基准电压源
基准电压源
基准电压源
基准电压源是一种有效的、可靠的电源系统,它可以提供电压特性稳定、一致的电压,从而有效支持电子设备的正常运行。
它可以把电源系统分成三部分:电源,控制器和监测器。
另外,它还可以通过电压检测和调节,有效地控制和维护电压质量。
基准电压源的作用非常重要。
它可以有效地提供稳定的电源,它的输出电压可以根据负载的变化而变化。
此外,它也可以实现智能调节,使负载处于电压稳定的状态,保证设备的正常运行。
这种电源可以实现市电的自动开关机功能,节省用电成本。
此外,基准电压源还可以把负载和环境参数(如温度、湿度)连接起来,检测和监控电压,进行有效地调节和控制。
电压温度位移仪可以测量电压的变化,具有高精度和良好的稳定性。
基准电压源系统的设计应该考虑到电源的稳定性和安全性。
首先,应该检查电源的可靠性,以确保电源的可靠性和安全性。
其次,电源系统应该采用严格的电源设计标准,包括电流、电压、功率等参数。
同时,还要考虑不同环境条件下的电源变化,以预防突然变化给设备造成的损坏。
最后,基准电压源应该经过严格的质量检测,以确保其质量和功能。
它的完整性应该满足相关标准,应该具有可靠的可靠性,可以实现良好的稳定性和低温度环境下的可靠性。
此外,还应该考虑到电源的耐久性,以确保设备的正常运行。
总之,基准电压源是一种重要的设备,它的作用十分重要,可以
有效地支持电子设备的运行,并且可以有效地节省用电成本。
在设计和安装基准电压源时,应该注意以上提到的方面,以确保电源的可靠性和安全性,从而保证设备的正常运行。
《带隙基准电压源》课件
带隙基准电压源 的发展趋势与展 望
技术创新方向探讨
提高精度和稳定 性:通过改进电 路设计和材料选 择,提高基准电 压源的精度和稳 定性。
降低功耗:通过 优化电路设计和 采用低功耗器件, 降低基准电压源 的功耗。
集成化:将基准 电压源与其他电 路模块集成,提 高系统的集成度 和可靠性。
智能化:通过引 入智能控制算法, 提高基准电压源 的自适应能力和 抗干扰能力。
测试设备:包括电压源、电 流源、示波器、万用表等
测试步骤:按照测试标准进行, 包括设置参数、测量数据、分 析结果等
评估标准及流程详解
评估标准: 精度、稳 定性、温 度特性、 电源抑制 比等
评估流程: 测试准备、 测试实施、 数据分析、 结果评估 等
测试准备: 选择合适 的测试设 备、设置 测试条件 等
感谢您的观看
汇报人:PPT
案例一:用于ADC/DAC转换器的基准电压源设计
应用背景:ADC/DAC转换器需要稳定的基准电压源 设计要求:高精度、低噪声、低功耗 带隙基准电压源的优势:温度稳定性好、精度高、功耗低 设计方法:选择合适的带隙基准电压源芯片,进行电路设计和调试 应用效果:提高了ADC/DAC转换器的性能和稳定性
案例二:用于PLL锁相环的基准电压源设计
设计过程中需要注意电压源的稳定性和精度 优化建议:采用高精度的电阻和电容,提高电压源的稳定性 注意电源噪声对电压源的影响,采用滤波器进行抑制 优化建议:采用低噪声的电源,提高电压源的精度 注意温度对电压源的影响,采用温度补偿技术进行校正 优化建议:采用高精度的温度传感器,提高温度补偿的精度
带隙基准电压源 的应用案例分析
功耗:带隙基准电压源的功耗较低, 适合在低功耗系统中使用
基准电压源工作原理
基准电压源工作原理
基准电压源是一种通过某种机制维持恒定输出电压的电路。
它通常被用作精确测量、校准和比较电路中的电压信号。
基准电压源的工作原理可以通过参考电压和反馈回路来实现。
参考电压是一个已知且稳定的电压信号,可以由特定的电路或器件产生。
反馈回路用于将基准电压与实际输出电压进行比较,并通过调节电路参数使输出电压保持在稳定的水平。
一种常见的基准电压源的工作原理是使用稳压二极管。
稳压二极管是一种特殊的二极管,其特点是在一定的工作电流范围内能够维持近似恒定的电压降。
通过将稳压二极管连接在适当的电路中,可以实现基准电压源。
当负载电阻变化时,反馈回路会感知到输出电压的变化,并通过调节电路参数,例如改变稳压二极管的工作电流,来使输出电压保持不变。
另一种常见的基准电压源的工作原理是使用精密电阻和运算放大器。
基于欧姆定律,当电流通过一个特定精确的电阻时,可以得到一个稳定的电压降。
通过将精密电阻连接在适当的电路中,并使用运算放大器对电压进行放大和反馈,可以实现基准电压源。
当负载电阻变化时,反馈回路会感知到输出电压的变化,并调节电路参数来保持输出电压的稳定。
基准电压源在精密测量和校准中起着关键作用。
它能够提供稳定、可靠的参考电压,以确保测量和校准的准确性。
各种不同的电路和器件可以用于实现基准电压源,具体选择取决于应用的要求和性能指标。
tl431基准电流
tl431基准电流(原创版)目录1.TL431 基准电压源的介绍2.TL431 的工作原理3.TL431 基准电流的计算方法4.TL431 基准电流的应用实例5.TL431 基准电流的优缺点正文一、TL431 基准电压源的介绍TL431 是一种可调式基准电压源,由德州仪器公司(Texas Instruments)于 1973 年推出。
它是一种三端线性稳压器,具有内置短路保护功能,可提供稳定可靠的基准电压。
TL431 基准电压源广泛应用于各种模拟和数字电路设计,如电源管理、放大器、比较器等。
二、TL431 的工作原理TL431 的工作原理基于恒流源(current source)和电压调整(voltage adjustment)两个方面。
首先,通过内部的恒流源,TL431 可以提供一个固定的基准电流(例如 1.2mA)。
其次,通过调整外部电阻,可以改变反馈电阻的分压,从而改变输出电压。
三、TL431 基准电流的计算方法TL431 基准电流的计算公式为:Iref = (Vref * (R1 + R2)) / (R1 + R2 + R3),其中 Iref 表示基准电流,Vref 表示基准电压,R1、R2 和 R3 分别表示三个外部电阻的阻值。
