激光器的基本组成及典型激光器介绍

合集下载

常见激光器结构及器件功能介绍

常见激光器结构及器件功能介绍

常见激光器结构及器件功能介绍激光器是一种产生、放大和聚焦激光光束的器件。

它在现代科学、医疗、工业和战争等领域都有广泛的应用。

常见的激光器结构主要包括激光介质、泵浦源、光学谐振腔和输出窗口等部分。

下面将对这些部分的功能进行详细介绍。

1.激光介质:激光介质是激光器的核心部件,它能够使电能或光能转化为激光能量。

常见的激光介质包括气体(如二氧化碳、氩等)、固体(如Nd:YAG晶体)和液体(如染料溶液)等。

不同激光介质具有不同的特性,决定了激光器的输出特点。

2.泵浦源:泵浦源是激光器产生激光能量的能源,它对激光介质进行能量输入,使之达到激发态。

常见的泵浦源包括电子激发(如气体放电、闪光灯等)、光学激发(如半导体激光二极管、固体激光晶体等)和化学激发(如染料激光器)等。

泵浦源的选择决定了激光器的效率和波长等参数。

3.光学谐振腔:光学谐振腔是激光器中光的来回传播的空间,在谐振腔内激光能量发生倍增和光模式形成。

常见的光学谐振腔包括平面腔、球面腔和折射腔等。

谐振腔的结构和参数决定了激光器的输出特征,如脉冲宽度、线宽和波前质量等。

4.输出窗口:输出窗口是激光器中激光能量传出的接口,它具有透过激光的特性,并使激光尽量少损耗。

常见的输出窗口材料包括光学玻璃、光纤和光学晶体等。

输出窗口的选择和设计是影响激光器输出功率和光束质量的重要因素。

除了上述部分,激光器还包括一些辅助器件和系统,如冷却系统、调谐器和稳频器等,它们的功能主要有以下几个方面:1.冷却系统:激光器在工作过程中会产生大量的热量,需要通过冷却系统来散热,以保持激光介质和泵浦源的稳定性。

