16.1 二次根式(解析版)

合集下载

人教版数学八年级下册16.1第1课时《 二次根式的概念》教学设计

人教版数学八年级下册16.1第1课时《 二次根式的概念》教学设计

人教版数学八年级下册16.1第1课时《二次根式的概念》教学设计一. 教材分析人教版数学八年级下册16.1第1课时《二次根式的概念》是初中数学的重要内容,主要让学生了解二次根式的概念,理解二次根式与有理数、实数之间的关系,为后续学习二次根式的运算和应用打下基础。

本节课的内容包括二次根式的定义、性质和运算方法,通过学习,让学生能够熟练掌握二次根式的相关知识,提高他们的数学素养。

二. 学情分析学生在学习本节课之前,已经掌握了实数、有理数等相关知识,具备一定的逻辑思维能力和运算能力。

但二次根式作为新的数学概念,对于部分学生来说可能较为抽象,难以理解。

因此,在教学过程中,要注重引导学生从实际问题中抽象出二次根式的概念,帮助他们建立直观的认识,从而更好地理解和掌握二次根式的相关知识。

三. 教学目标1.让学生了解二次根式的定义、性质和运算方法。

2.培养学生从实际问题中抽象出二次根式的能力。

3.提高学生的数学素养,培养他们的逻辑思维能力和运算能力。

四. 教学重难点1.二次根式的定义和性质。

2.二次根式的运算方法。

3.引导学生从实际问题中抽象出二次根式。

五. 教学方法1.情境教学法:通过创设实际问题情境,引导学生从实际问题中抽象出二次根式。

2.讲授法:讲解二次根式的定义、性质和运算方法。

3.实践操作法:让学生通过实际操作,掌握二次根式的运算方法。

4.小组讨论法:分组讨论,共同解决问题,提高学生的合作能力。

六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示二次根式的相关知识。

2.实际问题:准备一些与生活实际相关的问题,用于引导学生从实际问题中抽象出二次根式。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用实际问题情境,引导学生从实际问题中抽象出二次根式。