通过调整 R1、R2 和 R3 的阻值,可以实现对基准电流的调节。
四、TL431 基准电流的应用实例TL431 基准电流在实际电路应用中非常广泛,以下是一个简单的应用实例:假设需要提供一个 1.2V 的基准电压,可以选择 TL431 基准电压源,并根据计算公式确定电阻阻值。
假设 R1、R2 和 R3 的阻值分别为 1kΩ、1kΩ和 2kΩ,则可以得到基准电流 Iref = (1.2V * (1kΩ + 1kΩ)) / (1k Ω + 1kΩ + 2kΩ) = 1.2mA。
五、TL431 基准电流的优缺点TL431 基准电流具有以下优点:1.输出电压稳定,漂移小;2.可调范围宽,可根据需要调整基准电流;3.输入电压范围宽,适应不同应用场景;4.封装形式多样,易于使用。
电压基准源vka
电压基准源vka1. 什么是电压基准源?电压基准源(Voltage Reference)是一种用于生成稳定、精确和可靠的标准电压的电子设备。
它在电子测量、仪器仪表、通信设备、计算机和其他电子系统中广泛应用。
电压基准源vka是其中一种。
2. 电压基准源vka的工作原理电压基准源vka是一种基于集成电路的电压参考器。
它通常由一个稳定的参考电压源、一个比较器以及一个反馈回路组成。
在vka中,参考电压源会产生一个稳定、精确的基准电压。
比较器会将输入电压与基准电压进行比较,并产生一个差异电压。
这个差异电压会经过反馈回路,调整比较器的输出,以使输出电压等于基准电压。
通过反复比较和调整,vka可以保持输出电压与基准电压一致。
3. 电压基准源vka的特点与优势•稳定性高:vka采用了精确的参考电压源和反馈回路,并通过自动调整保持输出电压稳定,使得其具有非常高的稳定性。
•精确度高:电压基准源vka能够生成非常精确的电压,其精确度通常在百分之几的范围内。
•低温漂移:vka的输出电压对温度的变化影响较小。
它能够提供一个稳定的参考电压,不会因温度变化而引起明显的输出偏移。
•低噪声:电压基准源vka在输出电压中有很低的噪声干扰,适用于对噪声要求较高的应用。
•低功耗:vka通常采用低功耗的集成电路设计,能够在长时间工作中保持较低的功耗。
•长寿命:vka具有较高的可靠性,并能够长时间稳定工作,寿命长。
•易于使用:电压基准源vka是一种集成电路设备,通常以模块化形式提供,易于安装和应用。
4. 电压基准源vka的应用电压基准源vka在电子领域的应用非常广泛,下面是一些常见的应用场景:•模拟电路校准:在模拟电路中,电压基准源vka可以作为校准电压,用于校准模拟信号的幅度和精确度。
•模数/数模转换:在模数/数模转换中,电压基准源vka可以提供一个精确的参考电压,用于确定模拟信号的量化水平。
•精密测量仪器:在精密测量仪器中,电压基准源vka用作测量参考电压,保证测量结果的准确性和稳定性。
基准电压源设计
= 5.269mV)等
音频或视频
10%绝对基准电压误差
= 声级的1dB误差
与分辨率相比较
基准电压源的1ppm误差相当于20位精度 15ppm相当于16位精度 244ppm相当于12位精度(1/4000)
绝对误差一般通过校准消除
因此重要的是基准电压变化
基准电压源和规格问题
广泛的基础设施和产品基础
模拟放大器将传感器输出转换为4-20mA信号 数据转换器通过4-20mA线路传输信号 HART编码算法现可提供更强的功能
典型4-20mA信号传输器件
AD693将低电平传感器输入转换为4-20mA输出,由环路电源驱动
;同时提供传感器驱动信号
典型4-20mA信号传输器件
无商用器件
跟踪基准电压源具有匹配的正负输出
负基准电压源可以利用运算放大器实现 完整的基准电压源封装内置跟踪功能,性能更好
负基准电压源设计
标准反相运算放大器电路
改进的电路不需要精密 电阻匹配
跟踪基准电压源
高性能跟踪基准电压源AD588利用精密调整电阻实现出色的匹配
跟踪基准电压源
使用四通道运算放大器的多路输出跟踪基准电压源设计 10V、7.5V、5V、2.5V – 其它电压可以设置 需要使用精密电阻
反相运算放大器电路对传感器很有用
电流流向虚拟地,因此传感器上无电压变化 通常比让电流流经电阻更快
用于电源电流检测的高端和低端
光电二极管等效电路
入射 光 光 电流 RSH(T) 100kW 100GW CJ
理想 二极管
注:温度每升高10°C,RSH减半
电流电压转换器(简图)
ISC = 30pA (0.001 fc) R = 1000MW
ATS-1000V系列高精度基准电压源
ATS-1000V 系列高精度基准电压源
•输出电压0~13V •额定输出电流50mA •高精度、高稳定性电压输出•连续可调,精度高达6½位•电压输出分辨率10μV •电压增益数控可调
简介
Introduction
ATS-1000V 是一款高精度、高稳定性电压输出的基准电压源。
最大输出13V 电压,额定输出电流50mA 。
电压分辨率可达10μV ,输出精度高,噪声低。
操作面板液晶显示,简洁易懂,易于操作。
输出
Output
ATS -1000V 高精度基准电压源输出数控可调,客户可根据测试的电压需求进行调节。
液晶显示
Liquid-crystal Display
ATS-1000V 系列采用液晶屏显示,设备状态及参数动态显示,操作界面一目了然,简洁易懂。
应用领域
Application Fields
电压基准芯片检测传感器检测
校验仪器仪表的精度高精度的标准信号电子测试与设计电路性能验证
型号ATS-1100V ATS-1200V 输出电压DC
0~13.0000V
0~13.00000V
位数5½6½分辨率100μV 10μV 额定输出电流50mA
50mA
稳定度24h ,±1℃20+2004+30
±(ppm output+μV )
负载调整率≤10ppm /mA ≤1ppm /mA
0mA <I out <50mA。
电压基准源
CMOS基准源
是什么?如何构造?应用?优缺点?
