短波自适应通信产生和发展的三个主要阶段

合集下载

l短波通信的发展历史及现状

l短波通信的发展历史及现状

l短波通信的发展历史及现状短波通信(Short-wave Communication),也被称为高频通信,一般指的是利用波长范围为100m到10m(相应的频率范围为3MHz 到30MHz)的电磁波的无线通信。

短波的传播方式主有两种:一个为地波,另一个为天波。

其中地波沿着地球表面进行传播,这种方式的传播距离主要由地表介质特性决定。

因为地波的衰减随着频率的升高而增强,短波以地波方式传播时,使用常用的发射功率,短波的传播距离最多只有几百公里,所以地波不是短波通信中使用的主要传播方式。

然而地波传播不需要经常改变无线通信的工作频率,但需考虑障碍物的影响,这也是其与天波传播方式不同的地方。

1901年,意大利无线电工程师马可尼在英国与纽芬兰之间(距离为3400Km),实现了跨越整个大西洋的无线电通信。

在这以后,因为无线电短波通信设备的价格低廉、便携性强、操作简单和灵活等优点,无线电短波通信迅速发展成为远距离无线通信的主要技术。

从第二次世界大战开始一直到20世纪6O年代的这一段时间是短波无线通信发展的黄金时期,该技术广泛地应用于军事、广播、商业、气象等诸多领域,世界上许多国家并建立了覆盖本地区或世界性的专用通信网或公用通信网。

但自从20世纪60年代以后,卫星通信等新兴远距离通信技术的出现使得短波通信的缺点越来越多地暴露出来:带宽较窄,射频频谱资源紧张,存在信道间干扰问题,易被窃听等等。

相反的是,新型卫星通信技术具有信道稳定、可靠性高、通信质量好、信道容量大等优点,许多本来是属于短波通信的重要业务逐步被卫星通信所取代。

在20世纪60至7O年代,短波无线通信技术的研究与应用陷入低谷。

但电子战、卫星战等战争方式的出现,使得人们发现一旦发生战争,各种通信系统都有可能被破坏,就是卫星也不能避免,如果过分依赖卫星作为中继站进行无线通信,在战时卫星一旦被摧毁,那么整个通信系统将瘫痪,后果是不堪设想的。

短波自身的特点决定其是唯一不受网络枢纽和有源中继体制约的远程通信手段,该技术的抗打击能力和自主通信能力超出其他通信方式,再加之卫星通信技术成本很高,而短波通信技术起点较低、价格低廉,一般的国家均能进行部署和使用。

短波通信技术发展与分析解析

短波通信技术发展与分析解析

技术市场从1924年实验室发现了电离层及短波通信实现以后,短波通信以其远距离通信、良好的机动性能、顽固性强及同时具备多种通信能力的特点在战术通信、军事领域、生产领域得到广泛的应用。

上个世纪80年代之后,随着大规模的集成电路、电子信息技术、数字化信息处理技术、高速度数字信号处理器等一系列科学技术的发展,短波通信正式进入现代化的数字通信时代。

就目前形势而言,短波通信技术虽然大量的应用低速跳频、低速数据传输、声码等,自身的通信能力拥有了一定的抗干扰性,但仍存在一些不足之处。

随着数字科学技术的发展,数字信息处理技术、扩频通信技术及自适应技术的应用,短波通信技术中长期处于研究阶段的成果正在逐步地迈向实用阶段。

一、短波通信技术的特点分析1.波形短波通信西洞中的自动链路及数据传输将使用相同的突发波,进而起到提高系统灵活性的作用。

2.信道分离短波通信系统把呼叫信道及数据流信道进行分离并让二者之间相邻,以便他们保持传输特性上相近。

信息分离一方面可以让信息流量各自承担,另一方面可以保证信息传送过程中的高效率性及链路建立的快速性。

3.链路建立的同步性第二代短波通信以异步方式建立链路系统,而第三代短波通信技术将异步方式和同步方式都采用。

同步方式相比之于异步方式具有延时更小的特点,电台的驻留信道在在这种方式下某一时间内是确定的。

4.管理业务能力强第三代短波通信技术对各种业务都具备良好的管理能力,在建立链路的同时可以自动的确定通信的双方所采用的抗干扰及数据体制。

同时还具备快速建立链路、同步建立及信息携带的功能。

5.具有可靠地最低限度的通信能力第三代短波通信技术技术与极低速技术结合在一起,在极其恶劣的环境下实现最低限度通信。

极低速的链路建立能力可以达到-20dB,定调频和数据通讯在正常的情况下无法实现的极低速可以完成。

二、短波通信技术的发展趋势目前的短波通信技术主要指的是频率自适应技术,而未来的短波通信技术将朝着更全方位的方向发展。

浅谈短波通信的发展

浅谈短波通信的发展

无线应用Wireless Application76中国无线电 2011年第9期短波按照国际无线电咨询委员会(C C I R)的划分是指波长在100m~10m,频率为3M H z~30M H z的电磁波。

以短波形式进行传播的无线电通信称为短波通信,又称为高频(HF ,High Frequency)通信。

在实际应用中,为了充分利用短波近距离通信时(地波通信)的优点,短波通信实际使用的频率范围被扩展到1.5MHz~30MHz。

1 短波通信新技术与新体制20世纪80年代以来,计算机、移动通信和微电子技术的迅猛发展,促进了短波通信技术和装备的更新换代。

特别是随着微处理器技术、数字信号处理(D S P)技术、自适应技术、扩频通信技术等现代信息技术的应用,大大提高了短波通信的质量和数据传输速率,增强了自动化能力,提高了自适应与抗干扰能力,形成了现代短波通信新技术、新体制。

这些新技术与新体制概括起来是:现代短波信道技术、现代短波通信终端技术、短波通信装备数字化与网络技术等。

(1)现代短波信道技术现代短波信道技术主要分为两大类:一类是针对短波变参信道的特点,为了克服短波空间信道的不稳定性对通信质量的影响,提高短波通信质量,特别是短波数据通信的可靠性和有效性而发展起来的,称之为信道自适应技术。