例如,讲解一个物体从地面上升到最高点再下降到地面的过程,上升和下降的距离分别是3米和4米,求物体的最大高度。

2.呈现(10分钟)讲解二次根式的定义、性质和运算方法。

专题16.1 二次根式的化简求值(压轴题专项讲练)(解析版)-八年级数学下册

专题16.1 二次根式的化简求值(压轴题专项讲练)(解析版)-八年级数学下册

专题16.1二次根式的化简求值整体思想:指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。

整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。

一、二次根式的定义形如(≥0)的式子叫做二次根式,叫做二次根号,叫做被开方数.二、二次根式有意义的条件1.二次根式中的被开方数是非负数;2.二次根式具有非负性:≥0.三、判断二次根式有意义的条件1.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数;2.如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.四、二次根式的性质性质1:2=(≥0),即一个非负数的算术平方根的平方等于它本身;性质2:2==(≥0)−(<0),即一个任意实数平方的算术平方根等于它本身的绝对值.五、同类二次根式把几个二次根式化为最简二次根式以后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.①同类二次根式类似于整式中的同类项;②几个同类二次根式在没有化简之前,被开方数完全可以互不相同;③判断两个二次根式是否是同类二次根式,首先要把它们化为最简二次根式,然后再看被开方数是否相同.六、二次根式的加减法则二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.七、二次根式的乘除法则①二次根式的乘法法则:∙=∙o≥0,≥0);②积的算术平方根:∙=∙o≥0,≥0);≥0,>0);=≥0,>0).八、最简二次根式我们把满足①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.这两个条件的二次根式,叫做最简二次根式.九、分母有理化1.分母有理化是指把分母中的根号化去:分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式;2.两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.一个二次根式的有理化因式不止一个.【典例1】阅读下列材料,然后回答问题.====3−1以上这种化简的步骤叫做分母有理化.②学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知a+b=2,ab=-3,求2+2.我们可以把a+b和ab看成是一个整体,令x=a+b,y=ab,则2+2=(+p2−2B=2−2=4+6=10.这样,我们不用求出a,b,就可以得到最后的结果.(1(2)m是正整数,a b22+1823B+22=2019.求m.(3)已知15+2−26−2=1,求15+2+26−2的值.(1)由题目所给出的规律进行计算即可;(2)先求出+=2(2+1),B=1再由22+1823B+22=2019进行变形再求值即可;(3)先得到15+2⋅26−2=20,然后可得(15+2+26−2)2=(15+2−26−2)2+415+2⋅26−2=81,最后由15+2≥0,26−2≥0,求出结果.解:(1)原式=2+++⋯+2=3−1+5−3+7−5+⋯+2019−20172=(2)∵a b∴+==2(2+1),B=1,∵22+1823B+22=2019,∴2(2+2)+1823=2019,∴2+2=98,∴4(2+1)2=100,∴2=±5−1,∵m是正整数,∴m=2.(3)由15+2−26−2=1得出(15+2−26−2)2=1,∴15+2⋅26−2=20,∵(15+2+26−2)2=(15+2−26−2)2+415+2⋅26−2=81,又∵15+2≥0,26−2≥0,∴15+2+26−2=9.1.(2023下·浙江·八年级阶段练习)已知=2−3,=2+3,则代数式2+2B+2+−−4的值为()A B.34C.3−1D【思路点拨】根据已知,得到+=2−3+2+3=22,−=2−3−2−3=−23,整体思想带入求值即可.【解题过程】解:∵=2−3,=2+3,∴+=2−3+2+3=22,−=2−3−2−3=−23,∴2+2B+2+−−4=+2+−−4=222−23−4=8−23−4=4−23=32−23+1=3−12=3−1.故选C.2.(2022下·广西钦州·八年级统考阶段练习)已知+1=7(0<<1),则−)【思路点拨】,故<,将−由0<<1,得0<<1【解题过程】解:∵0<<1,∴0<<1,∴<2=−2+1,+1=7(0<<1),∵(−∴(−∴=-5或−=5,∵<0,∴∴故选B.3.(2023·浙江宁波·校考一模)若2+2=1,则2−4+4+B−3+−3的值为()A.0B.1C.2D.3【思路点拨】先根据2+2=1得出−1≤≤1,−1≤≤1,根据2−4+4+B−3+−3要有意义,得出+ 1−3≥0,根据−3<0得出+1≤0,从而得出J−1,将J−1代入即可求出式子的值.【解题过程】解:∵2+2=1,∴−1≤≤1,−1≤≤1,∵2−4+4+B−3+−3要有意义,∴B−3+−3≥0,整理得:+1−3≥0,∵−3<0,∴+1≤0,∴J−1,∴2−4+4+B−3+−3=−22++1−3=−1−22+−1+1−3=3+0=3,故D正确.故选:D.4.(2023上·四川达州·八年级校考期中)已知xx6﹣22019x5﹣x4+x3﹣22020x2+2x﹣2020的值为()A.0B.1C.2019D.2020【思路点拨】对已知进行变形,再代入所求式子,反复代入即可.【解题过程】解:∵=2020−=2020+2019,∴6−220195−4+3−220202+2−2020,=5−22019−4+2−22020+2−2020,=52020+2019−22019−4+22020+2019−22020+2−2020,=52020−2019−4+22019−2020+2−2020,=42020−2019−1+22019−2020+2−2020,=2020+20192019−2020+2−2020=−+2−2020,=−2020,=2019,故选:C.5.(2023·安徽·校联考模拟预测)设a为3+5−3−5的小数部分,b为6+33−6−33的小数部分,则2b−1的值为()A.6+2−1B.6−2+1C.6−2−1 D.6+2+1【思路点拨】首先分别化简所给的两个二次根式,分别求出a、b对应的小数部分,然后化简、运算、求值,即可解决问题.【解题过程】解:3+5−3−5-=5+15-1=2∴a的小数部分为2-1,6+336−33−=3+33-3=6∴b的小数部分为6-2,∴2b−1=6+2-2-1=6-2+1,故选:B.6.(2022上·湖南益阳·八年级统考期末)设1=1+112+122,2=1+122+132,3=1+132+142,……,=1+ 12+1(r1)2.其中n为正整数,则1+2+3+⋅⋅⋅+2021的值是()A.202020192020B.202020202021C.202120202021D.202120212022【思路点拨】根据题意,先求出=1+1or1),然后把代数式进行化简,再进行计算,即可得到答案.【解题过程】解:∵n为正整数,∴=2+r1or1)=1+1or1);∴1+2+3+⋯+2021=(1+11×2)+(1+12×3)+(1+13×4)+…+(1+12021×2022)=2021+1﹣12+12−13+13−14+⋯+12021−12022=2021+1﹣12022=202120212022.故选:D.7.(2023上·上海金山·八年级校考期中)如果=5−2,则1=.【思路点拨】本题考查了二次根式的化简求值,熟练掌握二次根式的性质、完全平方公式是解题关键.先根据二次根式的分母有理化可得1,从而可得1−>0,再利用完全平方公式化简二次根式,代入计算即可得.【解题过程】解:∵=5−2,∴1=5−2=5−2=5+2,∴1−55−2∴1=1+=1+−=5+2+4=5+6.故答案为:5+6.8.(2022上·湖南长沙·七年级校联考阶段练习)已知==42−3B+42=.【思路点拨】先把和的值分母有理化得到==−=−12,B=1,再利用完全平方公式变形原式得到4(−p2+5B,然后利用整体代入的方法计算.【解题过程】解:∵==∴====∴−=−12,B=1,∴原式=4(−p2+5B=4×(−12)2+5×1=6.故答案为6.9.(2022下·浙江杭州·八年级校考期中)已知=2的值等于.【思路点拨】通过完全平方公式求出+1=2,把待求式的被开方数都用+1的代数式表示,然后再进行计算.【解题过程】=2,解:∵+∴=4,∴+1+2=4∴+12===10.(2023下·广东深圳·九年级深圳中学校考自主招生)已知x,y为正整数,+−7−7+ 7B=7,求+=.【思路点拨】将等式进行因式分解,得到++7B−7=0,求得B=7,即可求解.【解题过程】解:∵+−7−7+7B=7,∴+−7−7+7B−7=0,∴B+−7++7B−7=0,∴+B−7+7B−7=0,∴++7B−7=0,∵++7>0,∴B−7=0,∴B=7,又x,y为正整数,则s=1,7或7,1,从而+=8,故答案为:8.11.(2023下·黑龙江绥化·八年级校考阶段练习)设=3−2,则6+35+113+2+1=.【思路点拨】利用+22=2+4+4和=3−2,推得2+4+1=0,借助该式将多项式进行降幂化简,即可求解.【解题过程】解:∵=3−2,∴+22=3−2+22=3,又∵+22=2+4+4,即2+4+4=3,整理得2+4+1=0,6+35+113+2+1=42+4+1+35+113+2+1−45−4=−5−4+113+2+1=−32+4+1−4+113+2+1+44+3=34+123+2+1=322+4+1+2+1−32=−32+2+1=−32+4+1+2+1+12+3=14+4,将=3−2代入原式可得14×3−2+4=143−24.故答案为:143−24.12.(2022下·湖北武汉·九年级统考自主招生)已知=则代数式23−32−7+2022的值为.【思路点拨】将已知条件=2−3=−1,再将所求代数式变形为23−62+32−7+2022,由此即可求解.【解题过程】解:已知=∴2=3+5,即2−3=5,等式两边同时平方得,2−32=52,整理得,42−12+9=5,即42−12=−4,∴2−3=−1,∵23−32−7+2022=2o2−3p+32−7+20022把2−3=−1代入得,=2×−1+32−7+2022=32−2−7+2022=32−9+2022=3(2−3p+2022把2−3=−1代入得,=3×−1+2022=2019,故答案为:2019.13.(2022上·上海闵行·=3,=13.【思路点拨】首先对第一个式子的分子利用平方差公式分解,第二个式子利用完全平方公式分解,然后约分,合并同类二次根式即可化简,然后代入数值计算即可.【解题过程】解:原式=K=+++=2+2当=3,=13时,原式=23+=23+=14.(2023·北京·九年级专题练习)已知==,求2+2的值.【思路点拨】首先把x和y进行分母有理化,然后将其化简后的结果代入计算即可.【解题过程】解:∵==5−26,===5+26,∴原式=(5+2(5−26)=2620626206=26)(49206)6)(49206)6)(492026)(49206)=245−1006−986+240+245+1006+986+240=970.15.(2023下·山东威海·九年级校考期中)已知+=−8,B=12,求+【思路点拨】根据题意可判断a和b都是负数,然后二次根式的乘、除法公式和合并同类二次根式法则化简并求值即可.【解题过程】解:∵+=−8,B=12,∴a和b均为负数,2+2−2B=40=B+B=2B2B=2+2B=−−==2=−4012=−401212=−40×2312=−203316.(2023上·上海杨浦·七年级校考阶段练习)已知−2B−15=0【思路点拨】讨论:当>0,>0,利用因式分解的方法得到−5+3=0,解得=25,当I0,<0,则−−+5−−−3−=0,解得=9,然后把=25,=9化简求解.【解题过程】解:∵−2B−15=0要有意义,即B≥0,∴>0且>0或I0且<0,当>0且>0时,∵−2B−15=−5+3=0,∴−5=0或+3=0(舍去),解得:=25,把=25=25r5r225K10r=2;当I0且<0时,∵−2B−15=−−+5−−−3−=0,∴−r5−=0(舍去)或−−3−=0,解得:=9,把=9==9K3r29r6r=12.17.(2023上·四川成都·八年级成都市三原外国语学校校考阶段练习)已知==(2【思路点拨】(1)先将x、y进行分母有理化,再代入式子计算可得;(2)先将式子化简再代入x、y进行计算即可.【解题过程】(1)∵=10−3=10+3,=10−3,=∴+=210,−=6,∴2+2B+2=(+p2=(210)2=40.(2)∵=10+3,=10−3,∴1∴o−2)=−2o−2)−+1o+1)=1−1=1010=10−3−10−3=−6.18.(2023上·河北衡水·八年级校联考阶段练习)已知=2−3,=2+3.(1)求+和B的值;(2)求2+2−3B的值;(3)若的小数部分是,的整数部分是,求B−B的值.【思路点拨】本题考查了二次根式的混合运算、利用完全平方公式进行计算、无理数的估算,熟练掌握以上知识点并灵活运用是解此题的关键.(1)代入=2−3,=2+3即可求出+和B的值;(2)将原式变形为+2−5B,代入数值进行计算即可;(3)先估算出1<3<2,从而得出=2−3,=3,再代入进行计算即可得出答案.【解题过程】(1)解:∵=2−3,=2+3,∴+=2−3+2+3=4,B=2−32+3=4−3=1;(2)解:由(1)得:+=4,B=1,∴2+2−3B=+2−5B=42−5×1=11(3)解:∵1<3<4,∴1<3<4,即1<3<2,∴−2<−3<−1,∴0<2−3<1,∵的小数部分是,∴=2−3,∵3<2+3<4,的整数部分是,∴=3,∴B−B=2−32−3−32+3=4−43+3−6−33=1−73.19.(2023下·广东江门·八年级统考期中)有这样一类题目:将±2化简,如果你能找到两个数m、n,使2+2=且B =,±2将变成2+2±2B ,即变成(±p 2,从而使±2得以化简.(1)例如,∵5+26=3+2+26=(3)2+(2)2+22×3=(3+2)2,∴5+26=(3+2)2=______,请完成填空.(2)仿照上面的例子,请化简4−23;(3)利用上面的方法,设=6+42,=3−5,求A +B 的值.【思路点拨】(1)根据二次根式的性质:2==o >0)0(=0)−o <0),即可得出相应结果.(2)根据(1)中“5+26=3+2+26=(3)2+(2)2+22×3=(3+2)2”,将代数式转化为完全平方公式的结构形式,再根据二次根式的性质化简求值,即可得出结果.(3)根据题意,首先把A 式和B 式分别转化为完全平方公式的结构形式,再根据二次根式的性质把A 式和B 式的结果分别算出,最后把A 式和B 式再代入A +B 中,求出A +B 的值.【解题过程】(1)∵5+26=2+3+26=22+32+2×2×3=2+32∴5+26=(3+2)2=3+2故答案为:3+2(2)∵4−23=3+1−23=32+1−23=3−12∴4−23=(3−1)2=3−1.(3)∵=6+42=4+2+42=42+22+2×4×2=(2+2)2∴=6+42=2+2∵=3−5=∴=3−5====∴把A 式和B 式的值代入A +B 中,得:+=2+2=2+2220.(2023下·广西钦州·八年级校考阶段练习)我们将+、−称为一对“对偶式”,因为+−=(p2−(p2=−,所以构造“和−====3+22.像这中的“”样,通过分子,分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化根据以上材料,理解并运用材料提供的方法,解答以下问题:“>”、“<”或“=”填空);(1(2)已知==,求K2rB2的值;+…+(3【思路点拨】(1)先分母有理化,然后根据作差法,比较大小即可求解;(2)先求得−s B的值,然后代入即可求解;(3)将每一项分母有理化,然后就根据二次根式的加减进行计算即可求解.【解题过程】(17−2=7−2===∵7>6,2>3−137−6+2−3>0,>故答案为:>.(2)∵==5+45+4=9+45,==5+2=5−45+4=9−45,∴+=9+45+9−45=18,−=9+45+−9+45=85,B=9+45945−80=1,∴K 2rB2+⋯+(3=3)2(53−35)35)(5−3979799⋯+2(99979799)(99979799)(9997−97=1−33+33−55+55−77+⋯+9797−9999=1−9999=1−。

16.1 二次根式(第二课时)

16.1 二次根式(第二课时)