01.为了解决三极管出现的问题, 提出的仅使用MOS管构建的电压基 准源。 理论基础:用MOS管的迁移率和阈值电压存在的温度特性进行 正负温度补偿。 T B μ n (T ) μ n (T0 )( ) MOS管迁移率的温度特性可描述为: T0 MOS管阈值电压的温度特性可描述为:Vthn (T ) Vthn (T0 ) BV (T T 0 ) 其中 B μ n, B Vthn 分别是迁移率和阈值电压的温度指数。
具体的应用电路
图1、电压相加形四位R-2RT型电阻网络DAC
图2、并行比较型ADC
02
电压基准源如何构造
1、齐纳击穿 2、带隙温度补偿 3、其他
齐纳管式电压基准源
是什么?如何构造?应用?优缺点?
01. 利用pn结反向击穿的稳压特性 制作的稳压管
图3、理想情况下二极管的伏安特性曲线
齐纳管式电压基准源
图9、能隙基准源典型电路3
假设n 9。 ln 9 2.197, 则k 10.5。
能隙温度补偿基准源
是什么?如何构造?应用?优缺点?
04.优缺点
优点:1、温度系数低 2、原理相对简单 3、工作电压较低 缺点:1、使用了BJT,与主流CMOS工艺不兼容。 (失调问题) 2、器件面积较大。 3、对电流增益β的要求较高。 4、VBE 线性化模型不够精确。
03. 应用电路
限流电阻的选取:
Vref Iref
(Vin(max) Vref ) 50mA I LOAD (min)
RS
(Vin(min) Vref ) 100uA I LOAD (max)
图5、MAX6330器件典型应用
基准电压源
基准电压源
基准电压源是一种重要的电子装置,它可以精确地产生一种标准的电压,这种电压可以作为其他电子设备的参考电压,并为特定的应用提供标准的输入信号。
基准电压源一般被用于电子测量和流行的信号处理技术,如电阻,电容,绝缘和电容度,测量仪器,放大器,复杂的逻辑系统,高速比较器和其他功率电子设备。
一般来说,基准电压源可以分为两类:稳定类和可变类。
稳定类基准电压源指可以精确地输出一个极其稳定的电压,例如5V或3.3V,它可以完成一定的交流变化率要求。
可变类则可以实现电压的持续变化,比如常见的调压电源,它们可以用来控制或测量一定范围内的电压。
由于基准电压源有着不同的结构特性,它们可以应用于不同类型的设备中,并为这些设备提供精确的输出电压。
基准电压源非常重要,它可以用来控制或测量输出信号的电压。
基准电压的准确性非常重要,因为高精度的测量结果需要准确的电压。
基准电压源可以为设备的精确度提供基础。
此外,基准电压源的可靠性也非常重要,因为它可以确保设备的正确运行。
一般来说,一个稳定的基准电压源包括精确的温度补偿,能够抵消环境温度变化而产生的偏差。
此外,基准电压源还可以提供很高的信号谐波和有效噪声含量,以确保电压的精确度。
最后,基准电压源也能够充当感应元件,它能够向用户提供外部信号,例如时间,位置等信号。
由于它的安全性和可靠性,基准电压源也被广泛应用于心率,血压,血氧饱和度监测,身体温度,脉搏等
医疗诊断系统中。
总之,基准电压源是一种重要的电子元件,它能够提供精确的电压,以满足电子系统的工作要求。
它具有精确性,可靠性,安全性和可变性等特点,所以能够广泛应用于多种电子系统中。
基准电压源
臻;塑。
蛆.基准电压源舒梅(贵州电子信息职业技术学院,贵州凯里556000)【摘要1基准电压源是模拟集成电路中的基本单元,它在SO C,A D C、D A C,传感嚣和通信电路以及存储器等领域有着广泛的应用。
基准源的目的是向后续电路提供稳定的、不随外界因素C主要是电源电压和环境温度)影响的电压。
本文主要介绍了基准电压源的研究现献及分类应用。
膦词带隙基准;曲,鳓偿;低功耗;温度系数随着系统集成技术(S O C)的飞速发展,基准电压源已成为大规模、超大规模集成电路和几乎所有数字模拟系统中不可缺少的基本电路模块。
基准电压源是超大规模集成电路和电子系统的重要组成部分,可广泛应用于高精度比较器、A/D和D/A转换器、随机动态存储器、闪存以及系统集成芯片中。
基准电压源是指被用作电压参考的高精度、高稳定度的电压源,要求其能克眼工艺、电源、温度以及负载变化而保持稳定,并能在标准工艺下制造。
能产生基准源的技术很多,如带隙基准源、稳压管、V匪基准源、热电压v T基准源以及利用M O S工艺中增强型M O S管和耗尽型M O S管之间的阈值电压差产生基准电压的技术等。
理想的带隙基准电压源电路的输出电压几乎不受温度变化、工艺变化、电源电压波动等因素的影响。
鉴于产生稳定电压的基准模拟的重要性和广泛应用,以及对性能的高要求,国内外对带隙基准电压源做了大量的研究,主要集中在以下几个方面:1低温度系数温度系数用于表征基准电压源随温度的电压变化,由于晶体管BE 结正向导通电压V匿随温度变化的非线性,传统带隙基准源的温度特性已无法满足更高精度和稳定性的需求。
