新版人教版八年级上册数学【角平分线的性质课件】

合集下载

人教版初中数学八年级上册精品教学课件 第12章 全等三角形 第2课时 角的平分线的性质(2)

人教版初中数学八年级上册精品教学课件 第12章 全等三角形 第2课时 角的平分线的性质(2)

互动课堂理解
证明在△DBE和△DCF中,
∠ = ∠ = 90°,
∠ = ∠,
= ,
所以△DBE≌△DCF(AAS).
所以DE=DF.因为DE⊥AB,DF⊥AC,
所以点D在∠BAC的平分线上.
快乐预习感知
1
2
3
4
1.关于三角形的角平分线的说法错误的是(
).
A.两内角平分线的交点一定在三角形内
第2课时 角的平分线的性质(2)
快乐预习感知
1.角的内部到角的两边的距离相等的点在 角的平分线
上.
2.三角形的三条角平分线 相交于一点 ,这点到三角形三边的
距离 相等
.
3.三角形中到三边的距离相等的点是( D ).
A.三条边上经过对应顶点的任意三条线段的交点
B.三条高的交点
C.三条中线的交点
D.三条角平分线的交点
B.两内角平分线的交点在第三个角的平分线上
C.两内角平分线的交点到三边的距离相等
D.两内角平分线的交点到三个顶点的距离相等
关闭
D
答案
快乐预习感知
1
2
3
4
2.如图,已知点P到AE,AD,BC的距离相等,则下列说法:①点P在
∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平
分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点,其中正确的
证明:∵DE⊥AB,交 AB 的延长线于点 E,DF⊥AC 于点 F,
∴∠BED=∠CFD=90°,
= ,
在 Rt△BDE 和 Rt△CDF 中,
= ,
∴Rt△BDE≌Rt△CDF(HL).
∴DE=DF.

数学八年级上册课件15.4角平分线第2课时 角平分线的性质定理及逆定理

数学八年级上册课件15.4角平分线第2课时 角平分线的性质定理及逆定理

C
P
O
EB
∴ △ PDO ≌ △ PEO,(AAS)
∴ PD=PE。(全等三角形的对应边相等)
知识梳理
证明几何命题的一般步骤: 1、明确命题的已知和求证; 2、根据题意,画出图形,并用数学符号表示已知 和求证; 3、经过分析,找出由已知推出求证的途径,写出 证明过程。
你能用文字语言叙述一下发现的结论吗?
D
A
C P
E B
思考
我们知道,角的平分线上的点到角的两边的距离 相等。那么到角的两边的距离相等的点是否在角 的平分线上呢?请说说你的想法及证明。
利用三角形全等,可以得到角的内部到角的两边 的距离相等的点在角的平分线上。
练习
1、如图, ∵ AD平分∠BAC(已知)
∴ BD = CD ,
(在角的平分线上的点到这
直角三角形全等用
揭示概念
角平分线的概念:
一条射线 把一个角分成两个相等的角, 这条射线叫做这个角的平分线。
A
1
C
o
2
B
探究角平分线的性质
(1)实验:将∠AOB对折,再折出一个直角三角形(使
第一条折痕为斜边),然后展开,观察两次折叠形成 的三条折痕,你能得出什么结论?
(2)结论:角的平分线上的点到角的两边的距离相等.
角平分线的性质定理 及逆定理
。。。。。。。。。。。。
学习目标
• 1、掌握角平分线定理及逆定理。 • 2、能利用角平分线定理及其逆定理解决几何图形中的
问题。 • 重点:角平分线的性质定理及其逆定理。
旧知回顾
三角形 全等的条件:
(1)定义(重合)法;
(2)解题 中常用的4 种方法
(3)HL

人教版初中数学《角的平分线的性质》_完美课件

人教版初中数学《角的平分线的性质》_完美课件

交OA于点M,交OB于点N
尺规法画角平分线
A M
C
O
NB
分别以点M,N为圆心,大于½MN的长度为半径画
弧,两弧在∠AOB的内部交于点C
尺规法画角平分线
A M
C
O
NB
画射线OC,即为∠AOB的角平分线
思考和交流
• 在你刚才画好的角平分线OC 上任意取一点P,过点P画出 OA和OB的垂线段,分别记 垂足为D,E。PD和PE的长 度有什么关系?
• 在OC上再取几个点试一下, 并和你的伙伴交流结论,你 们发现角平分线有什么性质?
思考和交流
• 经过测量,PD=PE总成立。 • 经过讨论,我们猜想: • 角分线上的点到角两边的距
离相等。
你能用全等三角 形证明吗?
怎样证明几何命题?
• 证明几何命题,先明确已知和求证。
– 已知:一个点在一个角的平分线上。 – 求证:这个点到这个角两边的距离相等。
角分线上的点到角两边的距离相等
A D
∵OC平分∠AOB,
O
P C PD⊥OA,PE⊥OB
∴PD=PE
EB
动脑想一想
• 如图,要在S区建一个 集贸中心,使它到铁路、 公路的距离相等,并且 离公路与铁路的交叉处 500m,这个集贸中心应 建在哪里?
动脑想一想
• 角分线上的点到角两边的距离相等。 • 到角的两边的距离相等的点是否也在角的
DC=BC(已知) ∴ △ADC≌△ABC (SSS) ∴∠DAC=∠BAC(对应角相等) 即 AE平分∠BAD
动脑想一想
• 通过刚才的启发,你能想到怎样画出下面 的角的平分线吗?
A
仅用尺规作图,
已知∠AOB,
求作∠AOB的