常见的冷却方式包括空气冷却、水冷却和制冷剂冷却等。

2.调谐器:激光器的波长可能需要进行调整,以适应不同应用的需求。

调谐器通过改变光学谐振腔的长度或谐振性能,实现激光器波长的可调。

3.稳频器:激光器的频率稳定度对一些应用非常重要。

稳频器通过使用反馈调节和控制系统,使激光器的频率保持在目标值附近的范围内。

光纤激光器的基本结构和工作原理

光纤激光器的基本结构和工作原理

光纤激光器的基本结构和工作原理一、光纤激光器的基本结构光纤激光器是一种利用光纤作为光学谐振腔的激光器。

它由光纤、泵浦光源、谐振腔和输出耦合器件组成。

1. 光纤:光纤作为光传输的介质,具有较高的光学质量和较低的损耗。

它通常由二氧化硅或氟化物等材料制成。

2. 泵浦光源:泵浦光源是提供激发能量的装置,常见的泵浦光源有半导体激光器、氘灯等。

泵浦光源通过能级跃迁将电能转化为光能,将光纤中的掺杂物激发至激发态。

3. 谐振腔:谐振腔是产生激光放大的空间,由两个反射镜构成,其中一个是部分透射的输出耦合镜。

谐振腔中的光纤被反射镜反射多次,形成光学谐振,增强光的幅度。

4. 输出耦合器件:输出耦合器件是将放大的激光从谐振腔中输出的装置,常见的输出耦合器件有反射镜、光栅等。

它通过调节输出耦合器件的透射率,实现激光的输出。

二、光纤激光器的工作原理光纤激光器的工作原理是基于激光的受激辐射过程。

其工作过程主要可以分为三个步骤:泵浦、光放大和激射。

1. 泵浦:泵浦光源产生的高能量光通过耦合装置输入光纤,激发光纤中的掺杂物(如铥、镱、铍等)的原子或离子跃迁到激发态,形成一个能级反转。

2. 光放大:光纤中的激发态粒子通过受激辐射过程,发射出与泵浦光源相同频率和相干相位的光子。

这些光子经过多次反射,在谐振腔中不断放大,形成光的增强。

3. 激射:当光的增益超过谐振腔的损耗时,光纤激光器开始产生激射。

激射的激光经过输出耦合器件,部分透射出光纤,形成激光输出。

光纤激光器的工作原理可以通过能级图来解释。

在泵浦过程中,泵浦光源提供的能量使得光纤中的掺杂物原子或离子跃迁到激发态。

在光放大过程中,激发态粒子通过受激辐射过程,发射出与泵浦光源相同频率和相干相位的光子。

这些光子通过多次反射,在谐振腔中不断受到增益介质的放大。

当光的增益超过谐振腔的损耗时,光纤激光器开始产生激射,形成激光输出。

光纤激光器具有很多优点,如小型化、高效率、高质量光束、稳定性好等。

简述一台激光器的主要组成部分及其作用

简述一台激光器的主要组成部分及其作用

简述一台激光器的主要组成部分及其作用1.引言1.1 概述概述激光器是一种能够产生高能、高亮度、单色、相干的激光光束的设备。

它在科学研究、医学、工业生产以及通信等领域都有广泛的应用。

激光器的主要组成部分包括光源和激光介质,它们各自担负着不同的作用,共同实现激光的发射。

在激光器中,光源是产生激光所需的能量源。

光源可以是光电器件、气体放电管、固体或液体激光材料等,其作用是提供能量以激发激光介质中的原子或分子跃迁,从而产生激光。

光源的选择和性能直接影响着激光器的输出功率、频率特性和光束质量。

激光介质是激光器中的一个重要组成部分,它通常由激光材料制成。

激光介质中的原子或分子能够被光源中的能量激发,产生受激辐射并反转粒子的能级分布,最终导致激光的发射。

激光介质的选择和性能决定着激光器的输出光束特性,如激光波长、光束质量、相干性等。

在本篇文章中,我们将详细介绍激光器的主要组成部分以及它们的作用。

通过对光源和激光介质的深入了解,读者将能够更好地理解激光器的工作原理和应用。

同时,我们也将探讨光源和激光介质的选择与优化对激光器性能的影响,为读者在实际应用中提供一定的指导和参考。

本文的目的是为读者提供一个全面而简明的激光器基础知识概述,并帮助读者更好地理解激光器的组成和作用。

1.2文章结构文章结构部分的内容可以包括以下内容:在本文中,将详细介绍一台激光器的主要组成部分及其作用。

文章主要分为引言、正文和结论三个部分。

引言部分将对本文的主题进行概述,并介绍文章的结构和目的。

首先,将简要说明激光器的重要性和广泛应用领域。

然后,说明本文将重点介绍激光器的主要组成部分及其作用。

正文部分是本文的主体,包括两个小节。

第一个小节将详细介绍激光器的主要组成部分,主要包括光源和激光介质。

对于光源,将介绍不同类型的光源以及它们的特点和用途。

对于激光介质,将介绍常用的激光介质材料及其特性。

第二个小节将探讨这些组成部分的作用。

具体来说,将讨论光源在激光器中起到的作用以及不同激光介质在激光发射中的作用机制。

常见激光器结构及器件功能介绍

常见激光器结构及器件功能介绍

LD
Yb:YLP
解释打标机主要命名历史原因
侧面泵浦和端面泵浦的区别
泵浦光
泵浦光
激光
主要是泵浦方向的差别
全反镜 Q头
+
反射腔
小孔 半反镜
-
YAG灯泵浦固体激光器
全反镜
Q头
泵浦头
小孔 半反镜
侧面泵浦激光器
光纤
准直聚焦系统 全反镜 激光晶体 Q头 半反镜
激光二极管(LD)
端面泵浦激光器
光纤
耦合系统 全反镜 Yb:YLP 半反镜
头) Q驱:自制,NEOS,GOOCH 振镜:德国SCANLAB 7和SCANLAB10
EP系列打标机
EP-12和EP-25L
应用该激光器打标机型
EP-25S(DRACO)和EP-TWIN25S(DRACO)
绿激光系列
EP-G5 EP-G7 EP-G11
DRACO激光器平台--整合各类型端泵激光器
最大打标范围(mm) 50*50 100*100 130*130
160*160 300*镜驱动

晶体
光纤 泵浦源
激光驱动 电源
运动控制
参数控制
部件
激光器 电源:快速响应电源,普通电源 控制卡:PCI3000、DCP1000、EMCC 标准控制软件:5.1、5.2、hanscam(双
DRACO-11D30-L 长脉宽激光器
针对不同按键, 由按键行业部选 用不同的配置的 打标机,更贴近 客户需求
DRACO-11D30 中脉宽激光器
调Q激光器与脉冲激光器对比,水塔
调Q即开关, 声光调Q:超声波衍射光栅 电光调Q:旋转偏振方向 机械调Q:…

激光器件作业部分答案

激光器件作业部分答案

《激光器件》作业(1)1.说明激光产生的必要和充分条件。

简述激光器的基本组成部分及其功能。

激光器基本构成:1)工作物质:激光器的核心。

谱线波段,增益,结构形态。

2)泵浦源:电、光、热、化学能、核能激励。

激光电源,控制电路,能量转换效率。

3)光学谐振腔:为激光振荡建立提供正反馈;其参数影响输出激光束的质量。

稳定性,模式;镜片加工和镀膜工艺,调整精度4)辅助设施:散热系统,滤光设施。

调Q ,锁模,稳频,选模,放大。

产生激光的必要条件——粒子数反转:受激辐射要得到放大,必须辐射作用大于吸收作用。

要求上能级的粒子数大于下能级粒子数. 理想能级结构:上能级:亚稳态(长寿命),粒子数积累。

下能级:尽量清空。

产生激光的充分条件——阈值条件:激活介质的增益不小于损耗,才能产生激光振荡。

21G R ≥2. 判断谐振腔的稳定性(单位:mm) (1)R1=90, R2=40, L=100 (2)R1=20, R2=10, L=45 (3) R1=-40, R2=75, L=60 (4) R1=∞, R2=-10, L=501、稳定腔——傍轴光线在腔内任意多次往返不会横向逸出腔外 ()2211211,1101211R L g R L g g g D A -=-=<<<+<-其中或2、非稳腔——傍轴光线在腔内有限次往返必然从侧面溢出腔外 ()()121012112121-<+<>+>D A g g D A g g 即或即3.某稳定腔两面反射镜的曲率半径分别R1=-1.25m 及 R2=1.6m 。

(1)这是哪一类型谐振腔?(2)试确定腔长L 的可能取值范围, 并作出谐振腔的简单示意图。

凹凸镜;|g 1g 2|<14、画出下图所示谐振腔的等效透镜光路,并写出往返矩阵。

⎪⎪⎭⎫ ⎝⎛⋅=⎪⎪⎭⎫⎝⎛⋅⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫⎝⎛⋅⎥⎦⎤⎢⎣⎡⋅⎥⎥⎦⎤⎢⎢⎣⎡-⋅⎥⎦⎤⎢⎣⎡⋅⎥⎥⎦⎤⎢⎢⎣⎡-=⎪⎪⎭⎫ ⎝⎛000000211110111011011101θθθθr T r D C B A r L f L f r注意:相乘时要反序乘;5. 某CO 2激光器采用平凹腔,L=50cm ,R=2m ,2a=1cm ,λ=10.6μm 。