2
2
2
2
2
0.1 0.1
2
2 2 3 3
0
2
0
观察上述等式的两边,你能得到什么启示?
二次根式的性质3:
a a
2
2、计算:
(a≥0)
2 ( 2) 3
2
(1) 0.8
4 ( 3) 5
2
2
(4) 7
2
3、计算:
1
人教版八年级上册
形如 a (a 0) 的式子叫做二次根式.
二次根式的性质1:
非负数的算术平方根仍然是非 负数。
a≥0,
a ≥0 (双重非负性)
例1:已知
a 2 3b 9 (4 c) 0 ,
2
求2a-b+c的值。
解:∵ a+2 ≥0、|3b-9|≥0、(4-c) 2≥0, 又∵ a+2 +|3b-9|+(4-c) 2=0, ∴a+2=0 , 3b-9=0 ,4-c=0 。 ∴a= -2 , b= 3 ,c= 4。 ∴2a-b+c=2×(-2) -3+4 = -3。
2
a≥0,
a ≥0
(a≥0) (a≥0)
(双重非负性)
a a
2
1 2
2
2
2 1
2 x 1
2
x 1
2
3
x 2 xy y y x
yx
4、数a在数轴上的位置如图,则
a a _____ .
2
a
-2 -1 0 1
5、实数p在数轴上的位置如图所示,化简
(1 p)

16.1.1二次根式的概念

16.1.1二次根式的概念


2
归纳
一般地, (a≥0) ( a) a
2
2 22 ___,
5
2
5 ___,
2 | 2 | ___; 5 | 5 | ___; 0 | 0 | ___.
0 02 ___,
a a
2
请比较左右两边的式子,议一议: a2 与| a | 有什么关 系?当 a 0 时, a 2 ____; a . a ;当a 0 时, a 2 ____
3
想一想: 10 、 -5 、 8 5 3 、 (-2)
2
2
a (a<0﹚、
a +0.1 、 -a (a<0﹚是不是二次根式?
例 1:要使 x-1 有意义,字母 x 的取值必须满足 什么条件?
解:由 x-1≥0,得 x≥1。
问:将式子 x-1 改为 1-x ,则字母 x 的取值必须 满足什么条件呢?
x≤1
y
想一想: 已知:y= x-2 + 2-x +3,求 x 的值。
解:由 x-2≥0 且 2-x≥0, 得 x≥2 且 x≤2 ∴x=2。 ∴y= 0 + 0 +3=3 ∴x =2 =8
y 3
x-2 例 2:要使 有意义,字母 x 的取值必须满足 x-3 什么条件?
解:由 x-2≥0,且 x-3≠0, 得 x ≥2 且 x ≠3 。
2

4 4 4 _________
2

x 1 ( x 1)

2
x 1
( a ) 与 a 有区别吗 ?
2
2
1:从运算顺序来看,
2
a 先开方,后平方 a a≥0

2020届人教版八年级数学下册 16.1二次根式(2)同步练习(含解析)

2020届人教版八年级数学下册 16.1二次根式(2)同步练习(含解析)

16.1 二次根式(2)同步练习姓名:__________班级:__________学号:__________本节应掌握和应用的知识点 1.二次根式的性质及应用 (1))2=a( a≥0 ),反过来可得到a =)2(a≥0).(2)=|a|= ,2.用基本的运算符号将数或表示数的字母连接起来的式子,叫做代数式 基础知识和能力拓展训练 一、选择题 1()23-的结果是()A.9B.3C.-3D.±3 238() 2436322316( ) A.8B.﹣8C.﹣4D.44.下列运算正确的是( )163-8﹣2(-2)﹣19+4=3+125.下列式子正确的是()2(9)9-=-255=±2(1)1-= D.2(2)2-=-6.化简(1-x 11x - ) 1x --1x -1x -1x -7.在数轴上实数a ,b 的位置如上图所示,化简|a+b|+2a-b ()的结果是( )A.﹣2a ﹣bB.﹣2a+bC.﹣2bD.﹣2a8.若5n +是整数,则正整数n 的最小值是( ) A.2B.3C.4D.59.实数32-的绝对值是( ) A.32- B.23- C.32+ D.1 10.若()424A a =+,则A =()A.24a + B.22a + C.()222a + D.()224a + 二、填空题 11.若a <1,化简()211a --=_________.12.已知xy <0,化简二次根式x 2yx -的正确结果为 . 13.能够说明“2x =x 不成立”的x 的值是__(写出一个即可). 14.当__________x 时,()21x -是二次根式.15.化简:a= .16.()22130,a b c a b c ++-+-=++=则_______________。

三、解答题 17.计算:18.阅读下面的文字后,回答问题.小军和小红在解答题目“先化简,再求值:a +,其中a =9”时给出了不同的解答,你知道小军和小红的解答谁的是错误的吗?错在哪里?19.已知实数在数轴上如图,化简()22a ab ac b c -++-+-的值20.(1)当15a =,求211a a a ⎛⎫+- ⎪⎝⎭的值.(2)当0<x<3时,化简()()223211x x x --+++.21.计算:= ,= ,= ,= ,= ,(1)根据计算结果,回答:一定等于a 吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算:.22.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2=(1+)2,善于思考的小明进行了以下探索: 设a +b=(m +n)2(其中a 、b 、m 、n 均为整数),则有a +b=m 2+2n 2+2mn.∴a =m 2+2n 2,b =2mn .这样小明就找到了一种把部分a +b 的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题: (1)当a 、b 、m 、n 均为正整数时,若a +b =(m +n)2,用含m 、n 的式子分别表示a 、b ,得a =________,b =________; (2)试着把7+4化成一个完全平方式.(3)请化简:.23.选取二次三项式()20ax bx c a ++≠中的两项,配成完全平方式的过程叫配方.例如:①选取二次项和一次项配方:()224925x x x -+=-+;②选取二次项和常数项配方:()224932x x x x -+=-+,或()2249310x x x x -+=+-③选取一次项和常数项配方:2222549339x x x x ⎛⎫-+=-+ ⎪⎝⎭根据上述材料,解决下面问题:(1)写出2616x x ++的两种不同形式的配方;(2)已知2245-4-840x y xy y ++=,求参考答案 1.B3==,故选B .2.C=故选:C.点睛:此题主要考查了二次根式的化简,解题关键是明确最简二次根式的条件,被开方数中不含有开方开不尽的数,分母中不含有二次根号,根号中不含有分母. 3.D4=,故选D. 4.B【解析】试题解析:=4,故原选项错误;﹣2,故该选项正确;,故原选项错误;,故原选项错误. 故选B. 5.C【解析】9=,故A 选项错误;5=,故B 选项错误;1=,正确;D.2(2=,故D 选项错误,故选C. 6.B【解析】解:(1﹣x B . 点睛:此题主要考查了二次根式的性质与化简,正确得出二次根式整体的符号是解题关键.7.D【解析】如图所示:可得,a+b<0,a −b<0, 故原式=−(a+b)−(a −b)=−2a. 故选:D.点睛:此题考查了二次根式的性质与化简以及实数与数轴,正确得出各项符号是解题的关键. 8.Cn 为正整数,∴n ≥0,∴n+5≥5,5+n 为9,16等等,即n 的值为4,11等等,∴正整数n 的最小值是4,故选C .点睛:本题考查了二次根式的定义和性质,注意:n 是正整数可以得出n ≥0,n +5是一个完全平方数. 9.B【解析】2|2=选B. 10.A【解析】()224A a ==+24a ==+.故选A .11.-a【解析】∵a <1, ∴a -1<0,1=-(a -1)-1=-a +1-1=-a12.【解析】∵xy <0, ∴y <0,x >0,∴原式.. 13.-1x =,∴x x =不成立,则x ≤0.故答案不唯一,只要x ≤0即可,如:-1.故答案为:答案不唯一,只要x ≤0即可,如:-1. 14.为任意实数【解析】解:﹙1-x ﹚2是恒大于等于0的,不论x 的取值,都恒大于等于0,所以x 为任意实数.故答案为:为任意实数. 15.-a -【解析】试题解析:由题意可得:0.a <211.a a a a a ⎛⎫∴-=-⨯-=-- ⎪⎝⎭故答案为:.a -- 16.2【解析】试题分析:几个非负数的和为零,则每一个非负数都为零.根据题意可得:a+2=0,b-1=0,3-c=0,解得:a=-2,b=1,c=3,则a+b+c=-2+1+3=2.点睛:本题主要考查的就是非负数的性质的应用,几个非负数的和为零,则每一个非负数都是零.在初中阶段我们所学的运算结果为非负数有以下几种:①、平方;②、绝对值;③、算术平方根.非负数性质的应用我们也经常会运用在判定三角形形状的题目中,我们都会采用完全平方公式进行配方转化为非负数的和的形式,然后进行解答.17.(1)解:原式=4-3+3×-6=-4(2)解:原式=×5-×-4=118. 解:小军的解答错误. ∵a =9,1-a <0, ∴=a -119.2c-a.【解析】试题分析:由图可知:0b a c <<<,从而可得:000a b a c b c +<-<-<,,,然后根据“绝对值的意义”化简即可. 试题解析:∵从数轴可知:0b a c <<<,∴000a b a c b c +<-<-<,,, ∴()22a ab ac b c -++-+-=()()()a a b a c b c ⎡⎤⎡⎤⎡⎤---++--+--⎣⎦⎣⎦⎣⎦ =a a b c a c b -+++-+- =2c a -.点睛:解这类时,首先要从数轴上获取所涉及的数的大小和正、负信息;若绝对值符号里(或被开方数中)涉及到异号两数和的还要从数轴上获取两数绝对值的大小关系;然后根据所获取的信息确定好绝对值符号里各个式子的符号,再根据绝对值的代数意义去掉绝对值符号化简. 20.(1)495; (2)-2x+3.【解析】试题分析:(1)先根据二次根式的性质进行化简,然后再代入求值即可; (2)根据二次根式的性质得出|x-3|-|2x+1|+|x+1|,去掉绝对值符号,合并即可. 试题解析:(1)当15a =时,11454055a a -=-=>. 所以21111112a a a a a a a a a a a ⎛⎫+-=+-=+-=- ⎪⎝⎭.当15a =时,原式=1449109555-==. (2)当0<x<3时,x-3<0,2x+1>0,x+1>0,()()223211x x x --+++=|x-3|-|2x+1|+|x+1| =-(x-3)-(2x+1)+(x+1) =-2x+3.21.3;0.7;0;6;,(1)|a|(2)-3.14 【解析】原式各项计算得到结果;(1)不一定等于a ,=|a|;(2)原式利用得出规律计算即可得到结果.解:=3,=0.7,=0,=6,=,(1)=|a|;(2)原式=|3.14-π|=π-3.14.故答案为:3;0.7;0;6;.“点睛”此题考查了算术平方根,熟练掌握二次根式的性质是解本题的关键. 22.(1)m 2+3n 2;2mn ;(2)(2+)2;(3)3+【解析】试题分析:(1)利用已知直接去括号进而得出a ,b 的值; (2)直接利用完全平方公式,变形得出答案; (3)直接利用完全平方公式,变形化简即可. 试题解析: (1)∵a+b =(m+n)2,∴a+b=(m+n)2=m 2+3n 2+2mn ,∴a=m 2+3n 2,b=2mn ; 故答案为:m 2+3n 2;2mn ; (2)7+4=(2+)2;故答案为:(2+)2; (3)∵12+6=(3+)2,∴==3+.【点睛】此题主要考查了二次根式的性质与化简,正确利用完全平方公式化简是解题关键.23.(1)23)7x ++((22【解析】试题分析:(1)根据配方法的步骤根据二次项系数为1,常数项是一次项系数的一半的平方进行配方和二次项和常数项在一起进行配方即可.(2)根据配方法的步骤把2245-4-840x y xy y ++=变形为()222)410x y y -+-=(,再根据2x-y=0,y-1=0,求出x ,y 化简后代入求值即可. (1)答案不唯一.如23)7x ++(,24)2x x +-(,()2414x x -+,22374416x x ⎛⎫++ ⎪⎝⎭. (2)∵2245-4-840x y xy y ++=,∴()222)410x y y -+-=(.∴1,12x y ==.∴. 点睛:本题考查了配方法的应用,根据配方法的步骤和完全平方公式:a 2±2ab+b 2=(a±b)2进行配方是解题的关键,是一道基础题.。

