激光器介绍分解

合集下载

各种激光器的介绍

各种激光器的介绍

各种激光器的介绍激光(Laser)是光学与物理学领域中的重要研究方向之一,也是现代科学中应用最广泛的光源之一、激光器是产生、放大和产生激光的装置,它能够使光以高度有序的方式输出,并具有高度相干和高度定向的特性。

激光器可以根据不同的工作原理和激光频率,分为多种类型,下面将为大家介绍几种常见的激光器。

1. 固体激光器(Solid State laser):固体激光器是利用固体材料作为介质的激光器。

固体激光器的工作物质通常为具有特殊能级结构的晶体或玻璃材料。

最早的固体激光器是由人工合成的红宝石晶体制成的。

它具有高度的可靠性、较高的功率输出和较宽的谱段覆盖等特点,广泛应用于医疗、测量、通信、材料加工等领域。

2. 气体激光器(Gas laser):气体激光器是利用气体作为活性介质的激光器。

常见的气体激光器有二氧化碳激光器、氦氖激光器等。

其中,二氧化碳激光器是最早被发现和研究的激光器之一,具有连续激光输出、较高的功率密度和中远红外波段特点,广泛应用于材料加工、切割、医疗等领域。

3. 半导体激光器(Semiconductor laser):半导体激光器是利用半导体材料作为活性介质的激光器。

它是目前应用最广泛的激光器之一,常见的有激光二极管(LD)和垂直腔面发射激光器(VCSEL)。

半导体激光器具有小巧轻便、功耗低、寿命长等特点,广泛应用于激光显示、光通信、生物医学等领域。

4. 光纤激光器(Fiber laser):光纤激光器是利用光纤作为反射镜和放大介质的激光器。

它采用光纤的内部介质作为激光器的活性介质,激光通过光纤进行传输和放大。

光纤激光器具有高度稳定性、方便携带、适用于长距离传输等特点,广泛应用于材料加工、制造业、激光雷达等领域。

5. 半导体泵浦固体激光器(Diode-pumped solid-state laser):半导体泵浦固体激光器是利用半导体激光器(如激光二极管)泵浦固体材料产生激光的激光器。

它继承了固体激光器的高功率、高效率和稳定性等特点,同时又具有半导体激光器小尺寸、低功耗等优势。

常见激光器结构及器件功能介绍

常见激光器结构及器件功能介绍

常见激光器结构及器件功能介绍激光器是一种产生、放大和聚焦激光光束的器件。

它在现代科学、医疗、工业和战争等领域都有广泛的应用。

常见的激光器结构主要包括激光介质、泵浦源、光学谐振腔和输出窗口等部分。

下面将对这些部分的功能进行详细介绍。

1.激光介质:激光介质是激光器的核心部件,它能够使电能或光能转化为激光能量。

常见的激光介质包括气体(如二氧化碳、氩等)、固体(如Nd:YAG晶体)和液体(如染料溶液)等。

不同激光介质具有不同的特性,决定了激光器的输出特点。

2.泵浦源:泵浦源是激光器产生激光能量的能源,它对激光介质进行能量输入,使之达到激发态。

常见的泵浦源包括电子激发(如气体放电、闪光灯等)、光学激发(如半导体激光二极管、固体激光晶体等)和化学激发(如染料激光器)等。

泵浦源的选择决定了激光器的效率和波长等参数。

3.光学谐振腔:光学谐振腔是激光器中光的来回传播的空间,在谐振腔内激光能量发生倍增和光模式形成。

常见的光学谐振腔包括平面腔、球面腔和折射腔等。

谐振腔的结构和参数决定了激光器的输出特征,如脉冲宽度、线宽和波前质量等。

4.输出窗口:输出窗口是激光器中激光能量传出的接口,它具有透过激光的特性,并使激光尽量少损耗。

常见的输出窗口材料包括光学玻璃、光纤和光学晶体等。

输出窗口的选择和设计是影响激光器输出功率和光束质量的重要因素。

除了上述部分,激光器还包括一些辅助器件和系统,如冷却系统、调谐器和稳频器等,它们的功能主要有以下几个方面:1.冷却系统:激光器在工作过程中会产生大量的热量,需要通过冷却系统来散热,以保持激光介质和泵浦源的稳定性。

