手写数字识别系统

合集下载

基于FPGA的卷积神经网络手写数字识别系统的实现共3篇

基于FPGA的卷积神经网络手写数字识别系统的实现共3篇

基于FPGA的卷积神经网络手写数字识别系统的实现共3篇基于FPGA的卷积神经网络手写数字识别系统的实现1随着科技的发展,人工智能已经成为人们生活中不可分割的一部分。

其中,深度学习是人工智能领域的一个热门话题。

而卷积神经网络作为深度学习的重要算法之一,其应用也愈加广泛。

本文将重点介绍基于FPGA的卷积神经网络手写数字识别系统的实现。

一、卷积神经网络简介卷积神经网络(Convolutional Neural Network, CNN)是一种前向反馈人工神经网络,是深度学习中常见的算法之一。

该网络主要用于图像识别、语音识别等领域。

卷积神经网络主要由输入层、隐藏层和输出层构成。

其中,隐藏层包括多个卷积层、池化层和全连接层。

卷积层是卷积神经网络中的核心层,它利用一组可学习的滤波器对输入的图像进行卷积操作,从而获得图像中的特征。

这些特征在后面的池化层和全连接层中都会用到。

池化层则对卷积层中获得的特征图进行降维处理,从而减少计算量。

常见的池化操作有最大池化和平均池化两种。

全连接层则将池化层中的特征图作为输入,进行分类判断。

全连接层的输出通常会经过一个激活函数。

二、FPGA简介FPGA(Field-Programmable Gate Array)是一种可编程逻辑器件,其具有高度灵活性和可重构性。

FPGA可以通过编程实现不同的电路功能,因此在高速、低功耗、高可靠等方面有着很强的优势。

在深度学习中,利用FPGA进行计算的方式可以大大提高计算速度和效率。

三、基于FPGA的卷积神经网络手写数字识别系统本文的识别系统采用了FPGA作为处理器,并使用卷积神经网络对手写数字进行识别,部分个人感想如下。

1. FPGA的搭建本次实验搭建使用的是Altera的CYCLONE II FPGA,需要先进行硬件电路的设计和代码实现。

硬件电路的设计可以使用VHDL或Verilog等HDL语言进行实现,代码实现则可以使用Quartus II或其他类似的软件进行集成。

手写数字识别系统的设计与实现

手写数字识别系统的设计与实现

手写数字识别系统的设计与实现随着数字化时代的到来,智能化已经成为了趋势,人工智能的发展需要更精准有效的数据判别处理。

实现手写数字识别系统,可以广泛应用于智能交互、机器人、OCR等领域。

本文将描述手写数字识别系统的设计和实现过程。

一、系统设计手写数字识别系统输入手写数字图像,输出代表数字的数值。

总体设计思路如下:1.数据采集与存储用户输入手写数字图像后,通过归一化等方法去除噪点,存储为图片格式,可以使用20x20像素,黑白二值化的PNG格式存储。

2.特征提取与向量化将图片转化为向量,提取手写数字特征。

常用的特征提取方法是SIFT描述符提取和HOG特征提取,本文采用HOG特征提取方法。

基本步骤如下:a. 图像预处理:将彩色图片转化为灰度图片b. 局部块划分:将图片分为若干块c. 计算梯度直方图:对每一个块进行梯度直方图的计算d. 归一化:将梯度直方图归一化,得到HOG向量3.分类模型及算法采用深度学习神经网络模型进行分类,训练集采用MNIST公开数据集,由于输入的都是28*28的黑白图片,最后需要对数据进行调整,不符合识别输入数据的标准,将输入大小调整为20*20。

采用神经网络库tensorflow,设计softmax回归模型,定义交叉熵损失函数并使用梯度下降法或Adam优化算法最小化损失。

4.模型评估和调优使用测试集对模型进行评估,计算准确率、精度、召回率、F1值等,并采用正则化、dropout等技术对模型进行优化和调整。

5.系统集成与优化将OCR识别模型和手写数字识别系统进行整合,并加入人机交互的界面设计,实现常规数字识别等操作。

二、系统实现整套系统使用python语言实现,通过tensorflow实现深度神经网络模型的训练和预测。

主要步骤如下:1.数据采集与存储:从kaggle网站上下载手写数字数据集,并使用python pandas库对数据集进行处理和存储,确保数据安全、方便、快速可靠的存储和使用。

手写数字识别系统的设计与实现

手写数字识别系统的设计与实现

手写数字识别系统的设计与实现摘要本手写数字识别系统是一个以VISUAL STUDIO C++ 6.0为编译环境,使用MFC进行图形图像界面开发的系统。

主要功能是通过在点击手写数字识别菜单下的绘制数字标签弹出的绘制数字窗口中完成数字的手写,在此窗口中可以进行数字的保存及清屏,然后通过文件菜单中的打开标签打开所绘制的数字,从而进行数字的预处理,其中包括灰度化及二值化处理,然后进行特征提取,最后实现数字的识别。

本系统的界面设计友好,流程正确,功能也较为完善。

实验结果表明,本系统具有较高的识别率。

关键词:绘制数字;预处理;特征提取;特征库;数字识别目录前言 (4)概述 (5)1 需求分析 (6)1.1 功能需求分析 (7)1.2 性能需求分析 (7)1.3 数据需求分析 (8)1.4 相关软件介绍 (8)2 手写数字识别系统的设计与基本原理 (8)2.1 系统整体功能模块设计 (8)2.2 手写数字识别系统的基本原理 (9)2.2.1 数字图像的绘制 (9)2.2.2 图像的预处理 (9)2.2.3 图像的特征提取 (10)2.2.4 特征库的建立 (10)2.2.5 图像数字的识别 (11)3 手写数字识别系统程序设计 (11)3.1 数字图像的绘制 (11)3.2数字的特征提取 (17)3.3 模板特征库的建立 (20)3.4 数字的识别 (22)总结 (25)致谢..................................... 错误!未定义书签。

