和安全起着重要作用。
它包括控制设备、保护设备和监测设备等。
控制设备用于控制核反应堆和其他系统的运行,保护设备用于检测和响应发生异常情况,监测设备用于监测核电厂的运行状态和参数。
6. 辅助系统辅助系统是核电厂的辅助设备,它们为主要系统提供支持和保障。
常见的辅助系统包括给水系统、消防系统、氢气系统、冷却水系统等。
设备知识除了核电厂的主要系统,还有一些关键设备需要了解。
1.控制棒2.轻水堆3.反应堆压力容器4.冷却塔5.辐射防护设备控制棒是用于控制和调节核反应堆的关键设备,它可以通过插入或提取来控制核反应堆中的核反应过程。
核电厂系统与设备知识点
核电厂系统与设备知识点2020年前要新建核电站31座,今后每年平均需要建设两个百万千瓦级核电机组我国发展核电的基本政策是:坚持集中领导,统一规划,并与全国能源和电力发展相衔接;核电政策:自主,国产化,与压水堆配套;引进的基础上,消化,改进,国产化。
在核电布局上优先考虑一次能源缺乏、经济实力较强的东南沿海地区。
坚持“质量第一,安全第一”,坚持“以我为主,中外合作”我国确定发展压水堆核岛:一回路系统及其辅助系统、安全设施及厂房。
常规岛:汽轮发电机组为核心的二回路及其辅助系统和厂房。
配套设施:除核岛、常规岛的其余部分。
压水堆核电厂将核能转变为电能是分四个环节,在四个主要设备中实现的:1)核反应堆:将核能经转变为热能,并将热能传给反应堆冷却剂,是一回路压力边界的重要部件。
2)蒸汽发生器:将反应堆冷却剂的热量传递给二回路的水,使其变为蒸汽。
在此只进行热量交换,不进行能量形态的转变;3)汽轮机:将蒸汽的热能转变为高速旋转的机械能;4)发电机:将汽轮机传来的机械能转变为电能。
大亚湾核电厂共有348个系统核电厂平面布置原则:a.区分脏净,脏区尽可能在下风口;b.满足工艺要求,便于设备运输,减少管线迂回纵横交叉;c.反应堆厂房为中心,辅助厂房,燃料厂房设在同一基岩的基垫层上,防止因厂房承载或地震所产生的沉降差导致管线断裂.d.以反应堆厂房为中心,辅助厂房,燃料厂房,主控制室应急柴油发电机厂房四周.双机组厂可采用对称布置,公用部分辅助厂房.布置分区:核心区、三废区、供排水区、动力供应区、检修及仓库区、厂前区核心区布置按反应堆厂房与汽轮机厂房的相对位置,有T型与L型布置:T型:汽轮机叶片旋转平面与安全壳不相交.占地大,单独汽机厂房。
L型:汽轮机叶片旋转平面与安全壳相交,须设置防止汽轮机飞车时汽轮机叶片对安全壳和冲击的屏障.占地少,两台以上机组可公用汽轮机厂房,仅用一台吊车。
我国采用T型布置。
安全分级的目的是正确选择用于设备设计、制造、检验的规范标准安全功能:1 安全停堆和维持安全停堆状态;2 停堆后余热导出;3 事故后防止放射性物质释放,以保证放射性物质释放不超过容许值。
861核电厂系统与设备考研资料
861核电厂系统与设备考研资料核电厂系统与设备是指核电厂内所使用的各种系统和设备,用于实现核能的采集、转换和利用。
核电厂系统与设备一般包括核反应堆系统、安全保障系统、电力转换系统、辅助系统以及监控与控制系统等。
核反应堆系统是核电厂最核心的系统之一,主要包括核燃料装置、反应堆压力容器、热交换器、冷却剂循环系统、控制棒和反应堆燃料负载结构等。
核燃料装置用于贮存和放置核燃料,反应堆压力容器是核反应堆的关键部件,承受核反应堆内的高压和高温。