说明激光器的基本组成和产生激光的基本原理

说明激光器的基本组成和产生激光的基本原理

说明激光器的基本组成和产生激光的基本原理激光器是一种能够产生单色、高亮度、高定向性的光束的装置。

它的基本组成主要包括激光介质、泵浦源、光学反馈装置和输出耦合装置等。

激光介质是激光器中最关键的部分,它是产生激光的核心。

激光介质通常是一种高度浓缩的气体、液体或固体材料,当它受到泵浦源的能量输入时,激发介质中的原子或分子从基态跃迁到激发态,产生光辐射并逐渐放大形成激光。

泵浦源通常使用强光脉冲或高电压放电等方式,将能量输入到激光介质中。

光学反馈装置主要是由反射镜和激光介质构成的,利用这些装置将激发的光反复地在激光介质中反射,逐渐放大光的强度,最终形成一束高亮度、高定向性的激光束。

输出耦合装置则是将激光束从激光器中输出的装置,它通常是由一个反射镜和透镜构成的。

产生激光的基本原理是受激辐射。

当激光介质中的原子或分子受到外界的能量输入时,它们从基态跃迁到激发态,处于激发态的原子或分子会受到周围激光辐射的刺激,从而再次跃迁到基态并放出能量。

这些放出的能量与初始能量的相位一致,形成了一束相干光,并通过光学反馈装置逐渐放大形成激光。

由于激发态的原子或分子只在一个非常短的时间内存在,因此激光器所产生的激光通常是脉冲性的。

- 1 -。

激光器产生激光的三个基本结构

激光器产生激光的三个基本结构

激光器产生激光的三个基本结构一、引言激光器是一种能够产生单色、高亮度、几乎无散射的光束的装置,广泛应用于科学研究、医疗、通信等领域。

激光器的基本结构有三种,分别是气体激光器、固体激光器和半导体激光器。

本文将详细介绍这三种激光器的基本结构及其工作原理。

二、气体激光器1. 气体激光器的基本结构气体激光器由放电管和反射镜组成。

放电管是一个密闭的玻璃管,内部填有稀薄气体(如氦氖气),两端分别安装有高压电极和低压电极。

反射镜则是由两个平面镜或球面镜组成,其中一个反射镜具有一定透过率。

2. 气体激光器的工作原理当高压电极加上高电压时,放电管内的气体被电离,形成等离子体。

等离子体中的自由电子通过碰撞使得氦原子发生受激辐射,产生激光。

激光在反射镜间来回反射,形成一个稳定的激光束。

3. 气体激光器的应用气体激光器广泛应用于科学研究、医疗、通信等领域。

其中,二氧化碳激光器被广泛应用于工业加工领域,如切割、焊接和打孔等。

三、固体激光器1. 固体激光器的基本结构固体激光器由放电管和固态材料组成。

固态材料通常是掺有特定元素(如钕)的晶体或玻璃材料。

放电管则是一个密闭的腔体,内部填有闪烁物质(如氙气),两端分别安装有高压电极和低压电极。

2. 固体激光器的工作原理当高压电极加上高电压时,放电管内的闪烁物质被电离,形成等离子体。

等离子体中的自由电子通过碰撞使得掺杂元素发生受激辐射,产生激光。

激光在固态材料中来回反射,形成一个稳定的激光束。

3. 固体激光器的应用固体激光器广泛应用于科学研究、医疗、通信等领域。

其中,钕掺杂的固态激光器被广泛应用于医疗领域,如眼科手术和皮肤美容等。

四、半导体激光器1. 半导体激光器的基本结构半导体激光器由PN结和反射镜组成。

PN结是由P型半导体和N型半导体组合而成的结构,反射镜则是由两个端面反射镜组成。

2. 半导体激光器的工作原理当PN结加上正向电压时,电子从N型区域流向P型区域,与空穴复合产生辐射能量,产生激光。

光纤激光器的基本结构

光纤激光器的基本结构

光纤激光器的基本结构光纤激光器是一种基于光纤的固态激光器,具有高效、稳定、可靠等优点,被广泛应用于通信、制造业、医疗等领域。

它的基本结构包括泵浦光源、光纤放大器、光纤反射镜和激光输出光纤。

下面将详细介绍每个部分的结构和作用。

一、泵浦光源泵浦光源是光纤激光器的核心部件,它的作用是提供能量激发光纤中的掺杂物,使其产生激光。

常用的泵浦光源有半导体泵浦二极管、光纤耦合的激光二极管等。

半导体泵浦二极管是最常用的泵浦光源,它的结构由n型和p型半导体材料组成,两端连接金属电极。

当电流流过二极管时,n型和p型半导体之间的结电场使得电子和空穴结合并释放出能量,这种能量被传递到掺杂光纤中,使其产生激光。

光纤耦合的激光二极管是一种将激光通过光纤耦合到掺光纤中的泵浦光源,它的结构由激光二极管、光纤耦合器和掺光纤组成。

二、光纤放大器光纤放大器是光纤激光器中的另一个关键部件,它的作用是将泵浦光源产生的激光放大。

光纤放大器的结构包括掺杂光纤、泵浦光源和光纤反射镜。

当泵浦光源激发掺杂光纤中的掺杂物时,产生的激光被反射到光纤反射镜上,不断地被反射和放大,最终形成高质量的激光输出。

三、光纤反射镜光纤反射镜是将激光反射回掺杂光纤中的镜子,它的结构包括镜头和反射膜。

当激光经过反射膜时,一部分激光被反射回掺杂光纤中,使其不断地被反射和放大,最终形成高质量的激光输出。

四、激光输出光纤激光输出光纤是将产生的激光传输到需要的地方的光纤,它的结构和普通光纤类似。

激光输出光纤的质量对激光器的输出功率和稳定性有很大的影响,因此要选择高质量的光纤。

总的来说,光纤激光器的基本结构包括泵浦光源、光纤放大器、光纤反射镜和激光输出光纤。

这些部件的结构和作用紧密相连,协同工作,才能产生高质量的激光输出。

激光器及其原理简介

激光器及其原理简介

♦ Ne原子可以产生多条激光谱线, 图中标明了最强的三条:
0.6328μm 1.15 μm 3.39 μm
它们都是从亚稳态到非亚稳态、 非基态 之间发生的,因此较易实现粒子数反转。
§4 增益系数
激光器内受激辐射光 来回传播时,并存着
增益 损耗
增益——光的放大;