参考文献 (25)前言自上世纪六十年代以来,计算机视觉与图像处理越来越受到人们的关注,并逐渐成为一门重要的学科领域。

而作为它们的研究对象的数字图像,也因为它含有研究目标的丰富信息而成为越来越重要的研究对象。

图像识别的目标是用计算机自动完成某些信息的处理,用来替代人工去处理图像分类及识别的任务。

手写数字识别是图像识别学科下的一个分支,是图像处理和模式识别领域研究的课题之一,由于其具有很强的实用性一直是多年来的研究热点。

noc编程大赛试题

noc编程大赛试题

题目:设计一个基于深度学习的手写数字识别系统一、背景介绍深度学习是当前人工智能领域中最热门的技术之一,它通过模拟人脑神经元的工作方式,能够自动从数据中学习特征,从而实现对复杂任务的自动化处理。

手写数字识别是深度学习的一个经典应用,具有很高的实际应用价值。

二、问题分析1. 数据集:我们需要一个手写数字的数据集,其中包含大量的手写数字图片和对应的标签。

常用的数据集有MNIST、EMNIST等。

2. 模型选择:由于手写数字识别的特点,我们选择使用卷积神经网络(CNN)作为我们的模型。

3. 优化问题:由于数据集较大,我们需要考虑如何优化模型以提高识别准确率。

三、模型设计1. 模型架构:我们使用一个简单的CNN模型,包括卷积层、池化层和全连接层。

卷积层用于提取图像特征,池化层用于降低数据的维度,全连接层用于输出最终的预测结果。

2. 损失函数:我们使用交叉熵损失函数作为我们的损失函数,它能够很好地适应分类问题。

3. 优化器:我们使用Adam优化器来更新模型的参数,以提高模型的性能。

四、代码实现1. 导入必要的库和数据集:导入TensorFlow、Keras等深度学习库,下载MNIST数据集并加载到模型中。

2. 构建模型:使用Keras构建CNN模型,并进行必要的参数设置。

3. 训练模型:使用训练数据对模型进行训练,并记录训练过程中的损失值和准确率。

4. 测试模型:使用测试数据对模型进行测试,并计算模型的准确率。

五、实验结果与分析经过训练和测试,我们的模型在MNIST数据集上的准确率达到了98%,达到了比赛要求。

对比其他参赛选手的作品,我们的模型在结构上较为简单,但是效果较好。

通过优化模型参数和调整优化器,我们可以进一步提高模型的性能。

六、总结与展望本次比赛中,我们设计了一个基于深度学习的手写数字识别系统,通过优化模型参数和调整优化器,我们的模型在MNIST数据集上取得了较好的效果。

但是,在实际应用中,我们还需要考虑如何处理更多的数据集、如何提高模型的泛化能力等问题。

手写数字识别的原理及应用-Read

手写数字识别的原理及应用-Read

手写数字识别的原理及应用林晓帆丁晓青吴佑寿一、引言手写数字识别(Handwritten Numeral Recognition)是光学字符识别技术(Optical Character Recognition,简称OCR)的一个分支,它研究的对象是:如何利用电子计算机自动辨认人手写在纸张上的阿拉伯数字。

在整个OCR领域中,最为困难的就是脱机手写字符的识别。

到目前为止,尽管人们在脱机手写英文、汉字识别的研究中已取得很多可喜成就,但距实用还有一定距离。

而在手写数字识别这个方向上,经过多年研究,研究工作者已经开始把它向各种实际应用推广,为手写数据的高速自动输入提供了一种解决方案。

二、研究的实际背景字符识别处理的信息可分为两大类:一类是文字信息,处理的主要是用各国家、各民族的文字(如:汉字,英文等)书写或印刷的文本信息,目前在印刷体和联机手写方面技术已趋向成熟,并推出了很多应用系统;另一类是数据信息,主要是由阿拉伯数字及少量特殊符号组成的各种编号和统计数据,如:邮政编码、统计报表、财务报表、银行票据等等,处理这类信息的核心技术是手写数字识别。

这几年来我国开始大力推广的“三金”工程在很大程度上要依赖数据信息的输入,如果能通过手写数字识别技术实现信息的自动录入,无疑会促进这一事业的进展。

因此,手写数字的识别研究有着重大的现实意义,一旦研究成功并投入应用,将产生巨大的社会和经济效益。

三、研究的理论意义手写数字识别作为模式识别领域的一个重要问题,也有着重要的理论价值:1.阿拉伯数字是唯一的被世界各国通用的符号,对手写数字识别的研究基本上与文化背景无关,这样就为各国,各地区的研究工作者提供了一个施展才智的大舞台。

在这一领域大家可以探讨,比较各种研究方法。

2.由于数字识别的类别数较小,有助于做深入分析及验证一些新的理论。

这方面最明显的例子就是人工神经网络(ANN)------相当一部分的ANN模型和算法都以手写数字识别作为具体的实验平台,验证理论的有效性,评价各种方法的优缺点。

基于人工智能的手写数字识别技术研究

基于人工智能的手写数字识别技术研究

基于人工智能的手写数字识别技术研究随着人工智能技术的发展,越来越多的应用场景开始采用AI技术来解决实际问题。

其中,手写数字识别技术是一个非常典型的例子。

手写数字识别技术指的是通过计算机程序,将手写数字转换成数字字符的过程。

这种技术在实际应用中有着广泛的应用,比如字符识别、自动填表、手写邮箱等。

手写数字识别技术的研究历程可以追溯到上个世纪。

最初的手写数字识别系统采用的是模板匹配的方法,即将数字转化为模板后再与输入的数字进行比较,但是这种方法对于写法稍有不同的数字无法进行准确匹配,难以应对实际应用中的多变的手写数字。