人教版八年级数学课件-角的平分线的性质

人教版八年级数学课件-角的平分线的性质

1 2
O
C P EB
∴ △OPD≌△OPE(AAS)
∴PD=PE(全等三角形對應邊相等)
*
角平分線的性質
定理:角平分線上的點到角的兩邊的距離相等.
用符號語言表示為:
A D
∵∠1= ∠2 PD ⊥OA ,PE ⊥OB
∴PD=PE.
C
12
P
O
EB
*
如圖,要在S區建一個貿易市場,使它到鐵路和公路 距離相等, 離公路與鐵路交叉處500米,這個集貿市場 應建在何處?(比例尺為1︰20000)
s
*
【解析】 作夾角的角平分線OC,截取OD=2.5cm ,D即為所求. O
s
D C
*
反過來,到一個角的兩邊的距離相等的點是 否一定在這個角的平分線上呢? 已知:如圖,QD⊥OA,QE⊥OB, 點D、E為垂足,QD=QE. 求證:點Q在∠AOB的平分線上.
*
證明: ∵ QD⊥OA,QE⊥OB ∴ ∠QDO=∠QEO=90°(垂直的定義) 在Rt△QDO和Rt△QEO中 QO=QO(公共邊) QD=QE ∴ Rt△QDO≌Rt△QEO(HL) ∴ ∠ QOD=∠QOE ∴點Q在∠AOB的平分線上
O ∵△OMC≌△ONC(SSS) ∴∠AOC=∠BOC 即OC 是∠AOB的角平分線.
A M
N
C B
*
將∠AOB對折,再折出一個直角三角形(使第一條折 痕為斜邊),然後展開,觀察兩次折疊形成的三條折痕, 你能得出什麼結論?
猜想:角的平分線上的點到角的兩邊的距離相等.
*
已知:OC平分∠AOB,點P在OC上,PD⊥OA於D,
12.3 角的平分線的性質
*
1.在探究作角平分線的方法和角平分線性質的過程中,掌握 角平分線的作法和角平分線的性質,發展數學直覺. 2.提高綜合運用三角形全等的有關知識的解決能力;掌握簡 單的角平分線在生產、生活中的應用.

人教版八年级上册数学课件12.3角平分线的性质3

人教版八年级上册数学课件12.3角平分线的性质3

OC,在OC 上任取一点P,过点P 画出OA,OB 的垂
线,分别记垂足为D,E,测量 PD,PE 并
作比较,你得到什么结论?
A
在OC 上再取几个点试一试. 通过以上测量,你发现了角
D
的平分线的什么性质?
C
P
O
E
B
求证经; 历实验过程,发现并证明角的平分线的性质
求证:PD =PE.
追问2 由角的平分线的性质的证明过程,你能概
经历实验过程,发现并证明角的平分线的性质
追问1 通过动手实验、观察比较,我们发现“角 经历实验过程,发现并证明角的平分线的性质
∴∠DOP=∠BOP(角平分线定义)
线.你能说明它的道理吗?
的平分线上的点到角的两边的距离相等”,你能通过严 求证:PD =PE.
受到哪些启发?如何利用直尺和圆规作一个角的平分线?
在△OPD和△OPE 中
格的逻辑推理证明这个结论吗? 边放下,沿AC 画一条射线AE,AE 就是∠DAB 的平分
CA=CA(公共边)
追问2 由角的平分线的性质的证明过程,你能概
受到哪些启发?如何利用直尺和圆规作一个角的平分线?
追问3 角的平分线的性质的作用是什么?
已知:如图,OC平分∠AOB, 追问3 角的平分线的性质的作用是什么?
追问4 你能说明为什么射线OC 是∠AOB 的平分线吗?
如图,任意作一个角∠AOB,作出∠A的平分线
(3)经过分析,找出由已知推出求证的途径,写出证 在△ACD和△ACB中
D
B
问题2 利用尺规我们可以作一个角的平分线,那
格的逻辑推理证明这个结论吗?
证明:∵ OC平分∠AOB, P是OC上一点(已知)
E