人教版八年级下册16.1.1《二次根式》二次根式的概念课件

人教版八年级下册16.1.1《二次根式》二次根式的概念课件

m m2
2 4
有意义,求m的取值范围.
解:由题意得m-2≥0且m2-4≠0,
解得m≥2且m≠-2,m≠2,
∴m>2.
(2)无论x取任何实数,代数式 x2 6xm都有意 义,求m的取值范围.
解:由题意得x2+6x+m≥0, 即(x+3)2+m-9≥0. ∵(x+3)2≥0, ∴m-9≥0,即m≥9.
二5的次算根术式平的方被根开是方_数__非_.负
2.(1)若式子 在实数范围内有意义,则x的取值 二一((12))次般若(3根 地)二(5式,次)(的如7根)实果均式质一不是个是表数二示的次一平有根个方意式非等义. 负于,数a求,(m那的或么取式x 这值)个范1的数围算叫.术做平a方的根平.方根.
即求(二x+次3根)2式+m中-字9≥母0.的取值范围的基本依据2:
()
一定是二次根式的有
()
解:由题意得x2+6x+m≥0,
3个
B.
解:∵被开方数需大于或等于零,
16.1.1 二次根式的概念 4 已知y=
,求3x+2y的算术平方根.
解:∵被开方数需大于或等于零,
一般地,我们把形如
的式子叫做二次根式.
问题2 这些式子有什么共同特征?
注意:a可以是数,也可以是式.
x>2 B.
一定是二次根式的有 (本2)节无课论主x取要任学何习实了数二,次代根数式式的定义及被开方数都的有取意值义范,围求.m的取值范围.
(若2)式无子论为x取分任式何,实应数同,时代考数虑式分母不为零. 都有意义,求m的取值范围.
一(2)个无正论数x取有任两何个实平数方,根代;数式
都有意义,求m的取值范围.

16.1二次根式

16.1二次根式

(3)
5x 在实数范围内有意义 ,
则-5x≥0,∴x≤0. 1 (4) 在实数范围内有意义 , 2 x
则2-x>0,∴x<2.
1 x 解: (5) 在实数范围内有意义 , x 则1-x≥0,且x≠0,∴x≤1,且x≠0.
(6)

x 1 在实数范围内有意义,
x 1 0

x 1 总成立.
拓展提高
例3.已知, x y
2 2
x y 求 的值. x y
yx
xy3 0
解:∵ x y
yx xy3 0
x y (x y) 2xy ∴ = x y 3
2 2
2
∴ x-y≥0,y-x≥0,x+y-3≥0 ∴ x-y=0,x+y-3=0 ∴ x=y,x+y=3 ∴ x=y=1.5
=
0 2 1.5 1.5 3
=1.5
方法点拨
1.非负数的几种类型:绝对值,算术平方根,平方数. 2.化简求值的几种类型:已知字母的值或通过已知 条件求字母的值,已知式子的值或通过已知条件求 出相关式子的值再进行代入或整体代入.
拓展提高
例4.已知,a,b为一等腰三角形的两边的长,且满足等 式 2a 6 + 3 3 a =b-7.求等腰三角形的周长. 解:∵ 2a 6 + 3 3 a =b-7 ∴ 2a-6≥0,3-a≥0 ∴ a≥3且a≤3 ∴ a=3,b=7 ∴ ①三边为3,3,7(舍去)构不成三角形. ②三边为7,7,3,此时三角形的周长为17. ∴等腰三角形的周长为17.
16.1二次根式
学习目标
1.理解并掌握二次根式的概念. 2.掌握二次根式中被开方数的取值范围和二 次根式的取值范围.

《16.1 二次根式(第1课时)》教学设计

《16.1 二次根式(第1课时)》教学设计

《16.1 二次根式(第1课时)》教学设计一、内容和内容解析1.内容二次根式的概念.2.内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念.它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.本节课的教学重点是:了解二次根式的概念;二、目标和目标解析1.教学目标(1)体会研究二次根式是实际的需要.(2)了解二次根式的概念.2. 教学目标解析(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数.教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断.本节课的教学难点为:理解二次根式的双重非负性.四、教学过程设计1.创设情境,提出问题问题1你能用带有根号的的式子填空吗?(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.(2)一个长方形围栏,长是宽的2 倍,面积为130m?,则它的宽为______m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t?,如果用含有h的式子表示t,则t= _____.师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价.【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.问题2 上面得到的式子,,分别表示什么意义?它们有什么共同特征?师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.【设计意图】为概括二次根式的概念作铺垫.2.抽象概括,形成概念问题3你能用一个式子表示一个非负数的算术平方根吗?师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.追问:在二次根式的概念中,为什么要强调“a≥0”?师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.3.辨析概念,应用巩固例1当时怎样的实数时,在实数范围内有意义?师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.例2当是怎样的实数时,在实数范围内有意义?呢?师生活动:先让学生独立思考,再追问.【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.问题4 你能比较与0的大小吗?师生活动:通过分和这两种情况的讨论,比较与0的大小,引导学生得出≥0的结论,强化学生对二次根式本身为非负数的理解,【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力.4.综合运用,巩固提高练习1 完成教科书第3页的练习.练习2 当x是什么实数时,下列各式有意义.(1);(2);(3);(4).【设计意图】辨析二次根式的概念,确定二次根式有意义的条件.【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维.5.总结反思教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.(1)本节课你学到了哪一类新的式子?(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?(3)二次根式与算术平方根有什么关系?师生活动:教师引导,学生小结.【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法.6.布置作业:教科书习题16.1第1,3,5,7,10题.五、目标检测设计1.下列各式中,一定是二次根式的是()A.B.C.D.【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数.2.当时,二次根式无意义.【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题.3.当时,二次根式有最小值,其最小值是.【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用.4.对于,小红根据被开方数是非负数,得出的取值范围是≥.小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出的取值范围.【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑.。