随着计算机性能的提升和深度学习技术的出现,手写数字识别技术得到极大的提升。

目前,基于深度学习的手写数字识别技术已经达到了非常高的准确率,甚至能够超过人类的识别水平。

基于深度学习的手写数字识别技术主要采用卷积神经网络(CNN)和循环神经网络(RNN)等模型来进行学习和识别。

其中,CNN被广泛应用于图像分类领域,可以提取图像中的局部特征并进行高效的特征提取和分类。

而RNN则主要用于序列数据的处理,具有较好的时序特征提取能力。

在进行深度学习模型训练时,需要大量的数据集来进行训练和验证。

手写数字识别技术的数据集有很多,比如著名的MNIST数据集、EMNIST数据集、NIST数据集等。

这些数据集包含了大量的手写数字图片和对应的数字标签,可以用于模型的训练和测试。

除了基于深度学习的手写数字识别技术,还有一些其他的方法也被应用到手写数字识别中。

比如基于传统机器学习算法的手写数字识别方法,比如支持向量机、随机森林、K近邻等,这些方法在一些特定的数据集上也能取得不错的效果。

总之,基于人工智能的手写数字识别技术是一个非常有前途的方向。

通过不断地研究和探索,我们相信将会有更多的优秀方法应用到手写数字识别领域,让这个领域能够更好地服务于人们的生活和工作。

基于BP神经网络的手写数字识别系统研究

基于BP神经网络的手写数字识别系统研究

基于BP神经网络的手写数字识别系统研究一、概述随着信息技术的快速发展,手写数字识别技术已成为人工智能领域的一个重要研究方向。

手写数字识别系统能够自动地将手写数字图像转化为计算机可识别的数字信息,广泛应用于银行票据处理、邮政编码识别、移动支付等领域,极大地提高了工作效率和准确性。

BP神经网络作为一种强大的机器学习方法,在手写数字识别中展现出了显著的优势。

BP神经网络通过模拟人脑神经元的连接方式和信息处理机制,能够自动学习和提取手写数字图像中的特征,并通过不断调整网络参数来优化识别性能。

基于BP神经网络的手写数字识别系统具有较高的识别精度和鲁棒性。

BP神经网络在手写数字识别中的应用也面临着一些挑战。

手写数字的形态各异,存在大量的噪声和干扰因素,这要求神经网络具备强大的特征提取和抗干扰能力。

如何设计合理的网络结构、选择适当的训练算法以及优化网络参数,也是提高手写数字识别性能的关键问题。

本文旨在研究基于BP神经网络的手写数字识别系统,通过深入分析手写数字图像的特点和神经网络的原理,探索有效的特征提取和识别方法,以提高手写数字识别的准确性和稳定性。

本文还将对神经网络的优化算法进行研究,以进一步提高系统的性能。

1. 手写数字识别的背景与意义随着信息技术的迅猛发展,手写数字识别技术作为计算机视觉和模式识别领域的重要分支,逐渐受到广泛关注。

手写数字识别技术旨在通过计算机自动解析和识别手写数字,将其转化为计算机可处理的数字信息,从而实现信息的快速录入和处理。

手写数字识别技术具有广泛的应用场景和深远的意义。

在金融行业,手写数字识别技术可以应用于支票、汇票等票据的自动处理,提高业务处理效率,降低人为错误率。

在邮政行业,该技术可以辅助实现邮政编码的自动识别,提升邮件分拣速度和准确性。

在考试评分、数据录入、表单处理等场景中,手写数字识别技术也能发挥重要作用,显著提高工作效率和质量。

基于BP神经网络的手写数字识别系统研究具有重要的理论和实践价值。

手写字体识别系统的设计与实现

手写字体识别系统的设计与实现

手写字体识别系统的设计与实现随着科技的不断进步,手写字体识别技术也在不断发展。

手写字体识别系统可以将手写字体转换成可编辑的电子文本,方便用户进行编辑和处理。

在本文中,我们将学习手写字体识别系统的设计与实现。

一、手写字体识别系统的基本原理手写字体识别系统的基本原理是将手写字体转化成数字信号,然后通过模式识别技术对数字信号进行分析和处理,最终得到手写文字的识别结果。

具体的步骤如下:1. 手写输入:用户通过手写板、电子笔等设备将手写文字输入到计算机中。

2. 数字信号转换:手写文字被转换成数字信号,这个过程称为采样。

采样的目的是将连续的信号转换成离散的信号。

3. 特征提取:从采样得到的离散信号中提取出特征,这个过程称为特征提取。

特征提取的目的是从众多的数字信号中提取出与手写字符相关的特征。

4. 模式匹配:将特征提取出来的信号与存储在数据库中的标准手写字符进行比较,找到最匹配的字符作为识别结果。

二、在实际应用中,手写字体识别系统的设计与实现是一个非常复杂的过程。

下面我们将从数据采集、特征提取、分类器设计和系统优化等几个方面讨论手写字体识别系统的设计与实现。

1. 数据采集数据采集是手写字体识别系统的开端,对于手写字体识别系统的准确性和鲁棒性有着重要的影响。

因此,需要收集大量的手写字符数据,以构建一个完整的数据集。

数据集应包括不同字体、不同大小、不同风格的手写字符。

2. 特征提取特征提取是手写字体识别系统的核心环节。

常用的特征提取方法包括端点检测、曲率检测、方向检测、HOG特征提取等。

每个方法都有其优缺点,需要根据实际情况进行选择和组合。

3. 分类器设计分类器是手写字体识别系统中用于模式匹配的关键组件。

常用的分类器包括逻辑回归、支持向量机、神经网络等。

每个分类器都有其优缺点,需要根据实际情况进行选择和优化。

4. 系统优化手写字体识别系统涉及到多个环节,每个环节都会影响系统的准确性和鲁棒性。

因此,在设计和实现完整的系统后,需要对系统进行优化和调试。

手写数字识别的研究与应用

手写数字识别的研究与应用

手写数字识别的研究与应用一、概述手写数字识别是计算机视觉和模式识别领域的重要研究内容,具有广泛的应用前景。

随着信息化和数字化的发展,手写数字识别技术在银行票据处理、邮政编码识别、税务表单处理、移动支付以及智能设备交互等方面发挥着越来越重要的作用。

手写数字识别的主要任务是将手写输入的数字转化为计算机可理解的数字信息。

由于手写数字存在书写风格多样、笔迹变化大、书写不规范等问题,使得手写数字识别成为一项具有挑战性的任务。

研究手写数字识别的算法和技术,提高识别的准确性和鲁棒性,具有重要的理论价值和实际应用意义。

近年来,随着深度学习技术的发展,基于神经网络的手写数字识别方法取得了显著的进步。

这些方法通过构建复杂的网络结构,自动学习手写数字的特征表示和分类器,从而实现了较高的识别性能。

同时,随着大数据和计算资源的不断丰富,基于深度学习的手写数字识别方法在实际应用中也越来越广泛。

本文旨在探讨手写数字识别的研究与应用,首先介绍手写数字识别的基本原理和常用方法,然后分析深度学习在手写数字识别中的应用及最新进展,最后讨论手写数字识别在实际场景中的应用案例和未来发展趋势。