这类技术以短波实时选频与频率自适应技术为主体。

它使短波通信系统能实时地或近实时地选用最佳的工作频率,以适应电离层的种种变化,同时起克服多径衰落影响和回避邻近电台干扰及其他干扰的作用。

可以说,此项技术对于提高短波通信的可靠性与有效性具有重要意义。

尽管自适应技术在短波通信中得到了多方面的应用,除频率自适应外,还有自适应均衡、自适应调制解调、传输速率自适应等,但在很多场合所说的短波自适应通信或短波自适应技术,实际上就是指短波频率自适应通信或短波频率自适应技术。

另一类是针对短波通信存在的保密(或隐蔽)性不强、抗干扰能力差的弱点,以及电磁对抗的特点和规律,为了提高短波通信在电子战环境中的生存能力,以及抗测向、抗侦察、抗截获、抗干扰等防御能力而发展起来的,称之为短波通信电子防御技术。

无线电通信试题

无线电通信试题

无线电通信试题模拟试题1 模拟试题1一、填空(每空1分,共30分)1、无线电波的传播主要有两种形式: 和。

2、无线电波在传播过程中,由于通信双方的相对运动引起无线电波频率的变化,称为。

3、在数字通信系统中,在传输距离不太远的情况下,将来自信息源的数字基带信号直接传输,这种传输称为。

将数字基带信号经过载波调制,把频谱搬移到高频处再传输,这种传输称为。

大多数远距离无线通信和光通信都采用传输。

4、单边带信号产生的方法主要有、、三种。

5、短波自适应选频系统能够使无线电台在最佳信道上自动建立通信,是通过、和三个环节来实现的。

6、实现两个或两个以上支路数字信号按时分复用方式汇接成为单一的复合数字信号的过程称为 , 完成这一功能的设备称为 ;7、各种速率的业务信号复用进STM-N帧都要经历3个步骤: 、和。

8、GSM系统的基站BSS由和两大部分组成。

9、目前,国际主流3G技术标准包括_ _ __、_ ___和__ __;10、数字广播地球站采用的载波调制有两种方式: 方式和方式。

11、如果在网络信号覆盖范围内的某一特定区域,MS在此区域内移动时,并不需要告知网络更新位置,则此区域即为一个。

12、一个卫星系统一般由、和三部分组成。

13、GPRS网络是在GSM网络基础之上,新增两个和节点形成的移动分组数据网络。

二、选择题(每个选择2分,共12分)1、跳频能有效地改善以下( )现象。

A.多径效应B.阴影效应C.远近效应D.码间干扰2、“小区内切换”使通话中切换到( )的另一信道成为可能。

A、不同小区B、同一小区C、相邻小区D、任意小区 3、主叫用户呼叫数字公用陆地蜂窝移动通信网中用户所需拨打的号码是( )A(移动用户ISDN 号码MSISDNB(国际移动用户识别码IMSIC(移动用户漫游号码MSRND(临时移动用户识别码TMSI4、由通信卫星转发给地球站的信号常被称为( )A(下行信号 B( 后向信号 C( 下传信号 D(下星信号5、CDMA系统为每个用户分配了各自特定的( ),它可在一个信道上同时传输多个用户的信息。

短波在通信领域发展及应用

短波在通信领域发展及应用

浅析短波在通信领域的发展及应用摘要:本文以现代短波在通信技术的发展概况为起点,分析了短波在通信领域的发展趋势,特别是第三代短波通信技术的发展情况及通信信道对信号传输的影响。

最后大致的介绍了短波在跳频电台及卫星通信网络上的应用。

关键词:短波跳频电台通信信道中图分类号:tn822 文献标识码:a 文章编号:1674-098x(2012)04(a)-0024-011 引言近年来,短波通信技术在获得了长足进步,用现代化的短波设备改造和充实我国各个重要领域的无线通信网,使之更加先进和有效,满足新时代各项工作的需要,无疑是非常有意义的。

2 现代短波在通信技术的发展概况短波通信是一种无线电通信方式,具有许多优点,如设备简单、成本低、使用方便、灵活等,因此,长期以来一直是近、中、远距离军用、民用通信的重要手段之一,对人类通信事业作出了重要贡献。

在短波信道方面,它受时延、幅度衰落、环境变化等因素的影响变化莫测,要保证通信的可靠性,需要系统根据短波信道的变化自动适应改变系统结构。

现在的短波自适应通信技术,主要是指频率自适应技术,而未来的短波自适应通信技术应该是多方位的。

在计算机预测方面,利用计算机测频软件预测可用频率对短波通信很有帮助,计算机测频系统能够根据太阳黑子活动规律等因素,结合各个地区的历史数据,预测两点之间在未来一段时期每天各时节的可用频段,具有较高参考价值。

3 短波在通信领域的发展趋势短波在各方面的发展趋势很广泛,现从以下三个方面分析。

(1)从自适应技术向全自适应技术方向发展现在的自适应选频与信道建立技术都是与通信结合在一起,这样选频质量会低于专用实时选频系统提供的频率质量。

由于在短波时变信道中传输信号时,为了消除多径效应、多普勒频移等带来的干扰,必须采用自适应信道均衡技术。

从以上两点可以看出:为了提高短波通信的质量,今后发展方向应该是将专用选频系统和自适应通信系统结合起来,进一步提高短波通信质量。

短波通信在选定工作频率后,要在随时间变化的信道上得到最大数据量,就必须采用全自适应技术。

短波通信的发展历程

短波通信的发展历程

短波通信的特点短波按照国际无线电咨询委员会(CCIR,现在的ITU-R),的划分是指波长在l00m~l0m,频率为3MHz~30MHz的电磁波。

利用短波进行的无线电通信称为短波通信,又称高频(HF)通信。

实际上,为了充分利用短波近距离通信的优点,短波通信实际使用的频率范围为1.5MHz~30MHz。

短波通信的发展历程自从1921年发生在意大利罗马的一次意外事故,短波被发现可实现远距离通信以来,短波通信迅速发展,成为了世界各国中、远程通信的主要手段,被广泛地用于政府、军事、外交、气象、商业等部门,用以传送电报、电话、传真、低速数据和图像、语音广播等信息。

