树和二叉树实验任务书

合集下载

数据结构树和二叉树实验报告

数据结构树和二叉树实验报告
实验题目
树和二叉树
小组合作

姓名
班级
学 号
一、实验目的
(1)掌握树的相关概念,包括树、结点的度、树的度、分支结点、叶子结点、儿子结点、双亲结点、树的深度、森林等定义。
(2)掌握二叉树的概念,包括二叉树、满二叉树和完全二叉树的定义。
(3)掌握哈夫曼树的定义、哈夫曼树的构造过程和哈夫曼编码产生方法。
二.实验环境
return 0;
}
假设二叉树采用二叉树链式存储结构,设计一个算法输出从根结点到每个叶子结点的路径之逆(因为树中路径是从根结点到其他结点的结点序列,就是求叶子结点及其双亲结点、该双亲结点的双亲结点,直到根结点的序列,或者说求叶子结点及其所有祖先结点的序列)。要求采用后根遍历非递归算法。
#include "stdafx.h"
AllPath1(b);
return 0;
}
设计一个算法将二叉树的顺序存储结构转换成二叉链式存储结构。
#include "stdafx.h"
#include "exam7-14.cpp"
int main(int argc, char* argv[])
{
int i,n=10;
BTNode *b;
SqBTree a;
#include "exam7-12.cpp"
int main(int argc, char* argv[])
{
BTNode *b;
CreateBTNode(b,"A(B(D(,G)),C(E,F))");
printf("b:");DispBTNode(b);printf("\n");

树与二叉树上机实验

树与二叉树上机实验

西安交通大学实验报告课程数据结构(C语言描述)实验报告名称树与二叉树上机实验系别专业班级姓名学号一.实验目的掌握二叉树的建立方法;理解二叉树的结构和前序遍历、中序遍历、后序遍历及按层次遍历的方法;学会用二叉树解决问题。

二.实验内容(-)实验题目一:设树中结点的定义为:struct BTreeNode {ElemType data;struct BTreeNode* left;struct BTreeNode* right;};下面是根据二叉树的前序序列来建立二叉树的子程序:void CreatBiTree(struct BTreeNode** T){char ch;scanf("\n%c",&ch);if(ch=='#') *T=NULL; /* “#” 代表空子树*/else {(*T)=malloc(sizeof(struct BTreeNode));(*T)->data=ch;CreatBiTree(&((*T)->left));CreatBiTree(&((*T)->right));}}设输入该二叉树的前序序列为:ABC##DE#G##F##HI##J#K##(#代表空子树)请编程完成下列任务:⑴请根据此输入来建立该二叉树,并输出该二叉树的前序、中序和后序序列,⑵按层次遍历的方法来输出该二叉树按层次遍历的序列;⑶求该二叉树的高度;⑷交换该二叉树的左右子树,并输出交换后新的二叉树中序遍历的结果;1.要点分析理解并正确运用二叉树的结构和遍历方法。

前序序列:ABC##DE#G##F##HI##J#K## 表示的二叉树为:所以根据二叉树的结构可知:其前序序列为:ABCDEGFHIJK中序序列为:CBEGDFAIHJK后序序列为:CGEFDBIKJHA按层次遍历的结果为:ABHCDIJEFKG交换左右子树后中序遍历的结果为:KJHIAFDGEBC深度为5。

树和二叉树的建立和遍历-数据结构试验报告

树和二叉树的建立和遍历-数据结构试验报告

实验报告一:预习要求预习树和二叉树的存储结构、以递归为基本思想的相应遍历操作。

二:实验目的1、通过实验,掌握二叉树的建立与存储方法。

2、掌握二叉树的结构特性,以及各种存储结构的特点和适用范围。

3、掌握用指针类型描述、访问和处理二叉树的运算。

4、理解huffman编解码的算法三:实验内容以括号表示法输入一棵二叉树,编写算法建立二叉树的二叉链表结构;编写先序、中序、后序、层次遍历二叉树的算法;编写算法计算二叉树的结点数,叶子结点数,以及二叉树的深度。

四:实验原理及试验方法ADT BinaryTree{数据对象:D:D是具有相同特征的数据元素的集合数据结构:R:若D= 空集,则R=空集,称BinaryTree为空二叉树;若D不等于空集,则R={H},H是如下二元关系:(1)在D中存在唯一的称为根的数据元素root,它在关系H下无前驱;(2)若D-{root}不等于空集,则存在D-{root}={D1,Dr},且D1∩Dr=空集;(3)若D1不等于空集,则D1中存在唯一的元素x1,<root,x1>∈H,且存在D1上的关系H1包含于H;若Dr≠空集,则Dr中存在唯一的元素xr,<root,xr>∈H,且存在Dr上的关系Hr包含于H;H={<root,x1>,<root,xr>,H1,Hr};(4) (D1,{H1})是一颗符合本定义的二叉树,称为根的左子树,(Dr,{Hr})是一颗符合本定义的二叉树,称为根的右子树。

基本操作P:CreateBiTree(&T,definition);初始条件:definition给出二叉树的定义。

操作结果:按definition构造二叉树T。

PreOrderTraverse(T);初始条件:二叉树T存在。

操作结果:先序遍历T 。

InOrderTraverse(T);初始条件:二叉树T存在。

操作结果:中序遍历T。

PostOrderTraverse(T);初始条件:二叉树T存在。

树和二叉树的实验报告

树和二叉树的实验报告

《数据结构》实验报告题目: 树和二叉树一、用二叉树来表示代数表达式(一)需求分析输入一个正确的代数表达式, 包括数字和用字母表示的数, 运算符号+ - * / ^ =及括号。