损耗——光的吸收、散射、衍射、透射 (包括一端的部分反射镜处必要 的激光输出)等。
§6 激光的特性及其应用
★方向性极好的强光束 --------准直、测距、切削、武器等。
★相干性极好的光束 --------精密测厚、测角,全息摄影等。
例1.激光光纤通讯
由于光波的频率 比电波的频率高 好几个数量级,
一根极细的光纤 能承载的信息量, 相当于图片中这 麽粗的电缆所能 承载的信息量。
若 E2 > E 1,则两能级上的原子数目之比
N2
− E2 − E1
= e kT
<1
N1
数量级估计:
T ~103 K;
kT~1.38×10-20 J ~ 0.086 eV;
E 2-E 1~1eV;
N2
− E2 − E1
= e kT
−1
= e 0.086
≈ 10−5
<< 1
N1
但要产生激光必须使原子激发;且 N2 > N1, 称粒子数反转(population粒子数反转 一. 为何要粒子数反转 (population inversion)
从E2 E1 自发辐射的光,可能引起 受激辐射过程,也可能引起吸收过程。
⎜⎛ ⎝
dN 21 dt
⎟⎞ ⎠受激
=
B21ρ (ν
,T
)N 2

红外及紫外激光器整体结构及功能介绍

红外及紫外激光器整体结构及功能介绍

红外及紫外激光器整体结构及功能介绍红外及紫外激光器整体结构及功能介绍激光技术作为一种先进的光电技术,广泛应用于医疗、通信、制造和军事等领域。

其中,红外及紫外激光器作为重要的激光器种类,在各个领域都有着重要的应用。

今天,我们就来深入了解一下红外及紫外激光器的整体结构及功能。

了解一种设备或技术的整体结构是进行深入研究和应用的基础。

红外激光器和紫外激光器在结构上有一些共同点,也有一些差异之处。

我们将从整体结构的方面着手,深入了解红外及紫外激光器。

一、整体结构1. 主谐振腔在红外及紫外激光器的整体结构中,主谐振腔是至关重要的一部分。

主谐振腔由激光介质、激光器泵浦源、谐振腔镜等组成,是激光器的核心部分。

红外激光器和紫外激光器的主谐振腔结构有所不同,我们可以逐一进行比较分析。

2. 光学系统光学系统是红外及紫外激光器中不可或缺的部分,它对激光产生和输出起着至关重要的作用。

光学系统包括产生激光、放大激光和输出激光等步骤,不同的激光器对光学系统的要求各有不同。

3. 控制系统在红外及紫外激光器的整体结构中,控制系统起着调节和稳定激光器性能的重要作用。

控制系统可以包括温度控制、频率稳定、脉冲控制等功能,是激光器稳定运行的保障。

二、功能介绍1. 红外激光器的功能- 红外激光器在通信、医疗、材料加工和测量等领域有着广泛的应用。

它具有窄谱线宽、高聚焦能力和强穿透力等特点,能够在红外光谱范围内实现高功率、高亮度的激光输出,广泛应用于激光雷达、红外成像、医学诊断等方面。

2. 紫外激光器的功能- 紫外激光器在光刻、荧光光谱分析、材料加工和科研实验等领域有着重要的应用。

它具有较短的波长、较高的能量密度和较小的散射程度,可以实现对微小器件的加工和表面的精细处理,广泛应用于光刻制造、荧光光谱分析、材料化学反应等方面。

三、个人观点和理解红外及紫外激光器作为先进的激光器技术,在现代科学技术领域有着广泛的应用前景。

它们不仅在基础研究中发挥作用,也在医疗、通信和制造等行业中有着不可或缺的地位。

常用激光器简介

常用激光器简介

几种常用激光器的概述一、CO2激光器1、背景气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。

特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。

二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。

1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。

在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。

不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。

最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。

2、工作原理CO2激光器中,主要的工作物质由CO₂,氮气,氦气三种气体组成。

其中CO₂是产生激光辐射的气体、氮气及氦气为辅助性气体。

加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。

氮气加入主要在CO₂激光器中起能量传递作用,为CO₂激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。

CO₂分子激光跃迁能级图CO₂激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。

放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。

这时受到激发的氮分子便和CO₂分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO₂分子从低能级跃迁到高能级上形成粒子数反转发出激光。

3、特点二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点:(1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。