在卫星通信出现以前,短波在国际通信、防汛救灾、海难救援以及军事通信等方面发挥了独特的重要作用。

短波通信可以利用地波传播,但主要是利用天波传播。

地波传播的衰耗随工作频率的升高而递增,在同样的地面条件下,频率越高,衰耗越大。

利用地波只适用于近距离通信,其工作频率一般选在5MHz以下。

地波传播受天气影响小,比较稳定,信道参数基本不随时间变化,故地波传播信道可视为恒参信道。

天波是无线电波经电离层反射回地面的部分,倾斜投射的电磁波经电离层反射后,可以传到几千千米外的地面。

天波的传播损耗比地波小得多,经地面与电离层之间多次反射(多跳传播)之后,可以达到极远的地方,因此,利用天波可以进行环球通信。

天波传播因受电离层变化和多径传播的严重影响极不稳定,其信道参数随时间而急剧变化,因此称为变参信道。

天波不仅可以用于远距离通信,而且还可以用于近距离通信。

在地形复杂,短波地波或视距微波受阻挡而无法到达的地区,利用高仰角投射的天波可以实现通信。

与卫星通信、地面微波、同轴电缆、光缆等通信手段相比,短波通信也有着许多显著的优点:1)短波通信不需要建立中继站即可实现远距离通信,因而建设和维护费用低,建设周期短;2)设备简单,可以根据使用要求固定设置,进行定点固定通信。

也可以背负或装入车辆、舰船、飞行器中进行移动通信;3)电路调度容易,临时组网方便、迅速,具有很大的使用灵活性;4)对自然灾害或战争的抗毁能力强。

短波技术的发展及分析

短波技术的发展及分析

短波技术的发展及分析摘要:短波通信这一技术已经经历了数十年的发展历程,其从最开始的萌芽阶段到当前的成熟应用阶段,期间经过了有关科研人员的不断突破和技术上的创新。

当前,短波技术已经广泛应用于各个领域,特别是军事领域以及人们的日常生活。

转播通信技术和其他的有关技术是与众不同的,其技术的优势是无法替代的,也是不可比拟的,其势必会成为未来科学研究的重要热点之一。

随着短波通信技术进一步的整体发展,其优异的技术特性也会慢慢成为人们未来通信整体发展的大趋势。

关键词:短波通信技术;发展分析自从我国的改革开放以来,我们国家的科学技术飞跃式的发展,整体经济也在迅猛发展着,也推动了各个行业。

对于通信行业来讲,其发展更是更加迅猛,科学技术作为其重要的第一生产力,通讯技术也顺应着时代以及市场环境的发展。

随着经济的提升以及推进,通信行业也在不断的发展以及成长着。

从20年代的初期,有关人员通过实验发现了短波以及电离层,发现短波通信可以比其他的产品具备更加好的顽固性以及机动性。

一、短波通信技术的特点分析(1)信道的分离。

短波通信技术简单来讲就是一项对音频信道以及数据进行分离,但又可以让两者之间存在着相邻关系的技术系统。

短波通信技术可以让数据以及音频信道保持着相近的传输性能,又可以让流量保持其各自的属性,以实现快速建立以及高效的传输以进一步提升系统整体的灵活性,自动链路可以将同数据在传输的过程当中,用同样的突发波。

第三代的短波通信技术作为当前的主导技术结合了对第二代的异步方式以及现代的同步方式,并对两者进行完善和优化,建立出了新的一项连接系统,让当前同步方式相比于之前大大缩短了时间,增加了传输的整体效率[1]。

(2)管理业务的水平。

对于短波通信这一技术的研究始终是没有中断的,而且随着市场的整体大环境竞争,也越来越受到各个行业的重视,其对于各个领域的特殊性,已经成为了一项热门的研究对象。

因此,对其进行一系列的研究以及讨论还在不断的进行着,也极大的发展了短波通信这一技术。

短波通信原理

短波通信原理

短波通信原理短波通信是一种利用短波无线电波进行远距离通信的技术。

短波通信具有穿透力强、传播距离远、适应性广等特点,因此在军事、航空、海事、天气预报、应急通信等领域得到了广泛的应用。

短波通信的原理主要包括发射、传播和接收三个基本环节。

首先是发射环节,发射机产生的高频电流通过天线辐射出去,形成电磁波信号。

这些信号经过电离层的反射和折射,可以传播到地球上的远处地区。

其次是传播环节,短波信号在传播过程中会受到电离层、大气层、地球曲率等因素的影响,因此会发生多种传播方式,如地面波、天波、空间波等。

最后是接收环节,接收机接收到传播回来的信号,经过解调、放大等处理,最终还原成原始的信息信号。

短波通信的原理中,电离层的影响是至关重要的。

电离层是地球大气层的一部分,位于地球表面以上约80至500千米的高空,主要由电离气体组成。

在白天,由于太阳辐射的作用,电离层会发生电离,形成一个能够反射短波信号的层次,这被称为F层。

而在夜晚,电离层会发生变化,F层会消失,但会出现一个能够反射短波信号的E层。

这种变化会影响短波信号的传播距离和传播方式,因此也会影响到短波通信的可靠性和稳定性。

除了电离层的影响,大气层和地球曲率也会对短波信号的传播产生影响。

大气层的不均匀性会导致信号的折射和散射,从而影响信号的传播路径和传播距离。

而地球曲率则会导致信号的衰减,使得远距离传播的信号强度逐渐减弱。

总的来说,短波通信的原理是基于电磁波在大气层中的传播特性,利用电离层的反射和折射,以及大气层和地球曲率的影响,实现远距离通信。

了解短波通信的原理对于合理地选择频率、天线和设备,以及预测和改善通信质量都是非常重要的。

在实际应用中,需要综合考虑各种因素,才能确保短波通信的可靠性和稳定性。

论短波频率自适应通信技术

论短波频率自适应通信技术

论短波频率自适应通信技术作者:胡熠来源:《科学与信息化》2019年第29期摘要短波通信是一种无线电通信方式,具有设备简单、成本低、使用方便、灵活等优点,因此是近、中、远距离军用、民用通信的重要手段之一。

通信数字化、通信系统网络化、通信业务综合化是短波通信发展的必然趋势,系统兼容、网络互通以及高可靠性、有效性、强抗毁性,成了通信系统建设的基本要求。

由于短波信道的特殊性,如何实时选频以及频率复用等问题,有待我们进一步研究解决。

关键词短波;频率自适应;通信技术引言自20世纪80年代起,出于对卫星安全等方面的考虑,短波通信重新受到重视,许多国家加大了对短波通信技术的研究与开发。

近年来,由于电子技术的迅猛发展,促进了短波通信技术和装备的更新换代,原有的缺点得到了不同程度的克服,通信质量大大提高,形成了现代短波通信新技术、新体制,短波通信正走向复兴。