系统根据输入的表达式建立二叉树, 按照先括号里面的后括号外面的, 先乘后除的原则, 每个节点里放一个数字或一个字母或一个操作符, 括号不放在节点里。

分别先序遍历, 中序遍历, 后序遍历此二叉树, 并输出表达式的前缀式, 中缀式和后缀式。

(二)系统设计1.本程序中用到的所有抽象数据类型的定义;typedef struct BiNode //二叉树的存储类型{char s[20];struct BiNode *lchild,*rchild;}BiTNode,*BiTree;2.主程序的流程以及各程序模块之间的层次调用关系, 函数的调用关系图:3. 列出各个功能模块的主要功能及输入输出参数void push(char cc)初始条件: 输入表达式中的某个符号操作结果: 将输入的字符存入buf数组中去BiTree Create_RTree()初始条件: 给出二叉树的定义表达式操作结果:构造二叉树的右子树, 即存储表达式等号右侧的字符组BiTree Create_RootTree()初始条件: 给出二叉树的定义表达式操作结果:构造存储输入表达式的二叉树, 其中左子树存储‘X’, 根节点存储‘:=’void PreOrderTraverse(BiTree T)初始条件: 二叉树T存在操作结果:先序遍历T, 对每个节点调用函数Visit一次且仅一次void InOrderTraverse(BiTree T)初始条件: 二叉树T存在操作结果:中序遍历T, 对每个节点调用函数Visit一次且仅一次void PostOrderTraverse(BiTree T)初始条件: 二叉树T存在操作结果:后序遍历T, 对每个节点调用函数Visit一次且仅一次int main()主函数, 调用各方法, 操作成功后返回0(三)调试分析调试过程中还是出现了一些拼写错误, 经检查后都能及时修正。

树和二叉树的实验报告

树和二叉树的实验报告

树和二叉树的实验报告树和二叉树的实验报告一、引言树和二叉树是计算机科学中常用的数据结构,它们在各种算法和应用中都有广泛的应用。

本实验旨在通过实际操作和观察,深入了解树和二叉树的特性和操作。

二、树的构建与遍历1. 树的概念和特性树是一种非线性的数据结构,由节点和边组成。

每个节点可以有零个或多个子节点,其中一个节点没有父节点的称为根节点。

树的特点包括层次结构、唯一根节点和无环等。

2. 树的构建在本实验中,我们使用Python语言构建了一棵树。

通过定义节点类和树类,我们可以方便地创建树的实例,并添加节点和连接节点之间的边。

3. 树的遍历树的遍历是指按照一定顺序访问树中的所有节点。

常见的遍历方式有前序遍历、中序遍历和后序遍历。

我们在实验中实现了这三种遍历方式,并观察了它们的输出结果。

三、二叉树的实现与应用1. 二叉树的概念和特性二叉树是一种特殊的树,每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树的特点包括唯一根节点、每个节点最多有两个子节点和子节点的顺序等。

2. 二叉树的实现我们使用Python语言实现了二叉树的数据结构。

通过定义节点类和二叉树类,我们可以创建二叉树的实例,并实现插入节点、删除节点和查找节点等操作。

3. 二叉树的应用二叉树在实际应用中有很多用途。

例如,二叉搜索树可以用于实现快速查找和排序算法。

AVL树和红黑树等平衡二叉树可以用于高效地插入和删除操作。

我们在实验中实现了这些应用,并通过实际操作验证了它们的效果。

四、实验结果与讨论通过实验,我们成功构建了树和二叉树的数据结构,并实现了它们的基本操作。

通过观察和分析实验结果,我们发现树和二叉树在各种算法和应用中的重要性和灵活性。

树和二叉树的特性使得它们适用于解决各种问题,例如搜索、排序、图算法等。

同时,我们也发现了一些问题和挑战,例如树的平衡性和节点的插入和删除操作等。

这些问题需要进一步的研究和优化。

五、总结本实验通过实际操作和观察,深入了解了树和二叉树的特性和操作。

树与二叉树实验

树与二叉树实验
程序:
#include<iostream.h>
#include<malloc.h>
#define Maxsize 100
typedef struct TREE{
struct TREE *lTree;
struct TREE *rTree;
char data;
}Tree;
void InitTree(Tree*);//初始化树
2、赫夫曼编码的生成:利用以建好的赫夫曼树,对报文文件ToBeTran中的正文进行编码,然后将结果存入文件CodeFile中;
3、编码文件的译码:利用已建好的赫夫曼树将文件CodeFile中的代码进行译码,结果存入文件TextFile中。










1、以二叉链表方式建立二叉树,并任选一种遍历方式输出结点的值
2、哈夫曼编码
【实验目的】
了解赫夫曼树的结构特点及有关概念,掌握赫夫曼树的建立和赫夫曼编码的设计
【问题描述】
使用二叉树进行赫夫曼编码的设计,要求对输入的一串电文字符实现赫夫曼编码,再对赫夫编码生成的代码串进行译码,输出电文字符串
【实验功能】
1、赫夫曼树的建立:从终端读入字符集大小n,以及n个字符和n个权值,建立赫夫曼树,并将它存于文件hfmtree中;
}
else
i=0;
}
}
if(top!=0)
p=stack[top]->rTree;
else
p=NULL;
}
}
}
int DepthTree(Tree *tree) //深度函数
{
int u,v;

