基于555定时器构成的多谐振荡器的应用
NE555原理及应用
NE555原理及应用
NE555的原理是基于RC时间常数(R是电阻,C是电容)的变化来实
现定时功能。
在NE555中,有三个外部引脚,1号引脚(GND,接地引脚)、8号引脚(Vcc,正电源引脚)和4号引脚(RESET,复位引脚)。
通过控制这些引脚与外部电路的连接,可以实现不同的工作模式。
1.单稳态多谐振荡器:单稳态多谐振荡器可以输出一段固定宽度的方
波脉冲。
在此应用中,通过连接电容和电阻来控制输出脉冲的宽度。
当触
发引脚接收到一个负脉冲时,输出引脚产生一个高电平,持续时间由电容
电压充放电时间决定。
这种应用常用于电子钟、计时器等。
2.方波发生器:通过连接电容和电阻,可以使NE555工作在方波发生
器模式。
当输出引脚处于高电平时,电容开始充电,当电压达到高阈值时,输出引脚将变为低电平,电容开始放电,当电压达到低阈值时,输出引脚
再次变为高电平,重复这个过程。
这种应用常用于音频设备、脉冲调制等。
3.频率分频器:通过改变电阻和电容的数值,可以实现NE555的频率
分频功能。
频率分频器可以将输入信号的频率分频为较低的输出频率。
这
种应用常用于计数器、频率计等。
4.PWM调制器:NE555也可以作为PWM(脉冲宽度调制)调制器,通
过改变电阻和电容的数值可以控制输出脉冲的占空比。
这种应用广泛用于
电机控制、逆变器、电源管理等领域。
用555构成的多谐振荡器
555构成多谐振荡器的报警电路设计一、设计目的555定时器是一种模拟电路和数字电路相结合的中规模集成器件,它性能优良,适用范围很广,外部加接少量的阻容元件可以很方便地组成单稳态触发器和多谐振荡器,以及不需外接元件就可组成施密特触发器。
因此集成555定时被广泛应用于脉冲波形的产生与变换、测量与控制等方面。
本实验根据555定时器的功能强以及其适用范围广的特点,设计实验研究它的内部特性和简单应用。
555 定时器是一种模拟和数字功能相结合的中规模集成器件。
一般用双极性工艺制作的称为555,555 定时器的电源电压范围宽,可在4.5V~16V 工作,7555 可在3~18V 工作,输出驱动电流约为200mA,因而其输出可与TTL、CMOS 或者模拟电路电平兼容。
555 定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。
它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。
555 定时器的内部包括两个电压比较器,三个等值串联电阻,一个RS 触发器,一个放电管T 及功率输出级。
它提供两个基准电压VCC /3 和2VCC /3图8-1 555定时器内部方框图通过对本次设计能够更好地掌握555的作用及应用。
同时掌握报警电路的原理及设计方法。
二、设计要求①画出电路原理图(或仿真电路图);②元器件及参数选择;③电路仿真与调试;④PCB文件生成与打印输出。
(3)制作要求自行装配和仿真,并能发现问题和解决问题。
(4)编写设计报告写出设计与制作的全过程,附上有关资料和图纸,有心得体会。
三、设计原理多谐振荡器是能产生矩形波的一种自激振荡器电路,由于矩形波中除基波外还含有丰富的高次谐波,故称为多谐振荡器。
多谐振荡器没有稳态,只有两个暂稳态,在自身因素的作用下,电路就在两个暂稳态之间来回转换,故又称它为无稳态电路。
由555定时器构成的多谐振荡器如图1所示,R1,R2和C是外接定时元件,电路中将高电平触发端(6脚)和低电平触发端(2脚)并接后接到R2和C的连接处,将放电端(7脚)接到R1,R2的连接处。
由555定时器构成的多谐振荡器
由555定时器构成的多谐振荡器介绍多谐振荡器是一种能够产生多种频率输出的电路。
555定时器是一种经典的集成电路,它被广泛应用于定时、脉冲和振荡等电路中。
本文将介绍由555定时器构成的多谐振荡器的原理和工作方式。
原理多谐振荡器利用了555定时器的特殊功能和结构。
555定时器是一种8引脚的集成电路,通过控制引脚的电压来实现不同的功能。
其中,引脚1(GND)和引脚8(Vcc)分别是地(Ground)和电源(Power)引脚,引脚4(Reset)是重置引脚,引脚5(Control)是控制引脚,引脚6(Threshold)和引脚2(Trigger)是比较器的输入引脚,引脚3(Out)是输出引脚。
在多谐振荡器中,我们使用555定时器的比较器和比较器的输入引脚来实现不同频率的输出。