这其中,最重要和显著的技术进步,就是短波自適应技术。

1 问题的提出有关统计显示,即使在夜间通信环境最坏的情况下,短波频段也有4%左右的无噪声信道,而中午约有27%的信道干扰很小或不存在干扰。

所以,实时避开干扰,找出具有良好传播条件的无噪声信道是提高短波通信质量的主要途径,实现这一目标的关键是采用自适应技术。

2 短波自适应通信的技术发展阶段广义地讲,短波自适应包括频率自适应、功率自适应、传输速率自适应、分集自适应、自适应均衡及自适应调零天线等。

短波自适应通信经历了短波频率管理、2G-ALE两个成熟阶段,正向3G-ALE发展。

2.1 频率管理系统实现短波自适应的基本方法,是利用RTCE技术来测量和分析各种信道参数,根据综合分析和计算结果,建立工作在最佳频率上的通信链路。

根据所采用的技术不同,RTCE可分为电离层脉冲探测、电离层调频连续波探测(Chirp)、导频探测、8FSK信号探测等,其中8FSK探测是目前自适应电台使用最广泛的信号格式。

短波频率管理系统探测结果可以反映整个短波频段的频率资源情况,已经制成商业软件出售。

短波通信系统介绍

短波通信系统介绍

短波通信系统介绍短波通信系统介绍一、短波通信概述 (5)二、短波通信的优势 (5)三、短波通信的一般原理 (6)3.1.无线电波传播 (6)3.2 电离层的作用 (7)3.3 短波频率范围 (7)3.4 短波传播途径 (8)四、单边带概念 (8)4.1 单边带的定义 (9)4.2 单边带的优点 (9)五、优化短波通信的方法 (9)5.1 正确选用工作频率 (9)5.2计算机测频 (10)5.3 正确选择和架设天线地线 (10)六、短波电台天线知识 (11)6.1了解天线的基本工作原理 (11)6.2正确选择电台天线 (11)6.3正确处理天线价格与质量的关系 (12)6.4常用的天线 (12)6.4.1用于全方位通信的三角组合型全向全角天线 (12)6.4.2兼顾全向和定向两种用途的高增益三线式天线 (12)七、工程施工要点 (13)7.1正确架设天线和连接馈线 (13)7.2电台和天线的匹配 (14)7.3正确埋设接地体和连接地线 (14)7.4选用先进优质的电台和电源 (15)八、短波电台的应用 (16)9.1 近距离盲区及解决方法 (17)小知识: (18)一、衡量天线性能因素 (18)二、几种常用的短波天线 (18)一、短波通信概述短波通信是利用波长为100-10米(3-30兆赫兹)的电磁波进行的无线电通信,也称高频通信,主要靠天波传播,可经电离层一次或数次反射,最远可传至上万公里,如按气候、电离层的电子密度和高度的日变化,以及通信距离等因素选择合适的频率,就可用较小功率进行远距离通信。

但是由于电离层的高度和密度容易受昼夜、季节、气候等因素的影响,所以短波通信的稳定性较差,噪声较大。

目前,它广泛应用于电报、电话、低速传真通信和广播等方面。

由于采用大气空间及电离层为传输媒介无需投资,仅需配置短波收发信机和天线、馈线系统即可组成短波通信系统。

该系统通信设备较简单,机动性大,因此,可用于电话、电报、传真和广播等业务,特别适合应急通信和抗灾通信。

基于Chirp探测技术的短波自适应选频通信应用

基于Chirp探测技术的短波自适应选频通信应用

基于Chirp探测技术的短波自适应选频通信应用摘要:论文首先介绍了Chirp探测技术与自适应选频通信技术,并对Chirp探测在自适应选频通信过程中的作用进行了分析。

最后做出了在通信链路建立和通信过程中的频率实时调整时Chirp探测数据的具体应用方法。

关键词:自适应选频通信;Chirp探测自适应选频通信是在第三代短波链路自动建立(3G-ALE)技术基础上,根据通信双方事先按照预测的全时段覆盖的频率表进行自动链路建立。

其以操作简便,与通信系统结合紧密而受到用户的追捧。

如果能够结合探测数据选频与自适应选频通信各自的优点,必将在很大程度上提升短波通信链路的通信效果。

一、现有短波通信技术(一)短波Chirp探测技术Chirp探测是一种广泛使用并由国际电联ITU推荐的标准探测方法。

它是利用FM/CW信号,即频率线性扫描信号,来测量短波电路的多径时延、信号强度、最高可用频率等电离层传播信道参数,并能精确地探测到所探测路径的电离层传播模式。

从站的探测接收机所接收到的FM/FC信号的时延情况转换成音频信号,通过对该音频信号进行频谱分析而得到有关时延和能量的频率分布;它通过对短波电离层信道进行扫频探测,并对接收到的探测信号进行处理,可形成反映实时变化的电离层信道特性的电离图。

由于电离图数据客观的反映了的通信链路间电波传播和电离层结构信息,利用这些信息通过一定的选频算法就可以进行最佳通信频率选择和通信频率管理。

(二)自适应选频通信技术自适应选频通信技术是在两个站点之间预先规划频率表,通信利用通信系统本身的线路质量分析(LQA)和自适应建链功能建立通信链路和链路维护。

初始建立时,在双方时间同步的基础上,收发双方按照划分好的时间间隙,一方在指定频率组上呼叫,另一方扫描,下一个周期上方呼叫和扫描进行调换,直至通信链路建立。

链路建立好后,双方就将当前组的频率作为通信链路工作的频率,利用通信系统的链路质量分析,进行频率质量监控和频率排序,当质量下降时,可通过人工指定或预测频率等方式对这些频率更新。