热交换器负责将核反应堆中的热能转换为工作流体中的热能。
冷却剂循环系统用于循环和冷却反应堆内的冷却剂,以保持核反应堆的稳定运行。
控制棒是调节和控制核反应堆中核裂变反应速率的装置,反应堆燃料负载结构则用于支撑和固定核燃料。
安全保障系统是核电厂保证安全运行的重要设备之一。
其中包括放射性防护系统、核辐射监测系统、事故防范与处理系统等。
放射性防护系统主要用于对核电厂人员和环境进行辐射防护,减少辐射危害。
核辐射监测系统用于实时监测核电厂内外的辐射水平,及时报警和采取措施。
事故防范与处理系统则是核电厂在发生事故时保障应急处置和事故控制的关键系统,包括事故控制室、安全阀、紧急注入系统等。
电力转换系统是核电厂将核能转化为电能的关键设备。
核能通过核反应堆中的核裂变反应产生热能,然后通过热交换器转移到工作流体中。
工作流体驱动涡轮机旋转,进而带动发电机发电,最终将核能转化为电能。
辅助系统包括循环水系统、给水系统、冷却水系统等。
循环水系统用于将冷却剂冷却后再次循环到核反应堆中,起到冷却和热交换的作用。
给水系统用于为核反应堆提供所需的给水,保证核反应堆的正常运行。
冷却水系统用于为辅助系统提供冷却水,以确保系统设备的正常运行温度。
监控与控制系统是核电厂中的中枢系统,用于监测、控制和调度核电厂的运行状态。
该系统由计算机控制和监测设备组成,通过传感器采集各项运行参数和状态信息,并进行实时监控、数据分析和判断,从而确保核电厂的安全、稳定和经济运行。
核电厂系统及设备培训讲义(
2.5 安全壳喷淋系统(EAS)
主要功能:
• 从安全壳顶部空间喷洒冷却水,为安全壳气 空间降温降压,限制事故后安全壳内的峰值 压力,保证安全壳完整性。
• 在再循环安注模式下,安全壳地坑的水需冷 却时,由安全壳喷淋系统的热交换器冷却后 再注入堆芯,安全壳喷淋系统是在设计基准 事故下可以排除安全壳内热量的唯一系统。
5
• 具备有这种能力的反应堆,即主要依赖于 自然的安全性,非能动的安全性和后备反 应性的反应堆体系被称为固有安全堆。
• 先进核反应堆有:池式快堆IFR,模块式高 温气冷堆MHTGR,过程固有最终安全反应 堆PIUS。
6
反应堆安全设施有特定的安全功能
7
事故工况下投入的系统或装置
第一道屏障:反应堆紧急停堆系统 第二道屏障:稳压器安全阀 第三道屏障:则有以下系统或装置动作: • 安全壳自动隔离; • 安全壳喷淋系统, 用于降低安全壳内压和减
45
EPR堆芯熔融物收集系统(捕集器)
46
AP1000的安全壳
• 安全壳由4个环段和上 下封头组成。直径为 39.6m,圆柱段是 7.77m。壁厚4.44cm, 设计压力4.07bar。
• 环段和容器封头用钢板 构成,事先在工厂加工 成型,在现场安装。最 大环段(包括支撑)重 658t,2个封头每个重 500t。
36
• 系统间的设备兼容,兼容会减少设备,简化 设计,降低投资,但带来了运行中运行方式 切换的问题,会增加系统的失效率。因而, 有将安全相关系统与一般系统分开的趋势。 我国秦山核电厂则将化容系统上充泵在事故 时作安注使用,同时还专设了两台高压安注 泵。大亚湾核电厂的余热去除系统只起余热 排出作用,与低压安注分开了。
• 在蒸汽发生器传热管破裂事故,反应堆冷却
核电厂系统与设备 复习大纲