二叉树实验报告

二叉树实验报告

实验报告实验:树和二叉树一、实验目的:1.掌握二叉树的存储实现2.掌握二叉树的遍历思想3.掌握二叉树的常见算法的程序实现二、实验内容:1.编写函数,输入字符序列,建立二叉树的二叉链表。

2.编写函数,实现二叉树的中序递归遍历算法。

(最好也能实现前缀和后缀遍历算法)3.编写函数,实现二叉树的中序非递归遍历算法。

4.编写函数,借助队列实现二叉树的层次遍历算法。

5.编写函数,求二叉树的高度。

6.编写函数,求二叉树的结点个数。

7.编写函数,求二叉树的叶子个数。

8.编写函数,交换二叉树每个结点的左子树和右子树。

9.编写一个主函数,在主函数中设计一个简单的菜单,分别调试上述算法。

三、方法与步骤:详见源代码。

四、小结:1.注意并理解了递归算法的执行步骤,使得编写程序时比较顺利,而且得到同学的帮助,减少了发生错误的次数,才使得报告能够顺利完成。

2.注意字符类型数据在输入时的处理,使输入没有错误。

3.重点理解利用栈结构实现非递归算法。

五、实验结果:实验报告源代码:#include"stdio.h"#include"malloc.h"#include"math.h"#define maxsize 100typedef struct btnode{char data;struct btnode *lc,*rc;}bitree;bitree *creat_bitree(bitree *p){char a;scanf("%c",&a);if(a!='#'){ p=(bitree *)malloc(sizeof(bitree));p->data=a;p->lc=creat_bitree(p->lc);p->rc=creat_bitree(p->rc);}elsep=NULL;return p;}void print1_bitree1(bitree *p){if(p==NULL)return ;printf("%c",p->data);print1_bitree1(p->lc);print1_bitree1(p->rc);}void print1_bitree2(bitree *p){if(p==NULL)return ;print1_bitree2(p->lc);printf("%c",p->data);print1_bitree2(p->rc);}void print1_bitree3(bitree *p) {if(p==NULL)return ;print1_bitree3(p->lc);print1_bitree3(p->rc);printf("%c",p->data);}int print2_bitree(bitree *p){int top=-1;bitree *a[maxsize];if(p==NULL) return 0;while(p!=NULL||top!=-1){while(p!=NULL){a[++top]=p;p=p->lc;}if(top<0)return 0;else{p=a[top--];printf("%c",p->data);p=p->rc;}}return 1;}int print3_bitree(bitree *p){int front=-1,rear=0;bitree *b[maxsize];if(p==NULL)return 0;b[rear]=p;while(front!=rear){p=b[++front];printf("%c",p->data);if(p->lc!=NULL)b[++rear]=p->lc;if(p->rc!=NULL)b[++rear]=p->rc;}return 1;}int jiedian_bitree(bitree *p,int a){if(p==NULL)return a;a++;a=jiedian_bitree(p->lc,a);a=jiedian_bitree(p->rc,a);return a;}int yezi_bitree(bitree *p){if(p==NULL)return 0;if(p->lc==NULL&&p->rc==NULL)return 1;return (yezi_bitree(p->lc)+yezi_bitree(p->rc)); }int depth(bitree *p){if(!p)return 0;else{int m=depth(p->lc);int n=depth(p->rc);return (m>n?m:n)+1;}}void change(bitree *p){bitree *q;if(!p)return;else{q=p->lc;p->lc=p->rc;p->rc=q;change(p->lc);change(p->rc);}}int main(){int x=8,a=0,i,j=0;bitree *p;p=NULL;while(x==8){printf("建立二叉链树,请输入字符\n");if(j==1){getchar();j=0;}p=creat_bitree(p);x=0;while(x!=8){ printf("***************************************************** *************************\n");printf("1.递归遍历\t2.中序非递归遍历\t3.层次遍历\t\t4.二叉树高度\n5.结点个数\t6.叶子个数\t\t7.交换每个结点左右子树\t8.重建二叉链树\n9.退出\n");scanf("%d",&x);switch(x){case 1:printf("1.先序2.中序3.后序");printf("\n");scanf("%d",&x);if(x==1)print1_bitree1(p);if(x==2)print1_bitree2(p);if(x==3)print1_bitree3(p);break;case 2:print2_bitree(p);break;case 3:print3_bitree(p);break;case 4:i=depth(p);printf("%d",i);break;case 5:a=jiedian_bitree(p,a);printf("%d",a);break;case 6:i=yezi_bitree(p);printf("%d",i);break;case 7:change(p);break;case 8:j=1;break;}if(x==9)break;printf("\n\n");}}return 0;}。