短波通信的发展历程

短波通信的发展历程

短波通信的特点短波按照国际无线电咨询委员会(CCIR,现在的ITU-R),的划分是指波长在l00m~l0m,频率为3MHz~30MHz的电磁波。

利用短波进行的无线电通信称为短波通信,又称高频(HF)通信。

实际上,为了充分利用短波近距离通信的优点,短波通信实际使用的频率范围为1.5MHz~30MHz。

短波通信的发展历程自从1921年发生在意大利罗马的一次意外事故,短波被发现可实现远距离通信以来,短波通信迅速发展,成为了世界各国中、远程通信的主要手段,被广泛地用于政府、军事、外交、气象、商业等部门,用以传送电报、电话、传真、低速数据和图像、语音广播等信息。

在卫星通信出现以前,短波在国际通信、防汛救灾、海难救援以及军事通信等方面发挥了独特的重要作用。

短波通信可以利用地波传播,但主要是利用天波传播。

地波传播的衰耗随工作频率的升高而递增,在同样的地面条件下,频率越高,衰耗越大。

利用地波只适用于近距离通信,其工作频率一般选在5MHz以下。

地波传播受天气影响小,比较稳定,信道参数基本不随时间变化,故地波传播信道可视为恒参信道。

天波是无线电波经电离层反射回地面的部分,倾斜投射的电磁波经电离层反射后,可以传到几千千米外的地面。

天波的传播损耗比地波小得多,经地面与电离层之间多次反射(多跳传播)之后,可以达到极远的地方,因此,利用天波可以进行环球通信。

天波传播因受电离层变化和多径传播的严重影响极不稳定,其信道参数随时间而急剧变化,因此称为变参信道。

天波不仅可以用于远距离通信,而且还可以用于近距离通信。

在地形复杂,短波地波或视距微波受阻挡而无法到达的地区,利用高仰角投射的天波可以实现通信。

与卫星通信、地面微波、同轴电缆、光缆等通信手段相比,短波通信也有着许多显著的优点:1)短波通信不需要建立中继站即可实现远距离通信,因而建设和维护费用低,建设周期短;2)设备简单,可以根据使用要求固定设置,进行定点固定通信。

也可以背负或装入车辆、舰船、飞行器中进行移动通信;3)电路调度容易,临时组网方便、迅速,具有很大的使用灵活性;4)对自然灾害或战争的抗毁能力强。

关于短波通信技术发展

关于短波通信技术发展

关于短波通信技术发展摘要:在经过长达数十年发展历程之后的短波通信技术,从初始的初级阶段到现在的成熟应用,经过多年来不断的技术创新。

如今已经被广泛运用于各个领域,尤其是日常及军事领域。

短波通信技术具有与其他相似技术与众不同的特性,其技术优势必将是不可比拟的,必将成为当今科学研究的热点之一。

短波通信技术发展分析,以其优异的技术特性来成为未来通信的发展趋势。

关键词:短波通信;特征;发展方向引言:自2000年以来,科学发展飞跃式的前进,经济的快速发展带动了一系列的行业,其中通信类行业发展更是速度惊人,科学技术作为第一生产力,通信技术顺应了市场的发展。

经济的推动力下,通信行业不断地成长与发展。

1925年左右,研究人员通过实验发现了电离层和短波,短波通信具有比其他同类产品更好的机动性和顽固性在三十年前宣告加入数字通信,开启了数字通信的新纪元。

当今,短波通信技术应用范围日益广泛,能力不断提高,不断改善和强化,在数字化越来越先进的今天,数字媒介,频率扩容通信技术的不断发展,短波通信技术不断地向更加实用性发展。

一、短波通信概述短波通信(也称高频通信,Nigh frequency,HF)是国际上军、民最常用的基本通信手段之一,且具有明显的优势和特点。

随着反卫星武器的逐步成熟,军用短波通信及其装备的地位越来越重要,装备规模很大,应用很广。

短波通信作为战略指挥通信、战役指挥通信、战术指挥通信以及协同通信的重要手段之一,在有些情况下(比如在卫星通信中断时)甚至是中、远程指挥通信的唯一手段。

随着短波通信战技性能的进一步提高,短波通信的作用地位越来越重要,主要表现在指挥通信和协同通信两个方面。

指挥通信主要分战略通信、战役通信和战术通信三个层次,还有特殊需求的专线通信等。

指挥通信距离近至几十千米,远至数千千米。

由于短波的地波和天波特性,其通信距离能满足指挥通信对通信距离的要求。

在协同通信方面,短波通信比VHF、UHF频段电台表现出了距离上的优越性,因为飞机上天、舰艇出海时,其协同通信下不能依靠VHF、UHF解决问题,比如超低空突防的武装直升机、远程轰炸机等,短波通信几乎是唯一的手段。

短波通信发展综述教学内容

短波通信发展综述教学内容

短波通信发展综述邹光辉短波通信又称高频(HF)通信,使用频率范围为3-30MHz,主要利用天波经电离层反射后,无需建立中继站即可实现远距离通信。

同时由于电离层的不可摧毁特性,短波通信始终是军事指挥的重要手段之一。

由于短波通信在军事通信上的不可替代性,从20 世纪80 年代初, 短波通信进入了复兴和发展的新时期。

许多国家加速了对短波、超短波通信技术的研究与开发,推出了许多性能优良的设备和系统。

短波通信再次占领一定的地位, 随着技术的进步, 对于通信的一些缺点, 不少已找到克服和改进的办法。

短波通信的可靠性、稳定性、通信质量和通信速率都已提高了一个新水平。

一、由单一自适应技术向全自适应技术方向发展短波通信存在着短波信道的时变色散特性和高电平干扰的弱点。

因此, 为了提高短波通信的质量, 最根本的途径是“实时地避开干扰, 找出具有良好传播条件的无噪声信道”。

完成这一任务的关键是采用自适应技术。

所谓自适应, 就是能够连续测量信号和系统变化, 自动改变系统结构和参数, 使系统能自适应环境的变化和抵御人为干扰。

因此短波自适应的含义很广。

现已发展的自适应技术有自适应选频与信道建立技术、功率自适应技术、传输速率自适应技术、自适应调制解调技术、自适应分集技术、自适应信道均衡及辨识技术、自适应编码技术、自适应调零天线技术。

传统意义上的自适应主要是指频率自适应, 是以事实信道估值为基础, 采用自动链路建立和链路质量分析技术, 因此也称为实时选频技术。

在未来信息时代, 网络数据通信将成为主要的通信方式, 但是单一的频率自适应还无法满足网络数据通信的要求, 由于短波通信中各种新技术的出现, 特别是分组交换和各种自适应短波通信技术的发展, 为短波数据网的发展打下了基础, 频率自适应技术可与其他自适应功能综合构成全自适应短波通信系统。