常见的冷却方式包括空气冷却、水冷却和制冷剂冷却等。

2.调谐器:激光器的波长可能需要进行调整,以适应不同应用的需求。

调谐器通过改变光学谐振腔的长度或谐振性能,实现激光器波长的可调。

3.稳频器:激光器的频率稳定度对一些应用非常重要。

稳频器通过使用反馈调节和控制系统,使激光器的频率保持在目标值附近的范围内。

激光器的工作原理讲解

激光器的工作原理讲解

激光器的工作原理讲解激光器是一种能够产生激光的装置,其工作原理基于能级跃迁和受激辐射的过程。

下面将详细介绍激光器的工作原理。

激光器的主要组成部分包括:光源、增益介质和光腔。

首先,激光器的光源即外界提供的能量,它能够激发光子从基态跃迁到激发态,产生激光的能级跃迁所需的能量。

其次,激光器的增益介质是激光放大器的核心部件,它负责产生和放大激光。

在激光器中常用的增益介质有:气体(如氦氖激光器、二氧化碳激光器)、晶体(如钕:钋酸钆激光器)、半导体材料(如半导体激光器)等。

这些增益介质在受到外界能量刺激后,产生能级跃迁和受激辐射的过程,从而产生激光。

具体来说,激光器中的增益介质处于一个激发态能级,它有一个高能级和一个低能级。

当外界能量激发增益介质时,光子能够从低能级跃迁到高能级的激发态,形成一个激发态聚集。

而由于激光器中的增益介质受到激发态聚集的初始扰动,这些激发态聚集会随着时间的推移发生非平衡运动,从而形成光子之间的能量传输。

在这个过程中,当一个处于激发态的光子与一个低能级的光子相互作用时,受激辐射的过程会发生。

也就是说,处于激发态的光子可以激发一个低能级的光子跃迁到同样的激发态,并且两者的能量和相位几乎完全相同。

这个过程会引起光子的指数增长,从而形成激光光束。

最后,激光器的光腔是光子在增益介质中来回传播的空间。

光腔一般有两个反射镜组成,一个是部分穿透镜(输出镜),它允许一部分激光通过;另一个是全反射镜(反射镜),它将大部分激光反射回来。

由于全反射镜的存在,光子在光腔中来回多次反射,增强了激光的功率。

当激光增益与光腔损耗达到平衡时,激光器就能稳定地输出激光。

总结起来,激光器的工作原理是通过外界能量的激发、增益介质的能级跃迁和受激辐射的过程,形成光子之间的能量传输,并利用光腔的多次反射来增强激光功率。

这种高聚集、高能量的光子群就是我们所说的激光。

典型激光器介绍大全(精华版)ppt课件

典型激光器介绍大全(精华版)ppt课件
• 钛蓝宝石(钛宝石,Ti3+:AL2O3) • Nd:YAG泵浦的Co2+:MgF2激光器。
敏化剂
• 在晶体中除了发光中心的激活离子外,再掺入一种或多种 施主离子,主要作用是吸收激活离子不吸收的光谱能量, 并将吸收到的能量转移给激活离子。
• 双掺或多掺杂晶体生长困难,工艺复杂。
精选PPT课件
27
1、红宝石的基本特性
精选PPT课件
10
氦-镉激光器
以镉金属蒸气为发光物质,主要有两条连续 谱线,即波长为325nm的紫外辐射和441.6nm的蓝 光,典型输出功率分别为1~25mW和1~100mW。主 要应用领域包括活字印刷、血细胞计数、集成电 路芯片检验及激光诱导荧光实验等。
俄罗斯PLASMA公司的氦 镉激光器
精选PPT课件
由不同组分的半导体材料做成激光有源区和约束区的 激光器。
特点:体积最小、重量最轻,使用寿命长,有 效使用时间超过10万小时。
输出波长范围:紫外、可见、红外 输出功率:mW、W、kW。
精选PPT课件
14
DFB半导体激光器示意图
DBR半导体激光器示意图
精选PPT课件
15
垂直腔面发射半导体激光器(VCSEL)
量子级联激光器(quantum cascade lasers, QCLs)
基于电子在半导体量 子阱中导带子带间跃 迁和声子辅助共振隧 穿原理的新型单极半 导体器件。
精选PPT课件
16
光纤耦合(尾纤型-pigtail package)半导体激 光器件
ProLite型光纤耦合单发射激光器
精选PPT课件
谱线已达数千种 (160nm~4mm)
工作方式:连续运转(大多数)
多数气体激光器有瞬时功率不高的弱点。

几种激光器的结构示意

几种激光器的结构示意

几种激光器的结构示意
1.连续激光器:连续激光器包括长激光棒激光器,它包括了发射腔(蓝色),它设有折射器(紫色)和反射镜(绿色),发射腔内填入了激光活性源,它可以产生多模微弱的,有着同一波长的光束。

通过折射器和反射器产生的多模弱光束聚焦到了微粒活性源上。

微粒活性源内产生的激光辐射通过折射器和反射镜回到了发射腔中,从而得到不断增强的激光辐射。

2.瞬态激光器:瞬态激光器主要将诸如质子、氘离子等离子通过电场的影响,在真空腔中的聚焦调制,使离子中的电子迅速由原有的能级跃迁到下一能级,并同时释放出许多的光子,从而达到激发激光的效果,瞬态激光器的激光输出持续极短的时间,极高的能量,瞬态激光器的结构一般由一个真空腔和一组高压发生器组成,真空腔内装有可发射激光的离子源和能控制激光路径的反射镜,发射器外设置与腔体的电连接,高压发生器用于给该真空腔体提供必要的电压。

3.钝/硬激光器:钝/硬激光器为可调节激光源,原理是以热熔合或焊接的方式将激光材料(基体材料)和激光剂装入金属管中,经高温、高压作用,释放出紫外光,再经过一系列有折射镜和反射镜的发射腔。

《激光器介绍》课件

《激光器介绍》课件

激光器与人工智能、3D打印等技术结合,创造更多智能化和多样化的应用。
结论和总结
激光器是一项伟大的科技创新,它在多个领域的应用不断拓展。我们必须充 分了解其原理和注意事项,推动激光技术的发展和应用。
《激光器介绍》PPT课件
欢迎来到《激光器介绍》的PPT课件! 本课程将带您深入了解激光器的定义和 原理,以及其在不同领域的应用。让我们一起探索激光技术的无限潜力!
激光器的定义和原理
激光器是通过受激辐射产生的一种具有高度相干性、高照射强度和直行性的 光源。它的工作原理基于光子的双能态能级跃迁。
不同类型的激光器
戴眼镜
在使用激光器时,务必佩戴适当的激光安全眼镜以保护视力。
避免直射
避免将激光束直接照射到人体和易燃物上,以免引发安全事故。
操作规范
按照使用说明进行操作,确保激光器使用安全可靠。
激光器的发展趋势
1
更小更强
激光器体积将进一步缩小,但功率将持续增强,提供更多应用领域。
2
更高效更环保
激光器的效率将提高,能源消耗将减少,以促进可持续发展。
1 气体激光器
使用气体作为激发介质, 例如二氧化碳激光器和氩 离子激光器。
2 固体激光器
使用固态材料作为激发介 质,例如Nd:YAG激光器和 钛宝石激光器。
3 半导体激光器
使用半导体材料作为激发 介质,例如激光二极管和 垂直腔面发射激光器。
激光器的应用领域
医疗行业
激光器在手术、皮肤治疗和眼 科手术等领域有广泛应用。
通信领域
激光信号传输在光纤通信和激 光雷达等领域发挥重要作用。
制造业
激光切割、激光焊接和激光打 印等技术在制造业中得到广泛 应用。
激光器的优点与限制