第六章 树和二叉树实验指导

第六章 树和二叉树实验指导

实验一:二叉树的三种遍历方法的非递归实现要求:1各种遍历方法的实现方法(前序、中序、后序)2对应的测试函数,要求建立二叉树3.按照树旋转90度后打印显示二叉树4直接按照树的形状打印显示二叉树(层次遍历算法)实验二二叉排序树要求:1建立二叉排序树2建立好的二叉排序树进行中序遍历实验三Huffman编码的实现要求:1根据Huffman编码的原理,编写一个程序,由用户输入结点值和权值,输出它的Huffman编码.实验四建立一棵树要求1输入树的边建立对应的树,2输出从树根到所有的叶子结点的路径,3.同时分层输出树中所有的边作业1求二叉树中位于先序序列中第K个位置结点的值作业2计算二叉树中叶子结点的数目作业3二叉树中所有结点的左右子树进行交换作业4二叉树中结点元素值为x为根结点的子树的深度作业5二叉树中删除结点元素值为x为根结点的子树作业6利用顺序存储的完全二叉树建立二叉链表作业7求一棵以孩子兄弟链表表示的树的度作业8求一棵以孩子兄弟链表表示的树的叶子个个数作业9输出一棵以孩子兄弟链表表示的树中所有的边作业10按层次顺序(从左到右)遍历二叉树作业11逆转90度按层次顺序打印二叉树作业12一个堆中插入一个元素后调整为堆作业13判定给定的二叉树是否为二叉排序树以下定义保存在bittree.h#ifndef bitree#define bitreetypedef char TElemType;typedef struct BiTNode{TElemType data;struct BiTNode *lchild, *rchild;} BiTNode, *BiTree;#endif以下定义保存在sqstack.h#include <iostream.h>const STACK_INIT_SIZE=100;const STACKINCREMENT=10;#include "bittree.h"typedef BiTNode* SElemType;typedef struct{SElemType *elem;int top;int stacksize;int increment;}SqStack;//1.初始化栈void InitStack(SqStack &S , int maxsize=STACK_INIT_SIZE,int incresize=STACKINCREMENT){ S.elem=new SElemType[STACK_INIT_SIZE];S.top=-1;S.stacksize=maxsize;S. increment=incresize; }//让栈顶元素出栈bool Pop(SqStack &S,SElemType &e) {if(S.top==-1) return false;e=S.elem[S.top]; S.top--; return true; }//4。

数据结构实验报告-树(二叉树)

数据结构实验报告-树(二叉树)

实验5:树(二叉树)(采用二叉链表存储)一、实验项目名称二叉树及其应用二、实验目的熟悉二叉树的存储结构的特性以及二叉树的基本操作。

三、实验基本原理之前我们都是学习的线性结构,这次我们就开始学习非线性结构——树。

线性结构中结点间具有唯一前驱、唯一后继关系,而非线性结构中结点的前驱、后继的关系并不具有唯一性。

在树结构中,节点间关系是前驱唯一而后继不唯一,即结点之间是一对多的关系。

直观地看,树结构是具有分支关系的结构(其分叉、分层的特征类似于自然界中的树)。

四、主要仪器设备及耗材Window 11、Dev-C++5.11五、实验步骤1.导入库和预定义2.创建二叉树3.前序遍历4.中序遍历5.后序遍历6.总结点数7.叶子节点数8.树的深度9.树根到叶子的最长路径10.交换所有节点的左右子女11.顺序存储12.显示顺序存储13.测试函数和主函数对二叉树的每一个操作写测试函数,然后在主函数用while+switch-case的方式实现一个带菜单的简易测试程序,代码见“实验完整代码”。