通过本文的研究,期望能够为手写数字识别领域的研究者和应用开发者提供一定的参考和借鉴。

1. 手写数字识别的背景与意义随着信息技术的飞速发展,数字化、自动化和智能化已经成为现代社会的重要特征。

在这一背景下,手写数字识别技术应运而生,成为人工智能和计算机视觉领域的重要研究方向。

手写数字识别技术的主要目标是将手写输入的数字信息自动转换为计算机可识别的数字编码,从而实现信息的快速、准确录入和处理。

手写数字识别的研究具有重要意义。

它在实际应用中具有广泛的需求。

例如,在金融、邮政、税务、交通等领域,大量手写数字信息需要被快速、准确地录入和处理。

手写数字识别技术能够大大提高这些工作的效率和准确性,减少人为错误和劳动强度。

手写数字识别技术的研究有助于推动人工智能和计算机视觉领域的发展。

手写数字识别系统的设计与实现

手写数字识别系统的设计与实现

手写数字识别系统的设计与实现一、绪论随着机器学习及神经网络技术的发展,人工智能正在不断向更广泛的领域渗透,尤其是在图像处理领域。

手写数字识别系统也因此应运而生,被广泛应用于各种场景中,例如验证码识别、手写板输入、银行支票识别等。

本文将介绍一种手写数字识别系统的设计与实现,以帮助读者深入了解该领域的技术。

二、系统设计本手写数字识别系统采用支持向量机(SVM)算法。

系统开发基于Python编程语言和OpenCV图像处理库进行,共分为以下四个模块:2.1 数据采集模块数据采集模块通过获取手写数字原始图像,采集大量的训练数据集和测试数据集。

该模块通过调用计算机的摄像头进行数据采集,将原始图像转化为数字图像,表示手写数字的像素。

在采集数据时,需要注意手写数字应该尽可能接近正方形,大小需要尽量一致,以保证后续的数字处理和识别效果。

数据采集完成后,需要对采集到的数据进行分类标注,即手写数字的分类,一般采用数字0-9进行标注。

2.2 特征提取模块在特征提取模块中,我们需要将数字图像转化为一组数字特征,以便于后续的数字图像比较和分类识别。

目前最常用的数字特征是手写数字的边界轮廓。

该模块通过调用OpenCV库中的边界检测函数获取数字的边界轮廓。

检测出轮廓后,我们可以使用等高线函数对其进行平滑处理,再通过描绘轮廓的关键点获取有效特征向量。

2.3 训练模型模块在训练模型模块中,我们需要将已经提取出的数字特征向量和其分类标注进行学习,训练得到一个能够正确识别数字的模型。

本系统采用了支持向量机(SVM)算法来实现数字的分类识别。

SVM算法有着很好的泛化性能和分类性能,并且适用于高维特征的数据集。

在训练模型时,我们首先对原始数据进行归一化处理,使其在相同量级内。

然后使用SVM训练模型,通过交叉验证的方式调整模型超参数,以达到最优分类效果。

2.4 数字识别模块数字识别模块是手写数字识别系统最核心的部分。

在该模块中,输入待识别的数字,对它进行特征提取,然后将其送入训练得到的SVM分类模型中进行分类,最终输出数字的识别结果。

手写数字识别原理

手写数字识别原理

手写数字识别是指将手写数字的图像输入计算机系统,并通过算法和模型对图像进行分析和识别,最终确定手写数字的具体数值。

下面是手写数字识别的一般原理:1. 数据集准备:手写数字识别通常需要大量的标注数据集,其中包含手写数字图像及其对应的真实标签。

这些数据集用于训练和评估模型。

常用的手写数字数据集包括MNIST、EMNIST等。

2. 图像预处理:输入的手写数字图像通常需要进行预处理。

预处理步骤可以包括图像缩放、灰度化、去噪、二值化等操作,以便提取关键特征并减少噪声对识别结果的影响。

3. 特征提取:特征提取是手写数字识别的关键步骤。

通过提取图像中的特征,可以将手写数字转化为计算机可理解的表示形式。

常用的特征提取方法包括边缘检测、角点检测、轮廓提取等。

4. 模型构建:在特征提取之后,需要构建一个机器学习或深度学习模型来学习手写数字的特征模式并进行分类。

常用的模型包括支持向量机(SVM)、随机森林(Random Forest)、卷积神经网络(CNN)等。

这些模型通过训练使用输入图像和对应标签的数据集,学习特征和类别之间的关系。

5. 模型训练:利用准备好的训练数据集,对模型进行训练。

训练的过程中,模型根据输入图像的特征和对应的真实标签,调整模型参数以最小化预测结果与真实标签之间的误差。

6. 模型评估和优化:通过使用验证数据集对训练好的模型进行评估,可以计算模型的准确率、精确率、召回率等指标,以评估模型的性能。

如果模型表现不佳,可以进行模型参数调整、增加训练数据量或尝试其他算法来优化模型。

7. 预测和识别:经过训练和优化的模型可以用于预测和识别新的手写数字图像。

输入待识别的手写数字图像,模型将根据学习到的特征和类别之间的关系,输出预测结果,即手写数字的具体数值。

手写数字识别的原理是基于对手写数字图像的特征提取和模式学习,通过训练和优化的模型进行分类和预测。

随着深度学习技术的发展,卷积神经网络成为手写数字识别的主流方法,取得了很好的识别效果。

手写数字识别技术研究

手写数字识别技术研究

手写数字识别技术研究随着智能手机、平板电脑和笔记本电脑等电子设备的普及,我们发现人们已经不再像过去那样频繁地使用手写文字来进行记录和交流。

即使在书写和绘画方面,数字工具也变得越来越受欢迎。

但是,对于某些特殊领域来说,手写书写平板甚至纸张上的数字仍然是不可替代的工具,例如:签名、医学表单填写等等。

此时,手写数字识别技术就发挥了重要作用。

手写数字识别技术是一种通过计算机软件和硬件将手写数字转换为可读文本的技术。

手写数字识别的应用包括在金融、医学、图书馆、法律、政府和商业等领域,涉及信用卡交易、药品配方识别、图书馆卡录入、合同扫描、选民登记等等,可以提高工作效率,降低成本和增强信息管理能力。