(2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。

激光原理与应用讲第五章

激光原理与应用讲第五章


数千瓦,脉冲峰值功率可达几十太瓦),结构紧凑牢固。

激 光
5.1.1 固体激光器的基本结构与工作物质

1.固体激光器基本上都是由工作物质、泵浦系统、谐振腔和冷却、滤光系统构成
介 绍
的。图5-1是长脉冲固体激光器的基本结构示意图(冷却、滤光系统未画出)。
§.
光 器5
1 固 体 激
图5-1 固体激光器的基本结构示意图
§.
光 器5
1 固 体 激
图(5-8) 板条形固体激光器结构示意图
上一页 回首页 下一页 回末页 回目录
第 五 章
典 型 激 光 器 介 绍
光 器5
1 固 体 激
§.
小结:
固体激光器的特点:输出能量大,峰值功率高,结构紧凑牢固。 红宝石激光器输出的典型波长:694.3nm。 YAG激光器输出的典型波长:1064nm。
图(5-18) 染料的吸收-荧光光谱图
上一页 回首页 下一页 回末页 回目录
第 5.3.2 染料激光器的泵浦
五 1.闪光灯脉冲泵浦 章

2.激光脉冲泵浦

能够用于泵浦染料激光器的激光种类很多,主要有氮分子激光器,红宝石激

光器,钕玻璃激光器,铜蒸气激光器,准分子激光器,以及这些激光的二次、

三次谐波等。


图(5-19)是目前经常采用的三镜腔式染料激光器结构示意图。

§.
光 器5
3 染 料 激
图(5-19) 三镜腔式染料激光器
上一页 回首页 下一页 回末页 回目录

五 5.3.3 染料激光器的调谐

典 1. 光栅调谐

激光器的基本结构_激光器的基本构造特点【完整解析】

激光器的基本结构_激光器的基本构造特点【完整解析】

激光器的基本结构_激光器的基本构造特点内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.激光器一般包括以下部分。

1、激光工作介质激光的产生必须选择合适的工作介质,可以是常体、液体、固体或半导体。

在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。

显然亚稳态能级的存在,对实现粒子数反转世非常有利的。

现有工作介质近千种,可产生的激光波长包括从真空紫外道远红外,非常广泛。

作为激光器的核心,是由激活粒子(都为金属)和基质两部分组成,激活粒子的能级结构决定了激光的光谱特性和荧光寿命等激光特性,基质主要决定了工作物质的理化性质。

根据激活粒子的能级结构形式,可分为三能级系统(例如红宝石激光器)与四能级系统(例如Er:YAG激光器)。

工作物质的形状目前常用的主要有四种:圆柱形(目前使用最多)、平板形、圆盘形及管状。

2、激励源为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。

一般可以用气体放电的办法来利用具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激励、化学激励等。

各种激励方式被形象化地称为泵浦或抽运。

为了不断得到激光输出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。

泵浦源能够提供能量使工作物质中上下能级间的粒子数翻转,目前主要采用光泵浦。

泵浦光源需要满足两个基本条件:有很高的发光效率和辐射光的光谱特性应与工作物质的吸收光谱相匹配。

常用的泵浦源主要有惰性气体放电灯、太阳能及二极管激光器。

其中惰性气体放电灯是当前最常用的,太阳能泵浦常用在小功率器件,尤其在航天工作中的小激光器可用太阳能最为永久能源,二极管(LD)泵浦是目前固体激光器的发展方向,它集合众多优点于一身,已成为当前发展最快的激光器之一。

激光器简介介绍

激光器简介介绍
光测距等。
05 激光器的未来发展趋势和 挑战
高功率激光器的研发和应用
高功率激光器在国防、工业和 医疗等领域具有广泛的应用前 景。
研发高功率激光器的关键在于 提高输出功率、光束质量和稳 定性,以及降低制造成本。
高功率激光器在材料加工、激 光雷达、照明和通信等领域已 取得重要进展。
超快激光器的研发和应用
应用
二氧化碳激光器在医疗美容中应用广 泛,如激光手术刀、皮肤美白等。
固体激光器
特点
体积小、重量轻、效率高、操作简单。
应用
用于材料加工、打标、雕刻等领域。
液体激光器
特点
输出波长可调、效率较高。
应用
用于生物医学、光谱学等领域。
半导体激光器
要点一
特点
体积小、寿命长、价格便宜。
要点二
应用
用于光纤通信、数据存储等领域。
激光打标
利用激光的高能量密度在 物体表面刻印图案、文字 或编码等标识,实现高效 、环保的打标方式。
激光焊接
通过激光束将两个或多个 材料连接在一起,具有高 精度、高强度和高密封性 等优点。
医学领域
激光治疗
利用激光的能量照射人体组织, 通过热能、光化学效应等作用达 到治疗目的,如激光手术、激光
美白等。
感谢您的观看
光纤激光器
特点
输出波长稳定、效率高、光束质量好。
VS
应用
用于高速光纤通信、激光雷达等领域。
03 激光器的组成和工作02
03
04
增益介质
用于提供能量放大作用,通常 由气体、液体、固体或半导体
等材料组成。
泵浦源
用于向增益介质提供能量,通 常采用光、电、化学等方法。