未来通信的需求促进了短波自适应通信系统正向全自适应技术的方向发展。

二、由窄带低速数据通信向宽带高速数据通信发展针对短波通信存在的保密( 或隐蔽) 性不强、抗干扰能力差的弱点, 以及电磁环境的特点和规律, 为了提高短波通信干扰能力,发展起来了短波通信电子防御技术。

通信技术的发展主要经历了三个阶段

通信技术的发展主要经历了三个阶段

通信技术的发展主要经历了三个阶段。

(1)初级通信阶段(以1838年电报发明为标志)年代历史事件1838年莫尔斯发明有线电报,开始了电通信阶段1843年亚历山大•本取得电传打字电报的专利1864年麦克斯韦创立了电磁辐射理论,并被当时的赫兹证明,促使了后来无线通信的出现1876年贝尔利用电磁感应原理发明了电话1879年第一个专用人工电话交换系统投入运行1880年第一个付费电话系统运营1892年加拿大政府开始规定电话频率1896年马可尼发明无线电报(2)近代通信阶段(以1948年香农提出信息论为标志)年代历史事件1948年香农提出了信息论,建立了通信统计理论1950年时分多路通信应用于电话系统1951年直拨长途电话开通1956年铺设越洋通信电缆1957年发射第一颗人造地球卫星1958年发射第一颗通信卫星1962年发射第一颗同步通信卫星,开通国际卫星电话;脉冲编码调制进入实用阶段20世纪60年代彩色电视问世;阿波罗宇宙飞船登月;数字传输理论与技术得到迅速发展;计算机网络开始出现1969年电视电话业务开通20世纪70年代商用卫星通信、程控数字交换机、光纤通信系统投入使用;一些公司制定计算机网络体系结构(3)现代通信阶段(以20世纪80年代以后出现的光纤通信应用、综合业务数字网崛起为标志)年代历史事件20世纪80年代开通数字网络的公用业务;个人计算机和计算机局域网出现;网络体系结构国际标准陆续制定20世纪90年代蜂窝电话系统开通,各种无线通信技术不断涌现;光纤通信得到迅速普遍的应用;国际互联网得到极大发展1997年68个国家签定国际协定,互相开放电信市场相应的,通信文化也经历了三波浪潮,即模拟通信文化浪潮、数字通信文化浪潮和宽带通信文化浪潮三个阶段。

受各国政治经济发展不平衡状况的影响,通信文化的三波浪潮并不是齐头并进的,而是参差不齐的。

从全球范围看,通信文化目前正在经历数字通信文化浪潮和宽带通信文化浪潮。

从严格意义上讲,宽带技术是数字通信技术的延伸,但是,考虑到宽带技术对通信文化的潜在影响十分巨大,从某种意义上讲不啻于是一场新的通信文化革命,所以我们特别将其剥离出来,以表征这种特殊性。

短波通信技术发展与核心分析

短波通信技术发展与核心分析

短波通信技术发展与核心分析随着现代化信息技术的不断发展,短波通信技术也随之得到了广泛应用。

短波通信是指在3-30 MHz频段内进行的无线电通信方式,它具有广泛的覆盖范围和强大的传输能力,被广泛应用于无线电广播、军事通信、航空通信和海上通信等领域。

本文将对短波通信技术的发展历程和核心技术进行分析和探讨。

一、短波通信技术的发展历程1. 早期短波通信技术的发展短波通信的历史可以追溯到20世纪20年代初期,当时美国无线电广播公司WABC在波士顿进行了第一次短波实验广播。

20世纪30年代初期,短波通信技术逐渐得到了改进和完善,出现了一些重要的技术实现,例如可变频率的振荡电路和给定带宽的天线等。

随着技术的普及,短波通信开始向国际化方向发展,它成为信息传递的重要方式之一,特别是在战争年代,短波通信成为各国沟通的重要纽带。

2. 技术的进步和成熟20世纪50年代,随着半导体技术的发展和数字化技术的应用,短波通信技术得到了空前的发展,这主要归功于计算机的出现和数字化信号处理技术的广泛应用。

这样的技术进步不仅使短波通信的带宽和传输数据量有了极大的提高,而且还加速了数码化和网络化趋势的发展。

3. 现代化短波通信技术现代化的短波通信设备具有强大的传输能力和调制解调技术能力,能够支持多种信道结构和调制方案,同时还具备高强度、抗干扰等特点。

随着时代的推移,短波通信设备不仅在传统的电信和广播等领域得到了应用,而且在其他领域,如军事、民航、船舶等方面也得到了广泛的应用。

二、短波通信技术的核心技术1. 调制技术调制是指将信息信号经过编码后与载波信号结合生成的调制信号。

短波通信中的调制技术是指将数字或模拟信号转换成脉冲、AM、FM或者其他调制形式,用以传送信号。

目前,数字调制技术已成为短波通信领域的主流技术,其主要特点是抗干扰能力强、传输效率高和调制效果优良。

2. 码型技术码型技术是现代短波通信的核心之一。

在短波信道上,由于天气、地形以及信道条件等原因,传输信号的质量会受到很大的影响,为了保证信号的正确传输,码型技术被广泛应用于短波通信领域。

通信的三个重要进化阶段

通信的三个重要进化阶段

这是一个千变万化的世界……通信,一直以来是改变世界,实现人们互通互连的纽带,生活不断的日新月异,通信业随着现代节奏而变得丰富多彩。

通信不仅带动了生活,更促进了现代经济发展,在生活经济发展蒸蒸日上的今天,企业对通信的需求也不断提高,不在仅限于简单的语音通讯,而向更智能,多功能的应用发展。

为了满足紧随经济发展的步伐,企业通信系统也经过了三个重要的发展阶段:程控交换机,虚拟交换机,到现在的IPPBX企业通讯系统。

程控交换机:也称程控数字交换机,是计算机按预先编制的程序控制接续的自动电话交换机,通常用于电话交换网的交换设备。

程控交换机相对企业来说是一项重大工程,使用上不仅需要长期投资,且管理控制能力也较复杂需要高技术的专业人士管理维护。

虚拟交换机:也就是集中式用户交换机,是在程控交换机上新的进步,不需要购置任何硬件设备,也不需要占用空间,所需的所有硬件都在电信公司的内部交换机内,在电话局交换机上将部分用户划分为一个基本用户群,并向该用户群提供各种功能和服务。