《核电厂系统与设备复习资料》第一章:绪论1、从能源的供应结构来看, 目前世界上消耗的能源主要来自煤、石油、天然气三大资源,不仅利用率低, 而且对生态环境造成严重的污染。
2、为了缓解能源矛盾, 除了应积极开发太阳能、风能、潮汐能以及生物质能等再生能源外, 核能是被公认的唯一现实的可大规模替代常规能源的既清洁又经济的现代能源。
3、按慢化剂分类:轻水堆(压水堆和沸水堆);重水堆;石墨堆。
沸水堆:效率高。
缺点:水有放射性压水堆:汽水分离再热器。
再热:提高干度。
回热:提高效率第二章:压水堆核电厂2 .1 概述1、从生产的角度讲, 核岛利用核能生产蒸汽, 常规岛用蒸汽生产电能。
核岛:反应堆冷却剂系统;专设安全系统;核辅助系统;三废处理系统。
常规岛:汽轮机回路;循环冷却水系统;电气系统。
2、反应堆冷却剂系统将堆芯核裂变放出的热能带出反应堆并传递给二回路工质以产生蒸汽。
通常把反应堆、反应堆冷却剂系统及其辅助系统合称为核供汽系统。
每一条环路由一台蒸汽发生器、一台或两台反应堆冷却剂泵及相应的管道组成, 在其中一个环路的热管段上, 通过波动管与一台稳压器相连。
一回路内的高温高压含硼水,由反应堆冷却剂泵输送, 流经反应堆堆芯, 吸收了堆芯核裂变放出的热能, 再进入蒸汽发生器, 通过蒸汽发生器传热管壁, 将热量传给蒸汽发生器二次侧给水, 然后再由反应堆冷却剂泵唧送回反应堆。
如此循环往复, 构成封闭回路。
整个一回路系统设有一台稳压器。
一回路系统的压力靠稳压器调节, 且保持稳定。
3、为了保证反应堆和反应堆冷却剂系统的安全运行, 核电厂还设置了一系列核辅助系统和专设安全设施系统。
4、核辅助系统主要用来保证反应堆和一回路系统的正常运行。
专设安全设施系统为核电厂重大的事故提供必要的应急冷却措施, 并防止放射性物质的扩散。
5、二回路系统由汽轮机、发电机、凝汽器、凝结水泵、给水加热器、除氧器、给水泵、蒸汽发生器、汽水分离再热器等设备组成。
精选核电厂系统与设备第十一讲
蒸汽进汽管和布汽孔板除氧器两端各有一个Dg30进汽管,过热蒸汽从进汽管进入除氧器时,由布汽孔板把蒸汽沿除氧器的下部断面上均匀布开,使蒸汽均匀地从栅架底部进入深度除氧段。除氧器的出水管和蒸汽连通管。除氧器的出水管和蒸汽连通管通过过渡接管直接与除氧给水箱相连通。
淋水盘箱淋水盘箱是除氧器深度除氧段中主要除氧元件,共有128只,全部由不锈钢制造,其外形尺寸为505×376mm,该箱由侧板、角钢和小槽钢组成。恒速喷咀恒速喷咀安装在充满凝结水的凝结水进水室中的弓形不锈钢罩板上。
根据亨利定律和道尔顿定律,降低水中溶解气体的浓度的关键是减小它们在气空间的分压。如果气体的分压趋近于零,则它们在水中的浓度就会很小很小。把水加热至饱和温度,水蒸汽的分压趋近于水面上的全压,其它气体的分压便趋于零,其它气体在水中的浓度就会趋近于零。这样我们得到热力除氧的方法,即将水加热至饱和温度,使水中溶解气体的分压趋近于零从而达到除氧目的。
辅助给水泵在除氧给水箱的水源处从水平衡管接出(管径Ф219×6mm),从水平衡管引出一条Ф273×7mm的管道供除氧循环泵用水。在下水管处还设置加N2H4装置,运行中加联氨进行化学除氧,使进入蒸发器的水含氧量小于5ppb。除氧循环泵从水侧平衡管吸水,升压后与凝结水管相连,返回除氧器。
5.2 除氧器和除氧给水箱