从一阶线性补偿到曲率补偿如二阶,三阶补偿,指数补尝,对数补偿(亚阈值电路)等。
而且补偿方式众多,如电流相减补偿法,电压叠加补偿法,利用不同质电阻上电压降的叠加实现温度系数的曲率牢}偿,阶段性电流模式补偿等,可获得最好温度系数达到几个ppm/qC。
2高电源抑制比在开关电源芯片工作过程中开关的通断产生大量的高频噪声,这会对输出电压产生不利的影响,基准电压源应该在较宽范围内具有良好的电源抑制比性能。
几种电压基准源的比较分析
几种电压基准源的比较分析罗先才无锡华润矽科微电子有限公司摘要:电压基准根据参考源的不同可分为对正电源基准源、对负电源基准源、对地基准源和浮动基准源四种;根据电压的不同可分为1V低电源基准、1.25V基准、2.5V基准、高压基准和任意电压基准;根据使用的核心补偿器件不同又可分为传统带隙基准、耗尽增强型基准、齐纳二极管基准等几种结构。
在电路设计过程中,如何根据工艺条件和电路需要自由地选择合适的基准源电路,是电路得以快速设计成功的基石。
本文通过分析比较各种结构的实现原理、优缺点以及改进措施,使这一选择变得更加的清晰和简明。
关键词:带隙基准,齐纳二极管,耗尽型MOS场效应管,低电源带隙基准,浮动基准1引言在模拟或数模混合集成电路设计领域中,高性能电压基准源设计是关键技术之一,电压基准源为电路提供高精度基准电压或由其转化为高精度电流,为电路提供稳定而又精确的偏置。
由于工艺离散性的存在,如何选择合适的基准源结构,降低温度漂移,提高电路精度、保证批量制造IC时带隙基准电压源精度的一致性,是进一步改进基准电压源设计的重要课题。
因此需要在工艺条件有限的情况下,更多地从电路设计结构选择上着手,并在所选结构上加以改进以设计出满足要求的基准源电路。
2传统带隙基准2.1经典带隙结构及其改进传统带隙基准源是用一个正温漂得UT 和一个负温漂的UBE求和得到的一个零温漂的参考电压。
其基本原理如下左图所示,三极管发射结压降UBE在室温下的温度系数为-2.2mv/.C,而热电压UT(k.T/q)的温度系数为0.085mV/.C,如图中,将这两个参数求和得:UREF =KUT+UBE在室温条件下上式对温度T求微分,并使这一微分结果为零,即可解出K得理论设计值,最后使得输出电压UREF理论上在室温附件基本零温漂。
其图中的PNP通常是Nwell工艺中的寄生P+/NW/Psub三极管,设计出来的基准通常是相对GND的稳定电压。
在Pwell工艺中寄生三极管则是N+/PW/Nsub,下面的示意图正好上下颠倒过来即可,这样设计出来的基准也正好是相对电源的稳定电压。
模拟集成电路的基准电压源
模拟集成电路的基准电压源模拟集成电路是现代电子技术中不可或缺的一部分,而基准电压源则是模拟集成电路中的重要组成部分。
基准电压源是指在一定条件下提供稳定、可靠且精确的电压输出的电路或器件。
它在模拟集成电路中起到了至关重要的作用,可以提供准确的参考电压,用于校准和补偿其他电路的偏差,从而提高整个模拟集成电路的性能和可靠性。
基准电压源的设计需要考虑多个因素,包括温度稳定性、供电电压变化对输出电压的影响、噪声等。
在模拟集成电路中,为了保证基准电压源的稳定性和精度,通常会采用多种技术和电路来实现。
下面将介绍几种常见的基准电压源设计方法。
首先是电压分压型基准电压源。
这种电路通过将参考电压分压得到所需的输出电压。
它可以使用稳定的电阻分压比例来实现,也可以使用二极管的温度特性来实现。
这种方法简单易用,但对供电电压变化和温度变化较为敏感,需要在设计中进行适当补偿和校准。
其次是电流源型基准电压源。
这种电路将电流源的稳定性转化为输出电压的稳定性。
电流源型基准电压源通常采用差分放大电路和反馈电路来实现,可以提供较高的稳定性和精度。
同时,它对供电电压的变化和温度的变化也具有较好的抵抗能力。
但它的设计和调整较为复杂,需要精确的参数匹配和校准。
另外还有基于参考电压源的基准电压源。
这种电路通过使用稳定的参考电压源和放大电路来实现输出电压的稳定。
参考电压源可以使用稳压二极管、参考电压芯片等来提供,而放大电路可以使用运算放大器等来实现。
这种方法的优点是稳定性和精度较高,但对供电电压变化和温度变化仍然具有一定的敏感性。
除了以上几种方法外,还有一些特殊的基准电压源设计,如基于温度补偿的基准电压源、基于电压比较的基准电压源等。
这些方法在特定的应用中可以提供更高的稳定性和精度。
基准电压源在模拟集成电路中起到了至关重要的作用。
它可以提供稳定、可靠且精确的电压输出,用于校准和补偿其他电路的偏差。