16.1二次根式定义_取值范围

16.1二次根式定义_取值范围

当x为怎样的实数时,下列各式 有意义? x≥3 ∴3≤x≤6 1 x 3 6 x x≤6 x≥1 ∴x=1 2 1 x x 1 x≤1
3
x 2
2
4
x 1
x为任何实数.
x为任何实数.
初步应用 巩固知识
变式 a 取何值时,下列根式有意义?
2 (1) a 2 - 2a+1 ;(2) . (a-1 )
3
s
65
h 5
表示一些正数的算术平方根.
形如 a (a 0) 的式子叫做二次根式.
a叫被开方数 ,“ ” 称二次根号
请你凭着自己已有的知识,说 说对二次根式 a 的认识!
?
形如 a (a 0)的式子叫做二次根式.
1.表示a的算术平方根 2. a可以是数,也可以是式. 3. 形式上含有二次根号
答案:(1) a为任何实数; (2) a =1.
总结:被开方数不小于零.
课堂小结
(1)本节课你学到了哪一类新的式子? 一般地,我们把形如 a(a≥0)的式子叫做二次 根式,“ ”称为二次根号. (2)二次根式有意义的条件是什么?二次根式的值的 范围是什么? ≥ 0. 双重非负性 a 中的a≥0; a (3)二次根式与算术平方根有什么关系? 二次根式都是非负数的算术平方根,带有根号的算 术平方根是二次根式.
回顾总结 反思提升
我们以前学习过的整式、分式都能像数一样进行 运算,你认为对于二次根式应该进一步研究哪些问题?
课后作业
作业本A:P5页第1,3,7(1)(2)题. 《新课程》P1-2
a ≥0
4. a≥0,
( 双重非负性)
5.既可表示开方运算,也可表示运算的结果.
说一说:

16.1二次根式性质(教案)

16.1二次根式性质(教案)
4.培养学生的数学建模能力:通过解决实际生活中的问题,让学生学会运用二次根式建立数学模型,提高解决实际问题的能力。
5.增强学生的数学应用意识:将二次根式知识与实际应用相结合,使学生体会数学在生活中的广泛应用和价值。
本节课将围绕这些核心素养目标展开教学,帮助学生全面提升数学素养。
三、教学难点与重点
1.教学重点
-针对乘除法则的难点,设计对比练习题,让学生区分√a * √b和√(a * b)的区别,以及何时使用除法法则。
-对于化简复杂二次根式,举例说明如何将√(75)化简为5√3,强调寻找平方因子的方法。
-在实际问题中,如计算正方形的对角线长度,指导学生如何将问题转化为二次根式的计算,突破建模难点。
四、教学流程
本节课的教学重点主要包括以下几点:
(1)理解二次根式的定义:学生需掌握二次根式的概念,即形如√a(a≥0)的数。
(2)掌握二次根式的性质:包括非负性、平方等于被开方数、乘法法则和除法法则。
(3)熟练运用二次根式的化简与运算:学生需要学会将二次根式进行化简,并进行加减乘除运算。
(4)实际应用:学生需要学会将二次根式应用于解决实际问题。
16.1二次根式性质(教案)
一、教学内容
本节课选自教材第十六章第一节,主要围绕“16.1二次根式性质”展开。内容包括:
1.二次根式的定义:形如√a(a≥0)的数称为二次根式。
2.二次根式的性质:
(1)二次根式具有非负性,即√a≥0。
(2)二次根式的平方等于被开方数,即(√a)^2 = a。
(3)二次根式的乘法法则:√a * √b = √(a * b)。
举例:
-重点强调二次根式乘法法则:√a * √b = √(a * b),通过具体例子解释说明。

人教版16.1二次根式习题精选(含答案解析)

人教版16.1二次根式习题精选(含答案解析)

2014年3月X2004GX2004G的初中数学组卷2014年3月x2004gx2004g的初中数学组卷一.选择题(共13小题)1.(1997•西宁)下列各式中、、、、、,二次根式的个数是()2.若是正整数,则整数n的最大值为()4.如果是二次根式,则有()5.下列各式中①,②,③,④,⑤,⑥,一定是二次根式的有()6.(2011•烟台)如果,则()>.C D.8.(2010•广州)若a<1,化简﹣1=()9.(2009•济宁)已知a为实数,那么等于()10.(2008•张家界)当1<x<3时,的值为()11.(2008•济宁)若=1﹣a,则a的取值范围是()12.(1998•丽水)已知:1<x<3,则=()13.已知1<x<2,则=()二.填空题(共6小题)14.﹣_________二次根式.(填“是”或“不是”)15.(2013•绥化)函数y=中自变量x的取值范围是_________.16.(2013•盘锦)若式子有意义,则x的取值范围是_________.17.(2012•天水)若有意义,则x的取值范围为_________.18.(2011•辽阳)函数y=的自变量x的取值范围是_________.19.(2010•大兴安岭)函数y=中,自变量x的取值范围是_________.三.解答题(共7小题)20.已知,求代数式a2+b的立方根.21.若,则b a的值为_________.22.设,求2x+4y的值.23.已知a,b为实数,=b+4,求3a﹣4b的值.24.化简:.25.实数a、b在数轴上的位置如图所示,化简:﹣+|b﹣2|.26.△ABC三边分别为a、b、c,化简.2014年3月x2004gx2004g的初中数学组卷参考答案与试题解析一.选择题(共13小题)1.(1997•西宁)下列各式中、、、、、,二次根式的个数是()、、2.若是正整数,则整数n的最大值为()是整数,且=,则﹣==是正整数;.除法法则.解题关键是分解成一个完全平方数和一个代数式==2是整数,且=,.除法法则.解题关键是分解成一个完全平方数和一个代数式4.如果是二次根式,则有()是二次根式,5.下列各式中①,②,③,④,⑤,⑥,一定是二次根式的有()6.(2011•烟台)如果,则()>..C D.=|a|8.(2010•广州)若a<1,化简﹣1=()根据公式可知:9.(2009•济宁)已知a为实数,那么等于()10.(2008•张家界)当1<x<3时,的值为()=11.(2008•济宁)若=1﹣a,则a的取值范围是()=112.(1998•丽水)已知:1<x<3,则=()13.已知1<x<2,则=())掌握二次根式的性质:二.填空题(共6小题)14.﹣是二次根式.(填“是”或“不是”)(解:直接利用二次根式的定义得出:﹣15.(2013•绥化)函数y=中自变量x的取值范围是x>3.16.(2013•盘锦)若式子有意义,则x的取值范围是x≥﹣1且x≠0.概念:式子17.(2012•天水)若有意义,则x的取值范围为x≤且x≠﹣1.≤18.(2011•辽阳)函数y=的自变量x的取值范围是x≥3.19.(2010•大兴安岭)函数y=中,自变量x的取值范围是x≥1.,三.解答题(共7小题)20.已知,求代数式a2+b的立方根.、有意义,.21.若,则b a的值为1或49.22.设,求2x+4y的值.,=(23.已知a,b为实数,=b+4,求3a﹣4b的值.,解得24.化简:.+=|a|25.实数a、b在数轴上的位置如图所示,化简:﹣+|b﹣2|.,利用═26.△ABC三边分别为a、b、c,化简.。

§16.1(1)二次根式的概念和性质

§16.1(1)二次根式的概念和性质

16.1(1)二次根式的概念和性质【教学目标】1、理解二次根式的概念,知道二次根式与数的开平方运算之间的联系,体会二次根式是数、代数式及其运算的发展;2.理解a 有意义的条件,理解a a =2,掌握二次根式的性质;3.会根据二次根式有意义的条件确定二次根式里被开方数中字母的取值范围.【教学重点和难点】 理解a 有意义的条件,掌握a a =2,并能运用其熟练计算.由引出并理解二次根式有意义所必须满足的条件. 通过练习使学生掌握如何求二次根式中字母的取值范围. 回顾数的开方中所学知识,归纳得出二次根式的性质. 最后通过习题进一步巩固和运用二次根式的性质.【教学过程】一、复习引入1、提问:在实数一章中,我们学习了开平方运算,4的的平方根可表示为什么?2、正数a 的平方根可表示为什么?a ±3、0的平方根是什么?4、负数呢?5、2a 和2)(a 中a 的取值范围是什么?二、学习新知(一)二次根式的概念a (a 0≥)中的a 在以前的学习中是一个数,现在将它的取值范围扩大到代数式,于是得到: 代数式a (a 0≥)叫做二次根式,a 是被开方数,读法与原来一样. 举例说明:2、32、12+a 、)04(422≥--acb ac b 、)2(21>-x x 等都是二次根式.在实数范围内,负数没有平方根,所以象5-,)0(<b b 这样的式子没有意义,二次根式有意义的条件是被开方数是非负数.2、例题例1、设x 是实数,当x 满足什么条件时,下列各式有意义?1)12-x ;2)x -2;3)x 1;4)21x + 解:(1)由012≥-x ,得21≥x ∴当21≥x 时,12-x 有意义 (2)由02≥-x ,得2≤x∴当2≤x 时,x -2有意义(3)由01≥x以及x ≠0,可知x 与1同号,得0>x ∴当0>x 时,x1有意义(4)因为不论x 是什么实数,都有02≥x ,可知012>+x .所以,当x 是任何实数时,21x +都有意义补充练习:当x 满足什么条件时,下列各式有意义? 1)1-x ;2)x 2-;3)32+x ;4)21-x 如果题目中的“有意义”改成“无意义”呢?(二)二次根式的性质1、由数的开方引出,二次根式的两个性质:(1))0(2≥=a a a ;(2))0()(2≥=a a a2、填表,书P3.填表后,由学生归纳出当a 为任意实数时,2a 与a 的关系.即⎪⎩⎪⎨⎧<-=>==)0()0(0)0(2a a a a a a a 3、性质的应用例2、求下列二次根式的值: (1)2)3(π-; (2)122+-x x ,其中3-=x .解:(1)2)3(π-=|3-π|∵03<-π∴|3-π|=-(3-π)=π-3 ∴2)3(π-=π-3 (2)122+-x x =2)1(-x =|x -1| 当3-=x 时,原式=|-3-1|∵-3-1<0,∴|-3-1|=-(-3-1)=3+1 ∴当3-=x 时,122+-x x =3+1补充练习:求下列二次根式的值: 1) 2)3(-; 2) 2)32(-; 3) 962+-a a ,其中22+=a(三)课内练习书P4/1、2、3在做练习时,先让学生看清是否需要化简其中的第3题有一定难度,老师可以适当引导三、小结1.要使二次根式有意义,被开方数必须为非负数,同时还要特别注意当分母含有字母时分母要不等于0.2.能根据2a 与a 的关系求出被开方数是完全平方数的二次根式的值,在计算时可先将其整理,尤其注意符号.四、作业练习册习题16.1(1)。