4.2.1 大气式淋水盘式除氧器
大气式淋水盘式除氧器如图8.11所示。水由塔的上部进入,通过溢水口流入最上面的淋水盘。在盘的整个环形面积上开有直径为5mm~6mm的小孔。通过这些小孔水呈细水柱状降落到下一块盘上,再经过同样的小孔流到再下面的淋水盘上。
沿高度安装有4~8块淋水盘,其中一部分为园形,另一部分为环形,相间布置。加热蒸汽从塔的下部进入,向上多次折流与下落水柱接触(蒸汽流动方向如图中箭头所示)。余汽和被除气体从塔顶部排出,除氧水汇集到下面的贮水箱。
核电厂系统及设备讲义
核电厂系统及设备讲义1. 引言核电厂是一种利用核能产生电能的设施,其系统和设备具有重要的作用。
本讲义将重点介绍核电厂系统及设备的基本概念、组成和工作原理。
2. 核电厂的系统核电厂系统是由多个相互关联的子系统组成的。
下面介绍核电厂常见的主要系统。
2.1 堆芯系统堆芯是核电厂的核心部分,主要包括燃料组件、控制棒和冷却剂。
堆芯系统实现核裂变反应,产生大量的热能。
2.2 主冷却系统主冷却系统是用于吸收核反应堆中生成的热能,并将其转化为电能的核心系统。
该系统包括主循环泵、蒸汽发生器和蒸汽涡轮机等设备。
2.3 辅助冷却系统辅助冷却系统用于处理主循环泵和蒸汽发生器之外的热量。
常见的辅助冷却系统包括冷却塔和冷却水循环设备。
2.4 电力系统核电厂的电力系统用于将机械能转化为电能,并向外部供电。
该系统包括发电机、变压器和配电系统等设备。
2.5 安全系统安全系统是核电厂的重要组成部分,用于保障核电厂的运行安全。
包括放射性防护、事故保护和事故处理等系统。
3. 核电厂的设备核电厂的设备多种多样,而核心设备主要包括以下几类。
3.1 压水堆压水堆是一种常见的核反应堆类型,其中的冷却剂以高压状态循环,将热能带离核反应堆。
3.2 汽轮机汽轮机是核电厂的关键设备之一,它通过蒸汽的压力驱动转子,从而产生机械能,进而转化为电能。
3.3 电动机电动机是核电厂中的核心动力设备,用于驱动各种机械设备的转动,如泵和风扇等。
3.4 发电机发电机是核电厂将机械能转化为电能的关键设备,通过旋转磁场产生感应电动势。
3.5 控制系统控制系统用于监测和控制核电厂的运行状态,保证其正常运行。
3.6 安全设备安全设备包括防护罩、安全阀和紧急停机系统等,用于保障核电厂的运行安全。
4. 核电厂的工作原理核电厂的工作原理主要分为以下几个步骤:1.核反应堆中的燃料组件发生核裂变反应,产生大量热能。
2.主冷却系统中的冷却剂吸收核反应堆中的热能,并在主循环泵的推动下循环流动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核电厂系统与设备知识点2020年前要新建核电站31座,今后每年平均需要建设两个百万千瓦级核电机组我国发展核电的基本政策是:坚持集中领导,统一规划,并与全国能源和电力发展相衔接;核电政策:自主,国产化,与压水堆配套;引进的基础上,消化,改进,国产化。
在核电布局上优先考虑一次能源缺乏、经济实力较强的东南沿海地区。
坚持“质量第一,安全第一”,坚持“以我为主,中外合作”我国确定发展压水堆核岛:一回路系统及其辅助系统、安全设施及厂房。
常规岛:汽轮发电机组为核心的二回路及其辅助系统和厂房。
配套设施:除核岛、常规岛的其余部分。