具体来说,我们通过控制电压在引脚5(Control)上的变化来改变555定时器的工作方式和输出频率。
通过调整控制引脚的电压,我们可以改变比较器的输出电平,从而控制555定时器的触发和重置行为,进而改变输出波形的频率。
构成由555定时器构成的多谐振荡器一般包括以下几个基本组成部分: 1. 555定时器:作为核心部件,控制多谐振荡器的工作以及输出频率的调节。
2. 电容器:用于控制振荡器的时间常数,进而影响输出频率。
3. 电阻器:用于控制电容器充电和放电的速度,从而进一步调节输出频率。
4. 比较器的输入引脚:通过改变引脚6(Threshold)和引脚2(Trigger)的电压,控制555定时器的触发和重置行为,改变输出频率。
5. 输出引脚:通过连接外部电路或元件,实现多种不同频率的输出。
工作方式多谐振荡器的工作方式如下: 1. 当电源接通时,555定时器的引脚5(Control)和引脚6(Threshold)的电压均为高电平。
2. 由于引脚5上的高电平,555定时器工作于稳态触发器模式,输出引脚保持低电平。
3. 当输出引脚为低电平时,通过电容器和电阻器进行充电。
555定时器及其应用
施密特触发器的输出波形如下:
ui
VCC2
VCC1
2VCC/3
R
uo2
48 7
555 3
uo1 0
1VCC/3 t
ui
6 2
1
5
uO
C5
0
t
图5-2-13 施密特触发器电路图
图5-2-14 施密特触发器的波形图
施密特触发器的主要用于对输入波形的整形。图5-2-14 表示的是将三角波整形为方波,其它形状的输入波形也可以 整形为方波。
态的翻转,而施密特触发器是靠外加电
压信号去控制电路状态的翻转。所以,
在施密特触发器中,外加信号的高电平
必须大于
2 3
VCC
,低电平必须小于1 3
VCC
,否
则电路不能翻转。
图5-2-13 施密特触发器电路图
由于施密特触发器无须放电端,所以利用放电端与输出端状态相
一致的特点,从放电端加一上拉电阻后,可以获得与3脚相同的输出。 但上拉电阻可以单独接另外一组电源,以获得与3脚输出不同的逻辑电 平。
+UCC R1
1
ui uc
>2/3 UCC
UCC 8
5KΩ 5 6 VA
5KΩ 2
VB
7 5KΩ
T
截止 (地)1
+C1+
01
01
+C2+
4 (复位端)
暂稳稳定状态
01 RD Q
SD Q 10
3u0
Q=1
Q=0
接通电源 +UCC ui (>1/3UCC)
R
. 0.01μ F . ui
uc
58 4
555仿真实验报告-多谐振荡器
仿真实验报告册仿真实验课程名称:数字电子技术实验仿真仿真实验项目名称:基于555定时器的多谐振荡器的设计仿真类型(填■):(基础□、综合□、设计■)院系:物理与机电工程学院专业班级:13电子(2)班姓名:学号:指导老师:刘堃完成时间:2014.03.25成绩:一、实验目的1、熟悉555集成时基电路的电路结构、工作原理及其特点;掌握555集成时基电路的基本应用。
2、掌握Multisim10软件在数字电子技术实验中的应用。
二、实验设备Multisim10软件。
三、实验原理 (1)555定时器集成芯片555是一种能够产生时间延迟和多种脉冲信号的控制电路,是数字、模拟混合型的中规模集成电路。
芯片引脚排列如图1所示,内部电路如图2所示。
电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器,广泛应用于信号的产生、变换、控制与检测。
它的内部电压标准使用了三个5 k Ω的电阻,故取名555电路。
电路类型有双极型和CMOS 型两大类,两者的工作原理和结构相似。
几乎所有的双极型产品型号最后的三位数码都是555或556;所有的CMOS 产品型号最后四位数码都是7555或7556,两者的逻辑功能和引脚排列完全相同,易于互换。
555和7555是单定时器,556和7556是双定时器。
双极型的555电路电源电压为+5 V ~ +15 V ,输出的最大电流可达200 mA ;CMOS 型的电源电压是+3 V~+18 V 。
555内部电路有两个电压比较器、基本RS 触发器和放电开关管T 。
比较器的参考电压由三只5 k Ω的电阻分压提供,比较器A 1同相端参考电平为CC V 32、比较器A 2的反相端参考电平为CC V 31。
A 1和A 2的输出端控制RS 触发器状态和放电管开关状态。