这样的交换机系统虽然满足了企业一定需求但是投入的费用确实非常昂贵的,而且每个功能都需要向电信申请并付较高的费用就,对于企业长期使用存在重要负担。

IPPBX企业通讯系统:是一种基于IP的公司电话系统,能完全将话音通信集成到公司的数据网络中,从而建立连接分布在全球各地办公地点和员工的统一话音和数据网络。

IPPBX不仅解决了传统PBX对新兴CTI和VoIP技术不足,还解决了现代企业办公所需的融合性,移动性,智能性等需求。

融合性现在企业在各地多有分支机构或办事处,而各个分支间的通讯系统却是相互独立的,企业日常通讯需要负担高昂的长途或国际长途费用甚至有时事务商讨还需长途跋涉,无疑给企业的信息共享,通讯融合以及成本投入带来了负担。

IPPBX通过基于互联网的广泛应用,为企业各分支间组建统一的通讯系统,各分支间可自由通讯且零资费,还提供电话会议系统,员工不在需要各地奔波参加会议。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概要介绍了短波自适应通信产生和发展的三个主要阶段,关键信号生成的原理及其监测与识别,详细论述了正在发展的第三代短波自适应通信系统的网络功能和技术特点。

引言短波通信是一种历史悠久的远距离通信方式,通过电离层反射实现远距离通信。

由于电离层的性能随时间、空间和电波频率变化,引起信号的幅度衰落、相位起伏等,会严重影响短波通信质量;同时天波反射存在严重的多径效应,也造成频率选择性衰落和多径时延,成为短波链路数据传输的主要限制。

另外,短波频段可供使用的频带比较窄,通信容量小,大气和工业无线电噪声干扰严重,也大大限制了短波通信的发展。

20世纪60年代以来,卫星通信以其信道稳定、通信质量好、容量大等优势,取代了许多原属于短波的重要业务。

短波通信的投入急剧减少,其地位大为降低。

然而,与卫星通信、光缆等通信手段相比,短波通信不需要建立中继站即可实现远距离通信,具有自身的特点,比如建设周期短,维护费用低;设备简单,容易隐蔽;使用灵活,电路调度容易,临时组网便捷,抗毁能力强等。

这些显著的优点,是其他通信手段不可比拟的。

事实证明,曾经设想取代短波通信的卫星通信,并不能满足所有情况下的用户需求。

20世纪80年代起,出于对卫星安全等方面的考虑,短波通信重新受到重视,许多国家加大了对短波通信技术的研究与开发。

近年来,由于电子技术的迅猛发展,促进了短波通信技术和装备的更新换代,原有的缺点得到了不同程度的克服,通信质量大大提高,形成了现代短波通信新技术、新体制,短波通信正走向复兴。

这其中,最重要和显著的技术进步,就是短波自适应技术。

短波自适应通信的概念短波通信主要依靠天波进行,而电离层反射信道是一种时变色散信道,其特点是路径损耗、时延散布、噪声和干扰等都随频率、地点、季节、昼夜的变化不断变化,因此,短波通信中工作频率是不能任意选择的。

在相当长的时间内,短波通信频率的选择是根据频率预测资料来确定的[1]。

但是,电离层的特性每天变化很大,频率预测资料是根据长期观测统计得出的,不能实时反映实际通信时信道参数,而且,长期预报也没有考虑多径效应和电台干扰等因素,造成实际短波通信质量不能令人满意。

统计表明,即使在夜间通信环境最坏的情况下,短波频段也有4%左右的无噪声信道,而中午约有27%的信道干扰很小或不存在干扰[2]。

所以,实时避开干扰,找出具有良好传播条件的无噪声信道是提高短波通信质量的主要途径。

实现这一目标的关键是采用自适应技术。

所谓自适应,就是能够连续测量信号和系统变化,自动改变系统结构和参数,使系统能自行适应通信条件的变化和抵御人为干扰。

广义地讲,短波自适应包括频率自适应、功率自适应、传输速率自适应、分集自适应、自适应均衡及自适应调零天线等。

由于选频和换频是提高短波通信质量最有效的途径,所以通常所说的短波自适应通信就是指频率自适应。

短波自适应通信经历了短波频率管理、2G-ALE两个成熟阶段,正向3G-ALE发展。

频率管理系统短波自适应系统必须完成实时探测信道特性和干扰分布情况的双重任务,系统提供的最佳工作频率是测量和分析这两方面数据的结果,完成这一任务所采用的技术称为实时信道估值“RTCE”技术。

实现短波自适应的基本方法就是利用RTCE(Real Time Channel Evaluation)技术来测量和分析各种信道参数,根据综合分析和计算结果,建立工作在最佳频率上的通信链路。

独立的信道探测系统可在一定区域内组成频率管理网格,在短波范围内对频率进行快速扫描探测,得到通信质量优劣的频率排序表。

然后再根据需要,统一分配给区域内各短波通信用户。

其实质是对区域内的用户提供实时频率预报。

美国CURTS系统和我国研制的实时选频系统都可以做到每10分钟向用户提供一份频率表[3],由用户在实际通信时选择最佳的通信频率。

根据所采用的技术不同,RTCE可分为电离层脉冲探测、电离层调频连续波探测(Chirp)、导频探测、8FSK信号探测等,其中8FSK探测,是目前自适应电台使用最广泛的信号格式。

CURTS系统是最早的实时选频系统,可以测量5种信道参数。

它采用电离层脉冲探测,由于探测脉冲功率高达30kW,因而会造成严重的干扰,只能用于大区战略通信系统。

20世纪70年代中期,美国Barry公司采用Chirp探测方式研制出AN/TRQ-35(V)实时选频战术频率管理系统,后又升级为AN/TRQ-42(V),在90年代初期的海湾战争中,这两套频率管理系统成功地支撑了短波通信网,为盟军的胜利发挥了关键的通信保障作用。