激光器简介介绍

激光器简介介绍
光测距等。
05 激光器的未来发展趋势和 挑战
高功率激光器的研发和应用
高功率激光器在国防、工业和 医疗等领域具有广泛的应用前 景。
研发高功率激光器的关键在于 提高输出功率、光束质量和稳 定性,以及降低制造成本。
高功率激光器在材料加工、激 光雷达、照明和通信等领域已 取得重要进展。
超快激光器的研发和应用
应用
二氧化碳激光器在医疗美容中应用广 泛,如激光手术刀、皮肤美白等。
固体激光器
特点
体积小、重量轻、效率高、操作简单。
应用
用于材料加工、打标、雕刻等领域。
液体激光器
特点
输出波长可调、效率较高。
应用
用于生物医学、光谱学等领域。
半导体激光器
要点一
特点
体积小、寿命长、价格便宜。
要点二
应用
用于光纤通信、数据存储等领域。
激光打标
利用激光的高能量密度在 物体表面刻印图案、文字 或编码等标识,实现高效 、环保的打标方式。
激光焊接
通过激光束将两个或多个 材料连接在一起,具有高 精度、高强度和高密封性 等优点。
医学领域
激光治疗
利用激光的能量照射人体组织, 通过热能、光化学效应等作用达 到治疗目的,如激光手术、激光
美白等。
感谢您的观看
光纤激光器
特点
输出波长稳定、效率高、光束质量好。
VS
应用
用于高速光纤通信、激光雷达等领域。
03 激光器的组成和工作02
03
04
增益介质
用于提供能量放大作用,通常 由气体、液体、固体或半导体
等材料组成。
泵浦源
用于向增益介质提供能量,通 常采用光、电、化学等方法。

激光器的种类讲解

激光器的种类讲解

激光器的种类讲解激光器是一种能够产生高纯度、高亮度和一致的光束的装置。

他们在科研、医学、工业和通信等领域中具有广泛的应用。

根据激光器的工作原理和参数,可以将激光器分为多种类型,如气体激光器、固体激光器、半导体激光器和光纤激光器等。

本文将对各种类型的激光器进行深入的讲解。

1.气体激光器:气体激光器是最早被发明出来的激光器类型之一、它们通过用电流激励气体分子来产生所需波长的激光。

常见的气体激光器有氦氖激光器(He-Ne)、二氧化碳激光器(CO2)、氩离子激光器(Ar)等。

气体激光器具有较大的输出功率和较高的波长稳定性,适用于医学、切割和焊接等领域。

2.固体激光器:固体激光器是使用固体材料作为激光介质的激光器。

常见的固体材料有Nd:YAG、Nd:YVO4和Ti:sapphire等。

固体激光器可以通过激光二极管或弧光灯等能量源进行激发。

它们具有高效、高稳定性和长寿命的特点,适用于雷达系统、激光加工和科学研究等领域。

3.半导体激光器:半导体激光器是通过电流注入拥有p-n结构的半导体材料,使其产生激光。

半导体材料可以是单一的半导体材料,如GaAs、InP,也可以是多层薄膜结构,如VCSEL(垂直腔面发射激光器)。

半导体激光器具有小型化、低功率和高效率的特点,广泛应用于通信、光存储和光电显示等领域。

4.光纤激光器:光纤激光器是利用光纤作为激光介质的激光器。

光纤激光器通常包括光纤光源和光纤放大器两个部分。

光纤光源是利用受激辐射从光纤核心产生激光,通常使用稀土离子注入的光纤作为激发材料。

光纤放大器则通过将输入的激光信号放大,从而得到高亮度的激光输出。

光纤激光器具有小型化、高品质和集成化的特点,广泛应用于通信、激光打标和光纤光源等领域。

除了以上所述的主要激光器类型,还有许多其他的激光器类型,例如自由电子激光器、化学激光器和超短脉冲激光器等。

不同类型的激光器在应用领域和性能参数上有着差异。

因此,在选择激光器时,需要根据具体需求来确定最合适的类型和参数。

激光器的分类介绍

激光器的分类介绍

激光器的分类介绍激光器是一种能够产生具有高度一致性和同步性的激光光束的器件。

根据激光器的工作原理、激光器的波长、激光器的应用领域等不同方面的分类,下面将对激光器进行详细的介绍。

一、根据激光器的工作原理进行分类1.固体激光器:固体激光器是利用外部能量源(例如闪光灯、激光二极管)激励激光介质(例如Nd:YAG、Nd:YVO4)产生激光的一种激光器。