人教八年级数学上册《角的平分线的判定》(共18张)

人教八年级数学上册《角的平分线的判定》(共18张)
等于2 cm,则Q 在∠AOB 的平分线上.( ) √
A
M
Q
O
ห้องสมุดไป่ตู้
N
B
应用角平分线性质定理的逆定理
2.在问题1中,在S 区建一个集贸市场,使它到公路与 铁路的距离相等.
(1) 这个集贸市场 应建于何处?这样的集贸市场可建 多少个?
应用角平分线性质定理的逆定理
2.在问题1中,在S 区建一个集贸市场,使它到公路 与铁路的距离相等.
学习重点: 角平分线性质定理的逆定理.
引言
问题1 如图,要在S 区建一个集贸市场,使它到 公路,铁路的距离相等,并且距离公路与铁路的交叉处500m
,请你帮忙设计一下,这个集贸市场应建于何(在图上 标 出它的位置,比例尺为1:20 000)?
探索并证明角平分线的性质定理的逆定理
问题2 交换角的平分线的性质中的已知和结论, 你能得到什么结论,这个新结论正确吗?
(1) 这个集贸市场 应建于何处?这样的集贸市场可 建多少个?
(在图上标出它的位置,比例尺为1:20 000)
应用角平分线性质定理的逆定理
2.在问题1中,在S 区建一个集贸市场,使它到公路与铁 路的距离相等.
(3)如图,点P是△ABC的两条角平分线BM, CN 的交点, 点P 在∠BAC的平分线上吗?这说明三 角形的三条角平分线有什么关系?
角的内部到角的两边距离相等的点在角的平分线 上.
探索并证明角平分线的性质定理的逆定理
追问1 你能证明这个结论的正确性吗?
探索并证明角平分线的性质定理的逆定理
追问2 这个结论与角的平分线的性质在应用上有 什么不同?
这个结论可以判定角的平分线,而角的平分线的性 质可用来证明线段相等.

课件角平分线的判定_人教版八年级数学上册

课件角平分线的判定_人教版八年级数学上册
(2)若∠A=38°,求∠DBC 的度数. 证明:在Rt△PFD和Rt△PGE中,
在Rt△BDE和Rt△CDF中, 在△ABC和△DEC中, 在△ABC和△DEC中, 在Rt△BDE和Rt△CDF中, 证明:∵DE⊥AB,DF⊥AC,
(1)证明:∵∠C=90°, 证明:∵∠DCA=∠DEA,
∴Rt△PFD≌Rt△PGE(HL). DE⊥AB于E,DE=DC,
得 DM×CG= ×EN×CF.
∴CG=CF.又 CG⊥OA,CF⊥OB, ∴点 C 在∠AOB 的平分线上.
12. 如图,在 Rt△ABC 中,∠ACB=90°, ∠B=60°,AD,CE 是角平分线,AD 与 CE 相 交于点 F,FM⊥AB,FN⊥BC,垂足分别为 M, N. 求证:FE=FD.
∴Rt△BDE≌Rt△CDF(HL).∴DE=DF. 又DE⊥AB,DF⊥AC, ∴AD是△ABC的角平分线.
10. 如图,△ABC 的角平分线 BE,CF 相交于点 P.
求证:点 P 在∠A 的平分线上.
证明:如图,过点P作PD⊥AB,PM⊥BC, PN⊥AC,垂足分别为D,M,N. ∵BE平分∠ABC,点P在BE上, ∴PD=PM. 同理,PM=PN. ∴PD=PN. ∴点P在∠A的平分线上.
的度数.
解:如图,过 M 作 MN⊥AD 于 N. ∵∠B=∠C=90°, ∴AB∥CD. ∴∠DAB=180°-∠ADC=50°.
∵DM 平分∠ADC,MN⊥AD,MC⊥CD, ∴MN=MC. ∵M 是 BC 的中点, ∴MC=MB.∴MN=MB. 又 MN⊥AD,MB⊥AB, ∴AM 平分∠DAB,
DE⊥AB于E,DE=DC, ∴Rt△BDE≌Rt△CDF(HL).
证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,