短波频率管理系统探测结果可以反映整个短波频段的频率资源情况,已经制成商业软件出售。

有些无线电监测站的短波单站定位功能,也是利用这些探测结果,再通过计算来实现的。

频率管理系统的特点是通信与探测分离,探测设备昂贵,这一发展过程也称为短波自适应技术的1G-ALE阶段。

2G-ALE通信系统随着微处理器和数字信号处理技术的不断发展,20世纪80年代中期,出现了在通信系统中直接采用RTCE技术,对短波信道进行探测、评估和通信一并完成的短波自适应电台。

这种电台能够实时选择出最佳的短波通信信道,减少了短波信道的时变、多径和噪声等对通信的影响,使得短波通信频率随信道条件变化而改变,从而确保通信始终在质量最佳的信道上进行。

由于采用了高速DSP芯片,RTCE作为通信设备的一个嵌入式部件,使得成本大大降低,操作也变得非常方便。

为了使短波自适应电台互通和组网,1988年10月,美国军方颁布了短波自适应通信的军用标准MIL-STD-188/141A;1990年,对应的联邦标准FED-STD-1045协议也正式出台,该协议又简称1045协议,已成为事实上的国际标准。

符合1045协议的短波自适应电台一般称为2G-ALE产品。

2G-ALE产品型号很多,完成的功能大同小异,典型设备有美国RF-3200、7100系列,德国的ALIS电台等。

2G-ALE自适应通信系统具有以下四种基本功能。

(1)RTCE功能RTCE功能在短波自适应通信系统中称为链路质量分析LQA (Link Quality Analysis)。

为了简化设备,降低成本,一般LQA都是在通信前或间隙中进行的,并且只在有限短波信道上进行,通常有10~20个。

所获得的数据存储在LQA矩阵中,实际通信时,系统根据LQA矩阵中个信道的排列次序,择优选取工作频率。

(2)自动扫描接收功能为了接收选择呼叫和进行LQA试验,网中所有电台都具有自动扫描接收功能,可在预先规定的若干信道上循环扫描,等候呼叫信号或者LQA探测信号。

(3)自动建立链路功能根据LQA矩阵,系统应能全自动建立通信链路,这一功能称为自动链路建立ALE(Automatic Link Establishment)的功能。

这是短波自适应通信最终要解决的问题,它是基于接受自动扫描、选择呼叫和LQA综合运用的结果。

这是2G-ALE与1G-ALE系统的最大区别。

(4)信道自动切换功能短波信道存在的随机干扰、选择性衰落、多径等都有可能使已建立的信道质量恶化,甚至可能使通信中断。

因此,短波自适应通信系统一般具有信道自动切换功能。

即在通信过程中,遇到电波传播条件变坏或严重干扰,自适应系统可以切换信道,使通信频率自动调到LQA矩阵中次佳频率上。

短波日常监测中常见的8FSK是2G-ALE产品中使用最为广泛的一种信号格式,是信道中的LQA探测信号。

由于2G-ALE系统的广泛应用,因此在进行监测时8FSK信号出现的次数也最多,如有些台站很长时间一直发射8FSK信号,就可以初步判定是一个很大的短波通信网的通信中枢在进行LQA探测。

2G-ALE规程规定,8FSK每个单音代表3bit的二进制数据(格雷码),其对应关系如表1所示。

按照2G-ALE规程的要求,当电台收到命令或数据信息后,首先将其转换为基本ALE字组成的原始帧,再进行分组、格雷编码、交织和三倍冗余,最后进行8FSK调制,信号以每秒125个单音的速度发出,因此,发送信息速率375bit/s,符号速率125Baud/s。

各单音之间相位连续,过渡应在波形最大或最小处(斜率为零),这样可以保证基带音频信号占用频带最窄,能量更集中。

实际监测解调后的8FSK信号波形见图1。

3G-ALE通信系统由1045协议所定义??短波通信系统,初步满足了用户需求。

但随着技术和网络发展,1045协议也暴露出一些不足,主要是无法提供有效的链路接入机制;不支持Internet协议及应用;LQA测量参数只有两个,传输速率大于2400 bit/s时精度不够;ALE信号需三次握手才能建立链路,连接速度较慢。

1999年,美军颁布了短波自适应全自动通信网络标准的3G-ALE军标(MIL-STD-188/141B)。

在全面支持第二代协议规定的话音通信和小型网络的前提下,该标准有效地支持大规模、数据密集型快速高质量的短波通信系统,再一次在世界范围内引发了对短波通信的研究高潮。

在我国,相关的研究工作也已经起步。

3G-ALE全自动短波网络实质上是一种无线分组交换网络,采用OSI的七层结构模型,其下三层的定义和含义如表2所示。

相对于2G-ALE系统,3G-ALE系统进行了大量的改进:链路建立协议管理(3G-ALE)与数据链路业务管理(TM)、高速数据链路管理(HDL)、低速数据链路管理(LDL)、电路连接管理(CLM)等诸协议形成一个相互依赖的3G-ALE协议族,形成比较完整的短波通信新体制。

3G-ALE还采用了许多新技术,主要是数字PSK调制解调方式、突发波BW系列波形传输、呼叫信道同步扫描、网内电台划分为不同的驻留组、信道分离、时隙访问方式、载波侦听机制等。

3G-ALE系统的主要技术特点有:(1)波形3G-ALE链路建立和数据传输采用统一的8PSK调制,载频为1800Hz,信令速率2400B,不同的用途对应不同的信号格式,并且使用突发波BW(Burst Waveform),从而提高了系统灵活性。

3G-ALE共定义了五种突发波,如表3所列。

BW0是3G-ALE数据协议单元,作用类似于2G-ALE系统的8FSK,帧总长度为1472个码元,其中帧前导序列长度为640个码元的八进制序列,原始信息字段26bit经过码率1/2 FEC编码、交织、Walsh扩频,然后再与固定的PN码序列模8相加,形成长度为832个码元的信息八进制序列,与前导码共同组成3G-ALE帧。

从表3可以看出,3G-ALE采用了正交Walsh函数进行扩频,通过采用Rake接收技术,实现了多径分集,从而大大提高了抗干扰和抗衰落性能。

除LDL所用的BW4外,所有波形都采用FEC前向纠错码,从而大大简化了自适应算法,提高了信道通过率。

在LDL情况下,可以选用增强型ARQ协议,保障最低限度的通信能力。

相关文档
最新文档