当输入信号超出CC V 32时,比较器A 1翻转,触发器复位,555的输出端○3脚输出低电平,开关管导通,电路充电。
当输入信号低于CC V 31时,比较器A 2翻转,触发器置位,开关管截止,电路放电,555的○3脚输出高电平。
用555定时器构成占空比可调多谐振荡器
因 此 使 扬 声 器 发 出 1KHZ 的 间歇声响信号。
VO1 VO2
通过这个例子可以作 出警笛、救护等声音效果。
精品课件
而且占空比是固定不变的。 占空比:脉冲宽度与周期之比
ቤተ መጻሕፍቲ ባይዱ
q TW 1 R1 R2
改变R1或改变R2都会引起周期T的改变。 T
R1 2R2
在实际应用中常常需要频率固定而占空比可调。
占空比可调多谐振荡器电路
电路特点:
R1
电容C的充、放电通路分别用二极管D1和
D2隔离。RW为可调电位器。
R2
★ 充电时,只和R1有关, tW10.7R1C
随V C 着 V T、 RV TH 当:VC电压充至2/3VCC以前
VCC
4
8
R1 R2
VCO
5
6
5K VR1 +- C1 R
0VTH
V2
C VTR
C
7
5K
VR2 +- C2 S 5K
G1 Q
& &Q
G2
V
' O
TD
R
当:VVVCTT电RH><12压//33充VVCC至CC ≥一2/小3V一CC大是保持21。//33VVVCCCCC
爆光时间为1.1RC,爆光时间到自动恢复为初始状态。
要改变爆光时间,只要改变R、C值即可。
精品课件
★ 用555定时器构成多谐振荡器
多谐振荡器是一种无稳态电路,接通电源后,不需 外加触发脉冲,电路就能自动产生周期性矩形脉冲或方波。
用途:主要用于产生各种方波或时间脉冲。
【实验】555定时器构成的多谐振荡器
555定时器构成的多谐振荡器555定时器是一种模拟电路和数字电路相结合的中规模集成器件,它性能优良,适用范围很广,外部加接少量的阻容元件可以很方便地组成单稳态触发器和多谐振荡器,以及不需外接元件就可组成施密特触发器。
因此集成555定时被广泛应用于脉冲波形的产生与变换、测量与控制等方面。
本实验根据555定时器的功能强以及其适用范围广的特点,设计实验研究它的内部特性和简单应用。
一、原理1、555定时器内部结构555定时器是一种模拟电路和数字电路相结合的中规模集成电路,其内部结构如图(A)及管脚排列如图(B)所示。
它由分压器、比较器、基本R--S触发器和放电三极管等部分组成。
分压器由三个5的等值电阻串联而成。
分压器为比较器、提供参考电压,比较器的参考电压为23ccV,加在同相输入端,比较器的参考电压为ccV,加在反相输入端。
比较器由两个结构相同的集成运放、组成。
高电平触发信号加在的反相输入端,与同相输入端的参考电压比较后,其结果作为基本R--S触发器端的输入信号;低电平触发信号加在的同相输入端,与反相输入端的参考电压比较后,其结果作为基本R—S触发器端的输入信号。
基本R--S触发器的输出状态受比较器、的输出端控制。
2、多谐振荡器工作原理由555定时器组成的多谐振荡器如图(C)所示,其中R1、R2和电容C为外接元件。
其工作波如图(D)所示。
设电容的初始电压c U =0,t =0时接通电源,由于电容电压不能突变,所以高、低触发端TH V =TL V =0<VCC,比较器A1输出为高电平,A2输出为低电平,即,(1表示高电位,0表示低电位),触发器置1,定时器输出此时,定时器内部放电三极管截止,电源cc V 经,2R 向电容C充电,逐渐升高。
当上升到13cc V 时,输出由0翻转为1,这时,触发顺保持状态不变。
所以0<t<期间,定时器输出为高电平1。
时刻,上升到23cc V ,比较器的输出由1变为0,这时,,触发器复0,定时器输出。
555多谐振荡器电路原理
555多谐振荡器电路原理一、引言555多谐振荡器是一种常用的电子电路,具有产生多种频率的信号的功能。
本文将介绍555多谐振荡器的工作原理、电路结构和应用。
二、工作原理555多谐振荡器的工作原理基于555集成电路的特性。
555集成电路是一种定时器,具有多种工作模式,其中一种就是多谐振荡器。
555多谐振荡器的核心是一个RC网络和比较器。
RC网络由一个电阻R和一个电容C组成,用于控制振荡器的频率。
比较器用于比较电容充放电过程中的电压,从而产生方波输出。
当电路通电时,电容开始充电,并且与电阻R组成的RC网络形成一个延迟回路。
当电容充电到一定电压时,比较器检测到电压达到阈值,并将电容放电。
在电容放电过程中,电压下降到低于阈值后,比较器再次将电容充电,如此往复,形成一个周期性的方波输出。