人教版数学八年级上册1.2角平分线的性质定理的逆定理(角平分线的判定)课件

人教版数学八年级上册1.2角平分线的性质定理的逆定理(角平分线的判定)课件
O
定理的作用:判断点是否在角平分线上。
A D
P
EB
判断题: (1)如图,若QM =QN,则OQ 平分∠AOB;( ) (2)如图,若QM⊥OA 于M,QN⊥OB 于N,则OQ是
∠AOB 的平分线; ( ) (3)已知:Q 到OA 的距离等于2 cm, 且Q 到OB 距
离等于2cm,则Q 在∠AOB 的平分线上.( )
l1
l3
l2
P2
l1
P1
P3
P4
l3
l2
如图,在△ABC中,点O是△ABC内一点,且点O到△ABC 三边的距离相等.若∠A=40°,则∠BOC的度数为( A )
A.110° B.120° C.130° D.140°
解析:由已知,O到三角形三边的距离 相等,所以O是内心,即三条角平分线 的交点,AO,BO,CO都是角平分线, 所以有∠CBO=∠ABO=1 ∠ABC, ∠BCO=∠ACO=1 ∠ACB2, ∠ABC+∠ACB=1280°-40°=140°, ∠OBC+∠OCB=70°, ∠BOC=180°-70°=110°.
角平分线有什么关系?
点P在∠A的平分线上.
A
D
N
F
P
M
结论:
B
C
E
三角形的三条角平分线交于一点,并且这点到三边的距离相等。
如图,要在S 区建一个广告牌P,使它到两条公路和 一条铁路的距离都相等.这个广告牌P 应建在何处?
公路
公路
铁路 S
角的平分线的性质 角的平分线的判定
图形
C P
C P
已知 条件
三角形的内角平分线 活动1 分别画出下列三角形三个内角的平分线,你发现了什么?

八上数学最新人教版八年级数学上册12.3.1角的平分线的性质(第1课时)

八上数学最新人教版八年级数学上册12.3.1角的平分线的性质(第1课时)

垂足为D.若PD =3,则点P 到OB 的距离为3.
A
D C
P
O
B
如图,E是∠AOB的角平分线OC上的一点, EM⊥OB垂足为M,且 EM=3cm,求点E 到OA的距离
分析:点E 到OA的距离是过点E作OA的垂线段,再根据角的平分线的性质,可知点E 到OA的距离。
解:过E作EN⊥OA垂足为N
∵ E是∠AOB的角平分线上的一点, EM⊥OB, EN⊥OA,B
2、分别以M、N为圆心,大于
的长为1半M 径N 作弧,两弧在∠AOB内部交于点C。
2
3、作射线OC,射线OC即为所求。
证明:连结MC,NC由作法知:
在△OMC和△ONC中 OM=ON MC=NC OC=OC
∵△OMC≌△ONC(SSS) ∴∠AOC=∠BOC 即:OC 是∠AOB的角平分线.
A
M
C
O
8
C
课堂小结
(1)本节课学习了哪些主要内容? (2)本节课是通过什么方式探究角的平分线的性质的? (3)角的平分线的性质为我们提供了证明什么的方法?
在应用这一性质时要注意哪些问题?
布置作业
教科书习题12.3第4、5题.
利用尺规作角的平分线的具体方法:
1、以O为圆心,适当长为半径作 弧,交OA于M,交OB于N。
2长、为分半12别径M以作NM弧、,N为两圆弧心在,∠大AO于B内部交于的M
点C。 3 、 作 射 线 OC , 射 线 OC 即为所求。
A C
O
N
B
感悟实践经验,用尺规作角的平分线
追问4 你能说明为什么射线OC 是∠AOB 的平分线吗? A
用量角器度量,也可用折纸的方法. 追问1 你能评价这些方法吗?在生产生活中,这 些方法是否可行呢?

人教版八年级数学上册 《三角形的高、中线与角平分线》PPT教育课件

人教版八年级数学上册 《三角形的高、中线与角平分线》PPT教育课件

三角形中线的理解
∵AD是△ABC的中线
∴BD=CD
∴BD= BC

CD=
BC
∴BC=2BD BC=2CD
A
B
C
D
第十页,共二十页。
三角形的重心
概念:三条中线相交于一点,三角形三条中线的交点叫做三角形的重心。
A
F
B
E
O
D
第十一页,共二十页。
C
扩展
思考:△ABD和△ADC的面积相等吗?
∵D是BC的中点
人教版八年级数学上册 《三角形的高、中线与角平分线》PPT教育课件

目:数学
适用版本:人教版
适用范围:【教师教学】
第十一章 三角形
11.1.2 三角形的高、中
线与角平分线
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text
知识点回顾
问题:你还记得“过一点画已知直线的垂线”吗?
分析:即过点p做已知直线l的垂线。
0
p
1
2
3
4
5
0
1
2
3
4
5
l
O
第三页,共二十页。
课堂测试
问题:过三角形的一个顶点,你能画出它的对边的垂线吗?
分析:即过点A点做已知对边BC的垂线。
0
A
1
2
3
4
5
0
1
2
3
4
5
B
C
O