压水堆核电厂将核能转变为电能是分四个环节,在四个主要设备中实现的:1)核反应堆:将核能经转变为热能,并将热能传给反应堆冷却剂,是一回路压力边界的重要部件。
2)蒸汽发生器:将反应堆冷却剂的热量传递给二回路的水,使其变为蒸汽。
在此只进行热量交换,不进行能量形态的转变;3)汽轮机:将蒸汽的热能转变为高速旋转的机械能;4)发电机:将汽轮机传来的机械能转变为电能。
大亚湾核电厂共有348个系统核电厂平面布置原则:a.区分脏净,脏区尽可能在下风口.满足工艺要求,便于设备运输,减少管线迂回纵横交叉.反应堆厂房为中心,辅助厂房,燃料厂房设在同一基岩的基垫层上,防止因厂房承载或地震所产生的沉降差导致管线断裂.以反应堆厂房为中心,辅助厂房,燃料厂房,主控制室应急柴油发电机厂房四周.双机组厂可采用对称布置,公用部分辅助厂房.布置分区:核心区、三废区、供排水区、动力供应区、检修及仓库区、厂前区核心区布置按反应堆厂房与汽轮机厂房的相对位置,有T型与L型布置:T型:汽轮机叶片旋转平面与安全壳不相交.占地大,单独汽机厂房。
L型:汽轮机叶片旋转平面与安全壳相交,须设置防止汽轮机飞车时汽轮机叶片对安全壳和冲击的屏障.占地少,两台以上机组可公用汽轮机厂房,仅用一台吊车。
我国采用T型布置。
安全分级的目的是正确选择用于设备设计、制造、检验的规范标准安全功能:1 安全停堆和维持安全停堆状态;2 停堆后余热导出;3 事故后防止放射性物质释放,以保证放射性物质释放不超过容许值。
确定某物项对于安全的重要性有:确定论方法;概率论方法。
安全分为四级1 安全一级:一回路承压边界所有部件;选用设备等级一级,质量A组。
按照实际可能的最高标准设计、制造、安装和实验。
2 安全二级:余热去除、安注和安喷系统。
3 安全三级:辅助给水;设备冷却水;乏燃料池冷却系统;为安全系统提供支持的系统和设施。
4 安全四级:核岛中不属于安全三级以上的,但要求按照非和规范和标准中较高要求设计制造。
抗震分为一、二类和非抗震类():抗震一类指其损害会直接或间接造成事故的工况以及用来实施停堆或维持停堆状态的构筑物、系统和设备。
安全一、二、三级和和1E级电器设备属抗震一类。
抗震一类要求满足安全停堆地震载荷要求安全停堆地震是分析电厂所在区域地址和地震条件,分析当地地表下物质的特性的基础上所确定的可能发生的最大地震。
安全停堆地震通常取当地历史上发生过的最大地震再加上一个适当的安全裕量后确定的。
抗震二类的表明设备的设计要满足能承受运行基准地震()引起载荷要求。
在美国,抗震I类设备必定是安全级设备,而对非安全级设备也可以提单独的抗安全停堆地震要求。
核电厂的安全设计中辐射防护应遵循:正常运行工况下反射性排放低于预定限值,对环境与公众的影响可以忽略不计;导致高辐射计量或放射性物质大量释放的事故概率要低,而发生概率较高的辐射后果要小。
纵深防御要贯彻到核电厂的全部活动中。
核电厂提供多层次的设备和规程,用以防止事故、或在未能防止事故发生时实施适当的防护,保证核电厂的安全。
五道相继深入而又相互增援的设计防御措施:第一道防御:考虑对事故的预防,核电厂的设计必须是稳妥的和偏于安全的第二道防御:防止运行中出现的偏差发展成为事故。
设置可靠的保护装置和系统。
探测妨碍安全的瞬变,完成适当的保护动作第三道防御:限制事故的放射性后果,保障公众的安全。