三、电路结构555多谐振荡器的电路结构相对简单,只需要一个555集成电路、若干个电阻和电容以及适当的连接线即可。
具体而言,电路的核心是555集成电路,电阻和电容用于控制振荡器的频率。
除此之外,还可以通过添加电阻和电容来调节输出波形的占空比。
四、应用555多谐振荡器具有广泛的应用场景。
以下是几个常见的应用案例:1. 闪光灯:将555多谐振荡器的方波输出接入LED灯,即可实现可调节频率的闪光灯电路。
2. 声音发生器:通过将555多谐振荡器的方波输出接入扬声器,可以产生不同频率的声音信号。
3. 脉冲计时器:将555多谐振荡器的方波输出接入计数电路,可以实现精确的脉冲计时功能。
4. 脉冲宽度调制:通过调节555多谐振荡器的频率和占空比,可以实现脉冲宽度调制功能,广泛应用于通信和控制领域。
五、总结本文对555多谐振荡器的工作原理、电路结构和应用进行了介绍。
555多谐振荡器是一种功能强大的电子电路,可以产生多种频率的信号,具有广泛的应用前景。
希望本文能为读者提供对555多谐振荡器的基本了解,并为相关领域的应用提供参考。
数字电路实验(06)555定时器及其应用:多谐振荡器
数字电路实验(06)555定时器及其应⽤:多谐振荡器⼀.实验要求1.1.实验⽬的1. 熟悉多谐振荡器的实现流程;2. 掌握555定时器的使⽤⽅法;3. 掌握泰克⽰波器TBS1102的使⽤。
1.2.实验器材1. VCC2. Ground3. 普通电阻4. 普通电容5. 555定时器6. 泰克⽰波器TBS11021.3.实验原理555时基电路是⼀种将模拟功能与逻辑功能巧妙结合在同⼀硅⽚上的组合集成电路。
555定时器构成的多谐振荡器能⾃⾏产⽣矩形脉冲的输出,是脉冲产⽣(形成)电路,它是⼀种⽆稳电路。
1. 多谐振荡器电路组成在电路接通电源的瞬间,由于电容C来不及充电,电容电压Vc=0V,所以555定时器的输出状态为1,输出Vo为⾼电平。
同时,集电极输出端对地断开,电源Vcc对电容C充电,电路进⼊暂稳态I。
当电容电压Vc充到2/3Vcc时,输出Vo为低电平,同时集电极输出对地短路,电容电压随之通过集电极输出端放电,电路进⼊暂稳态II。
此后,电路周⽽复始地产⽣周期性的输出脉冲。
2. 振荡频率的估算电容充电时间T1。
电容充电时,时间常数τ1=(R1+R2)C,起始值Vc(0+)=1/3Vcc,最终值Vc(∞)= Vcc,转换值Vc(T1)=2/3Vcc,带⼊过渡过程计算公式进⾏计算,计算公式为:电容放电时间T2。
电容放电时,时间常数τ2=R2C,起始值Vc(0+)=2/3Vcc,终值Vc(∞)= 0,转换值Vc(T2)=1/3Vcc,代⼊RC过渡过程计算公式进⾏计算,计算公式为:T2=0.7R2C电路振荡周期T,计算公式为:T=T1+T2=0.7(R1+2R2)C电路振荡频率f,计算公式为:输出波形占空⽐q=T1/T,即脉冲宽度与脉冲周期之⽐,称为占空⽐。
计算公式为:q= T1/T=0.7(R1+R2)C/(0.7(R1+2R2)C)=( R1+R2)/( R1+2R2)⽤555定时器构成多谐振荡器的原理图如图1所⽰。
555多谐振荡器
555多谐振荡器1. 引言555多谐振荡器是一种常用的电子元件,广泛应用于信号发生、频率调制、计时器等电路中。
本文将介绍555多谐振荡器的基本原理、工作方式以及应用场景。
2. 基本原理555多谐振荡器基于555定时器芯片,其内部包含比较器、RS触发器、放大器和电流源等部件。
通过控制电流源和外部电阻、电容的组合,可以实现不同频率的输出信号。
3. 工作方式555多谐振荡器可选择为单稳态或自由运放模式。
3.1 单稳态在单稳态模式下,555多谐振荡器仅在输入触发脉冲时才会生成一个特定宽度的输出脉冲。
在触发脉冲到来时,RS触发器的Q输出翻转,放电引脚可自动放电,并在一段时间后恢复到初始状态。
3.2 自由运放在自由运放模式下,555多谐振荡器将连续地输出一个频率可调的矩形波。
通过改变电阻和电容的值,可以改变输出波形的频率。
4. 电路搭建搭建555多谐振荡器电路需要以下元件: - 555定时器芯片 - 电阻 - 电容 - 电源具体电路搭建过程可以参考以下步骤: 1. 将555定时器芯片插入电路板中。
2. 连接合适的电阻和电容到芯片的引脚。
3. 连接电源并确保极性正确。
4. 检查电路连接是否正确。
5. 准备测试设备,如示波器,以监测输出波形。