16.1二次根式第1课时爱的教育上课用

16.1二次根式第1课时爱的教育上课用

\
a - b + 6 = 0,a + b - 8 = 0
a- b = - 6 a+ b = 8 a + b- 8 = 0 a=1 b=7
∴ a - b+ 6 = 0
在实数范围内分解因式:4 x - 3
解: ∴ ∵ 3
2
2
3
2
2
4 x 3 (2 x) 3

2
(2 x 3 )(2 x 3 )
\ a=
2 2
2,b = 2
\ a + b - 2b + 1 =
( 2) + 2 2
2
2? 2 1
= 2 + 4- 4 + 1 = 3
10. 已知 a - b + 6与 a + b - 8互为相 反数,求 a、b的值。 解:
a- b+ 6 0,a + b - 8
0
பைடு நூலகம்
而 a - b + 6+ a + b - 8 = 0

a
2
先平方,后开方
2.从取值范围来看 , 2 a≥0 a

a
2
a取任何实数
3.从运算结果来看:
a
a
2
2
2
=a
a (a≥ 0) -a (a<0)
= ∣ a∣ =
m4 思考:若 ( m 4 ) 4 m , 则 m 的取值范围是 _________
3, x + 1,
144,
7. 三角形三边长分别是a、b、c,且 a > c , 那么 c - a - (a + c - b)2等于( D )。

《16.1 二次根式》教学设计案例(第2课时)

《16.1 二次根式》教学设计案例(第2课时)

《16.1 二次根式》教学设计案例(第2课时)一、内容和内容解析1.内容二次根式的性质。

2.内容解析本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过“探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.二、目标和目标解析1.教学目标(1)经历探索二次根式的性质的过程,并理解其意义;(2)会运用二次根式的性质进行二次根式的化简;(3)了解代数式的概念.2.目标解析(1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;(2)学生能灵活运用二次根式的性质进行二次根式的化简;(3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.三、教学问题诊断分析二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.本节课的教学难点为:二次根式性质的灵活运用.四、教学过程设计1.探究性质1问题1你能解释下列式子的含义吗?,,,.师生活动:教师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.问题2根据算术平方根的意义填空,并说出得到结论的依据.;;;.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.问题3从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:(≥0).【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.例2 计算(1);(2).师生活动:学生独立完成,集体订正.【设计意图】巩固二次根式的性质1,学会灵活运用.2.探究性质2问题4你能解释下列式子的含义吗?,,,.师生活动:教师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.问题5根据算术平方根的意义填空,并说出得到结论的依据.= ,= ,= ,= .师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.问题6从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:(≥0)【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.例3 计算(1);(2).师生活动:学生独立完成,集体订正.【设计意图】巩固二次根式的性质2,学会灵活运用.3.归纳代数式的概念问题7 回顾我们学过的式子,如,,,,,,,(≥0),这些式子有哪些共同特征?师生活动:学生概括式子的共同特征,得出代数式的概念.【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力. 4.综合运用(1)算一算:;;;.【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.(2)想一想:中,的取值范围是什么?当≥0时,等于多少?当时,又等于多少?【设计意图】通过此问题的设计,加深学生对的理解,开阔学生的视野,训练学生的思维. (3)谈一谈你对与的认识.【设计意图】加深学生对二次根式性质的理解.5.总结反思(1)你知道了二次根式的哪些性质?(2)运用二次根式性质进行化简需要注意什么?(3)请谈谈发现二次根式性质的思考过程?(4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.6.布置作业:教科书习题16.1第2,4题.五、目标检测设计1.;;.【设计意图】考查对二次根式性质的理解.2.下列运算正确的是()A. B.C.D. 【设计意图】考查学生运用二次根式的性质进行化简的能力.3.若,则的取值范围是.【设计意图】考查学生对一个数非负数的算术平方根的理解.4.计算:.【设计意图】考查二次根式性质的灵活运用.。

16.1 二次根式(第二课时 二次根式的性质)(练习)(解析版)2021学年八年级数学下册(人教版)

16.1 二次根式(第二课时 二次根式的性质)(练习)(解析版)2021学年八年级数学下册(人教版)