第四道防御是应付可能已超出设计基准事故的严重事故,并使放射性后果合理尽量低。
第五道防御:应急计划;万一发生严重事故造成放射性大量外逸时,对附近居民实行隐蔽、疏散、供给药物、封锁食品,使放射性物质释放带来的损害减小到最小制定事故应急响应预案的目的是:在核电厂发生事故时,采取及时有效措施,保护公众、保护环境,将事故损失减到最小国核事故应急管理体系:核事故应急工作实行国家、地方、核电厂三级管理制。
为了阻止放射性物质向外扩散,设计上的最重要安全措施之一,是在放射源与人之间设置了多道屏障:第一道屏障: 燃料元件包壳;第二道屏障: 一回路压力边界;第三道屏障: 安全壳,即反应堆厂房。
有时见到四道屏障之说,它们依次是:燃料芯块;燃料元件包壳;一回路压力边界;气密性的承压反应堆厂房(安全壳)核电厂各系统安全设计的基本原则有:单一故障准则满足单一故障准则的设备组合,在其任何部位发生单一随机故障时,仍能保持所赋于的功能多样性原则多样性应用于执行同一功能的多重系统或部件,即通过多重系统或部件中引入不同属性来提高系统的可靠性。
独立性原则为了提高系统的可靠性,防止发生共因故障或共模故障,系统设计中应通过功能隔离或实体分隔,实现系统布置和设计的独立性。
故障安全原则,;充分采用固有安全性的设计原则;运行人员操作优化的设计;主控制操纵员室设计反应堆冷却剂系统又称为一回路系统主要功能使冷却剂循环流动,将堆芯裂变产生的热量载出,并通过蒸汽发生器传给二回路工质,产生蒸汽,驱动汽轮发电机组发电余热载出:在停堆后的第一阶段,经蒸汽发生器带走堆内的衰变热。
放射性屏障:压力边界构成防止裂变产物释放到环境中的一道屏障,第二道屏障。
反应性控制:冷却剂作为可溶化学毒物硼的载体,并起慢化剂和反射层作用。
压力控制:系统的稳压器用来控制一回路的压力,防止堆内发生偏离泡核沸腾,同时对一回路系统实行超压保护。
按照功能,反应堆冷却剂系统可分为冷却系统、压力调节系统和超压保护系统主系统可分为两部分,即一回路系统部分和泄压蒸汽收集部分一回路主要部件包括:反应堆压力容器、蒸汽发生器的主冷却阀、主泵、稳压器主管道分期热段、过渡段、冷段三部分冷却系统由反应堆冷却剂泵、反应堆和蒸汽发生器及相应的管道组成。
在反应堆冷却剂泵电动机顶部装飞轮,延长主泵断电后的惰转时间,增加泵的惯性流量在一回路设备布置上,应使蒸汽发生器的位置高于反应堆压力容器,以便建立和保持一个自然循环驱动头。
在一回路出现两相流的情况下,必须考虑流动的不稳定性问题。
原理上,增加堆芯与蒸汽发生器间的高度差仍然有效,但增加的办法更倾向于降低堆芯高度,拉长反应堆压力容器而不是抬高蒸汽发生器。
卸压系统主要由装在稳压器汽空间连管上的卸压阀或安全阀及其管道和卸压箱组成一回路的工作压力、冷却剂的反应堆进出口温度、流量和流速等参数的选择,直接影响了核电厂的安全性和经济性核电厂一回路一般采用2~4条环路并联形式。
一般压水堆核电厂一回路系统的工作压力约为15.5左右。
设计压力取1.10~1.25倍工作压力;冷态水压试验压力取1.25倍设计压力。
电厂热效率与冷却剂的平均温度密切相关,冷却剂出口温度越高,电厂热效率越高,但冷却剂出口温度的确定应考虑以下因素:燃料包壳温度限制、传热温差的要求、冷却剂过冷度要求。
压水堆核电厂一回路参数范围:工作压力15.5左右;冷却剂进口温度取280℃~300℃,出口温度取310℃~330℃。