5. 应用场景555多谐振荡器具有广泛的应用场景,下面列举几个常见的应用示例:5.1 信号发生器通过使用555多谐振荡器可以生成各种频率的信号,例如音频信号、脉冲信号等。
因此,它被广泛应用于信号发生器领域。
5.2 频率调制555多谐振荡器可用于频率调制电路中,通过改变电阻和电容的值,可以调整输出信号的频率,从而实现频率调制的功能。
5.3 计时器555多谐振荡器可以作为计时器使用。
通过选择合适的电容和电阻值,可以精确地控制输出信号的周期,实现精确计时功能。
6. 结论本文介绍了555多谐振荡器的基本原理、工作方式以及应用场景。
555多谐振荡器是一种通用的电子元件,在信号发生、频率调制和计时器等领域有着广泛的应用。
555定时器构成的多谐振荡电路
555定时器构成的多谐振荡电路1. 引言555定时器是一种常用的集成电路,在电子领域被广泛应用。
它具有多种功能,其中之一就是可以构成多谐振荡电路。
本文将介绍555定时器构成的多谐振荡电路的原理和应用。
2. 原理555定时器是一种集成电路,由比较器、RS触发器和电流控制器等元件构成。
在多谐振荡电路中的应用,主要是通过改变外部电容和电阻的数值来调整振荡频率和波形。
3. 多谐振荡电路的制作在制作多谐振荡电路时,可以通过改变外部电容和电阻的数值来调整振荡频率和波形。
具体制作步骤如下:3.1 准备工作:选取合适的555定时器芯片和外部元件;3.2 连接电路:根据电路图将555定时器与外部电容和电阻连接起来;3.3 调整参数:通过改变外部电容和电阻的数值来调整振荡频率和波形;3.4 测试电路:连接电源并测试电路的振荡频率和波形是否符合设计要求。
4. 多谐振荡电路的应用多谐振荡电路在实际应用中有广泛的用途,例如:4.1 无线电发射器:利用多谐振荡电路可以产生不同频率的信号源,用于无线电通讯中的调频、调幅和频率合成等应用;4.2 音乐合成器:利用多谐振荡电路可以生成不同音调和音色的音乐信号,用于音乐合成仪器中;4.3 闪光灯控制器:利用多谐振荡电路可以调整闪光灯的频闪频率和亮度,用于摄影等应用;4.4 脉冲发生器:利用多谐振荡电路可以产生稳定且可调节的脉冲信号,用于数字电路测试和脉冲激励等应用。
5. 总结555定时器构成的多谐振荡电路是一种功能多样且实用的电路。
通过调整外部电容和电阻的数值,可以实现不同频率和波形的振荡效果。
多谐振荡电路在无线电通讯、音乐合成、闪光灯控制和脉冲发生等方面有广泛的应用。
555多谐振荡电路
555多谐振荡电路
555多谐振荡电路是一种经典的多谐振荡电路。
它由三个主要元件组成:555定时器、电阻和电容。
多谐振荡电路是一种非线性电路,可以产生多个频率的波形。
在此文章中,我们将详细介绍555多谐振荡
电路的原理、使用和应用。
555多谐振荡电路的原理
多谐振荡电路可以通过改变某些元件的值来产生不同的频率。
555
多谐振荡电路是一种简单而灵活的电路,它可以根据输入的电压而改
变频率。
当电压变化时,它会引起电容和电阻的变化,从而改变芯片
内部的比较器阈值。
当阈值和触发器的状态发生变化时,就会产生一
个周期性的方波输出,其振荡频率取决于电容和电阻的数值。
使用和应用
555多谐振荡电路可以用于许多不同的应用,包括音频信号发生器、模拟时钟、脉冲宽度调制和步进驱动器。
在音频信号发生器中,可以
通过调整电容和电阻的值来产生不同的频率,从而产生不同音调的声音。
在模拟时钟中,可以使用555多谐振荡电路来替代基于石英晶体
的时钟,这种电路可以产生准确的振荡信号,从而保持时间的准确度。
在脉冲宽度调制中,可以使用555多谐振荡电路来产生一个可调节的
方波输出,该方波输出的周期可以被调整以产生特定比例的宽度和占
空比。
总结
555多谐振荡电路是一种灵活且实用的电路。
它可以根据电容和电阻的不同数值而产生不同的频率。
这种电路广泛用于音频信号发生器,模拟时钟,脉冲宽度调制和步进驱动器等应用中。
除了以上应用外,
此电路还可以用作基底发生器等,所以在电路设计领域中,555多谐振荡电路是一种常用的电路。
555定时器构成的多谐振荡器电路实验报告
555定时器构成的多谐振荡器电路实验报告实验目的:通过555定时器构成的多谐振荡器电路实验,掌握555定时器的基本原理、性能特点和应用方法,了解多谐振荡器电路的工作原理及其在实际电路中的应用。
实验原理:1. 555定时器555定时器是一种集成电路,由三个5kΩ电阻、两个比较器、一个RS触发器和一个输出级组成。
它可以产生单稳态脉冲、方波和三角波等不同形式的周期信号。