实验完整代码:#include <bits/stdc++.h>using namespace std;#define MAX_TREE_SIZE 100typedef char ElemType;ElemType SqBiTree[MAX_TREE_SIZE];struct BiTNode{ElemType data;BiTNode *l,*r;}*T;void createBiTree(BiTNode *&T){ElemType e;e = getchar();if(e == '\n')return;else if(e == ' ')T = NULL;else{if(!(T = (BiTNode *)malloc(sizeof (BiTNode)))){cout << "内存分配错误!" << endl;exit(0);}T->data = e;createBiTree(T->l);createBiTree(T->r);}}void createBiTree2(BiTNode *T,int u) {if(T){SqBiTree[u] = T->data;createBiTree2(T->l,2 * u + 1);createBiTree2(T->r,2 * u + 2); }}void outputBiTree2(int n){int cnt = 0;for(int i = 0;cnt <= n;i++){cout << SqBiTree[i];if(SqBiTree[i] != ' ')cnt ++;}cout << endl;}void preOrderTraverse(BiTNode *T) {if(T){cout << T->data;preOrderTraverse(T->l);preOrderTraverse(T->r);}}void inOrderTraverse(BiTNode *T) {if(T){inOrderTraverse(T->l);cout << T->data;inOrderTraverse(T->r);}}void beOrderTraverse(BiTNode *T){if(T){beOrderTraverse(T->l);beOrderTraverse(T->r);cout << T->data;}}int sumOfVer(BiTNode *T){if(!T)return 0;return sumOfVer(T->l) + sumOfVer(T->r) + 1;}int sumOfLeaf(BiTNode *T){if(!T)return 0;if(T->l == NULL && T->r == NULL)return 1;return sumOfLeaf(T->l) + sumOfLeaf(T->r);}int depth(BiTNode *T){if(!T)return 0;return max(depth(T->l),depth(T->r)) + 1;}bool LongestPath(int dist,int dist2,vector<ElemType> &ne,BiTNode *T) {if(!T)return false;if(dist2 == dist)return true;if(LongestPath(dist,dist2 + 1,ne,T->l)){ne.push_back(T->l->data);return true;}else if(LongestPath(dist,dist2 + 1,ne,T->r)){ne.push_back(T->r->data);return true;}return false;}void swapVer(BiTNode *&T){if(T){swapVer(T->l);swapVer(T->r);BiTNode *tmp = T->l;T->l = T->r;T->r = tmp;}}//以下是测试程序void test1(){getchar();cout << "请以先序次序输入二叉树结点的值,空结点用空格表示:" << endl; createBiTree(T);cout << "二叉树创建成功!" << endl;}void test2(){cout << "二叉树的前序遍历为:" << endl;preOrderTraverse(T);cout << endl;}void test3(){cout << "二叉树的中序遍历为:" << endl;inOrderTraverse(T);cout << endl;}void test4(){cout << "二叉树的后序遍历为:" << endl;beOrderTraverse(T);cout << endl;}void test5(){cout << "二叉树的总结点数为:" << sumOfVer(T) << endl;}void test6(){cout << "二叉树的叶子结点数为:" << sumOfLeaf(T) << endl; }void test7(){cout << "二叉树的深度为:" << depth(T) << endl;}void test8(){int dist = depth(T);vector<ElemType> ne;cout << "树根到叶子的最长路径:" << endl;LongestPath(dist,1,ne,T);ne.push_back(T->data);reverse(ne.begin(),ne.end());cout << ne[0];for(int i = 1;i < ne.size();i++)cout << "->" << ne[i];cout << endl;}void test9(){swapVer(T);cout << "操作成功!" << endl;}void test10(){memset(SqBiTree,' ',sizeof SqBiTree);createBiTree2(T,0);cout << "操作成功!" << endl;}void test11(){int n = sumOfVer(T);outputBiTree2(n);}int main(){int op = 0;while(op != 12){cout << "-----------------menu--------------------" << endl;cout << "--------------1:创建二叉树--------------" << endl;cout << "--------------2:前序遍历----------------" << endl;cout << "--------------3:中序遍历----------------" << endl;cout << "--------------4:后序遍历----------------" << endl;cout << "--------------5:总结点数----------------" << endl;cout << "--------------6:叶子节点数--------------" << endl;cout << "--------------7:树的深度----------------" << endl;cout << "--------------8:树根到叶子的最长路径----" << endl;cout << "--------------9:交换所有节点左右子女----" << endl;cout << "--------------10:顺序存储---------------" << endl;cout << "--------------11:显示顺序存储-----------" << endl;cout << "--------------12:退出测试程序-----------" << endl;cout << "请输入指令编号:" << endl;if(!(cin >> op)){cin.clear();cin.ignore(INT_MAX,'\n');cout << "请输入整数!" << endl;continue;}switch(op){case 1:test1();break;case 2:test2();break;case 3:test3();break;case 4:test4();break;case 5:test5();break;case 6:test6();break;case 7:test7();break;case 8:test8();break;case 9:test9();break;case 10:test10();break;case 11:test11();break;case 12:cout << "测试结束!" << endl;break;default:cout << "请输入正确的指令编号!" << endl;}}return 0;}六、实验数据及处理结果测试用例:1.创建二叉树(二叉链表形式)2.前序遍历3.中序遍历4.后序遍历5.总结点数6.叶子结点数7.树的深度8.树根到叶子的最长路径9.交换所有左右子女10.顺序存储七、思考讨论题或体会或对改进实验的建议通过这次实验,我掌握了二叉树的顺序存储和链式存储,体会了二叉树的存储结构的特性,掌握了二叉树的树上相关操作。

数据结构实验三树与二叉树的操作实验指导

数据结构实验三树与二叉树的操作实验指导

实验六树与二叉树6.1实验目的:(1)掌握二叉树链表的结构和二叉树的建立过程;(2)掌握二叉树的基本操作,加深对二叉树的理解,逐步培养解决实际问题的编程能力。

6.2实验要求:(1)复习课本中有关树与二叉树的知识;(2)用C语言完成算法和程序设计并上机调试通过;(3)撰写实验报告,给出算法思路或流程图和具体实现(源程序)、算法分析结果(包括时间复杂度、空间复杂度以及算法优化设想)、输入数据及程序运行结果(必要时给出多种可能的输入数据和运行结果)。

6.3基础实验[实验1] 二叉树的构造实验内容与要求:按先序序列构造一棵二叉链表表示的二叉树T;分析:二叉树是每个结点至多只有两棵子树,并有左、右之分,顺序不能任意颠倒的一种非线性结构。

二叉树常用的存储结构是二叉链表形式,二叉链表由一个数据项data(用于存放结点的值)和两个指针项lchild、rchild(分别指向该结点的左、右子树)。

结点及结构如图6-1所示://- - - - - - 二叉树的二叉链表存储表示模型- - - - - - -typedef struct BiTNode{TElemType data;Struct BiTNode * lchild, * rchild; //左右孩子指针}BiTNode, * BiTree;将此结构定义放在一个头文件BiTNode.h里,可避免在后面的参考程序中代码重复书写,另外在该头文件里给出二叉链表的初始化及常量的定义。

实现提示按先序序列建立一棵二叉树,先构造根结点,再构造根的左、右子树;每一棵子树又都是一颗二叉树,所以构造一棵子树的过程与构造整棵二叉树的过程完全相同,按照先序序列,先构造根,再构造左子树,然后构造右子树;采用递归形式直到叶子结点为止。

以下是算法描述:Status CreateBiTree(BiTree &T)//按先序次序输入二叉树中结点的值(一个字符),#字符表示空树,//构造二叉链表表示的二叉树T。