人教版八年级数学上册课件:1.2角的平分线的性质

人教版八年级数学上册课件:1.2角的平分线的性质
1、会用尺规作角的平分线.
2、角的平分线的性质:
角的平分线上的点到角的两边的距离相等
用符号语言表述:
A
∵ OC是∠AOB的平分线
D
PD⊥OA,PE⊥OB ∴ PD=PE
1 O2
P C
E
注意:不必再证
B
全等
练习.已知:BD平分∠ABC,AB=AC, PM⊥AD,PN⊥CD,
求证:PM=PN
A
M 3D
4
N
1P
B
2
C
• 反过来,到一个角的两边的距离相等的点 是否一定在这个角的平分线上呢?
已知:如图,QD⊥OA,QE⊥OB, 点D、E为垂足,QD=QE. 求证:点Q在∠AOB的平分线上.
已知:如图,QD⊥OA,QE⊥OB, 点D、E为垂足,QD=QE. 求证:点Q在∠AOB的平分线上.
证明: ∵ QD⊥OA,QE⊥OB(已知), ∴ ∠QDO=∠QEO=90°(垂直的定义) 在Rt△QDO和Rt△QEO中 QO=QO(公共边) QD=QE ∴ Rt△QDO≌Rt△QEO(HL) ∴ ∠ QOD=∠QOE
又∵点F在∠CBD的平分线上,
H
FH⊥AD, FM⊥BC
∴FM=FH ∴FG=FH
∴点F在∠DAE的平分线上
如图,在△ABC中,D是BC的中点, DE⊥AB,DF⊥AC,垂足分别是E,F,且BE =CF。 求证:AD是△ABC的角平分线。 A
E
F
B
D
C
课堂练习
如图,在△ABC中,AB=AC, AD平分∠BAC , DE⊥AB于E, DF⊥AC于F,下面给出三个结论 (1)DA平分∠EDF;(2)AE=AF;(3)AD上的点到B、C 两点的距离相等,其中正确的结论有( )

《角的平分线的性质》示范公开课教学PPT课件【部编新人教版八年级数学上册】

《角的平分线的性质》示范公开课教学PPT课件【部编新人教版八年级数学上册】
三角形的三条角平分线交于一点.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
典型例题
例2:如图,要在S区建一个集贸市场,使它到公路、铁路的距离相 等,并且离公路与铁路的交叉处500m.这个集贸市场应建于何处( 在图上标出它的位置,比例尺为1:20000)?
A
C
D
B
M
S
N
AB:500=1: 20 000 AB=2.5cm
情景导入
(2)下图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在 角的定点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是 这个角的平分线.你能说明它的道理吗?
分析
在△ACD和△ACB中
AD=AB,DC=BC AC=AC
△ACD≌△ACB
∠DAC=∠BAC
AC平分∠BAD
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
思考
做一做:你能用三角形全等证明这个结论吗?
已知:如图,OC是∠AOB的平分线,P是OC上任意一点,做 PD⊥OA,PE⊥OB,垂足分别是D,E.求证:PD=PE.
分析: 要证明PD=PE,只要证明它们所在的△OPD≌△OPE, 而△OPD≌△OPE的条件由已知容易得到它满足公理 (AAS).故结论可证.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
情景导入 (1)画一画:在纸上任意画一个角,用剪刀剪下,用折纸的方法, 如何确定角的平分线?
(1)在准备好的角上标好字母A,O,B;
(2)把∠ AOB对折,使得这个角得两边重合;
A
(3)折痕就是∠AOB的角平分线.
O
B
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业

人教版八年级数学上册123角的平分线的性质第2课时角平分线的判定课件

人教版八年级数学上册123角的平分线的性质第2课时角平分线的判定课件

解:∵
图上距离 500m
=
1 20000
∴图上距离 = 0.025m = 2.5cm.
P
如下图:P点即为所求 ; 理由:P点在这个交叉口的角平分线上,所 以P点到公路与铁路的距离相等.
练习2 要在三角形的内部找到一点,使这 一点到三角形的三边的距离都相等,这个点应 如何确定?
作其中任意两角的平分线,交点即为所要 找的点.
M
∵P点在∠CBE和∠BCF的平分
线上,∴PM = PQ,PN = PQ,
∴PM = PN.
又PM⊥AE,PN⊥AF, ∴ AP平分∠BAC.
N
拓展延伸 3.如图,AD是△ABC的角平分线,DE⊥AB,
DF⊥AC,垂足分别是E、F.连接EF,EF与AD 交于G,AD 垂直平分EF吗?证明你的结论. 解:AD垂直平分EF .证明如下: ∵AD是△ABC的角平分线, DE⊥AB,DF⊥AC, ∴∠1=∠2,∠AED =∠AFD =90°,
思考
推进新课
如图,要在S 区建一个集贸场,使它到公路、
铁路的距离相等,并且离公路和铁路的交叉处
500 m. 这个集贸场应建于何处〔在图上标出它的
位置,比例尺为1:20 000〕?
知识点1 角平分线的性质定理的逆定理的证明
交换角的平分线的性质中的和结论, 你能得到什么结论,这个新结论正确吗?
角的内部到角的两边的距离相等的点在角 的平分线上.
学习目标
【知识与技能】1.掌握角的平分线的判定.2.会利用三角形角平分线的性质. 【过程与方法】通过学习角的平分线的判定,开展学生的推理能力,培养学 生分析、归纳问题的能力.【情感态度】锻炼数学应用意识和用数学解决实际 问题的能力,体验数学的应用价值.【教学重点】角平分线的判定.【教学难 点】三角形的内角平分线的应用.