2. 多谐振荡器电路多谐振荡器电路是由多个LC谐振回路组成的,每个LC回路都有不同的共振频率。
当输入信号与其中一个LC回路的共振频率相同时,该回路将产生共振现象,并输出相应频率的信号。
实验步骤:1. 将555定时器插入面包板中,并连接上VCC和GND。
2. 将R1、R2和C1连接到555定时器引脚6、2和5上,并连接到GND。
3. 将C2连接到引脚5和GND之间,并与L1串联。
4. 将L2并联在L1上,并将它们与C3串联。
5. 连接万用表,调整电阻值和电容值,使得输出信号频率在100Hz-1kHz之间。
6. 测量输出波形的幅度和频率,并记录数据。
实验结果:通过实验,我们成功构建了一个555定时器构成的多谐振荡器电路,并成功测量了输出信号的频率和幅度。
实验数据如下:输出信号频率:500Hz输出信号幅度:3V实验分析:通过实验可以看出,555定时器构成的多谐振荡器电路可以产生不同频率的周期信号,并且具有较高的稳定性和精度。
在实际应用中,多谐振荡器电路常用于音响设备、无线电通讯、调制解调器等领域。
结论:通过本次实验,我们深入了解了555定时器的基本原理、性能特点和应用方法,并掌握了多谐振荡器电路的工作原理及其在实际电路中的应用。
同时,我们也学会了如何构建一个基于555定时器的多谐振荡器电路,并成功测量了其输出信号频率和幅度。
由555定时器构成的多谐振荡器
由555定时器构成的多谐振荡器一、介绍多谐振荡器多谐振荡器是一种可以产生多种频率信号的电路,它通常由一个或多个谐振电路和一个信号源组成。
在电子工程中,多谐振荡器被广泛应用于各种电路中,例如音频放大器、射频发射机、数字时钟等。
其中,由555定时器构成的多谐振荡器是一种简单且易于实现的方案。
二、555定时器简介555定时器是一种经典的集成电路芯片,它由美国公司Signetics(现为Philips)于1971年推出。
该芯片主要用于计时和脉冲生成等应用中。
555定时器具有简单可靠、稳定性好、工作温度范围广等优点,在模拟电路和数字电路中均有广泛应用。
三、由555定时器构成的多谐振荡器原理1. 555定时器基本工作原理在了解由555定时器构成的多谐振荡器之前,首先需要了解555定时器的基本工作原理。
555定时器主要由两个比较器和一个RS触发器组成。
当输入信号超过某个阈值(Vth)时,第一个比较器的输出为高电平;当输入信号低于另一个阈值(Vtl)时,第二个比较器的输出为低电平。
当两个比较器的输出状态改变时,RS触发器的状态也会改变,从而控制输出端口的电平状态。
2. 多谐振荡器原理多谐振荡器通常由一个或多个谐振电路和一个信号源组成。
其中,谐振电路是指由一个电容和一个电感组成的并联或串联回路。
当该回路处于共振状态时,它可以产生特定频率的信号。
在由555定时器构成的多谐振荡器中,通过改变RC元件(即电容和电阻)的数值来改变共振频率。
具体来说,当555定时器处于稳定状态时(即输出端口为高电平或低电平),RC元件开始充放电。
当充放电时间达到某个阈值(Tth)时,555定时器会自动将输出端口反转,并且开始进行下一次充放电过程。
因此,在不同RC元件数值下,555定时器可以产生不同频率的信号。
四、实现方法1. 单频率多谐振荡器单频率多谐振荡器是指只能产生一种固定频率的多谐振荡器。
在该电路中,555定时器的输出端口通过一个RC元件和一个二极管连接到输入端口,从而形成一个正反馈回路。
555多谐振荡器的作用
555多谐振荡器的作用555多谐振荡器,顾名思义,是一种能够产生多个频率的振荡器。
它是电子电路中常见的元件,广泛应用于各种电子设备中。
本文将从原理、结构、工作方式、应用领域等方面详细介绍555多谐振荡器的作用。
一、原理555多谐振荡器的核心是一颗555定时器集成电路芯片。
这种芯片具有三个主要部分:比较器、RS触发器和放大器。
通过合理连接这些部分,可以实现多种不同频率的振荡输出。
二、结构555多谐振荡器的基本结构包括电源电路、555芯片、频率调节电路和输出电路。
电源电路为整个振荡器提供稳定的直流电源;555芯片是振荡器的核心部件,通过内部的比较器、RS触发器和放大器,控制振荡器的频率和占空比;频率调节电路用于调整振荡器的频率;输出电路将振荡器产生的信号输出到外部电路。
三、工作方式555多谐振荡器的工作方式可以分为自由运行振荡器和受控振荡器两种。
自由运行振荡器是最简单的振荡器模式,只需要将555芯片的引脚2和引脚6短接,然后通过调节频率调节电路中的电阻和电容,即可获得不同频率的振荡信号。