固体激光器具有高效率、高能量、高品质光束等特点,在军事、医学、科研等领域有广泛的应用。

2.气体激光器:气体激光器是利用放电激励稀薄气体分子产生粒子数密度高、能级分布宽的激光介质,然后通过光学共振腔将产生的激光进行放大和聚束。

常见的气体激光器有氦氖激光器、CO2激光器等,广泛应用于科研、测量、医学和工业等领域。

3.半导体激光器:半导体激光器是利用半导体材料在电流或者注入光子的作用下产生受激辐射所形成的激光。

其特点是体积小、效率高、功率低、寿命短等,被广泛应用于光通信、激光打印、激光显示等领域。

4.液体激光器:液体激光器采用液体介质作为激光介质进行激光产生。

液体激光器相比固体激光器和气体激光器具有较高的能量、频率较宽、调谐范围较大等特点,在科研和工业领域有着广泛的应用。

二、根据激光器的波长进行分类1.可见光激光器:可见光激光器产生的激光波长在400~700纳米之间,能够被人眼所感知。

可见光激光器广泛应用于激光显示、激光打印、激光医学等领域。

2.红外激光器:红外激光器产生的激光波长在700纳米到1毫米之间,是不可见光。

红外激光器在通信、材料加工、医学、军事等领域有广泛的应用。

3.紫外激光器:紫外激光器产生的激光波长在10纳米到400纳米之间,也是不可见光。

紫外激光器在微加工、光致发光、光解离等领域有重要的应用。

三、根据激光器的应用领域进行分类1.医学激光器:医学激光器广泛应用于激光治疗、激光手术等医学领域,例如激光照射可以刺激细胞增殖、促进伤口愈合,还可以用于激光石化术、激光治疗静脉曲张等。

常见激光器结构及器件功能介绍

常见激光器结构及器件功能介绍

常见激光器结构及器件功能介绍激光器是一种产生并放大激光束的装置,常见的激光器结构包括气体激光器、固体激光器、液体激光器和半导体激光器。

下面将对这些常见的激光器结构及器件功能进行介绍。

1.气体激光器:气体激光器是利用气体分子或原子的电子能级跃迁放大光子束的装置。

常见的气体激光器包括二氧化碳激光器和氩离子激光器。

(1)二氧化碳激光器(CO2激光器):它是利用二氧化碳气体的分子振动能级跃迁来放大激光。

主要用于切割、打孔、焊接等工业加工领域。

(2)氩离子激光器:它利用氩离子气体的电子能级跃迁来放大激光。

主要应用于生物医学、光学雷达等领域。

2.固体激光器:固体激光器是利用固体材料(如纳、晶体、陶瓷等)的电子能级跃迁放大光子束的装置。

常见的固体激光器包括Nd:YAG激光器和雷射晶体放大器。

(1)Nd:YAG激光器:它是利用掺杂了钕离子的钇铝石榴石晶体的电子能级跃迁来放大激光。

主要用于切割、焊接、医疗美容等领域。

(2)雷射晶体放大器:它是利用高浓度掺杂放大材料(如三氧化二铜、Cr4+:YAG等)的反射效应来放大激光。

主要应用于高能激光研究和军事领域。

3.液体激光器:液体激光器是利用液体材料的分子或原子能级跃迁放大光子束的装置。

常见的液体激光器包括染料激光器和化学激光器。

(1)染料激光器:它利用在溶液中溶解染料分子的电子能级跃迁来放大激光。

主要用于光谱分析、显示技术等领域。

(2)化学激光器:它利用化学反应产生的激发态物质来放大激光。

主要应用于军事领域和科学研究。

4.半导体激光器:半导体激光器是利用半导体材料(如GaN、InP等)的电子能级跃迁放大光子束的装置。

常见的半导体激光器包括激光二极管和垂直腔面发射激光器(VCSEL)。

(1)激光二极管:它利用PN结的电子能级跃迁来放大激光。

主要应用于光通信、光储存、激光打印等领域。

(2)VCSEL:它利用垂直结构的PN结的电子能级跃迁来放大激光。

主要应用于光通信、生物传感等领域。

第1章-典型激光器简介-续分解

第1章-典型激光器简介-续分解
• DE段叫作自持暗放电,放电不稳定
• 平坦的EF段。该区域的特点是电流增加,但管压降几乎保 持不变,放电管内出现明暗相间的辉光,称之为正常辉光放 电。辉光放电阶段,由于二次发射的电子随电场的增加而迅 速增加,故当放电管端电压略有增加时,放电电流就增大很 多。辉光放电的电流范围一般在10-4~10-1 A之间
染料激光器主要应用于科学研究、医学等领域,如激光光 谱学、光化学、同位素分离、光生物学等方面。
1966年,世界上第一台染料激光器——由红宝石激光器泵 浦的氯铝钛花青染料激光器问世。
4)半导体激光器
半导体激光器也称为半导体激光二极管,或简称激光二极管 (LaserDiod,缩写LD)。由于半导体材料本身物质结构的特 异性以及半导体材料中电子运动规律的特殊性,使半导体 激光器的工作特性有其特殊性。
• 分子激光器中产生激光作用的是未电离的气体分子,激光跃迁 发生在气体分子不同的振-转能级之间。采用的气体主要有 CO2、CO、N2、O2、N2O、H2O、H2 等分子气体。分子激光 器的典型代表是CO2 激光器。
• 准分子激光器。所谓准分子,是一种在基态离解为原子而在激 发态暂时结合成分子(寿命很短)的不稳定缔合物,激光跃迁产 生于其束缚态和自由态之间。采用的准分子气体主要有XeF* 、KrF* 、ArF* 、XeCl* 、XeBr* 等。其典型代表为XeF* 准 分子激光器。
• 半导体激光器广泛应用于光纤通信、光存储、光信息处 理、科研、医疗等领域,如激光光盘、激光高速印刷、全 息照相、办公自动化、激光准直及激光医疗等方面。
• 1962年,世界上第一台半导体激光器———GaAs激光器 问世。
5)化学激光器 化学激光器是通过化学反应实现粒子数反转从而产生受激光 辐射的。工作物质可以是气体或液体,但目前主要是气体,如 氟化氢(HF)、氟化氚(DF)、氧碘(COIL)等。