这一技术的发展得益于图像处理、机器学习和深度学习等领域的进步,同时也受益于更加完善的硬件设备和更多的数据资源。

在手写数字识别技术的领域,典型的数字识别系统通常由三个主要模块组成:预处理模块、特征提取模块和分类模块。

预处理模块的任务是将图像转换为易于处理的格式,例如灰度图像或二值图像。

特征提取模块的任务是从处理后的图像中提取出有助于分类的特征,例如数字的形状和笔画。

分类模块的任务是将数字映射到预定义的类别,例如十个数字或更多。

传统的手写数字识别模型通常使用图像处理算法结合人工特征提取器来识别数字。

例如,传统的图像处理方法包括二值化、滤波、分割和形态学操作。

而传统的特征提取器则通常基于数字图像的外围轮廓和内部纹理,例如 Zernike 矩、 Haar小波、Gabor 滤波器等等。

然而,这些传统方法通常涉及到很多人工设计和手动调整的参数,因此在处理不同的数据集时需要重新选择和调整这些参数。

另一方面,这种传统方法在处理复杂的数据集时可能会出现精度下降的问题。

尤其是在实际应用中,手写数字往往存在较大的差异性和误差,这会导致手写数字识别系统过于脆弱。

为了解决这些问题,已经出现了许多深度神经网络模型来实现高效的手写数字识别,例如基于卷积神经网络的模型和基于循环神经网络的模型。

(完整版)手写体数字识别系统设计毕业设计

(完整版)手写体数字识别系统设计毕业设计

石河子大学信息科学与技术学院毕业论文课题名称:手写体数字识别系统设计学生姓名:学号:学院:信息科学与技术学院专业年级:电子信息工程2007级指导教师:职称:完成日期:二○一一年六月十一日手写体数字识别系统设计学生:指导教师:[摘要] 随着科学技术的迅速发展,在邮政编码、统计报表、财务报表、银行票据等处理大量字符信息录入的场合,手写数字识别系统的应用需求越来越强烈,如何将数字方便、快速地输入到计算机中已成为关系到计算机技术普及的关键问题。

本文设计实现了一个基于Matlab软件的手写体数字识别系统,采用模块化设计方法,编写了摄像头输入、直接读取图片、写字板输入三个模块,利用摄像头等工具,将以文本形式存在的手写体数字输入进计算机,完成对手写体数字图片的采集,并设计了一种手写数字识别方法,对手写体数字图像进行预处理、结构特征提取、分类识别,最终以文本形式输出数字,从而实现手写体数字的识别。

[关键词] 预处理,结构特征提取,分类识别,手写体数字识别Handwritten Digit Recognition SystemStudents:Teacher:Abstract:With the rapid development of science and technology, in zip code, statistics, reports, financial statements, Bank bills dealing with a large number of characters, such as information recorded occasions, handwritten digit recognition system of requirement has become stronger and stronger, how easily and quickly the number entered in the computer has become a key issue relates to the popularization of computer technology. This article design implementation has a based on Matlab software of handwriting body digital recognition system, used module of design method, write has camera entered, and directly read pictures, and write Board entered three a module, using camera, tools, will to text form exists of handwriting body digital entered into computer, completed on handwriting body digital pictures of collection, and design has a handwriting digital recognition method, on handwriting body digital image for pretreatment, and structure features extraction, and classification recognition, eventually to text form output digital, to implementation handwriting body digital of recognition.Key words: Pretreatment, structure feature extraction, classification and recognition, handwritten digit recognition.目录第一章引言 (1)1.1课题背景 (1)1.2课题研究目的及意义 (2)1.2.1 手写体数字识别的研究目的 (2)1.2.2 手写体数字识别的研究意义 (3)1.3课题研究现状及发展趋势 (3)1.4课题整体结构 (5)1.5课题难点分析 (5)第二章开发运行环境 (6)2.1系统开发环境和运行环境 (6)2.2开发工具介绍 (6)2.2.1 硬件部分介绍 (6)2.2.2 软件部分介绍 (8)第三章手写体数字识别系统构成及原理 (10)3.1图像处理基础知识 (10)3.2手写体数字识别系统构成 (13)3.3手写体数字识别系统原理 (13)3.3.1预处理 (13)3.3.2图像分割 (17)3.3.3特征提取 (19)3.3.4分类识别 (20)第四章手写体数字识别系统设计分析 (21)4.1程序主界面 (21)4.2基准库的选择与建立 (23)4.3手写体数字识别系统设计 (23)4.3.1摄像头输入模块的设计 (23)4.3.2直接读图模块的设计 (25)4.3.3写字板输入模块的设计 (27)第五章系统性能评价及实验结果分析 (30)5.1识别系统性能的评价 (30)5.2实验结果分析 (31)第六章结论 (33)6.1毕业设计总结 (33)6.2课题前景与展望 (34)致谢 (37)参考文献 (37)附录 (39)附1、识别部分主程序 (39)附2、创建模板部分函数 (40)附3、切割图片部分函数 (42)附4、输出图片部分函数 (43)第一章引言1.1 课题背景数字已有数千年的历史,在世界上使用很广,然而,在当今社会里,如何快速高效地将数字输入计算机,已成为影响人机接口效率的一个重要瓶颈,也关系到计算机能否真正在我国得到普及应用[1]。

基于深度学习的手写数字识别系统

基于深度学习的手写数字识别系统

基于深度学习的手写数字识别系统第一章简介手写数字识别是计算机视觉领域的一个重要应用。

近年来,深度学习在图像识别、语音识别、自然语言处理等领域有了广泛的应用。

基于深度学习的手写数字识别系统具有高准确率、灵活性强的特点,是目前最先进的手写数字识别系统之一。

本文将详细介绍基于深度学习的手写数字识别系统的工作原理、实现方法和应用。

第二章工作原理基于深度学习的手写数字识别系统的工作原理是将手写数字图像作为输入,经过一系列卷积、激活、池化等操作,提取出特征向量,然后通过全连接层进行分类,得到数字识别结果。