受控振荡器是根据外部输入信号来调节振荡器的频率和占空比。
通过改变引脚5和引脚6之间的电压,可以实现对振荡器频率的调节,而通过改变引脚7和引脚6之间的电压,可以实现对振荡器占空比的调节。
四、应用领域555多谐振荡器在电子领域有着广泛的应用。
以下列举几个常见的应用领域:1. 音频设备:555多谐振荡器可以产生不同频率的声音信号,因此被广泛应用于音频设备中,如音乐合成器、电子琴等。
2. 闪光灯:通过控制555多谐振荡器的频率和占空比,可以实现闪光灯的频闪效果,被广泛应用于照相机、摄像机等设备中。
3. 电子时钟:通过调节555多谐振荡器的频率,可以实现电子时钟的时间显示功能。
4. 变频器:通过控制555多谐振荡器的频率,可以实现交流电机的调速功能。
5. 无线电发射器:通过调节555多谐振荡器的频率,可以实现无线电发射器的调频功能。
555多谐振荡器的作用
555多谐振荡器的作用
多谐振荡器是一种电子电路,可以产生多个频率的信号。
而555多谐振荡器是一种基于555定时器芯片的多谐振荡电路。
它在电子领域有着广泛的应用,本文将详细介绍555多谐振荡器的作用。
首先,555多谐振荡器可以用于音频信号的产生。
通过调整电路中的元件数值可以产生不同频率的音调,从低音到高音的范围都可以被覆盖到。
这使得555多谐振荡器在音响设备、乐器电子化改造等领域得到了广泛应用。
其次,555多谐振荡器可以用于频率测量。
通过将待测信号与555多谐振荡器的频率信号进行比较,可以得到待测信号的频率信息。
这种应用在通信、电子测试仪器等领域非常常见,可以用于信号发生器、频谱分析仪等设备中。
此外,555多谐振荡器还可以用于控制系统的时序控制。
通过调整电路中的元件数值和连接方式,可以实现不同的时序控制功能。
例
如,在自动化控制系统中,可以利用555多谐振荡器产生一定的时间延迟,用于控制开关的动作时间。
除了上述应用之外,555多谐振荡器还可以用于数字系统的时钟源。
在数字电路中,时钟信号是非常重要的,它用于同步各个模块的工作,保证整个系统的正确运行。
555多谐振荡器可以提供稳定的时钟信号,从而确保数字系统的正常运行。
总结起来,555多谐振荡器是一种具有多功能的电子电路,它可以用于音频信号的产生、频率测量、时序控制和数字系统的时钟源等多个方面。
在电子领域的各个应用中,都可以看到555多谐振荡器的身影。
随着技术的不断进步,人们对555多谐振荡器的需求也越来越大,相信它将在未来的发展中发挥更加重要的作用。
基于555定时器的多谐振荡器
集成电路应用课程论文论文题目:基于555定时器的多谐振荡器学院、系:电子与信息工程学院专业班级:学生姓名:任课教师:2015 年 6 月7 日基于555定时器的多谐振荡器摘要: 555定时器是一种应用十分广泛的中规模集成电路。
555 定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。
它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。
目前生产的定时器有双极型和CMOS两种类型,其型号分别有NE555、5G555 、C7555等多种。
它们的结构及工作原理基本相同。
通常,双极型定时器具有较大的驱动能力,而CMOS定时电路具有底功耗、输入阻抗高等优点。
,本文扼要地分析了555定时器的基本原理,介绍用555定时器产生多谐振荡器.关键字:555定时器、多谐振荡器、脉冲产生、Multisim1.引言最近十年来,科技发展突飞猛进,全球的电子业发展速度更是惊人。
电子产品从设计生产到投放市场的周期越来越短,设计的复杂性高密度也越来越强,在电子技术应用方面,一些电路经常需要在波形的变化与变换,定时与检测,控制与报警等方面被使用,而555定时器是一种将模拟与逻辑功能巧妙的结合在一起的中规模集成电路。
555定时器是一种时基电路,该电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器。
因而广泛用于信号的产生、变换、控制与检测。
目前生产的定时器有双极型和CMOS两种类型,其型号分别有NE555、5G555 、C555等多种。
它们的结构及工作原理基本相同。
通常,双极型定时器具有较大的驱动能力,而CMOS定时电路具有底功耗、输入阻抗高等优点。
555定时器工作的电源电压很宽,并可承受较大的负载电流。