人教版八年级数学上册第十二章 1 第1课时 角的平分线的性质

人教版八年级数学上册第十二章 1 第1课时 角的平分线的性质

123456
1.如果要作已知∠AOB的平分线OC,合理的顺序是 ( ).
①作射线OC;②在OA,OB上分别截取OD,OE,使OD=OE;③分别以
D,E为圆心,大于
1 2
DE长为半径作弧,两弧在∠AOB内交于点C.
A.①②③
B.②①③ C.②③① D.③②①
关闭
C
答案
-6-
知识梳理 预习自测
1234
关闭
因为∠ACB=90E=CE.
所以AE+DE=AE+CE=AC=3 cm.
关闭
B
解析 答案
角的平分线的性质拓展应用 【例题】 如图,BD是∠ABC的平分线,DE⊥AB于点E,S△ABC=36 cm2,AB=18 cm,BC=12 cm,求DE的长.
分析:由题目条件及图形知S△ABC=S△ABD+S△BCD.因为点D是 ∠ABC的平分线上的点,且DE⊥AB,所以易想到过点D作出BC边上 的高DF,利用角的平分线的性质有DE=DF.由△ABD和△BCD的面 积,可列出等式求出DE的长.
知识梳理 预习自测
1.角的平分线上的点到角的两边的距离 相等 . 2.一般情况下,要证明一个几何命题时,可以按照以下步骤进行: (1)明确命题中的 已知 和 求证 ; (2)根据题意,画出 图形 ,并用 符号 表示已知和求证; (3)经过分析,找出由已知推出要证的结论的途径,写出证明过程.
-5-
知识梳理 预习自测
解:过点D作DF⊥BC,垂足为F. ∵DE⊥AB,BD平分∠ABC,∴DE=DF. ∵S△ABC=S△ABD+S△BCD, ∴36=12·AB·DE+12·BC·DF=12DE·(AB+BC)=12DE·(18+12)=15DE. 解得DE=2.4(cm).

人教版初中数学八年级上册第十二章 角的平分线的性质(第1课时)

人教版初中数学八年级上册第十二章 角的平分线的性质(第1课时)

如图,在Rt△ABC中,AC=BC,∠C=90°,AP平分
∠BAC交BC于点P,若PC=4, AB=14. (1)则点P到AB的距离为___4____.
D
B
P
A
C
提示:存在一条垂线段——构造应用.
探究新知
12.3 角的平分线的性质/
归纳总结
1.应用角平分线性质: 存在角平分线 条件 涉及距离问题
2.联系角平分线性质:
面积 周长
利用角平分线的性质所得到的等 量关系进行转化求解
链接中考
12.3 角的平分线的性质/
如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且
∠ADC=110°,则∠MAB=( B )
A.30° B.35° C.45° D.60°
解析:作MN⊥AD于N,∵∠B=∠C=90°,
∴AB∥CD, ∴∠DAB=180°–∠ADC=70°.
12.3 角的平分线的性质/
2.如 图所示,D是 ∠ACG的平分线上的一点 .DE⊥AC,
DF⊥CG,垂足分别为E,F. 求证:CE=CF.
证明:∵CD是∠ACG的平分线,DE⊥AC,DF⊥CG,
∴DE=DF. 在Rt△CDE和Rt△CDF中, CD CD, DE DF, ∴Rt△CDE≌Rt△CDF(HL), ∴CE=CF.
应用所具备的条件:
(1)角的平分线;
(2)点在该平分线上; (3)垂直距离.
O
定理的作用:证明线段相等.
A D
PC
E
B
应用格式:
∵OP 是∠AOB的平分线, PD⊥OA, PE⊥OB,
∴PD = PE
推理的理由有三个, 必须写完全,不能
少了任何一个.