实验3树和二叉树

实验3树和二叉树

实验3树和二叉树
实验3 树和二叉树
实验目的:
1、通过对二叉树特点的分析,掌握二叉树的主要存储结构;
2、在二叉树具体的存储结构基础上,实现二叉树的基本操作;
3、能针对二叉树的具体应用选择相应的存储结构;
4、进一步掌握递归算法的设计方法。

实验内容
一、假定二叉树采用二叉链表存储结构,编写程序实现二叉树的各种基本运算,
并在此基础上设计一个主程序完成如下功能:
(1)初始化二叉树T;
(2)输入扩展先序序列AB#DF###C#E## ,创建二叉树;
(3)输出二叉树的深度;
(4)输出二叉树的先序遍历序列;
(5)输出二叉树的中序遍历序列;
(6)输出二叉树的后序遍历序列;
(7)输出二叉树的层次遍历序列;
(8)统计二叉树中叶子结点的个数,并输出所有的叶子结点;
(9)交换二叉树的左右子树;
(10)输出二叉树的先序遍历序列;
(11)输出二叉树的中序遍历序列;
(12)输出二叉树的后序遍历序列;
(13)输出二叉树的层次遍历序列;
二、编写程序实现赫夫曼树和赫夫曼编码的各种基本运算,并在此基础上设计一
个主程序完成如下功能:
(1)输入n个字符及其权值,建立赫夫曼树;
字符 A B C D E F G H
权值 5 29 7 8 14 23 3 11
(2)输出每个字符对应的赫夫曼编码;
(3)输入正文FACE,输出其编码;(4)输入编码101101111,输出其正文;。

树和二叉树实验报告

树和二叉树实验报告

●实验内容:实验三树和二叉树1.编写函数,输入字符序列,建立二叉树的二叉链表。

2.编写函数,实现二叉树的中序递归遍历算法。

(最好也能实现前缀和后缀遍历算法)3.编写函数,实现二叉树的中序非递归遍历算法。

4.编写函数,借助队列实现二叉树的层次遍历算法。

5.编写函数,求二叉树的高度。

6.编写函数,求二叉树的结点个数。

7.编写函数,求二叉树的叶子个数。

8.编写函数,交换二叉树每个结点的左子树和右子树。

9.编写一个主函数,在主函数中设计一个简单的菜单,分别调试上述算法。

●实验目的及要求:1.掌握二叉树的存储实现2.掌握二叉树的遍历思想3.掌握二叉树的常见算法的程序实现●实验内容、方法与步骤:(使用附页填写并附在本页后)见附页●实验结果:见附页●小结:通过本次实验,我基本掌握了二叉树的存储实现和二叉树的遍历思想,并且实现了二叉树的几种常见算法。