第十六章 二次根式16.1 二次根式(第二课时 二次根式的性质)精选练习答案一、单选题(共10小题)1.(2020·江苏淮安市·9﹣m ,则实数m 的取值范围是( ) A .m >9B .m <9C .m ≥9D .m ≤9 【答案】D【分析】根据算数平方根的定义可知9-m 是非负数,所以可得9﹣m≥0,求解不等式即可得出结果.【详解】根据二次根式的性质以及绝对值的意义,列不等式求解即可.|9﹣m |=9﹣m , ∴9﹣m ≥0,∴m ≤9,故选:D .【点睛】此题考查二次根式的性质,注意被开方数和开方的结果都是非负数是关键. 2.(2020·陕西西安市八年级期中)已知a 、b 、c 是三角形的三边长,如果满足()26100a c --=,则三角形的形状是( )A .底与腰不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形【答案】D【分析】根据非负性求解出a ,b ,c 的具体值,再由勾股定理的逆定理判断即可.【详解】∵()260a -≥0≥,100c -≥,又∵()26100a c -+-=,∴60a -=,80b -=,100c -=,解得:6a =,8b =,10c =,∵22268366410010,∴是直角三角形.故选:D .【点睛】本题考查绝对值,二次根式,完全平方式的非负性,及勾股定理的逆定理,熟练掌握相关代数式的非负性是解题关键.3.(2020·金华市七年级期中)已知非零实数a ,b 满足212a b a -+-=-则a -b 等于( )A .−1B .0C .1D .2【答案】D【分析】先由条件得出20a -≥,然后即可将原式去掉一个绝对值,从而即可求出a 、b 的值,可得到答案.【详解】解:由212a b a -+-=-可知,20a -≥,∴212a b a -+-=-,即10b -=∴10b -=, 30a -=,∴1b =, 3a =,∴312a b -=-=,故选:D .【点睛】本题考查了绝对值和算术平方根的非负性,得到20a -≥是解题的关键.4.(2020·辽宁阜新蒙古族自治县八年级期末)实数a ,b 在数轴上对应点的位置如图所示,则化简代数式2-a b a +的结果是( ).A .-bB .2aC .-2aD .-2a-b【答案】A【分析】根据数轴得b<a<0,判断a+b<0,即可化简绝对值及二次根式,计算加减法即可得到答案.【详解】由数轴得b<a<0,∴a+b<0,∴2-a b a +=-a-b+a=-b ,故选:A .【点睛】 此题考查数轴与数的表示,利用数轴比较数的大小,化简绝对值,化简二次根式,依据数轴化简绝对值及二次根式是解题的关键.5.(2020·广东揭阳市·3 ) A .3B 3C 3D 3【答案】D【分析】 直接利用倒数的定义分析和二次根式的化简即可得出答案;相乘为1的两个数即为倒数; 【详解】3 3 =33. 故选:D .【点睛】本题考查了二次根式的化简、倒数的定义,正确化简二次根式是解题的关键;6.(2020·甘肃白银市·八年级期中)当1<a <2+|a ﹣1|的值是( ) A .1B .﹣1C .2a ﹣3D .3﹣2a 【答案】A【分析】 根据二次根式的化简方法将原式化简成21a a -+-,再根据a 的取值范围化简绝对值.【详解】解:∵12a <<,∴20a -<,10a ->, ∴原式21211a a a a =-+-=-+-=.故选:A .【点睛】本题考查绝对值的化简和二次根式的化简,解题的关键是掌握绝对值和二次根式的化简方法.7.(2020·=则x 可取的整数值有( ).A .1个B .2个C .3个D .4个【答案】B【分析】根据二次根式有意义的条件列出不等式,求出x 的范围,得到答案.【详解】解:由题意得,40x -≥,50x -≥,解得,45x ≤≤,则x 可取的整数是4、5,共2个,故选:B .【点睛】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件是被开方数是非负数是解题的关键.8.(2020·清远市八年级期中)下列四个数中,是负数的是( )A .2-B .2(2)-C .2-D .2(2)-【答案】C【分析】 先根据绝对值的性质,有理数的乘方,二次根式的性质对各式化简,再利用正数和负数的定义对各选项分析判断后利用排除法求解.【详解】A 、220-=>,不符合题意;B 、()2240-=>,不符合题意;C 、20-<,符合题意;D 、()2220-=>,不符合题意;故选:C .9.(2020·吉林长春市·九年级期中)2(3)-等于( ) A .3B .-3C .±3D .9【答案】A【分析】根据实数的性质即可化简.【详解】 2(3)-3-=3故选A .【点睛】此题主要考查实数的性质,解题的关键是熟知实数的运算法则.10.(2020·西安市八年级期中)当2a <3(2)a a - )A .(2)a a -B .(2)a a a --C .(2)a a a -D .(2)a a a --【答案】B【分析】根据二次根式的性质即可化简.【详解】解:∵2a <∴a 20-<-故选:B .【点睛】此题主要考查二次根式的化简,解题的关键是熟练掌握二次根式的性质.二、填空题(共5小题)11.(2020·_____.1.【分析】直接根据二次的性质进行化简即可.【详解】>1,|1(11=-=1.【点睛】()(0)0(0)a a a a a a a >⎧⎪===⎨⎪-<⎩是解答此题的关键.12.(2020·=_____.【答案】【分析】根据二次根式的性质计算,即可得到答案.【详解】故答案为:43. 【点睛】 本题考查了二次根式的知识;解题的关键是熟练掌握二次根式的性质,从而完成求解. 13.(2020·西青区八年级期中)写出m n -的一个有理化因式:_______.【答案】m n -【分析】平方根与平方是互逆运算,据此解题.【详解】2()m n m n m n -⋅-=-m n ∴-的一个有理化因式是m n -,故答案为:m n -.【点睛】本题考查二次根式的有理化,是基础考点,难度较易,掌握相关知识是解题关键. 14.(2020·高台县八年级期末)已知实数a 、b 在数轴上的位置如图所示,化简2()a b a b -++=_____________【答案】2a -【分析】先根据数轴的定义可得0a b <<,从而可得0,0a b a b -<+<,再化简绝对值和二次根式,然后计算整式的加减即可得.【详解】由数轴的定义得:0a b <<,则0,0a b a b -<+<,因此2()()a b a b b a a b -+=-+--,b a a b =---,2a =-,故答案为:2a -.【点睛】本题考查了数轴、绝对值、二次根式、整式的加减,熟练掌握数轴的定义是解题关键.15.(2020·)0y >=______.【答案】2【分析】根据二次根式的性质进行化简根式即可.【详解】2x =∵0y >,2=故答案为2【点睛】本题主要考查二次根式的化简,熟练掌握二次根式的性质是解题的关键.三、解答题(共2小题)16.(2020·福建三明市八年级期中)先阅读下列解答过程,然后再解答:小芳同学在研究化437+=,4312⨯=,即:227+=, =2=== 问题:(1=__________=____________﹔(2a ,b (a b >),使a b m +=,ab n =,即22m +==2m n ±=__________. (3)化简:415-(请写出化简过程) 【答案】(1)31+,3-2;(2)()a b a b ±>;(3)106- 【分析】(1)根据题目所给的方法将根号下的数凑成完全平方的形式进行计算;(2)根据题目给的a ,b 与m 、n 的关系式,用一样的方法列式算出结果;(3)将15写成1524,4写成3522+,就可以凑成完全平方的形式进行计算. 【详解】解:(1)()242331233131+=++=+=+; 5-26=23-223+⨯()2=3-2=3-2; (2)()()()22222()m n a b a b a b a b a b ±=+±⨯=±=±>;(3)415-15=424-3535=22222+-⨯=210622⎛⎫- ⎪ ⎪⎝⎭=106-22. 【点睛】本题考查二次根式的计算和化简,解题的关键是掌握二次根式的运算法则.17.(2020·福建泉州市·泉州七中八年级期中)已如实数a 、b 在数轴上的位置如图所示,请化简()()22a 1ab 1b +-++-【答案】0【分析】由题意可得:2-<a <1-,0<b <1,从而可得:1a +<0, +a b <0, 1b ->0, 再利()()22a 1a b 1b ++-11a a b b =+-++-,从而可得答案.【详解】解:由题意得:2-<a <1-,0<b <1,1a ∴+<0,+a b <0, 1b ->0,1b -11a a b b =+-++-11a a b b =--+++-0.=【点睛】本题考查的是实数的大小比较,二次根式的性质,二次根式的化简,绝对值的化简,合并同类项,掌握以上知识是解题的关键.。

16.1 二次根式 第1课时:二次根式的概念(含答案)

16.1 二次根式 第1课时:二次根式的概念(含答案)

116.1二次根式第1课时二次根式的概念一、选择题1.下列各式中,一定是二次根式的是()A.-3 B.33 C. D.-32.要使二次根式 +1有意义,a 的值可以是()A.-1 B.-2 C.-3 D.-43.下列二次根式中,无论x 取何值,都有意义的是()A. B. 2-1 D. 2+14.已知二次根式 +3,当x=1时,此二次根式的值为()A.2B.±2C.4D.±45.若1-2 是二次根式,则x 的值不可能是()A.-2 B.-1 C.0 D.16.下列选项中,使根式有意义的a 的取值范围为a<1的是()A. -1 B.1- C.(1- )2二、填空题7.当x=54时,二次根式 +1的值为.1+ x 的取值范围是.9.若关于x 的式子4- +- +2有意义,且满足条件的所有整数x 的和为10,则a 的取值范围为.0有意义的条件是.三、解答题11.判断下列各式哪些是二次根式,哪些不是,为什么?3,-16,34,-5, 2+1.(1)求x 的取值范围;(2)求当x=-2x 的值.13.已知 -17+17- =b+8.(1)求a、b 的值;(2)求a 2-b 2的平方根和a+2b 的立方根.16.1二次根式第1课时:二次根式的概念一、选择题1.答案A A.-3符合二次根式的定义,故本选项符合题意;B.33是三次根式,故本选项不符合题意;C.当x<0时, 无意义,故本选项不符合题意;D.由于-3<0,所以-3无意义,故本选项不符合题意.故选A.2.答案A由题意得,a+1≥0,解得a≥-1,结合各选项知,只有-1符合题意,故选A.3.答案D A. ,当x≥0时,二次根式有意义,故此选项不符合题意;B. 2-1,当x2-1≥0,即x≥1或x≤-1时,二次根式有意义,故此选项不符合题意;2x≠0时,二次根式有意义,故此选项不符合题意;D. 2+1,无论x取何值,二次根式都有意义,故此选项符合题意.故选D.4.答案A当x=1时,原式=1+3=4=2,故选A.5.答案D∵1-2 是二次根式,∴1-2x≥0,解得x≤0.5,∴x的值不可能是1.故选D.6.答案D A项,当a≥1时,根式有意义;B项,当a≤1时,根式有意义;C项,无论a取何值,根式都有意义;D项,要使根式有意义,则11- ≥0且1-a≠0,解得a<1.故选D.二、填空题7.答案32解析当x=54时, +1==32.故答案为32.8.答案x>-1解析由题意得11+ ≥0且1+x≠0,∴1+x>0,解得x>-1,故答案为x>-1.9.答案1<a≤3解析∵关于x的式子4- + - +2有意义,∴4-x≥0,x-a+2≥0,解得a-2≤x≤4,∵满足条件的所有整数x的和为10,4+3+2+1=10,4+3+2+1+0=10,∴-1<a-2≤1,∴1<a≤3.10.答案x≥-2,x≠1且x≠-12解析由题意可得x+2≥0,x-1≠0且2x+1≠0,解得x≥-2,x≠1且x≠-12.2三、解答题11.解析3,-16,(a≥0), 2+1符合二次根式的定义,故是二次根式; 34是三次根式,故不是二次根式;-5中被开方数小于0,故不是二次根式.12.解析(1)根据题意,得3-12x≥0,解得x≤6.=3+1=2.(2)当x=-2∴3-12x=0,解得x=6.13.解析(1)由题意得a-17≥0,且17-a≥0,则a-17=0,解得a=17,把a=17代入 -17+17- =b+8,得b+8=0,解得b=-8.故a、b的值分别为17、-8.(2)由(1)得a=17,b=-8,∴± 2- 2=±172-(-8)2=±15,3 +2 =317+2×(-8)=31=1.故a2-b2的平方根为±15,a+2b的立方根为1.3。