不同的基准电压源设计方法有各自的优缺点,需要根据具体的应用需求进行选择和优化。
带隙基准源原理简介
带隙基准源原理简介1.1基准电压源的几项主要性能指标产生基准的目的是建立一个与电源和工艺无关、具有确定温度特性的直流电压。
因此,基准的设计就是要解决以下两个问题:与电源无关的偏置和温度关系的确定。
利用正温度系数电压和负温度系数电压,我们可以可以设计出一个令人满意的零温度系数的基准,这就是带隙基准电压源。
下面我们来介绍基准电压源的几项主要性能指标。
1.1.1温度系数温度系数(Temperature Coefficient,单位ppm/oC)是基准电压源在整个扫描的工作温度范围内,输出电压的最大值和最小值的差值,相对于正常输出电压的变化。
温度系数表征基准电压源电路受温度变化影响的大小,性能优异的基准源电路设计具有非常小的温度系数。
温度的变化而引起输出电压的变化,其单位表示为ppm/oC,计算公式如下所示:(2-1)1.1.2电源抑制比电源抑制比(PSRR:Power supply Rejeetion Ratio,单位:分贝或dB)在小信号情况下,基准电压源的输出变化量与电源电压的变化量之比。
基准电压源电路的输出电压,既要受到环境温度的影响,而且还要受到电源电压噪声的影响。
所以性能优良的基准电压源电路,能够很好的抑制电源电压对于电路的影响。
1.1.3线性调整率在直流状态下,电源电压的波动对于基准源的影响程度。
其公式为:(2-2)1.1.4建立时间从电源上电到基准源输出达到正常输出电压的那段时间。
1.2传统带隙基准源的基本原理和结构1.1.1 概述基准源在集成电路设计中是极其重要的基本单元电路,然后在不同的应用电路中经常需要设计不同的基准源。
比如传统的带隙基准源电路,具有较低的温度系数、较低的电源电压以及可以与标准CMOS工艺兼容等等特点,成为一种广泛使用的典型基准源电路模块。
设计基准电路的目的是为了建立一个与电源和工艺都无关,而且具有确定温度特性的电流或电压。
由于许多工艺参数要随温度的改变而改变,所以如果所设计的基准源与温度没有关系的话,那么它与工艺也是没有关系的。
基准电压源的设计与选用(一)
基准电压是许多控制或应用电路所必需的,而且电路的控制精度或性能指标在很大程度上取决于基准电压的好坏。
对基准电压的基本要求是:在电源电压和环境温度变化时其电压值应保持恒定不变。
通常我们选用稳压二极管作为基准电压源,这是最简单、也是最传统的方法,按照所基准电压是许多控制或应用电路所必需的,而且电路的控制精度或性能指标在很大程度上取决于基准电压的好坏。
对基准电压的基本要求是:在电源电压和环境温度变化时其电压值应保持恒定不变。
通常我们选用稳压二极管作为基准电压源,这是最简单、也是最传统的方法,按照所需电压值选一个对应型号的稳压管当然可以,但选得是否合适、是否最佳,却大有讲究。
最基本的电压基准源电路如图1(a)、稳压管的击穿特性如图1(b)所示。
由图1(b)可见,不同稳压值的击穿特性并不相同,4V以下稳压管的击穿特性非常“软”(动态电阻可高达100Ω以上),其端电压随通过电流的不同、变化很大;而6V以上的特性就非常“硬”、尤以8V左右的特性最硬(动态电阻约4~15Ω),击穿电压越高动态电阻也越大,例如30V稳压管的动态电阻约为50~100Ω。
环境温度变化时稳压管的击穿特性还会产生漂移。
6V以下的稳压管具有负温度系数、温度升高时稳压值减小。
击穿电压越低则负温度系数越大,例如3V 稳压管的温度系数约为-1.5mV/℃;6V以上为正温度系数、温度升高时稳压值增大,击穿电压越高的温度系数越大,例如30V稳压管的温度系数约为33mV/℃;而6V左右稳压管的温度系数最小、且在正负之间变化。
因而在允许情况下应尽可能选用击穿特性较硬、温度系数最小的6V稳压管。
这类稳压管的另一个缺点是同一型号管子其击穿电压的离散性很大,例如2CW1为7~8.5V、2CW5 为11.5~14V,要想挑出合适电压值的管子是非常困难的。
但如果对稳压值要求不高、电路又比较简单的场合,选用普通稳压管还是合适的。
如需要很低的基准电压,要求不高、而又不希望增加成本时,也可利用二极管的正向特性做为约0.7V的稳压管使用。
基准电压源与带隙基准电压源
基准电压源与带隙基准电压源
1、什么是基准电压源?
基准电压源是一种用作电压标准的高稳定度电压源。
目前,它已被广泛用于各种开关稳压器和开关电源中,它也是人们在电子仪器和精密测量系统中长期追求的一种理想器件。
传统的基准电压源是基于稳压管或晶体管的原理而制成的,其电压温漂为mV/℃级,电压温度系数高达10-3/℃~10-4/℃,无法满足现代电子测量之需要。
随着带隙基准电压源的问世,才使上述愿望变为现实。
2、什么是带隙基准电压源?