分数:批阅老师:200 年月日第 1 页/ 共13 页实验报告(附页)#include <stdio.h>#include <stdlib.h>#define OK 1#define ERROR 0#define OVERFLOW -2typedef int status;typedef struct BiNode//二叉链表{char Data;struct BiNode* lChild;struct BiNode* rChild;}BiNode,*pBiNode;typedef struct SNode/*链栈的结点类型*/{pBiNode elem; /*栈中的元素是指向二叉链表结点的指针*/struct SNode *next;}SNode;struct link //队列链表{struct BiNode *p;struct link *next;};status CreateTree(BiNode** pTree);status PreOrderTraval(BiNode* pTree);//前序递归status InOrderTraval(BiNode* pTree);//中序递归status PostOrderTraval(BiNode* pTree);//后序递归status st_InOrderTraverse(BiNode* pTree);//中序非递归遍历void TreeLink(BiNode* pTree); //队列实现层次遍历int TreeHeight (BiNode* pTree);//二叉树的高度int Count(BiNode* pTree);//结点个数int TreeNumber(BiNode* pTree);//叶子个数void Exchange (BiNode* pTree);//交换左右子树status Visit(char Data);void Display(BiNode* pTree,int Level);BiNode *pRoot=NULL;status CreateTree(BiNode** pTree) /*Input Example: abd##e##cf##g##*/ {char ch;scanf("%c",&ch);if(ch=='#'){(*pTree)=NULL;}else{if(!((*pTree)=(BiNode*)malloc(sizeof(BiNode)))) {exit(OVERFLOW);}(*pTree)->Data=ch;CreateTree(&((*pTree)->lChild));CreateTree(&((*pTree)->rChild));}return OK;}status PreOrderTraval(BiNode* pTree)//前序递归{if(pTree){if(Visit(pTree->Data)){if(PreOrderTraval(pTree->lChild)){if(PreOrderTraval(pTree->rChild)){return OK;}}}return ERROR;}else{return OK;}}status InOrderTraval(BiNode* pTree)//中序递归{if(pTree){if(InOrderTraval(pTree->lChild)){if(Visit(pTree->Data)){if(InOrderTraval(pTree->rChild)){return OK;}}return ERROR;}return ERROR;}else{return OK;}}status PostOrderTraval(BiNode* pTree)//后序递归{if(pTree){if(PostOrderTraval(pTree->lChild)){if(PostOrderTraval(pTree->rChild)){if(Visit(pTree->Data)){return OK;}return ERROR;}}return ERROR;}else{return OK;}}status st_InOrderTraverse(BiNode* pTree)//中序非递归遍历{BiNode *p;SNode *q,*Stop=NULL; /*用不带头结点的单链表作为栈的存储结构*/ p=pTree;while(p!=NULL||Stop!=NULL) /*不是空树*/{if(p!=NULL){q=(SNode*)malloc(sizeof(SNode));if(q==NULL)return ERROR;q->next=Stop;q->elem=p;Stop=q; /*根结点指针入栈*/p=p->lChild; /*进入根的左子树*/}else{q=Stop;Stop=Stop->next; /*栈顶元素出栈*/printf("%c ",q->elem->Data);/*访问根结点*/p=q->elem->rChild; /*进入根的右子树*/free(q); /*释放原栈顶元素的结点空间*/}}return OK;}void TreeLink(BiNode* pTree) //队列实现层次遍历{struct link *head,*rear,*temp;head=(struct link *)malloc(sizeof(struct link));head->p=pTree;head->next=NULL;rear=head;do{if(head->p->lChild!=NULL){temp=(struct link *)malloc(sizeof(struct link));temp->p=head->p->lChild;temp->next=NULL;rear->next=temp;rear=temp;}if(head->p->rChild!=NULL){temp=(struct link *)malloc(sizeof(struct link));temp->p=head->p->rChild;temp->next=NULL;rear->next=temp;rear=temp;}temp=head;printf("%c ",head->p->Data);head=head->next;free(temp);}while(head!=NULL);}int TreeHeight(BiNode* pTree)//二叉树的高度{int hl ,hr ; //左右子树的高度if (pTree == NULL)return 0 ;elsehl = TreeHeight(pTree-> lChild);hr = TreeHeight (pTree-> rChild);if (hl>hr)return (hl +1);elsereturn (hr +1);}int Count(BiNode* pTree)//结点个数{return pTree == NULL ? 0 : Count(pTree->lChild) + Count(pTree->rChild) + 1;}int TreeNumber(BiNode* pTree)//叶子个数{if (pTree==NULL)return 0;if (pTree->lChild ==NULL && pTree->rChild == NULL)return 1;return TreeNumber(pTree->lChild)+TreeNumber(pTree->rChild);//+1就可以求出结点个数}void Exchange (BiNode* pTree )//交换左右子树{BiNode* temp;if ( pTree->lChild != NULL || pTree->rChild != NULL ){temp = pTree->lChild;pTree->lChild = pTree->rChild;pTree->rChild = temp;Exchange ( pTree->lChild );Exchange ( pTree->rChild );}}status Visit(char Data){printf("%c ",Data);return OK;}void Display(BiNode* pTree,int Level)//显示整个树{int i;if(pTree==NULL) return;Display(pTree->rChild,Level+1);for(i=0;i<Level-1;i++){printf(" ");}if(Level>=1){printf("--");}printf("%c\n",pTree->Data);Display(pTree->lChild,Level+1);}void CmdList() //显示命令列表{printf("\n_____________________________________________\n");printf(" 请选择操作: \n");printf(" 1.前序递归遍历\n"); //前序递归遍历printf(" 2.中序递归遍历\n"); //中序递归遍历printf(" 3.后序递归遍历\n"); //后序递归遍历printf(" 4.中序非递归遍历\n"); //中序非递归遍历printf(" 5.层次遍历\n"); //层次遍历printf(" 6.求二叉树高度\n"); //二叉树高度printf(" 7.求结点个数\n"); //二叉树的结点个数printf(" 8.求叶子个数\n"); //二叉树的叶子个数printf(" 9.交换左右子树\n"); //交换左右子树printf(" 0.退出程序\n"); //退出printf("\n______________________________________________\n");}void init(){system ("cls");printf("* * * * * * * * * * * * * * * * * * * * * * * * *\n");printf("实验三树和二叉树\n");printf("03计本3班\n");printf("樊海军 2B0324151138\n");printf("* * * * * * * * * * * * * * * * * * * * * * * * *\n");printf("本程序实现二叉树的常见算法。

数据结构树和二叉树实验报告

数据结构树和二叉树实验报告
void PostOrder(BTNode *b)
{
if (b!=NULL)
{
PostOrder(b->lchild);
PostOrder(b->rchild);
printf("%c ",b->data);
}
}
void PostOrder1(BTNode *b)
{
BTNode *St[MaxSize];
if (b->lchild!=NULL)
{
rear++;
Qu[rear].p=b->lchild;
Qu[rear].lno=lnum+1;
}
if (b->rchild!=NULL)
{
rear++;
Qu[rear].p=b->rchild;
Qu[rear].lno=lnum+1;
}
}
max=0;lnum=1;i=1;
case ')':top--;break;
case ',':k=2; break;
default:p=(BTNode *)malloc(sizeof(BTNode));
p->data=ch;p->lchild=p->rchild=NULL;
if (b==NULL)
b=p;
else
{
switch(k)
case 2:St[top]->rchild=p;break;
}
}
}
j++;
ch=str[j];
}
}
BTNode *FindNode(BTNode *b,ElemType x)