光电子技术激光器种类及其特性详细介绍激光器共40张课件

光电子技术激光器种类及其特性详细介绍激光器共40张课件

半导体激光器是以半导体材料作为激光工作物质的激光器
图南(师5-大24光)半本电征技导半术导江体体苏的省激能重光带点实器验室是的注入式的受激光放大器,虽然它形成激光的必要条
南价师带大 中光的件电空技穴与术也江可其苏被省从他重导激点带实跃光验迁室下器来的相电子同填,补复但合。它的发光机理与前面讨论的激光器截然不同。
Nd:YAG的激活介质是YAG(Y3Al5O12)和以杂质形式出现的稀土金属离子Nd3+。
. 该种激光器可以脉冲工作,也可以连续工作。产生的跃迁中以1 06μm的激光为最强。
这类激光器的最大优点是受激辐射跃迁概率大、泵浦阈值低、容易实现连续发射。 以往通常用高强度Xe闪光灯泵浦,脉冲串维持可达,平均功率20kW,但转换效率 较低,仅%左右;近几年向二极管激光器泵浦的全固态小型化方向发展,转换效率 可达10%。
4、准分子气体激光器
准分子激光器的工作物质为稀有气体或稀有气体与卤素气体的混合气体,这是一类 工作在紫外波长段的高效脉冲激光器,通常作为分光、激光加工、光刻的光源。一般情况 下,稀有气体是非常稳定的,很难与其他原子结合形成分子,但一旦被激发后.气体性质 发生变化,易与其他原子结合形成分子,这样形成的分子称为准分子。准分子在激发态很 稳定,而在基态不稳定,会立即被分解,使基态准分子数非常少,因而可获得理想的反转 分布。
半导体激它光器的的基电本结子构跃和工迁作原发理 生在半导体材料带中的电子态和价带中的空穴态之间。
南师大光电技术江苏省重点实验室
分段石墨结构Ar+激光器示意图
化学激光器的工作物质可以是气体或液体,但目前大多数是用气体。
5-2 PN结和粒子数反转
6 准分子激光器 4 激光器种类和特性
南按师性大 能光分电类在技:术低电江阈苏值流省LD重、或点超实高光验速室L激D、励动态下单模,LD、半大功导率L体D 价带中电子可以获得能量,跃迁

常见激光器结构及器件功能介绍

常见激光器结构及器件功能介绍

常见激光器结构及器件功能介绍激光器是一种产生并放大激光束的装置,常见的激光器结构包括气体激光器、固体激光器、液体激光器和半导体激光器。

下面将对这些常见的激光器结构及器件功能进行介绍。

1.气体激光器:气体激光器是利用气体分子或原子的电子能级跃迁放大光子束的装置。

常见的气体激光器包括二氧化碳激光器和氩离子激光器。

(1)二氧化碳激光器(CO2激光器):它是利用二氧化碳气体的分子振动能级跃迁来放大激光。

主要用于切割、打孔、焊接等工业加工领域。

(2)氩离子激光器:它利用氩离子气体的电子能级跃迁来放大激光。

主要应用于生物医学、光学雷达等领域。

2.固体激光器:固体激光器是利用固体材料(如纳、晶体、陶瓷等)的电子能级跃迁放大光子束的装置。

常见的固体激光器包括Nd:YAG激光器和雷射晶体放大器。

(1)Nd:YAG激光器:它是利用掺杂了钕离子的钇铝石榴石晶体的电子能级跃迁来放大激光。

主要用于切割、焊接、医疗美容等领域。

(2)雷射晶体放大器:它是利用高浓度掺杂放大材料(如三氧化二铜、Cr4+:YAG等)的反射效应来放大激光。

主要应用于高能激光研究和军事领域。

3.液体激光器:液体激光器是利用液体材料的分子或原子能级跃迁放大光子束的装置。

常见的液体激光器包括染料激光器和化学激光器。

(1)染料激光器:它利用在溶液中溶解染料分子的电子能级跃迁来放大激光。

主要用于光谱分析、显示技术等领域。

(2)化学激光器:它利用化学反应产生的激发态物质来放大激光。

主要应用于军事领域和科学研究。

4.半导体激光器:半导体激光器是利用半导体材料(如GaN、InP等)的电子能级跃迁放大光子束的装置。

常见的半导体激光器包括激光二极管和垂直腔面发射激光器(VCSEL)。

(1)激光二极管:它利用PN结的电子能级跃迁来放大激光。

主要应用于光通信、光储存、激光打印等领域。

(2)VCSEL:它利用垂直结构的PN结的电子能级跃迁来放大激光。

主要应用于光通信、生物传感等领域。

第1章-典型激光器简介-续分解

第1章-典型激光器简介-续分解
• DE段叫作自持暗放电,放电不稳定
• 平坦的EF段。该区域的特点是电流增加,但管压降几乎保 持不变,放电管内出现明暗相间的辉光,称之为正常辉光放 电。辉光放电阶段,由于二次发射的电子随电场的增加而迅 速增加,故当放电管端电压略有增加时,放电电流就增大很 多。辉光放电的电流范围一般在10-4~10-1 A之间
染料激光器主要应用于科学研究、医学等领域,如激光光 谱学、光化学、同位素分离、光生物学等方面。
1966年,世界上第一台染料激光器——由红宝石激光器泵 浦的氯铝钛花青染料激光器问世。
4)半导体激光器
半导体激光器也称为半导体激光二极管,或简称激光二极管 (LaserDiod,缩写LD)。由于半导体材料本身物质结构的特 异性以及半导体材料中电子运动规律的特殊性,使半导体 激光器的工作特性有其特殊性。
• 分子激光器中产生激光作用的是未电离的气体分子,激光跃迁 发生在气体分子不同的振-转能级之间。采用的气体主要有 CO2、CO、N2、O2、N2O、H2O、H2 等分子气体。分子激光 器的典型代表是CO2 激光器。
• 准分子激光器。所谓准分子,是一种在基态离解为原子而在激 发态暂时结合成分子(寿命很短)的不稳定缔合物,激光跃迁产 生于其束缚态和自由态之间。采用的准分子气体主要有XeF* 、KrF* 、ArF* 、XeCl* 、XeBr* 等。其典型代表为XeF* 准 分子激光器。
• 半导体激光器广泛应用于光纤通信、光存储、光信息处 理、科研、医疗等领域,如激光光盘、激光高速印刷、全 息照相、办公自动化、激光准直及激光医疗等方面。
• 1962年,世界上第一台半导体激光器———GaAs激光器 问世。
5)化学激光器 化学激光器是通过化学反应实现粒子数反转从而产生受激光 辐射的。工作物质可以是气体或液体,但目前主要是气体,如 氟化氢(HF)、氟化氚(DF)、氧碘(COIL)等。