所谓能带间隙是指硅半导体材料在0K温度下的带隙电压,其数值约为1.205V,用Ug0表示。
带隙基准电压源的基本原理是利用电阻压降的正温漂去补偿晶体管发射结正向压降的负温漂,从而实现了零温漂。
由于未采用工作在反向击穿状态下的稳压管,因此噪声电压极低。
目前生产的基准电压源大多为带隙基准电压源。
带隙基准电压源的简化电路如图1-1-3所示。
基准电压源的表达式为
图1-1-3带隙基准电压源的简化电路
式中k——玻耳兹曼常数;
q——电子电量;
T——热力学温度。
其电压温度系数
式中,右边的第一项为负数(d UBE/d T≈-2.1mV/℃),第二项为正数。
因此只要选择适当的电阻比,使两项之和等于零,即可实现零温漂。
其条件是
式中,UBE0是常温T0下的UBE值。
这表明从理论上讲,基准电压与温度变化无关。
实际上由于受基极电流IB等因素的影响,UREF 只能接近于零温漂。
带隙基准电压源与普通稳压管的性能比较见表1-1-3。
基准电压源
基准电压源基准电压源是一种可以实现恒定、精确的电压,能够满足精密测量和控制的要求的电源。
它是多种电子设备的重要部件,表现出高精度,高可靠性和高稳定性,可以确保系统正常运行。
作为一种调节电压源,它是电子测量和控制的基本要素,它的精度直接影响系统的精确度。
基准电压源可以分为电池供电和有源供电两种。
电池供电的基准电压源主要通过单片机控制单元和电池来实现,它的输出电压受到电池的自然耗电影响。
这种类型的基准电压源具有结构简单,成本低且不易受外界环境干扰的特点,但输出电压的精度受到电池耗电的影响。
有源供电的基准电压源通常是一种靠正反馈环路控制的集成低压电压参考源,它的原理是通过正反馈环路检测机构将电压调整到用户设定值。
这种基准电压源具有精度高,输出电压稳定,噪声小,功耗小,整机可靠性高等优点,是目前具有较高应用价值的基准电压源。
基准电压源对于电子测量和控制的发展具有重要意义,要求具有高精度、高可靠性和高稳定性的输出电压,用于校准和测量系统的精度。
针对不同的使用场景,基准电压源的类型也不尽相同,除了正常的单电源外,还可以满足一些特殊的应用场景,根据具体情况选择适合的型号,以保证电路系统正常运行并达到设计性能要求。
基准电压源在应用中,要求具有良好的热可靠性和低噪声表现,以及容易操作性和可靠性。
这要求基准电压源的内部电路布局要紧凑合理,内部元器件必须符合精度要求,同时考虑材料、结构和外部环境等多方面因素,以满足可靠性和稳定性的要求。
基准电压源的性能取决于用于测试的精度,因此要实现准确的输出电压,需要校准它,以保证测量器的准确度和稳定性,尤其是振荡器、直流校准等应用。
校准是电子测量及控制的关键环节之一,它的正确性直接影响系统的精度和可靠性,因此,在实施过程中必须科学精准,并且要经常进行校准,以保证系统的正常运行。
总之,基准电压源为精密测量和控制作出了重要贡献,它对电子测量系统的精度和可靠性有着极大的影响。
为了保证系统的精度和稳定性,必须正确选择和合理安装基准电压源,并定期进行校准,以确保系统的正常运行。
基准电压源
基准电压源基准电压源是电路中一种重要的参考电压,它经常被用来检测电路中的相对变化,以帮助调整电路性能。
它可以是外部产生的,也可以是内部产生的。
基准电压源可以细分为外部和内部两种类型。
外部基准电压源通常是从另一台电脑中接收的,它的电压是由另一台电脑的程序控制。
内部基准电压源则是由另一个电路中的程序来控制,其电压可以设置为任意值。
基准电压源的作用是,在电路中维持电压的稳定,这种稳定的电压可以帮助保持电路性能的一致,从而使电路的性能更稳定、可靠。
基准电压源的主要要求是,保持稳定,无论是在环境温度、功耗、压力变化时。
此外,它还要求有良好的抗干扰性,能够抑制外部干扰对电压的影响,从而保持稳定的输出电压。
一般来说,基准电压源的电压精度范围为±0.05V~±1V,它能够有效抑制外部电压变化对内部电路的影响,同时,也能够提供电源电压的稳定性和精度。
基准电压源可以用于不同的电路,以检测电路中各部分的偏差、抑制输入电压变化对输出电压的影响,从而保持电路整体性能的稳定。
它也可以用于模拟电路,为模拟信号提供参考电压,以便保证模拟信号的精度,并有效抑制外部噪声的影响,以提高信号的精度。
基准电压源的发展史可以追溯到电压标准电路中第一次使用电压基准。
19世纪50年代,随着数字电子学的发展,基准电压源得以进一步改进,并逐渐普及应用,成为电子行业中的重要组成部分。
如今,基准电压源的设计和性能仍在不断改进,不仅可以满足电子行业中多个领域的需求,而且还可以提供较高的精度和可靠性,使用成本也相对较低。
因此,基准电压源在电子行业中得到了广泛的应用,受到了各个领域的欢迎。
综上所述,基准电压源是电子行业中一种重要的参考电压,它可以帮助保持电路性能的稳定,有效抑制外部电压变化对内部电路的影响,从而保持电路整体性能的稳定。
基准电压源的使用广泛,受到各个领域的欢迎。
参考电压基准电压
什么是参考电压/基准电压/Refence voltage
背景知识:
基准电压源或电压参考(Voltage Reference)通常是指在电路中用作电压基准的高稳定度的电压源。随着集成电路规模的不断增大。尤其是系统集成技术(SOC)的发展,它也成为大规模、超大规模集成电路和几乎所有数字模拟系统中不可缺少的基本电路模块。
从工作原理的角度来看,主要分为三类:标准电池、温度补偿基准稳压管和集成电路固体基准电压源(简称集成基准电压源)。
一,标准电池
标准电池可分为饱和型和非饱和型两种。