其输出电平可与TTL,CMOS,HTL逻辑电路兼容,振荡精度与外接元件特性有关,具有200MA的吸收或供出电流,可直接推动扬声器,电感等低电阻负载。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于555定时器构成的多谐振荡器的应用
1.引言
繁华的都市,当夜幕降临时,五缤纷的彩灯便亮了起来,点亮这个黑暗的世界,给人民生活增添一点情趣,而流水灯是其中的角色之一。
随着技术的不断发展,控制彩灯的电路不断更新,这里主要介绍由555定时器构成的流水灯控制电路。
2.555定时器
2.1 555定时器的内部结构(如图1所示):
(1)分压器
①5脚悬空时。
②5脚外接控制电压时。
(2)电压比较器
电压比较器C1和C2是两个结构完全相同的理想运算放大器。
比较器有两个输入端,分别用1和0表示相应输入端上所加的电压,用表示比较器的比较结果(1代表高电平,0代表低电平)。
(3)基本RS触发器
(4)放电三极管
V1是一个集电极开路的放电三极管。
当时,V1导通;当时,V1截止。
2.2 555定时器功能表(如图2所示)555定时器功能表基本说明了555定时器的功能。
2.3 555定时器组成的多谐振荡器
由555定时器构成的多谐振荡器如图3所示,RA、RB和C是外接定时元件,电路中将高电平触发端(6脚)和低电平触
发端(2脚)并接后接到RB和C的连接处,将放电端(7脚)接到RA、RB的连接处。
由于接通电源瞬间,电容C来不及充电,电容器两端电压为低电平,小于(1/3)Vcc,故高电平触发端与低电平触发端均为低电平,输出为高电平,放电管V1截止。
这时,电源经RA、RB对电容C充电,使电压按指数规律上升,当上升到(2/3)Vcc时,输出为低电平,放电管V1导通,把从(1/3)Vcc上升到(2/3)Vcc由于放电管V1导通,电容C通过电阻RB和放电管放电,电路进人第二暂稳态,其维持时间的长短与电容的放电时间有关,随着C的放电,下降,当下降到(1/3)Vcc时,输出为高电平,放电管V1截止,Vcc再次对电容C充电,电路又翻转到第一暂稳态。
3.CD4017逻辑功能
CD4017芯片是十进制计数器/时序译码器,应用极其广泛。
图4是CD4017的引脚图排列,采用16脚双列直插式塑料
封装形式。
CD4017的CL端在输入时钟脉冲的上升沿计数,时钟允许端EN为“0”时,允许时钟脉冲输入,为“1”时就禁止时钟脉冲输入。
在输入时钟脉冲的作用下,10个译码输出Y0~Y9依次为高电平。
R为复位端,当R=1时,计数器清零,Y0为“1”,其余Y1~Y9均为“0”。
CO为进位输出端,CD4017记满10个数后,CO端输出一个正的进位脉冲。
4.电路实现
4.1 流水灯电路原理图(如图5所示):
4.2 流水灯电路原理
该电路由时基集成电路NE555构成的多谐振荡器和CD4017十进制计数/译码电路组成。
电源接通后,经R1、R2给电容C1充电,使逐渐升高,当时,3脚(Q端)输出为高电平。
当上升到超过时,3脚输出仍为高电平。
当继续上升到略超过时,RS触发器状态发生翻转,3脚输出为低电平,同时C1经R2及7脚内导通的放电管VT到地放电,迅速下降。
当下降到略低于时,触发器状态又翻转,3脚输出变为高电平。
同时,7脚内导通的放电管VT截止,电容C1再次进行充电,其电位再次上升,一直循环下去。
根据,可以看出,通过改变电位器R2的电阻值的大小,即可以改变振荡器的振荡周期,从而改变3脚输出高低电平的转换时间,进而改变流水灯的速度。
对于CD4017,其14脚接收来自555定时器3脚的输出脉冲。
当555定时器的3脚的输出电平状态发生翻转时,14脚接收到高低电平的变化,触发十个输出引脚交替输出高电平,点亮相应引脚的LED灯。
随着时间的进行,十个LED灯相继
被点亮,形成流水灯。
5.结论
555定时器是一种模拟和数字功能相结合的集成器件,通过外围元件的简单组合,可以组成许多基本实用的电路,
最基本且应用最多的有单稳态触发器,施密特触发器,多谐振荡器三种。
以这些基本电路为基础,又可以和其他组合形成各种各样实用的电子电路,实现各种各样的功能,如定时器、分频器、脉冲信号发生器、玩具游戏机电路、音响告警电路、自动控制电路、电源交换电路、频率变换电路元件参数和电路检测电路等。
相信在不久的将来,555定时器将应用在更多领域,为我们的生活增加更多新鲜的元素,并使我们的生活更加丰富多彩。
原文地址:/tech/80292.html。