各种激光器的介绍

各种激光器的介绍

各种激光器的介绍激光器是一种将能量源转化为高强度、高单色性、高定向性的激光光束的装置。

激光器被广泛应用于医疗、通信、材料加工、测量检测等各个领域。

下面将介绍几种常见的激光器。

1.氦氖激光器(He-Ne激光器)氦氖激光器是一种气体激光器,它利用氦和氖的混合气体在波长为632.8纳米的红光范围内产生激光。

氦氖激光器具有单一稳定频率、高空间定向性和较小的光腔长度,适用于光学实验、干涉测量等领域。

2.二极管激光器(LD激光器)二极管激光器是一种半导体激光器,它是由多层不同材料的半导体材料组成的结构。

二极管激光器广泛应用于通信领域,如光纤通信、光存储等。

它具有体积小、效率高的特点。

3.CO2激光器CO2激光器是一种分子激光器,其工作介质是CO2分子。

CO2激光器具有中红外波段的辐射,波长在9.6-10.6微米之间。

CO2激光器在材料加工、医疗等领域有广泛应用,如切割、焊接、组织切割等。

4.Nd:YAG激光器Nd:YAG激光器是一种固体激光器,其工作介质是掺有镓和铽离子的YAG晶体。

它具有较长的荧光寿命和较高的能量转换效率,常用于材料加工、医疗、科学研究等领域。

5.氮化镓激光器(GaN激光器)氮化镓激光器是一种宽禁带半导体激光器,它利用氮化镓材料发射紫外激光。

GaN激光器具有较高的工作温度、较长的寿命和较高的光电子转换效率,可用于蓝光显示、白光LED照明等领域。

6.染料激光器染料激光器是一种利用染料溶液作为工作介质的激光器。

它具有波长调谐范围广、转换效率高的特点。

染料激光器在科学研究、生物医学等领域有广泛应用。

7.纳秒脉冲激光器纳秒脉冲激光器是一种能够在纳秒时间尺度内产生激光脉冲的激光器。

它广泛应用于材料加工、精密测量、医疗等领域,如激光打标、激光切割、激光测距等。

总之,激光器具有波长可调、能量可控、光束质量高等优点,能满足不同应用领域的需求。

随着材料科学、光学技术的不断发展,激光器的种类也在不断增多,并得到了广泛的研究和应用。

激光器的简介以及发展历程课件

激光器的简介以及发展历程课件
详细描述
气体激光器通常采用气体作为增益介质,通过放电或燃烧等方式激发气体内部 的原子或分子,使它们跃迁到高能级状态,从而实现光的放大。常见的气体激 光器有氦氖激光器和二氧化碳激光器等。
液体激光器
总结词
利用液体作为增益介质的激光器。
详细描述
液体激光器通常采用有机染料或重金属盐溶液作为增益介质,通过激发介质内部 的分子或离子产生光子,从而实现光的放大。常见的液体激光器有染料激光器和 金钠米激光器等。
科研领域
激光光谱学
利用激光技术对物质进 行光谱分析,以研究其
组成和结构。
激光物理
利用激光技术对物理现 象进行研究和实验,如 量子光学、非线性光学
等。
激光化学
利用激光技术对化学反 应进行激发和观测,以 提高化学反应的效率和
产率。
生物医学成像
利用激光技术对生物组 织进行无损检测和成像 ,如光学显微镜、共聚
02
激光器的发展历程
激光器的起源
激光器的起源可以追溯到20世纪60年代,当 时科学家们开始探索光的相干性,并发现了 光的受激发射现象。
1960年,美国科学家梅曼发明了第一台红宝 石激光器,从此开启了激光技术的新篇章。
激光器的发明引起了广泛的关注和兴趣,因 为它具有高亮度、高方向性、高单色性和高 相干性的特点,为科学研究、工业生产和军 事领域提供了新的工具和手段。
焦显微镜等。
感谢您的观看
THANKS
02
光束质量
激光的光束质量影响其聚焦和 传输效果,光束质量越高,激 光的亮度越高。
03
稳定性
激光器的稳定性对其应用效果 和使用寿命具有重要影响,稳 定的激光器能够保证长时间的 工作效果。
04

调Q激光器分解课件

调Q激光器分解课件

医疗美容
调Q激光器在医疗和美容 领域的应用也日益广泛, 如激光治疗、皮肤美容等 。
调Q激光器的发展历程
起源
调Q激光器最早起源于20 世纪60年代,当时主要用 于军事领域。
发展
随着科技的进步,调Q激 光器的性能不断提高,应 用领域也不断拓展。
现状
目前,调Q激光器已经成 为激光技术领域的重要分 支,在各个领域得到广泛 应用。
调Q激光器的小型化与集成化
小型化
随着微纳加工技术的发展,调Q激光 器有望实现更小尺寸,便于携带和集 成。
集成化
将调Q激光器与其他光器件集成在同 一芯片上,实现光子集成回路,降低 成本并提高稳定性。
调Q激光器的智能化与网络化
智能化
通过引入人工智能技术,实现调Q激光器的智能控制和优化,提高其输出光束 质量和稳定性。
重要影响。
04
当Q开关关闭时,谐振腔的损耗增加,导致激光无法 形成振荡;当Q开关打开时,谐振腔的损耗减小,激 光迅速增长并形成脉冲输出。
03 调Q激光器的特性与性能
CHAPTER
调Q激光器的输出特性
输出波长范围
01
调Q激光器的输出波长范围广泛,可覆盖可见光到近红外波段,
满足不同应用需求。
输出光束质量
04
在调Q激光器中,选择合适的泵浦源需要根据实际需求和条件进行选 择。
Q开关
Q开关是调Q激光器中的关键元件,它通过控制谐振 腔的品质因子(Q值)来实现脉冲激光输出。
输标02入题
Q开关通常采用可饱和吸收体或声光调制器等元件实 现,通过调节其工作状态来控制谐振腔的损耗。
01
03
Q开关的性能参数包括脉冲宽度、重复频率和脉冲能 量等,这些参数对调Q激光器的输出特性和应用具有