饱和型标准电池输出电压为1.018V,长期稳定性能达到1μV/年(即1ppm/年);但温度系数较大,在接近200℃时,总温度系数约 -40μV/℃ 。由于饱和型标准电池正负级的温度系数不同,在电极间温差仅0.0010℃时,就能引起0.3pV左右的电动势变化,因此要求使用中保持正负级的温度均衡。
从电路的连接方式角度来看,基准电压源主要分为两类。一类是三端式(输入、输出和公共引出端),又称串联式基准源。这种基准源的主要优点是静态电流比较低,可预先调整好标准输出电压,输出电流可以很大,而又不损失精度。另一类是二端式,又称并联式基准源。这种基准源的主要优点是工作极性比较灵活,但对负载要求比较严格,有时只能提供非标准电压。
现状和发展:
随着集成电路尤其是系统集成技术的发展,基准电压源的应用更为广泛。而复杂多变的工作环境、日益广阔的应用空间,都为基准电压源的发展提供了机遇和挑战。尤其是如何进一步降低基准电压源的温度系数和噪声,提高它的电压稳定度和长期稳定性,将成为人们长期关注和努力的课题。目前,己经出现利用 MOS管中载流子的迁移率和阅值电压的温度效应进行互补偿的设计技术等等。这预示着随着VLSI和SOC技术的迅猛发展,及各种新技术、新工艺的不断应用,高精度基准电压源的设计技术还将不断进步,具有更加广阔的发展空间。
基准电压源器件种类
基准电压源器件种类基准电压源是一种用于提供稳定、精确的电压参考的电子设备。
这些设备通常用于测试、测量和校准其他电子设备,以及在高精度应用中提供准确的参考电压。
基准电压源可以根据其工作原理和结构特点分为多种类型。
下面将介绍几种常见的基准电压源。
1. 精密电阻分压器(Precision resistor divider)精密电阻分压器是基准电压源中最简单的一种类型。
它使用高精度的电阻分压,通过改变电阻比例来产生所需的稳定电压。
这种基准电压源通常具有较高的精度和稳定性,但受到环境条件的影响较大。
2. 电压参考二极管(Voltage reference diode)电压参考二极管是一种使用了温度稳定的二极管特性的基准电压源。
它的输出电压与温度几乎无关,因此在一定温度范围内能够提供较为稳定的电压参考。
这种基准电压源常常被用于精密测量和校准设备中。
3. 温度补偿电路(Temperature compensated circuit)温度补偿电路是通过使用温度传感器和稳压电路来实现对基准电压温度漂移的补偿。
该电路会自动根据温度变化来调整输出电压,以保持其稳定性。
温度补偿电路通常被用于高精度应用,如仪器仪表和精密测量仪器。
4. 压差参考(Voltage difference reference)压差参考是一种基于比较两个电压值来产生稳定参考电压的技术。
它通常使用了反馈电路和差分放大器,通过将标准电压与所需电压进行比较,然后调整电路参数,以使输出电压保持恒定。
这种基准电压源通常具有良好的线性度和稳定性。
基准电压源在许多领域中都起着重要的作用。
无论是在科学研究、工业控制还是电子设备校准中,精确的电压参考都是不可或缺的。
选择适合应用需求的基准电压源对于保证测量结果的准确性至关重要。
因此,在选择和使用基准电压源时,需要考虑到环境条件、精度要求和应用场景等因素。
总结来说,基准电压源是一类用于提供稳定、精确电压参考的电子设备,包括精密电阻分压器、电压参考二极管、温度补偿电路和压差参考等不同类型。
齐纳二极管基准电压源原理
齐纳二极管基准电压源原理引言:在电子电路中,稳定的电压源是非常重要的。
齐纳二极管基准电压源是一种常用的电路,它可以提供稳定的基准电压。
本文将介绍齐纳二极管基准电压源的原理及其工作方式。
一、齐纳二极管简介齐纳二极管是一种特殊的二极管,也被称为温度补偿二极管。
它具有非常稳定的温度特性,可以用作基准电压源。
齐纳二极管的正向压降与温度几乎无关,使其成为理想的基准电压源。
二、齐纳二极管基准电压源原理齐纳二极管基准电压源的原理基于温度补偿的特性。
其电路如下图所示:图1 齐纳二极管基准电压源电路图在这个电路中,齐纳二极管D1通过电流源Ibias正向偏置。
当电流源Ibias的电流稳定时,齐纳二极管D1的正向压降也保持稳定。
因此,可以将齐纳二极管D1的正向压降作为基准电压Vref。
三、工作原理齐纳二极管基准电压源的工作原理如下:1. 齐纳二极管D1通过电流源Ibias正向偏置,使其工作在恒流区,保持稳定的电流流过D1。
2. D1的正向压降与温度无关,因此可以作为稳定的基准电压Vref。
3. 对Vref进行放大和缓冲,可以获得更高的输出电流能力和更低的输出阻抗。
四、应用齐纳二极管基准电压源广泛应用于需要稳定基准电压的电路中。
例如,精密测量仪器、模拟电路、电压参考源等。
五、优点和局限性齐纳二极管基准电压源具有以下优点:1. 温度稳定性好:齐纳二极管的正向压降与温度无关,可以提供稳定的基准电压。
2. 精度高:齐纳二极管基准电压源的输出电压精度较高,适用于需要高精度的电路。
3. 噪声低:齐纳二极管基准电压源的噪声较低,适用于对噪声要求较高的应用。
然而,齐纳二极管基准电压源也存在一些局限性:1. 电流稳定性要求高:齐纳二极管基准电压源对电流源的稳定性要求较高,一旦电流源发生变化,基准电压也会发生变化。
2. 温度漂移:尽管齐纳二极管的正向压降与温度无关,但是其他元件的温度漂移仍可能影响基准电压的稳定性。
3. 成本较高:齐纳二极管基准电压源中需要使用高精度、温度稳定性好的齐纳二极管,因此成本较高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电压基准芯片的参数解析及应用技巧