人教版数学八年级上册 角的平分线的性质(第2课时)

人教版数学八年级上册   角的平分线的性质(第2课时)

课堂检测
基础巩固题
1. 如图,某个居民小区C附近有三条两两相交的道路MN,
OA,OB,拟在MN上建造一个大型超市,使得它到OA,
OB的距离相等,请确定该超市的位置P.
A
M
小区C
P
O
N
B
课堂检测
2. 如图所示,已知△ABC中,PE∥AB交BC于点E,PF∥AC
交BC于点F,点P是AD上一点,且点D到PE的距离与到PF的
∠BOC=180°-70°=110°.
探究新知 方法点拨
由已知,O 到三角形三边的距离相等,得 O是三角形三条内角平分线的交点,再利用三
角形内角和定理即可求出∠BOC的度数.
探究新知
角的平分线的性质 角的平分线的判定

图形
C P
C P



OP平分∠AOB
PD=PE
已知 条件
PD⊥OA于D
PE⊥OB于E
发现:三角形的三条角平分线相交于一点.
探究新知 分别过交点作三角形三边的垂线,用刻度尺量一量,每组
垂线段,你发现了什么?
你能证明这 个结论吗? 发现:过交点作三角形三边的垂线段相等.
探究新知
证明结论
已知:如图,△ABC的角平分线BM,CN相交于点P,
求证:点P到三边AB,BC,CA的距离相等.
证明:过点P作PD,PE,PF分别垂直于AB,
△ABC三边的距离相等.若∠A=40°,则∠BOC的度
数为( A )
A.110° B.120° C.130° D.140°
解析:由已知,O到三角形三边的距离相等,即三条角 平分线的交点,AO,BO,CO都是角平分线, 所∠B以C有O=∠C∠BAOC=O=∠AB1 ∠OA=CB12 ,∠ABC,

人教版数学八年级上册12.3.1 角平分线的性质课件(共22张PPT)

人教版数学八年级上册12.3.1  角平分线的性质课件(共22张PPT)

P
E,交 OB 于F;