关于树的操作的的实验报告

关于树的操作的的实验报告
九.参考文献..........................................................................33
《数据结构》课程设计模板
一.设计目的
通过课程设计,巩固所学的理论知识,培养综合运用所学知识解决实际问题的能力。能根据实际问题的具体情况,结合数据结构课程中的基本理论和基本算法,正确分析出数据的逻辑结构,合理地选择相应的存储结构,并能设计出解决问题的有效算法。
本程序的结果将依次打印出递归前序遍历、中序遍历和后序遍历,用栈实现非递归的前序和中序遍历和后序遍历,和线索化层序遍历,输入树及树传换成二叉树。
演示程序以用户与计算机对话的方式进行,即在计算机终端上显示提示信息后,由用户在键盘上输入演示程序中规定的命令,相应的输入数据和运算结果显示在其
四.概要设计
1、二叉树创建
3中序遍历二叉树的递归算法
若二叉树为空,则空操作;否则(1)中序遍历左子树;(2)访问根结点;(3)中序遍历右子树。void InOrder(BiNode root)。
4先序遍历二叉树的递归算法
若二叉树为空,则空操作;否则(1)后序遍历左子树;(2)后序遍历右子树。(3)访问根结点;void PostOrder(BiNode root)。
5.先序非递归算法
BiNode根指针,若BiNode!= NULL对于非递归算法,引入栈模拟递归工作栈,初始时栈为空。
问题:如何用栈来保存信息,使得在先序遍历过左子树后,能利用栈顶信息获取BiNode的右子树的根指针?void F_PreOrder(BiNode root)
6.中序非递归算法
BiNode是要遍历树的根指针,中序遍历要求在遍历完左子树后,访问根,再遍历右子树。

树和二叉树实验报告_2

树和二叉树实验报告_2

实验报告班级: 软本101 学号: 2010417133姓名: 张明宇日期: 10月20号1.实验题目2.编辑一个程序, 用来演示树和二叉树的建立、遍历等操作。

3.需求分析本演示程序在Microsoft Visual C++ 6.0环境下编写调试, 完成二叉树的建立、遍历、深度求解等。

(1)建立二叉树: 进入程序运行界面后, 提示我们输入要建立的二叉树, 并默认以先序序列输入。

若第一个输入为“#”, 则为空树。

否则按照从左子树到右子树的顺序建立该二叉树, 用#代表虚结点, 如ABD###CE##F##。

建立完二叉树后按“ENTER”键自动进入下一个功能模块的实现。

(2)实现各个遍历递归算法: 实现该二叉树的先序遍历、中序遍历和后序遍历递归算法, 逐个访问该二叉树的左右子树, 并输出各遍历序列。

(3)统计出该二叉树中叶子节点个数和高度:只要该二叉树的移动指针t 所指向的节点非空, 进一步判断其左右子树是否也都为空, 让表示节点的变量能够记录叶子节点个数和深度。

(4)实现层次遍历算法:利用队列“先进先出”的原则, 按照“根左右”的顺序前后将整棵树入队, 并输出。

概要设计(1)为了实现上述程序功能, 需要定义二叉树的数据结构。

二叉树单个元素的结构如图1.1所示。

图1.1 二叉树元素的数据结构(2)本程序包含7个函数:①主函数main()。

②树的建立函数CreatBinTree()。

③先序遍历函数Preorder()。

④中序遍历函数Inorder()。

⑤后序遍历函数Postorder()。

⑥求叶子深度和二叉树深度函数TreeDepth()。

⑦层次遍历函数Levelorder()。

各函数间的关系如图1.2所示。

图1.2 程序所包含各函数之间的关系4.详细设计(1)实现概要设计中定义的所有的数据类型, 对每个操作给出具体的算法;对主程序和其他模块也都需要写出具体算法。

数据类型。

用C语言描述如下:typedef struct BinTNode{char data;struct BinTNode *lchild,*rchild;}BinTNode,*BinTree;(2)线性表的基本操作函数的具体算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验5:树和二叉树
一、实验目的
1.掌握二叉树的结构特征,以及各种存储结构的特点及适用范围。

2.掌握用指针类型描述、访问和处理二叉树的运算。

二、实验要求
1.认真阅读和掌握本实验的程序。

2.上机运行本程序。

3.保存和打印出程序的运行结果,并结合程序进行分析。

4.按照二叉树的操作需要,重新改写主程序并运行,打印出文件清单和运行
结果。

三、实验内容
1.输入字符序列,建立二叉链表。

2.按先序、中序和后序遍历二叉树(递归算法)。

3.按某种形式输出整棵二叉树。

4.求二叉树的高度。

5.求二叉树的叶结点个数。

6.交换二叉树的左右子树。

7.借助队列实现二叉树的层次遍历。

8.在主函数中设计一个简单的菜单,分别调试上述算法。

为了实现对二叉树的有关操作,首先要在计算机中建立所需的二叉树。

建立二叉树有各种不同的方法。

一种方法是利用二叉树的性质5来建立二叉树,输入数据时需要将结点的序号(按满二叉树编号)和数据同时给出:(序号,数据元素)。

图4.1所示二叉树的输入数据顺序应该是:(1,a),(2,b),(3,c),(4,d),(6,e),(7,f),(9,g),(13,h)。

另一种算法是主教材中介绍的方法,这是一个递归方法,与先序遍历有点相似。

数据的组织是先序的顺序,但是另有特点,当某结点的某孩子为空时以字符“#”来充当,也要输入。

这时,图 4.1所示二叉树的输入数据顺序应该是:abd#g###ce#h##f##。

若当前数据不为“#”,则申请一个结点存入当前数据。

递归调用建立函数,建立当前结点的左右子树。

相关文档
最新文档