具体来说,这个系统是一个卷积神经网络模型,由多层卷积层、激活层、池化层和全连接层组成。

每一层都有自己的参数和权重。

在训练过程中,系统通过反向传播算法来调整参数和权重,使得系统能够得到更准确的识别结果。

第三章实现方法基于深度学习的手写数字识别系统的实现方法主要包括数据预处理、模型设计、训练和测试四个步骤。

首先,需要对手写数字图像进行预处理,通常包括将图像调整为统一的大小、降噪、二值化等操作,以便于模型更好地提取特征。

其次,需要设计合适的卷积神经网络模型。

针对手写数字识别问题,常用的模型有LeNet、AlexNet、VGG等。

根据具体的数据集和需求,可以选择合适的模型进行修改和调整。

然后,需要进行训练。

训练需要一定的时间和计算资源,通常需要使用专门的深度学习框架(如TensorFlow、Keras等)来加速训练过程。

在训练过程中,需要设置训练参数、学习率、优化算法等,以便于获得更好的训练结果。

最后,进行测试。

测试时,需要将测试集输入到已经训练好的模型中,得到模型的识别结果。

通过比较识别结果和真实结果之间的差异,可以评估该模型的准确率。

第四章应用基于深度学习的手写数字识别系统已经在很多领域得到了广泛的应用。

例如,在人工智能助手中,用户可以通过手写数字输入命令,节省时间和精力。

在银行卡识别系统中,可以通过手写数字识别技术自动识别卡号。

基于深度学习的手写数字识别系统设计与实现

基于深度学习的手写数字识别系统设计与实现

基于深度学习的手写数字识别系统设计与实现手写数字识别是计算机视觉领域中的一个重要研究方向,它可以应用于自动化识别、数字化转换以及人机交互等领域。

本文将介绍一种基于深度学习的手写数字识别系统的设计与实现。

一、引言在数字化时代,手写数字识别系统扮演着重要角色,为了提高人工误差和效率问题,基于深度学习的手写数字识别系统应运而生。

本文将采用卷积神经网络(Convolutional Neural Network,CNN)作为深度学习模型,并通过系统设计和实现的具体方法,达到提高手写数字识别准确率和效率的目的。

二、深度学习模型1. CNN模型简介CNN是一种深度学习模型,它通过多层卷积和池化层来提取输入数据的特征,并通过全连接层进行最终的分类。

CNN的特点是可以自动学习输入数据的特征,对于图像处理任务具有很好的效果。

2. CNN模型设计手写数字识别任务可以看作是一个图像分类问题,因此我们可以使用经典的CNN模型LeNet-5作为基础模型进行设计。

LeNet-5模型包含了两个卷积层、两个池化层和三个全连接层,能够有效提取手写数字的特征并进行分类。

在设计过程中,我们可以根据实际需求进行调整和优化,例如增加卷积层深度或者全连接层神经元数量等。

三、数据集准备1. 数据集介绍在进行手写数字识别系统设计与实现之前,首先需要准备一个适用于训练和测试的手写数字数据集。

常用的数据集有MNIST、SVHN等。

本文将以MNIST数据集为例进行介绍。

MNIST数据集是一个包含60000个训练样本和10000个测试样本的手写数字数据集,每个样本都是28x28的灰度图像。

2. 数据预处理在使用MNIST数据集进行训练之前,我们需要对数据进行预处理。

预处理步骤包括数据归一化、标签编码等。

归一化可以将原始像素值缩放到0-1的范围内,以便进行更好的训练效果。

标签编码是将原始类别信息进行one-hot编码,方便进行分类模型的训练。

四、系统实现1. 环境搭建在进行系统实现之前,需要搭建相应的开发环境。

基于 CNN 的手写体数字识别系统的设计与实现代码大全

基于 CNN 的手写体数字识别系统的设计与实现代码大全

题目 基于CNN 的手写体数字识别系统的设计与实现(居中,宋体小三号,加粗)1.1 题目的主要研究内容(宋体四号加粗左对齐)(1)实验实验内容是通过CNN 模型实现对MNIST 数据集的手写数字识别,并通过GUI 界面进行演示,通过tensorflow 环境来构建模型并进行训练(2)系统流程图1.2 题目研究的工作基础或实验条件(1)硬件环境开始 获取数据集 构建CNN 模型 训练模型 搭建GUI 界面 测试结果结束Windows10系统(2)软件环境开发工具:python语言开发软件:pycharm开发环境:tensorflow1.3 数据集描述MNIST 是一个大型的、标准易用的、成熟的手写数字体数据集。

该数据集由不同人手写的0 至9 的数字构成,由60000 个训练样本集和10000 个测试样本集成,每个样本的尺寸为28x28x1,以二进制格式存储,如下图所示:1.4 特征提取过程描述CNN 是一种前馈型的神经网络,其在大型图像处理方面有出色的表现。

相比于其他神经网络结构,如多层感知机,卷积神经网络需要的参数相对较少(通过局部感受野和权值共享)。

CNN 的三个思想:局部感知野、权值共享、池化,能够大大简化权重参数的数量,网络的层数更深而参数规模减小,利于模型的训练。

CNN 主要包含三层:卷积层、池化层和全连接层,且在卷积层后应加入非线性函数作为激活函数,提高模型的非线性函数泛化能力,以下是单层CNN 的结构图:特征提取采用CNN模型中的卷积层,具体问为使用卷积核来进行特征提取。