(2) 分别以 E,F 为圆心,大于 EF 的长为半径
作弧,两弧在∠AOB内部交于点 C;
(3) 作射线 OC. 则射线 OC 与直线MN相交与点P,
点P即为所求.
M
O
E
C
F
B
N
12.3.1 角平分线的性质
二 角平分线的性质
利用尺规我们可以作一个角的平分线,那么角的平分线有什么性质呢?
12.3.1 角平分线的性质
使用定理时这样书写:
∵ OC 平分∠AOB,
PD⊥OA,PE⊥OB,
∴PD = PE.
推理的条件有三个,必须
写全,不能少.
12.3.1 角平分线的性质
一般情况下,我们要证明一个几何命题时,可以按照类似的步骤
进行,即
1. 明确命题中的已知和求证;
2. 根据题意,画出图形,并用符号表示已知和求证;
12.3.1 角平分线的性质
12.3.1 角平分线的性质
学习目标
1. 会用尺规作图:作一个角的平分线. 重点
2. 探索并证明角平分线的性质定理:角平分线上的点到角两边的距离
相等. 难点
3. 会用角平分线的性质解决实际问题. 难点
12.3.1 角平分线的性质
新课引入
思考
如图是一个平分角的仪器,其中 AB = AD,
DE = 2,AB = 4,则 AC 的长是 ( D )
A. 6
B. 5
C. 4
D. 3
分析:过点 D 作 DF⊥AC 于 F,
∵ AD 是△ABC 的角平分线,DE⊥AB.
∴ DF = DE = 2.
1
1
S△ABC 4 2 AC 2 7, 解得 AC=3.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
叫做这个角的平分线.
A
C
1
2
B
O
2.下图中能表示点P到直线l的距离的是 线段PC的长 . P
l A B CD
3是.下列图两1图.中线段Al1P能表示直线l1上一点PP到直线l2的l1 距离的 P
A
l2
图1
A 图2l2
讲授新课
一 角平分线的尺规作图
如图,是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角
×
B
A
D
C
典例精析
例 已知:如图,在△ABC中,AD是它的角平分线,且BD=CD,
DE⊥AB, DF⊥AC.垂足分别为E,F.
A
求证:EB=FC.
分析:先利用角平分线的性质定理得到
DE=DF,再利用“HL”证明Rt△BDE
E
F
≌ Rt△CDF.
B
D
C
证明: ∵AD是∠BAC的角平分线, DE⊥AB, DF⊥AC,
B
N
O
4.已知用三角尺可按下面方法画角平分线:在已知∠AOB的两 边上,分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点 为P,画射线OP,则OP平分∠AOB.为什么?
解:在△MOP和△NOP中,
OM=ON,
OP=OP,
∴△MOP≌△NOP(HL).
O
∵△MOP≌△NOP,
∴∠MOP=∠NOP,即OP平分∠AOB.
第十二章
八年级数学上(RJ) 教学课件
全等三角形
12.3 角的平分线的性质
第1课时 角平分线的性质
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.通过操作、验证等方式,探究并掌握角平分线的性质定理. (难点) 2.能运用角的平分线性质解决简单的几何问题. (重点)
导入新课
复习引入
1.角平分线的概念 一条射线把一个角分成两个相等的角,这条射线
∠PDO= ∠PEO,
∠AOC= ∠BOC,
A
D C
P
E
B
OP= OP, ∴ △PDO ≌ △PEO(AAS). ∴PD=PE.
一般情况下,我们要证明一个几何命题时,可以按照类似 的步骤进行,即
1.明确命题中的已知和求证; 2.根据题意,画出图形,并用数学符号表示已知和求证; 3.经过分析,找出由已知推出要证的结论的途径,写出 证明过程.
知识要点
性质定理: 角的平分线上的点到角的两边的距离相等. A
应用所具备的条件:
D
(1)角的平分线; (2)点在该平分线上;
O (3)垂直距离.
C P
定理的作用: 证明线段相等.
应用格式: ∵OP 是∠AOB的平分线, PD⊥OA,PE⊥OB,
E B
推理的理由有三个, 必须写完全,不能少
了任何一个.
的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE
就是角平分线.你能说明它的道理吗?
A
其依据是SSS,两全等三角形的对应角相等.
D
B
(E)C
已知:∠AOB.
求作:∠AOB的平分线.
动手画一画
仔细观察步骤 A
作法:
(1)以点O为圆心,适当长为
M
半径画弧,交OA于点M,交
C
OB于点N.
(2)分别以点MN为圆心,大
测量PD,PE并作比较,你得到什么结论?在OC上再取几个
点试一试. PD=PE
A D
C
P
O
E
B
验证结论
已知:如图, ∠AOC= ∠BOC,点P在OC上,PD⊥OA,PE⊥OB,
垂足分别为D,E.
求证:PD=PE. 证明: ∵ PD⊥OA,PE⊥OB,
∴ ∠PDO= ∠PEO=90 °. 在△PDO和△PEO中, O
A E
C D
2.△ABC中, ∠C=90°,AD平分∠CAB,且 BC=8,BD=5,则点D到AB的距离是 3
F G
. C
D
A
EB
3.用尺规作图作一个已知角的平分线的示意图如图所示,则能
说明∠AOC=∠BOC的依据是( A )
A.SSS
B.ASA
C.AAS D.角平分线上的点到角两边的距离相等
A
M C
∴ DE=DF, ∠DEB=∠DFC=90 °.
在Rt△BDE 和 Rt△CDF中, DE=DF, BD=CD,
∴ Rt△BDE ≌ Rt△CDF(HL). ∴ EB=FC.
A
E
F
B
D
C
当堂练习
1. 如图,DE⊥AB,DF⊥BG,垂足分别
是E,F, DE =DF, ∠EDB= 60°,则
∠EBF= 60 度,BE= BF . B
A M
P
N
B
课堂小结
尺规 作图
角平分线
性质 定理
属于基本作图,必须熟练掌握
一个点:角平分线上的点; 二距离:点到角两边的距离; 两相等:两条垂线段相等
辅助线 添加
过角平分线上一点向两边作 垂线段
以下赠品教育通用模板
前言
您的内容打在这里,或者通过复制您 的文本 后,在 此框中 选择粘 贴,并 选择只 保留文 字。在 此录入 上述图 表的综 合描述 说明。 您的内 容打在 这里, 或者通 过复制 您的文 本后, 在此框 中选择 粘贴, 并选择 只保留 文字。 在此录 入上述 图表的 综合描 述说明 。 您的内容打在这里,或者通过复制您 的文本 后,在 此框中 选择粘 贴,并 选择只 保留文 字。在 此录入 上述图 表的综 合描述 说明。 您的内 容打在 这里, 或者通 过复制 您的文 本后。
∴PD = PE (在角的平分线上的点到这个角的两边的距离相等).
判一判:(1)∵ 如图,AD平分∠BAC(已知),
∴ BD = CD ,
( 在角的平分线上的点到这个角的两边的距离相等 )
×
B
A
D
C
(2)∵ 如图, DC⊥AC,DB⊥AB (已知).
∴ BD = CD , ( 在角的平分线上的点到这个角的两边的距离相等 )
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此 录入上述图表的综合描述说明。

1 2
MN的长为半径画弧,两
B
弧在∠AOB的内部相交于点C.
N
O
(3)画射线OC.射线OC即为 所求.
作角平分线是最基本的 尺规作图,大家一定要掌 握噢!
二 角平分线的性质
作图探究
如图,任意作一个角∠AOB,作出∠AOB的平分线OC.在OC
上任取一点P,过点P画出OA,OB的垂线,分别记垂足为D、E,
目录
01
单击添加标题
02
单击添加标题
03
单击添加标题
04
单击添加标题
01 点击添加文字
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此 录入上述图表的综合描述说明。
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此 录入上述图表的综合描述说明。
相关文档
最新文档