各种激光器的介绍

各种激光器的介绍

各种激光器的介绍激光器是一种将能量源转化为高强度、高单色性、高定向性的激光光束的装置。

激光器被广泛应用于医疗、通信、材料加工、测量检测等各个领域。

下面将介绍几种常见的激光器。

1.氦氖激光器(He-Ne激光器)氦氖激光器是一种气体激光器,它利用氦和氖的混合气体在波长为632.8纳米的红光范围内产生激光。

氦氖激光器具有单一稳定频率、高空间定向性和较小的光腔长度,适用于光学实验、干涉测量等领域。

2.二极管激光器(LD激光器)二极管激光器是一种半导体激光器,它是由多层不同材料的半导体材料组成的结构。

二极管激光器广泛应用于通信领域,如光纤通信、光存储等。

它具有体积小、效率高的特点。

3.CO2激光器CO2激光器是一种分子激光器,其工作介质是CO2分子。

CO2激光器具有中红外波段的辐射,波长在9.6-10.6微米之间。

CO2激光器在材料加工、医疗等领域有广泛应用,如切割、焊接、组织切割等。

4.Nd:YAG激光器Nd:YAG激光器是一种固体激光器,其工作介质是掺有镓和铽离子的YAG晶体。

它具有较长的荧光寿命和较高的能量转换效率,常用于材料加工、医疗、科学研究等领域。

5.氮化镓激光器(GaN激光器)氮化镓激光器是一种宽禁带半导体激光器,它利用氮化镓材料发射紫外激光。

GaN激光器具有较高的工作温度、较长的寿命和较高的光电子转换效率,可用于蓝光显示、白光LED照明等领域。

6.染料激光器染料激光器是一种利用染料溶液作为工作介质的激光器。

它具有波长调谐范围广、转换效率高的特点。

染料激光器在科学研究、生物医学等领域有广泛应用。

7.纳秒脉冲激光器纳秒脉冲激光器是一种能够在纳秒时间尺度内产生激光脉冲的激光器。

它广泛应用于材料加工、精密测量、医疗等领域,如激光打标、激光切割、激光测距等。

总之,激光器具有波长可调、能量可控、光束质量高等优点,能满足不同应用领域的需求。

随着材料科学、光学技术的不断发展,激光器的种类也在不断增多,并得到了广泛的研究和应用。

典型激光器介绍大全

典型激光器介绍大全

典型激光器介绍大全激光器(Laser)是20世纪最具科技感的发明之一,其应用涉及到多个领域,包括医疗、通信、制造、测量等等。

本文将介绍激光器的基本原理、不同类型的激光器以及其主要应用。

激光器的基本原理:激光器的核心部分是激光介质,它能够产生并放大高度集中的光束。

激光介质通常是一个光学腔体,其中有一个主动介质,能够吸收能量并在放出来的时候放大光信号。

这个光学腔体准备一个部分透明的发布窗口,能够让光束从中逃逸。

不同类型的激光器:1.固态激光器:固态激光器使用固态材料(如纳米晶体或晶体)作为激光介质。

它们通常非常稳定和高效,并且常用于医疗和研究领域。

2. 气体激光器:气体激光器使用气体作为激光介质,如氦氖激光器(He-Ne),二氧化碳激光器(CO2),氩离子激光器(Ar-ion)等。

它们通常产生高功率的激光束,常用于切割、焊接和制造领域。

3.半导体激光器:半导体激光器是目前应用最广泛的激光器类型之一,它使用半导体材料(如镓砷化物或镓氮化物)作为激光介质,常用于通信、医疗和显示技术领域。

4.纳秒激光器:纳秒激光器产生持续时间在纳秒级别的脉冲激光,常用于测量和材料研究领域。

5.二极管激光器:二极管激光器是一种小型、高效的激光器,它使用半导体材料并具有相对低的功率要求。

它们通常用于激光打印、扫描和传感器等应用领域。

激光器的应用:1.医疗领域:激光器在医疗领域有广泛的应用,如激光眼科手术、激光去胎记、激光脱毛等。

其高度集中和精确的光束可以在微创手术中发挥重要作用。

2.通信领域:半导体激光器在光纤通信中起到关键作用,能够快速高效地传输数据。

激光器所产生的激光束可以通过千米以上的光纤传输,实现高速宽带通信。

3.制造领域:激光器在制造领域常用于切割、焊接和打标等应用。

激光束的高能量和精度可以在金属切割和焊接时实现高质量和高效率。

4.测量和科学研究领域:激光器在测量、科学研究和实验室使用中发挥着重要作用,如激光干涉仪、激光雷达等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§ 1-3 典型激光器简介
☞ 激励不仅要快,还有强有力;
☞ 激励作用是通过消耗一定的能量来实现的,产生 受激辐射所需要的最小激励能量称为激光器的阈值 (threshold);
☞ 激励方式(Practical laser materials can be pumped in many ways.):光、电、化学、原子能;
§ 1-3 典型激光器简射作用的物质体系。
☞ 激励只是一个外部条件,激光的产生还取决于
合适的工作物质。
☞ 二能级系统能否实现粒子数反转???
☞ 亚稳能级:需要一个可以有较长寿命且能贮存 大量粒子的能级,经过不断激发,粒子数反转就 能实现,这样的能级称为“亚稳能级”。
理学院 物理系
§ 1-3 典型激光器简介
He-Ne(氦-氖)激光器(helium-neon gas laser)