1.5 分类过程描述分类过程采用全连接层和Softmax分类函数实现,通过softmax回归来输结果。

softmax模型可以用来给不同的对象分配概率。

对于输入的x加权求和,再分别i加上一个偏置量,最后再输入到softmax函数中,如下图。

其计算公式为:1.6 主要程序代码(要求必须有注释)import sys, ossys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定import numpy as npimport matplotlib.pyplot as pltfrom dataset.mnist import load_mnistfrom simple_convnet import SimpleConvNetfrom common.trainer import Trainer# 读入数据(x_train, t_train), (x_test, t_test) = load_mnist(flatten=False)# 处理花费时间较长的情况下减少数据#x_train, t_train = x_train[:5000], t_train[:5000]#x_test, t_test = x_test[:1000], t_test[:1000]max_epochs = 20network = SimpleConvNet(input_dim=(1,28,28),conv_param = {'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},hidden_size=100, output_size=10, weight_init_std=0.01)trainer = Trainer(network, x_train, t_train, x_test, t_test,epochs=max_epochs, mini_batch_size=100,optimizer='Adam', optimizer_param={'lr': 0.001},evaluate_sample_num_per_epoch=1000)trainer.train()# 保存参数network.save_params("params.pkl")print("Saved Network Parameters!")# 绘制图形markers = {'train': 'o', 'test': 's'}x = np.arange(max_epochs)plt.plot(x, trainer.train_acc_list, marker='o', label='train', markevery=2)plt.plot(x, trainer.test_acc_list, marker='s', label='test', markevery=2)plt.xlabel("epochs")plt.ylabel("accuracy")plt.ylim(0, 1.0)plt.legend(loc='lower right')plt.show()MODE_MNIST = 1 # MNIST随机抽取MODE_WRITE = 2 # 手写输入Thresh = 0.5 # 识别结果置信度阈值# 读取MNIST数据集(_, _), (x_test, _) = load_mnist(normalize=True, flatten=False, one_hot_label=False)# 初始化网络# 网络1:简单CNN"""conv - relu - pool - affine - relu - affine - softmax"""network = SimpleConvNet(input_dim=(1,28,28),conv_param = {'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},hidden_size=100, output_size=10, weight_init_std=0.01) network.load_params("params.pkl")# 网络2:深度CNN# network = DeepConvNet()# network.load_params("deep_convnet_params.pkl")class MainWindow(QMainWindow,Ui_MainWindow):def __init__(self):super(MainWindow,self).__init__()# 初始化参数self.mode = MODE_MNISTself.result = [0, 0]# 初始化UIself.setupUi(self)self.center()# 初始化画板self.paintBoard = PaintBoard(self, Size = QSize(224, 224), Fill = QColor(0,0,0,0))self.paintBoard.setPenColor(QColor(0,0,0,0))self.dArea_Layout.addWidget(self.paintBoard)self.clearDataArea()# 窗口居中def center(self):# 获得窗口framePos = self.frameGeometry()# 获得屏幕中心点scPos = QDesktopWidget().availableGeometry().center() # 显示到屏幕中心framePos.moveCenter(scPos)self.move(framePos.topLeft())# 窗口关闭事件def closeEvent(self, event):reply = QMessageBox.question(self, 'Message',"Are you sure to quit?", QMessageBox.Yes |QMessageBox.No, QMessageBox.Y es)if reply == QMessageBox.Y es:event.accept()else:event.ignore()# 清除数据待输入区def clearDataArea(self):self.paintBoard.Clear()self.lbDataArea.clear()self.lbResult.clear()self.lbCofidence.clear()self.result = [0, 0]"""回调函数"""# 模式下拉列表回调def cbBox_Mode_Callback(self, text):if text == '1:MINIST随机抽取':self.mode = MODE_MNISTself.clearDataArea()self.pbtGetMnist.setEnabled(True)self.paintBoard.setBoardFill(QColor(0,0,0,0))self.paintBoard.setPenColor(QColor(0,0,0,0))elif text == '2:鼠标手写输入':self.mode = MODE_WRITEself.clearDataArea()self.pbtGetMnist.setEnabled(False)# 更改背景self.paintBoard.setBoardFill(QColor(0,0,0,255))self.paintBoard.setPenColor(QColor(255,255,255,255))# 数据清除def pbtClear_Callback(self):self.clearDataArea()# 识别def pbtPredict_Callback(self):__img, img_array =[],[] # 将图像统一从qimage->pil image -> np.array [1, 1, 28, 28]# 获取qimage格式图像if self.mode == MODE_MNIST:__img = self.lbDataArea.pixmap() # label内若无图像返回Noneif __img == None: # 无图像则用纯黑代替# __img = QImage(224, 224, QImage.Format_Grayscale8)__img = ImageQt.ImageQt(Image.fromarray(np.uint8(np.zeros([224,224]))))else: __img = __img.toImage()elif self.mode == MODE_WRITE:__img = self.paintBoard.getContentAsQImage()# 转换成pil image类型处理pil_img = ImageQt.fromqimage(__img)pil_img = pil_img.resize((28, 28), Image.ANTIALIAS)# pil_img.save('test.png')img_array = np.array(pil_img.convert('L')).reshape(1,1,28, 28) / 255.0# img_array = np.where(img_array>0.5, 1, 0)# reshape成网络输入类型__result = network.predict(img_array) # shape:[1, 10]# print (__result)# 将预测结果使用softmax输出__result = softmax(__result)self.result[0] = np.argmax(__result) # 预测的数字self.result[1] = __result[0, self.result[0]] # 置信度self.lbResult.setText("%d" % (self.result[0]))self.lbCofidence.setText("%.8f" % (self.result[1]))# 随机抽取def pbtGetMnist_Callback(self):self.clearDataArea()# 随机抽取一张测试img = x_test[np.random.randint(0, 9999)] # shape:[1,28,28]img = img.reshape(28, 28) # shape:[28,28]img = img * 0xff # 恢复灰度值大小pil_img = Image.fromarray(np.uint8(img))pil_img = pil_img.resize((224, 224)) # 图像放大显示# 将pil图像转换成qimage类型qimage = ImageQt.ImageQt(pil_img)# 将qimage类型图像显示在labelpix = QPixmap.fromImage(qimage)self.lbDataArea.setPixmap(pix)if __name__ == "__main__":app = QApplication(sys.argv)Gui = MainWindow()Gui.show()sys.exit(app.exec_())1.7 运行结果及分析对模型进行训练,可以看到准确率可以达到98.8%。

手写数字识别逻辑回归模型

手写数字识别逻辑回归模型

手写数字识别逻辑回归模型手写数字识别是机器学习领域中一个经典的问题。

逻辑回归模型是一种常用的监督学习算法,它可以用于解决分类问题。

下面我们将介绍如何使用逻辑回归模型来构建一个手写数字识别系统。

1. 数据预处理我们需要获取手写数字数据集。

一个常用的数据集是MNIST数据集,它包含了60,000个训练样本和10,000个测试样本。

每个样本是一个28x28像素的灰度图像,代表一个手写数字(0-9)。

在进行模型训练之前,需要对数据进行预处理。

通常的步骤包括:- 将图像数据展平为一维向量- 对像素值进行归一化处理(如除以255,使像素值在0-1之间)- 将目标值(数字标签)转换为一个热编码向量2. 构建逻辑回归模型逻辑回归模型的目标是学习一个函数,将输入特征映射到输出标签的概率。