人教版下册课件:16.1二次根式性质

人教版下册课件:16.1二次根式性质

解:由二次根式的意义可知:
25x3 y4 0, y4 0, x 0.
25x3 y4 25 y4 x3
5y2 x x
5xy2 x
广丰实验中学饶绍仁
19
议一议
1. x 1 x 1 x 1 此式成立的条件_________.
ab2
ab2
a
a
b
b2
2∣b∣ ba
a
(a
(a 0,b
0,b 0)
0)
b a (a 0,b 0)
一般来说,如果二次根式里被开方数是几个因
式的乘积,其中有的因式是完全平方式,则这
样的因式可用它的非负平方根代替后移到根号
外面.
广丰实验中学饶绍仁
6
观察思考
若(x 3)0 1 有意义,则x __2_且_ x 3
x 2 广丰实验中学饶绍仁
27
课堂检测
(1) 27 15
(2) a2 b
3) a3 (b 0) b
(4) 1 ab
(5) 18x3 (6) 12 y2 ( y 0)
广丰实验中学饶绍仁
28
课堂检测
(7).化简二次根式
1 x
结果是. 1 x
广丰实验中学饶绍仁
30
2
2 3

___23___6_,
2

2 3

___23__6__
3 3 ___34 __6_, 3 3 __34__6__
8
8
4
4
8 15
__15____
4
4
8 15
_1_5____

01-16.1.1二次根式的概念

01-16.1.1二次根式的概念

16.1.1 二次根式的概念
知识点二 二次根式有、无意义的条件
条件
栏目索引
式子表示
有意义
被开方数为非负数
a 有意义⇒a≥0
无意义
被开方数为负数
a 无意义⇒a<0
知识 详解
(1)如果一个式子中含有多个二次根式,那么这个式子有意义的条 件是各个二次根式中的被开方数都必须是非负数. (2)如果一个式子中既含有二次根式又含有分式,那么这个式子有 意义的条件是:二次根式中的被开方数是非负数,分式的分母不等 于0. (3)如果一个二次根式的被开方数中含有零指数或负整数指数,那 么这个式子有意义的条件是底数不等于0
2.下列各式中,不一定是二次根式的为 ( )
A. a
B. b2 1
C. 0
D. (a b)2
栏目索引
答案 A 对于 a ,由于a的取值范围不确定,当a<0时, a 无意义,所以 a 不一定是二次根式.
3.(独家原创试题)若a=2 020,则下列各式是二次根式的是 ( )
A. 2 019-a
B. a-2 020
方根为
.
答案 ±1
解析
由题意得
x-7 7-x
0, 0,
解得x=7,则y=9,故(xy-64)2=1,1的平方根为±1,故答
案为±1.
16.1.1 二次根式的概念
栏目索引
1.使式子3-1 x 有意义的x的取 值范围是 ( )
A.x>0
B.x≠9
C.x≥0且x≠9
D.x>0或x≠9
答案 C 当x满足3- x 0,即x≥0且x≠9时,式子 1 有意义.故选C.
16.1.1 二次根式的概念
栏目索引

八下数学16.1二次根式概念和性质

八下数学16.1二次根式概念和性质

2
2 3
32
2
2 3 6
2
2
(5) x xy x2 xy x2 xy x3 y
反之,a ( a ) 2 (a 0)
1.利用a ( a ) 2 (a 0) 把下列非负 数分别写成一个非负数的平方的形式。
(1)9
(2)5 (3)2.5
解:9= 92=32
解:5=
2
5
(4)0.25
x2 2x 1 = (x-1)2 = | x 1|
当x 3时,
原式= | 3-1 | = 3+1
试一试
1.计算下列各题:
2
(1) 15 (2)
1
2
5
2.若 (1 x)2 1 x ,则x的取值范围为 (
)A. x≤1 B. x≥1 C. 0≤x≤1 D.一切有理数
3.
a2

(√
a
2

a
二次根号
a 读作“根号 ”
形如 a (a 0)的式子叫做二次根式.
1.表示a的算术平方根 2. a可以是数,也可以是式. 3. 形式上含有二次根号 4. a≥0, a≥0 ( 双重非负性) 5.既可表示开方运算,也可表示运算的结果.
(1) 代数式 a 是二次根式吗?
答:代数式 a 只有在条件a≥0的情况下,才属于二次根式!
分母不为0 被开方数大于等于0 结合数轴,写出解集来
二次根式的定义:
形如 a (a 0) 的式子叫做二次根式。
二次根式有意义的条件:
a0
当a 0时,a表示a的算术平方根,故 a 0 当a=0时,a表示0的算术平方根,故 a =0
二次根式性质: a 0 , a 0 (双重非负性)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16.1 二次根式----2020-2021学年七年级数学下册课时同步巩固强化练习(人教版)
一、单选题
1在实数范围内有意义的条件是( )
A .12x >-
B .12x ≠-
C .12x <-
D .2
1x ≥- 【答案】D
解:根据题意得:2x +1≥0,
解得:x ≥12
-.
2个数为( )
A .1个
B .2个
C .3个
D .4个 【答案】C
解:=
==
2
2=
3个,
故选:.C
3.下列计算正确的是( )
A 4=±
B .3=
C 3=-
D .23= 【答案】D
解:A 4=,故错误;B 、3=±,故错误;
C 3=,故错误;
D 、23=,故正确;
故选D .
4=
m 、n 满足的条件是( ). A .0mn ≥ B .0m ≥,0n ≥ C .0m ≥,0n > D .0m >,0n ≥
【答案】B
=
∴0
00
m n m n ⋅≥
⎧⎪≥⎨⎪≥⎩
∴0m ≥,0n ≥
故选:B .
5.在函数y
x 的取值范围是( )
A .x≥-1
B .x >-1
C .x <-1
D .x≤-1 【答案】B
解:根据题意得,x+1≥0且1+x≠0,
解得x≥-1且x≠-1
自变量x 的取值范围是x >-1.
故选B .
6.当12a <<
1a -的值是( ).
A .1-
B .1
C .23a -
D .32a - 【答案】B
【详解】
∵12a <<
∴20a -<,10a -<
1a +-
()()21a a =--+-
21a a =-++-
1=
故选:B .
7.把(x -(
) A
B .
C
D .【答案】B
解:由已知可得:1
01x ->-,
∴ 10x -<,即10x ->,
∴ (x --=故选:B
89﹣m ,则实数m 的取值范围是( )
A .m >9
B .m <9
C .m ≥9
D .m ≤9 【答案】D
|9﹣m |=9﹣m , ∴9﹣m ≥0,
∴m ≤9,
故选:D .
9.已知a b > )
A .b
B .b
C .b -
D .b - 【答案】B
∴5ab -≥0
∴4ab b -⋅≥0
∵4b ≥0
∴ab -≥0
b =
=
故选:B .
10.已知a 、b 、c 是三角形的三边长,如果满足()26100a c -+-=,则三角形的形状是( )
A .底与腰不相等的等腰三角形
B .等边三角形
C .钝角三角形
D .直角三角形
【答案】D
【详解】
∵()260a -≥0≥,100c -≥,
又∵()26100a c -+-=,
∴60a -=,80b -=,100c -=,
解得:6a =,8b =,10c =,
∵22268366410010,
∴是直角三角形.
故选:D .
二、填空题
114y =,则y x =________. 【答案】16
12.已知实数x ,y 满足30x -=,则以x ,
y 的值为两边长的等腰三角形的周长是_____. 【答案】15
13.已知关于x 的不等式(2)2a x a +>+的解集为1x <______.
【答案】2a --
【详解】
∵(2)2a x a +>+的解集为1x <,
∴20a +<,
|2|(2)2a a a =+=-+=--.
故答案为:-a-2.
14_____.
1.
1,
|1(11-=-=
1.
15n 的最小值为____.
【答案】11
【详解】
=,
∴11n 是一个平方数,
∴n 的最小值为:11,
故答案是:11.
16.已知m =
,则m a =_____________. 【答案】1
解:根据题意得, 2020﹣a ≥0,a ﹣2020≥0,
解得,a =2020,
则m =0,
∴a m =20200=1,
三、解答题
17.计算:
(1)|1|||2-++-;
(2)231(2)2⎛⎫-- ⎪⎝⎭
解:(1)|1||2++-
12+-=1;
(2)2
31(2)2⎛⎫-- ⎪⎝⎭=184434
-⨯-⨯
- =-32-1-3
=-36.
18.已知a ,b (0b -=,求20502001a b -的值;
【答案】0
解:(0b -=
∴1+a≥0,1-b ≥0(10b -=
∴1+a=0,1-b=0,即a=-1,b=1
∴()
205020502001200111110a b ---==-=.
19.已知8y x =
,求456x y +-的算术平方根.
【答案】4.
【详解】 由题意得,210x -≥且120x -≥, 解得12x ≥或12x ≤, ∴12x =

∴1800842
y x ==++⨯=, ∴145645462206162
x y +-=⨯+⨯-=+-=, ∴456x y +-的算术平方根为4.
20.已知实数a 满足2020a a -=,求22020a -的值.
【答案】2021
0>,则20210a -≥,
解得:2021a ≥
∴原式化简为:2020a a -+=
2020=
∴220212020a -=
∴220202021a -=。

相关文档
最新文档