• 氦一氖气体激光器:原子激光器类,1961年实现 激光输出,多采用连续工作方式,输出功率与放 电毛细管长度有关;输出激光方向性好,(发散 角达1mrad以下),单色性好(可小于20Hz), 输出功率和波长能控制得很稳定;
核能激励——用核裂变反应放出的高能粒子、放射线或裂变 碎片等来激励工作物质,也可实现粒子数反转;
2020年5月12日星期二
理学院 物理系
§ 1-3 典型激光器简介
3、谐振腔:形成激光振荡的必要条件;对输出
的模式、功率、光束发散角等均有很大影响。
谐振腔的作用:模式选择、提供轴向光波模的 反馈,产生光放大; 谐振腔的组成:谐振腔由全反射镜和部分反射 镜(输出反射镜)组成,激光由部分反射镜输 出。根据实际情况选用稳定腔、非稳腔或临界 稳定腔。
泵浦系统为实现粒子数反转提供外界能量(A pumping process
is required to excite atoms in the laser medium into
their higher quantum-mechanical energy levels. )
2020年5月12日星期二
理学院 物理系
☞ 根据不同激光工作物质的不同而异。如固体工作 物质常用强光照射激励,简称光激励;气体工作物 质吸收光谱多在紫外波段,多采用气体放电的电子 碰撞激励方法。
2020年5月12日星期二
理学院 物理系
§ 1-3 典型激光器简介
光激励---用光照射工作物质,工作物质吸收光能后产生粒子 数反转,可采用高效率、高强度的发光灯、太阳能和激光;
氙、氧、溴、碘、
氮、硫、碳、铯、
镉、铜、锰、锡等
金属原子蒸气
CO2、N2、O2、CO、 CO2 和 N2 N2O 和水蒸气等 Ar2*、Xe2*、XeF*、 KrF*、ArF* KrF*、ArF*、XeCl*、 XeBr*、XeQ*、KrQ*

惰性气体离子和金 氩离子(Ar+)、氦—
属蒸气离子
镉(He-Cd)离子激 光器
理学院 物理系
§ 1-3 典型激光器简介
• 气体激光器的激励方式很多,最普通的激 励方式是气体放电激励。
• 气体激光器的工作物质种类多,又能采用多 种激励方式,所以覆盖的波段宽,从紫外到 亚毫米波。是目前种类最多、激励方式最多 样化、激光波长分布区域最宽、应用最广泛 的一类激光器。
2020年5月12日星期二
锁模激光器(Mode locked lasers)、倍频激光器
(Frequency doubling lasers)、可调谐激光器
(Tunable lasers)、单模和多模激光器(Single-
mode and Multi-mode lasers)等。
2020年5月12日星期二
理学院 物理系
§ 1-3 典型激光器简介
• He-Ne激光器的结构形式很多,但都是由激光管
和激光电源组成。激光管由放电管、电极和光学
谐振腔组成,放电管是He-Ne激光器的心脏,是产
生激光的地方,放电管通常由毛细管和贮气室构
成。
2020年5月12日星期二
理学院 物理系
§ 1-3 典型激光器简介
• 由于增益低,谐振腔一般用平凹腔;
• 放电管中充入一定比例的氦(He)、氖 (Ne)气体,当电极加上高电压后,毛细管 中的气体开始放电使氖原子受激,产生粒子 数反转,产生激光跃迁的是Ne气,He是辅助 气体,用以提高Ne原子的泵浦速率;
(1)气体激光器:以气体或金属蒸气为发光粒子
产生激光作用的物质 未电离的气体原子 原子
分子 未电离的气体分子 工作气体在常态下为原子,当激
准分 发时,可暂时形成寿命很短的分 子 子,称为准分子 离子 利用电离后气体离子产生激光
作用
2020年5月12日星期二
所采用的物质
典型代表
氦、氖、氩、氪、 He-Ne laser
放电激励---在放电过程中,气体分子(或原子,离子)与被 电场加速的电子碰撞,吸收电子能量后跃迁到高能级,形成 粒子数反转;
热能激励---用高温加热方式使高能级上气体粒子数增加,然 后突然降低气体温度,因高、低能级的热驰豫时间不同,可 使粒子数反转;
化学能激励——利用化学应过程中释放的能量来激励粒子, 建立粒子数反转。为产生化学反应,一般还需采用一定的引 发措施,如采用光引发、电引发、化学引发等方式;
☞可能实现粒子数反转分布的系统可归结为三能 级系统和四能级系统。
2020年5月12日星期二
理学院 物理系
§ 1-3 典型激光器简介
2、泵浦系统—粒子搬迁的动力
粒子数的正常分布? 处于低能级上的粒子数在热平衡情况下总是多于高能 级上的粒子数,受激吸收占优势。 粒子数的反转分布? 高能级上的粒子数大于低能级上的粒子数。 如何实现粒子数反转? 把大量的粒子从低能级“搬运”到高能级的过程,称 为泵浦或激励; “搬运”粒子的工具-“光泵”
2020年5月12日星期二
理学院 物理系
§ 1-3 典型激光器简介
二、激光器的分类
▪工作物质形态---可以分为气体、固体、半导 体、液体等;
▪工作方式---连续工作(CW or continuous wave lasers)和脉冲工作(Pulsed lasers);
▪激光技术---调Q激光器(Q-switched lasers)、
相关文档
最新文档