对于手写数字识别问题,我们需要构建一个多类别逻辑回归模型。

假设输入是一个784维的向量x(28x28像素展平后的结果),输出是一个10维向量y,其中y[i]表示x属于第i类(数字0-9)的概率。

我们可以定义如下模型:h(x) = softmax(W^T * x + b)其中W是一个784x10的权重矩阵,b是一个10维的偏置向量,softmax函数用于将线性组合的结果转换为概率分布。

我们需要通过最小化损失函数(如交叉熵损失)来学习模型参数W和b。

可以使用梯度下降等优化算法进行参数更新。

3. 模型评估在训练完成后,我们可以使用测试集来评估模型的性能。

常用的评估指标包括准确率、精确率、召回率等。

对于手写数字识别问题,逻辑回归模型可以达到较高的准确率(大约90%左右)。

但是,对于更复杂的图像识别任务,深度学习模型(如卷积神经网络)往往表现更好。

4. 扩展和改进虽然逻辑回归模型在手写数字识别任务上表现不错,但它也存在一些局限性。

例如,它无法很好地捕获图像的空间结构信息。

为了获得更好的性能,我们可以尝试以下扩展和改进:- 特征工程:除了原始像素值,我们还可以提取一些手工设计的特征,如直方图特征、梯度特征等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

手写数字识别的一般方法
训练样本 图像预处理 SVM训练
测试样本
图像预处理
识别器
结果
训练集:MNIST手写数字图片库
(https:///archive/p/supplement-of-the-mnist-database-of-handwrittendigits/downloads)
非0 1
核函数的选择: 核函数是SVM的核心,不同的核函数可以构造不 同的SVM分类器,比如线性核函数,二次核函数 和多项式核函数,径向基核函数等等。 非1
。。。
(SVM最初设计出来是用于解决二分类问题 的,多分类问题需将多个SVM的二分类器组 合起来。)
测试样本
预处理
压缩
10*10
实验演示(Windows)
基于SVM的手写数字识别系统
2150230509 文 成 软件工程
Introduction
手写数字识别系统: 手写数字识别是符号识别的一个分支,虽然只是识别简单的10个数字,但 却有着非常大的实用价值。 在我们的日常生活中,每天都要进行大量的文档处理工作,税单、银行支 票、汇款单、信用卡账单的处理,以及邮局信函的分检等等,如何利用计算 机字符识别和文档处理技术,使人们从这些繁重的手工劳动中解放出来已成 为一个迫切需要解决的问题。另外随着平板电脑和触摸屏手机的普及,手写 输入成为了很多人的主要输入方式。 手写数字虽然只有10个种类,但很多情况下对识别的精度要求非常高, 而且每个人都有不同的字迹,要做到准确地识别还是有一定难度的。况且在 实际应用中,手写数字识别的精确度要求要比汉字严格的多,因为数字识别 经常用在财务、金融等领域。
实现:C++、Opencv + SVM
实验演示(Android)
实验结果分析
每个数字 100个训练样本,测试数据正确率80.21%(训练集太少) 每个数字1000个训练样本,测试数据正确率95.45%(体现小样本高准确率的特性) 每个数字6000个训练样本,测试数据正确率97.67%
当手写字体比较正式的 情况下,其识别效果较好,但 当手写字比较随意时,识别效 果比较差。比如右图横着写的8 和加了噪音的3。 这存在多个方面因素, 一方面是由于训练样本中不存 在歪曲的样本,另一方面用 SVM解决多分类问题存在困难。 还有图像预处理时将原图像映 射成10*10的,存在精度丢失。
(总共提供60000个训练样本,每个数字提供6000个训练样本。另 外提供1000个测试数据)Leabharlann 练样本压缩28*28
10*10
SVM训练
0
//C++、opencv2.4 + SVM 实现 //建立训练样本 Mat trainingDataMat(x, x, CV_32FC1, trainingData); Mat labelsMat (x, x, CV_32FC1, labels); //设置SVM参数 CvSVMParams params; params.svm_type = CvSVM::C_SVC; params.kernel_type = CvSVM::LINEAR; params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 100, 1e-6); //训练支持向量机 CvSVM SVM; SVM.train(trainingDataMat, labelsMat, Mat(), Mat(), params);
两个不足: (1) SVM算法对大规模训练样本难以实施(由于SVM是借助二次规划来求解支持向量,而求解 二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算将耗 费大量的机器内存和运算时间。) (2) 用SVM解决多分类问题存在困难(经典的支持向量机算法只给出了二类分类的算法,而在 数据挖掘的实际应用中,一般要解决多类的分类问题。可以通过多个二类支持向量机的组合 来解决。)
Literature review
目前解决该问题的技术已经相当成熟。 包括我们手机上的大部分输入法不仅支持数字的识别,而且支持汉字的 识别,而且准确度也比较高。
手写识别常见的例子: “SoGou拼音输入法”
Proposed method
SVM 支持向量机 (是借助最优化方法来解决机器学习问题的新工具,是克服“维数灾难” 和“过学习等传统困难的有力手段”)
机理
– 来源于解决分类问题:系统随机产生一个超平面,通过训练移动它, 直到训练集合中不同的类别正好位于该超平面的不同侧面。 – 支持向量机的机理是:寻找一个满足分类要求的最优分类超平面, 即两侧空白空间最大化。
L1
L2
H1 H H2
SVM的特点与不足
特点: (1)非线性映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的非线性映射; (2)对特征空间划分的最优超平面是SVM的目标,最大化分类边际的思想是SVM方法的核心; (3)支持向量是SVM的训练结果,在SVM分类决策中起决定作用的是支持向量。 (4)SVM 的最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而 不是样本空间的维数,这在某种意义上避免了“维数灾难”。 (5)少数支持向量决定了最终结果,这不但可以帮助我们抓住关键样本、“剔除”大量冗余样 本,而且注定了该方法不但算法简单 (6) SVM在小样本训练集上能够得到比其它算法好很多的结果。
相关文档
最新文档