激光器及其原理简介讲解

激光器及其原理简介讲解
3.2常用激光器件介绍
1.固体激光器2.气体激光器3.染料激光器4.化学激光器*
5.
自由电子激光器*
损耗——光的吸收、散射、衍射、透射
(包括一端的部分反射镜处必要的激光输出)等。
激光形成阶段:增益>损耗激光稳定阶段:增益=损耗增益损耗
一.激光在工作物质内传播时的净增益
设x=0处,光强为I 0xI
x+dx I + d I
有d I∝Idx
写成等式d I= G I dx
定义:增益系数G (gain coefficient
、3.39 μm ——R1、R2小
——G m大(不满足阈值条件,形不成激光)。例如,若氦氖激光器N e原子的
0.6328 μm, 1.15 μm, 3.39 μm受激辐射光中,只让波长0.6328 μm的光输出,
利用加大纵模频率间隔
Δνk的方法,可以使Δν区间中只存在一个纵模频率。
比如缩短管长L到10 cm,
(L ight A mplification by S timulated E mission of R adiation
3.1激光原理
一.特点:
方向性极好(发散角~10 -4弧度)
脉冲瞬时功率大(可达~10 14瓦)
♦空间相干性好,有的激光波面上
各个点都是相干光源。
♦时间相干性好(Δλ~10-8埃),
相干长度可达几十公里。
相干性极好
亮度极高
按工作方式分
连续式(功率可达104W)
脉冲式(瞬时功率可达1014 W)
三.波长:极紫外──可见光──亚毫米
(100 n m)(1.222 m m)二.种类:
固体(如红宝石Al
2O 3)

激光器介绍分解

激光器介绍分解

《激光原理与技术》
• 第一类非弹性碰撞:快速电子于气体粒子碰撞:
A+e(快速)
A﹡+e(慢)
A+e(快速)
A++e(慢)
• 第二类非弹性碰撞:共振能量转移、电荷转移和潘宁效 应
共振能量转移: A﹡ +B
A +B﹡+△E
电荷转移: A+ +B △E
A +B+﹡ +
潘宁效应: A﹡ +B
A + B+﹡ +
• (2) 输出功率特性
P114图3.8,3.9,3.10
20
第21页/共63页
物理与电子工程学院
《激光原理与技术》
21
第22页/共63页
物理与电子工程学院
《激光原理与技术》
22
第23页/共63页
物理与电子工程学院
2激光器
《激光原理与技术》
• C02激光器的主要特点是输出功率大,能量转换效率高, 输出波长(10.6um) ,激光加工、医疗、大气通信及 其他军事应用。 以C02、N2、CO、He等的混合气体 为工作物质。激光跃迁发生在C02分子的电子基态的 两个振动-转动能级之间。混合气体的作用是提高激光 器的输出功率和效率。
△E
10
第11页/共63页
物理与电子工程学院
《激光原理与技术》
激光器
• 气体原子激光器 • 输出谱线:632.8nm,1.15um,3.39um等,以
632.8nm为最常见。 • 功率在mW级,最大1W • 光束质量好,发散角可小于1mrad • 单色性好,带宽<20Hz • 稳定性高 • 应用很广泛:测量,激光照排,激光治疗
• Ne原子有10个电子, 基态:1S0;电子分布 1S22S22P6,激发态:1S、 2S、3S、2P、3P等, 它们对应的外层电子组 态分别为2P53s、 2P54s、2P5S5、 2P53P、2P54P。

激光器介绍

激光器介绍

一、激光产生的原理1、物质的发光过程在自然界,任何物质的发光都需要经过两个过程,受激吸收过程和自发辐射过程。

(1)、吸收过程当物质受到外来能量如光能、热能、电能等的作用时,原子中的电子就会吸收外来能量(如一个光子),从低轨道跃迁到高轨道上去,或者说处于低能态的粒子会吸收外来能量,跃迁至高能态。

由于吸收过程是在外来光子的激发下产生的,所以称之为“受激吸收”。

受激吸收的特点是:必须有外来光子(或其他方式的能量)“刺激”,而且这个外来光子的能量必须是:0N h E E ν=- (N=1,2,3……)式中E 0是粒子吸收外界能量前所处的能级,E N 是吸收后所处的能级 ,h 为普朗克常数。

(2)、自发辐射过程被激发到高能级上的粒子是不稳定的,它们在高能级上只能停留一个极为短暂的时间,然后立即向低能级跃迁。

这个过程是在没有外界作用的情况下完全自发地进行的,所以称为“自发跃迁”。

粒子在自发跃迁过程中,要把原先吸收的能量释放出来,所释放的能量数值为E=E N -E 0。

释放能量转变为热能,传给其他粒子,这种跃迁叫做“无辐射跃迁”,不会有光子产生。

另一种是以光的形式释放能量(叫做自发辐射跃迁),即向外辐射一个光子,于是就产生了光。

自发辐射过程放出的光子频率,由跃迁前后两个能级之间的能量差来决定,即:可见,两个能级之间的能量差越大,自发辐射过程所放出的光子频率就越高。

自发辐射光极为常见,普通光源的发光就包含受激吸收与自发辐射过程。

前一过程是粒子由于吸收外界能量而被激发至高能态;后一过程是高能态粒子自发地跃迁回低能态并同时辐射光子。

当外界不断地提供能量时,粒子就会不断地由受激吸收到自发辐射,再受激吸收,再自发辐射,如此循环不止地进行下去。

每循环一次,放出一个光子,光就这样产生了。

0N E E h ν-=自发辐射的特点是:由于物质(发光体)中每个粒子都独立地被激发到高能态和跃迁回低能态,彼此间没有任何联系,所以各个粒子在自发辐射过程中产生的光子没有统一的步调,不仅辐射光子的时间有先有后,波长有长有短,而且传播的方向也不一致。