核电厂变工况时,平均温度变化允许的最大温差为17℃~25℃。
反应堆的设计温度为350℃。
单环路对应的电功率为300时,冷却剂总质量流量可达到1500021000。
主管道内冷却剂流速可达15 ,一回路系统的总阻力约为0.60.8堆芯又称为活性区,位于反应堆压力容器中心偏下的位置。
大亚湾核电厂由157个几何形状和机械结构完全相同的燃料组件,构成一个高3.65m,等效直径3.04m的准圆柱状核反应区。
在典型的燃料管理方案中,初始堆芯分成三个燃料浓集度不同的区,在堆芯外区放置浓集度较高的燃料组件,浓集度较低的燃料组件以棋盘的形式排列在堆芯的内区。
1区53个组件,浓集度1.8%;2区52个组件,浓集度2.4%;3区52个组件,浓集度为 3.1%。
通常每年进行一次换料,每次换料更换1/3 燃料组件,达到平衡换料时新燃料的浓集度为3.2%。
反应堆冷却剂流过堆芯时起到慢化剂的作用。
控制棒组件用于反应堆控制,提供反应堆停堆能力和控制反应性快速变化燃料元件呈17x17正方形排列,每个组件有289个位置,其中264个位置由燃料元件占据。
燃料元件是由产生核裂变并释放热量的部件。
燃料组件骨架由24根控制棒导向管、一根中子通量测量管与上下管座焊接而成,沿高度方向放置有8个定位格架以提高组件的刚性和强度。
可燃毒物组件由装在不锈钢包壳管中的含硼玻璃管(成分为B2O32)组成,用于抵消新堆芯第一次装料大部分过剩后备反应性锎-252被广泛用作为初级中子源堆芯支承结构包括:下部支承结构;上部支承结构;堆芯仪表支承结构堆芯下栅板为燃料组件提供精确定位和流量分配上部堆芯支承结构为燃料组件提供上部的定位,并为控制棒组件提供导向反应堆压力容器对材料要求:高强度,耐腐蚀,抗辐照反应堆压力容器本体材料属低碳钢压力容器的法兰结合处用两道“O”形圈密封。
材料显示塑性还是脆性,取决于工作环境如温度,辐照等因素。
高温,显示塑性;低温,显示出脆性;存在一个塑性-脆性转变温度反应堆冷却剂泵分为全密封泵和轴封泵。
全密封泵长期在核动力舰艇上使用,密封性能好,运行安全可靠。
局限性:它效率低驱动反应堆冷却剂泵的电动机是立式、鼠笼、单速三相感应式,采用防滴结构在泵轴末端附近设置轴封组件,它的作用是保证在电厂正常运行期间从反应堆冷却剂系统沿主泵泵轴向安全壳气空间的反应堆冷却剂泄漏量基本为零。
轴封组件的三级密封自下而上依次称为1号、2号、3号密封,其中头两道是全设计压力的轴封,而第三道密封只是一个泄漏水导流轴封,即将第二道密封的泄漏水导流至收集点1号密封位于泵轴承上方,它是密封组件中最重要的部件,又称主密封。
2号密封的主要作用是阻挡1号密封的泄漏,将其导向化容系统离心泵(或轴流式泵)借助于叶轮带动流体旋转把能量传递给流体。
流体获取能量后,压力升高,从而实现冷却剂在一回路的强迫循环。
汽蚀是这样一种现象:由于流体动力作用,运动液体的局部压力降低到液体温度下的饱和压力时,液体就开始汽化而形成汽泡,汽泡随液体到达静压超过饱和蒸汽压力的区域时,蒸汽突然凝结而使汽泡破裂,这种破裂在很短时间内发生,周围的液体以极高的速度向汽泡原来所占的空间冲去,产生了强烈的高频水力冲击。
从而使泵的构件受到严重损伤。
这种液体汽化汽泡产生、蒸汽凝结汽泡破裂的整个过程及其一系列现象,称为汽蚀。