电压基准芯片是一类高性能模拟芯片,常用在各种数据采集系统中,实现高精度数据采集。
几乎所有电压基准芯片都在为实现“高精度”而努力,但要在各种不同应用场合真正实现高精度,则需要了解电压基准的内部结构以及各项参数的涵义,并要掌握一些必要的应用技巧。
电压基准芯片的分类
根据内部基准电压产生结构不同,电压基准分为:带隙电压基准和稳压管电压基准两类。
带隙电压基准结构是将一个正向偏置PN结和一个与VT(热电势)相关的电压串联,利用PN 结的负温度系数与VT的正温度系数相抵消实现温度补偿。
稳压管电压基准结构是将一个次表面击穿的稳压管和一个PN结串联,利用稳压管的正温度系数和PN结的负温度系数相抵消实现温度补偿。
次表面击穿有利于降低噪声。
稳压管电压基准的基准电压较高(约7V);而带隙电压基准的基准电压比较低,因此后者在要求低供电电压的情况下应用更为广泛。
根据外部应用结构不同,电压基准分为:串联型和并联型两类。
应用时,串联型电压基准与三端稳压电源类似,基准电压与负载串联;并联型电压基准与稳压管类似,基准电压与负载并联。
带隙电压基准和稳压管电压基准都可以应用到这两种结构中。
串联型电压基准的优点在于,只要求输入电源提供芯片的静态电流,并在负载存在时提供负载电流;并联型电压基准则要求所设置的偏置电流大于芯片的静态电流与最大负载电流的总和,不适合低功耗应用。
并联型电压基准的优点在于,采用电流偏置,能够满足很宽的输入电压范围,而且适合做悬浮式的电压基准。
电压基准芯片参数解析
安肯(北京)微电子即将推出的ICN25XX系列电压基准,是一系列高精度,低功耗的串联型电压基准,采用小尺寸的SOT23-3封装,提供1.25V、2.048V、2.5V、3.0V、3.3V、4.096V 输出电压,并提供良好的温度漂移特性和噪声特性。
图1.串联型电压基准芯片和并联型电压基准芯片示意图
表1列出了电压基准芯片与精度相关的各项参数。
首先要考虑输出电压的初始精度。
不同型号的电压基准芯片,初始精度可能从0.02%变化到1%。
这就意味着它们能够达到不同的系统精度,0.02%能够适应12位的系统精度,1%只能够适应6位的系统精度。
对于不能自行校准的系统,需要根据精度要求选择初始精度合适的芯片。
多数系统设计者可以通过软件或硬件校准调整初始精度误差,因此初始精度并不是限制电压基准芯片应用的主要因素。
表1.电压基准芯片的主要参数。
输出电压的温度漂移系数是衡量电压基准芯片性能的一个重要参数。
它代表一个平均量,可以通过这个参数估算芯片输出电压在整个工作温度范围内的变化范围,这个参数不代表某一特定温度点的输出电压随温度变化的斜率。
由温度漂移导致的精度误差很难通过系统校准的方法来减小。
ICN25XX系列电压基准芯片采用专利的补偿电路和修调电路实现了良好的温度漂移特性:在-40?C到125?C温度范围内,温度漂移系数小于10ppm/?C。
图2为测试得到的典型温度漂移曲线。
图2.ICN2520 典型温度漂移曲线
电压基准芯片的输出电压会随着使用时间增加而变化,通常是朝一个方向按指数特性变化,使用时间越长,变化越小,因此以公式1为单位表示电压基准芯片的长期稳定性,以反映输出电压变化量随使用时间指数衰减。
长期稳定性是在几个月甚至几年的使用过程中体现出来的,很难通过出厂时的测试来保证。
有些芯片会在出厂前经过一段时间的老化测试以保证较好的长期稳定性。
定期对系统进行校准,可以避免长期稳定性带来的误差。
对于无法定期校准的系统,就要选用具有良好的长期稳定性的电压基准芯片。
采用金属壳封装的芯片,由于排除了封装应力的影响,因而一般具有更好的长期稳定性。
噪声是衡量电压基准芯片的性能的另一个重要参数。
通常在0.1Hz到10Hz和10Hz到10kHz两个频率范围内给出噪声参数,以便设计者估算电压基准在所关注的频率范围内的噪声。
输出噪声通常与输出电压成比例,以ppm为单位。
0.1Hz到10Hz的噪声主要是闪烁噪声,或称为公式2噪声,其噪声幅度与频率成反比,一般会给出这一频率范围内噪声的峰峰值(P-P)。
不同半导体器件的闪烁噪声特性差别很大,例如MOSFET的闪烁噪声比较大,而双极型晶体管的闪烁噪声则要小得多,次表面击穿的稳压管闪烁噪声也很小,因此采用不同工艺设计的电压基准芯片,低频噪声特性差别会比较大。
图3.ICN2520电压基准芯片的噪声特性曲线
10Hz到10kHz频率范围以及高于这个频率范围的噪声主要是热噪声,在有效带宽内频率特性基本上是平坦的,通过给出的噪声有效值(rms)可以很容易估算出某一频率范围内的热噪声。
增大电流可以有效降低噪声,因此优良的噪声特性往往是以牺牲功耗为代价的。
用户可以在电压基准输出端添加滤波电容或其他滤波电路限制噪声带宽,以改善噪声特性,从而达到设计要求。
ICN25XX系列电压基准芯片采用特殊的内部结构,达到了CMOS工艺通常很难实现的低噪声水平:0.1Hz到10Hz为13ppm(P-P);10Hz到10kHz为32ppm(rms);而且还保持了CMOS 工艺的功耗优势,静态电流仅为75A。
某些应用对电压基准芯片的瞬态特性会有要求。
瞬态特性包括三个方面:上电建立时间、小信号输出阻抗(高频)、大信号恢复时间(动态负载)。
不同厂商推出的电压基准芯片的瞬态特性可能区别很大,良好的瞬态特性往往也是以牺牲功耗为代价的。
ICN25XX系列电压基准内部集成缓冲放大器,采用特殊结构,能够提供良好的瞬态特性、线性调整率及负载调整率,并能够保证很大输出滤波电容范围内的稳定性。