激光器的工作原理讲解

激光器的工作原理讲解

激光器的工作原理讲解激光器(Laser),全称是“光放大器器”,是一种利用受激辐射产生的、具有高度单色性、凝聚性、取向性和单一相干性的强光源。

它的工作原理源于量子力学中的受激辐射现象,下面将对激光器的工作原理进行详细的讲解。

激光的产生主要通过两种方法实现,分别是受激辐射和自发辐射。

其中,受激辐射是指当一束光经过透明的活性介质时,有一部分光子能够与介质内部的激发态粒子相互作用,使其跃迁到更低能级,并放出能量。

而自发辐射是指介质中的激发态粒子自发地跃迁到基态,并放出能量。

在激光器中,通常使用半导体材料或气体作为激光介质。

半导体激光器是利用固体-液体-气体中的半导体材料,通过电子跃迁实现激光的产生。

而气体激光器是通过放电激发气体分子产生的。

对于半导体激光器来说,其工作原理可以大致分为以下几个步骤:首先,通过向半导体的两侧施加电压,形成一个pn结,当没有电流通过时,半导体处于静止状态。

接着,在pn结中加入电流,电子和空穴开始向前扩散。

当电子和空穴相遇时,发生非辐射性复合,产生光子。

这些光子会在活性层中发生受激辐射作用,并引起光子的放大。

最后,当光经过反射器时,部分光子会被反射回来,进一步激发更多的受激辐射,最终形成激光束。

对于气体激光器来说,其工作原理主要涉及激发气体分子的能级跃迁。

通常,激光管中充满了一种或多种气体混合物,如二氧化碳、氦气和氢气等。

当外部电源施加电压时,在气体管内产生电流,电子与气体分子碰撞时,会发生电子的激发和解离,从而使气体分子达到激发态。

激发态的分子会通过受激辐射的形式向低能级跃迁,并释放出光子。

这些光子会与其他受激分子发生碰撞,使得光子的数目逐渐增加,最终形成激光束。

接下来,让我们来看一下激光的放大过程。

放大是将激光信号增强到足够高能量的过程。

在激光器中,放大通常使用光学谐振腔来实现。

光学谐振腔由两面反射镜(一个是部分反射镜,另一个是全反射镜)组成。

当激光从激光介质产生后,它会通过部分反射镜进入光学谐振腔,并来回地在反射镜之间来回反射。

激光器的基本结构_激光器的基本构造特点【完整解析】

激光器的基本结构_激光器的基本构造特点【完整解析】

激光器的基本结构_激光器的基本构造特点内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.激光器一般包括以下部分。

1、激光工作介质激光的产生必须选择合适的工作介质,可以是常体、液体、固体或半导体。

在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。

显然亚稳态能级的存在,对实现粒子数反转世非常有利的。

现有工作介质近千种,可产生的激光波长包括从真空紫外道远红外,非常广泛。

作为激光器的核心,是由激活粒子(都为金属)和基质两部分组成,激活粒子的能级结构决定了激光的光谱特性和荧光寿命等激光特性,基质主要决定了工作物质的理化性质。

根据激活粒子的能级结构形式,可分为三能级系统(例如红宝石激光器)与四能级系统(例如Er:YAG激光器)。

工作物质的形状目前常用的主要有四种:圆柱形(目前使用最多)、平板形、圆盘形及管状。

2、激励源为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。

一般可以用气体放电的办法来利用具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激励、化学激励等。

各种激励方式被形象化地称为泵浦或抽运。

为了不断得到激光输出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。

泵浦源能够提供能量使工作物质中上下能级间的粒子数翻转,目前主要采用光泵浦。

泵浦光源需要满足两个基本条件:有很高的发光效率和辐射光的光谱特性应与工作物质的吸收光谱相匹配。

常用的泵浦源主要有惰性气体放电灯、太阳能及二极管激光器。

其中惰性气体放电灯是当前最常用的,太阳能泵浦常用在小功率器件,尤其在航天工作中的小激光器可用太阳能最为永久能源,二极管(LD)泵浦是目前固体激光器的发展方向,它集合众多优点于一身,已成为当前发展最快的激光器之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7
物理与电子工程学院
《激光原理与技术》
原子气体激光器:
产生激光作用的是没有电离的气体原子,所采用的气 体主要是几种惰性气体(如氦、氖、氩、氪、氙等), 有时也可采用某些金属原子(如铜、锌、镉、铯、汞 等)蒸汽,或其他元素原子气体等。原子气体激光器 的典型代表是氦一氖气体激光器。
8
物理与电子工程学院
10
物理与电子工程学院
《激光原理与技术》
气体激光器的激励方式
气体放电:在高电压作用下,气体分子(或原子)发生 电离而导电。
直流连续放电(辉光放电:高电压小电流,如HeNe,CO2; 弧光放电:小电压大电流,如Ar+)
高频放电(射频气体放电) 脉冲放电(如准分子激光器,脉冲辉光放电和脉冲
弧光放电;直流脉冲放电和脉冲交流放电;短脉冲 放电和长脉冲放电)
15
物理与电子工程学院
《激光原理与技术》
He-Ne激光器由于增益低,谐振腔一般用平凹腔,平面镜 为输出端,透过率约1%~2%,凹面镜为全反射镜。
按谐振腔与放电管的放置方式不同可分内腔式、外腔 式和半内腔式。
16
物理与电子工程学院
《激光原理与技术》
内腔式:优点是使用时不必进行调整,非常方便,阴极与毛细管同 轴放置,其结构紧凑、不易碎裂,安装方便。 缺点是在工作过程
第二是电子直接碰撞激发。在气体放电过程中,基态Ne 原子与具有一定动能的电子进行非弹性碰撞,直接被激发 到2S和3S态,与共振转移相比,这种过程激发的速率要 小得多。
第三是串级跃迁,Ne与电子碰撞被激发到更高能态,然 后再跃迁到2S和3S态,与前述两过程相比,此过程贡献 最小。
11
物理与电子工程学院
《激光原理与技术》
工作物质被激发的过程和类型
第一类非弹性碰撞:快速电子于气体粒子碰撞:
A+e(快速)
A﹡+e(慢)
A+e(快速)
A++e(慢)
第二类非弹性碰撞:共振能量转移、电荷转移和潘宁效应
共振能量转移: A﹡ +B
A +B﹡+△E
电荷转移: A+ +B
A +B+﹡ +△E
《激光原理与技术》
18
物理与电子工程学院
《激光原理与技术》
三、He—Ne激光器的激发过程
在He—Ne激光器中,实现粒子数反转的主要激发过程如 下:
第一是共振转移。由能级图可见,He原子的21S0、23S1 态分别与Ne原子的3S、2S态靠得很近,二者很容易进行 能量转移,并且转移几率很高,可达95%
物理与电子工程学院
按化学组成分 原子激光器 分子激光器 离子激光器 自由电子激光器 准分子激光器 (p102)
《激光原理与技术》
3
物理与电子工程学院
按激光运转方式分 连续 脉冲 单脉冲 重复频率 准连续
《激光原理与技术》
4
物理与电子工程学院
按激光调制方式分 自由运转 调Q 锁模 稳频 可调谐
13
物理与电子工程学院
《激光原理与技术》
He-Ne激光器--三个部分组成
能实现粒子数反转的工作物质(He-Ne气体): 激励能源:高压放电后,电子撞击工作物质而实现粒子数
反转 光学谐振腔:(凹)反射率接近100%,即完全反射,另
一个(平)反射率约为98%
14
物理与电子工程学院
《激光原理与技术》
《激光原理与技术》
5
物理与电子工程学院
按谐振腔类型分 平面腔 球面腔
《激光原理与技术》
6
物理与电子工程学院
《激光原理与技术》
§ 3.2 气体激光器 3.2.1 气体放电激励基础
工作物质:气体; 特点:工作物质数目最多、激励方式最多样化、激光发射
波长分布区域最广
分类:原子气体、分子气体和电离化离子气体,分别称为 原子气体激光器、分子气体激光器和离子气体激光器。
潘宁效应: A﹡ +B
A + B+﹡ +△E
12
物理与电子工程学院
《激光原理与技术》
3.2.2 He-Ne激光器
气体原子激光器 输出谱线:632.8nm,1.15um,3.39um等,以632.8nm
为最常见。 功率在mW级,最大1W 光束质量好,发散角可小于1mrad 单色性好,带宽<20Hz 稳定性高 应用很广泛:测量,激光照排,激光治疗
中放电管受热变形时,谐振腔反射镜会偏离相互平行位置,造成器 件损耗增加,输出下降。稳定性,阴极溅射物质污染窗片,寿命低
外腔式:优点:谐振腔反射镜与放电管是分离,可增加储气量。线
偏振的激光.缺点:反射镜与放电管相分离,相对位置易改变,需
要调整,使用不方便. 体积大,安装不方便,易破碎。
17
物理与电子工程学院Leabharlann 一、He-Ne激光器的结构
由激光管和激光电源组成。激光管由放电管、电极和光学 谐振腔组成。
放电管是心脏,是产生激光的地方。放电管通常由毛细管 和贮气室构成。
放电管中充入He:Ne=5:1—10:1,当电极加上高电压后,
粒子数反转。贮气室
气体放电使氖原子受激,产生
He-Ne激光管的阳极一般用钨棒制成,阴极多用电子发 射率高和溅射率小的铝及其合金制成。
物理与电子工程学院
《激光原理与技术》
第三章 典型激光器 §3.1 概述
3.1.2 激光器基本结构
(第三章)
物理与电子工程学院
《激光原理与技术》
3.1.2 激光器分类
按激光工作物质分 气体激光器 固体激光器 液体激光器(代表染料激光器) 半导体激光器(LD) 光纤激光器 化学激光器 自由电子激光器 X射线激光器
《激光原理与技术》
分子气体激光器:
产生激光作用的是没有电离的气体分子,所采用的 主要分子气体工作物质有CO2、CO、N2、H2、HF 和水蒸气等。分子气体激光器的典型代表是二氧化 碳(CO2)激光器的氮分子(N2)激光器。
9
物理与电子工程学院
《激光原理与技术》
离子气体激光器:
是利用电离化的气体离子产生激光作用,主要的 有惰性气体离子和金属蒸汽离子,这方面的代表 型器件是氩离子(Ar+)激光器、氪离子(Kr+) 激光器以及氦一镉离子激光器等。
二、氦和氖原子的能级图
He原子有两个电子,基 态:1S0,He受激时,一个 电子从1S激发到2S,成 为激发态。 He原子有 两个亚稳态能级,分别 记为23S1、21S0。
Ne原子有10个电子,基 态1S:212SS02;2P电6,子激分发布态:1S、 2S、3S、2P、3P等, 它们对应的外层电子组 态分别为2P53s、2P54s、 2P5S5、2P53P、2P54P。
相关文档
最新文档