PLC温度程序控制器设计

合集下载

基于PLC温度控制系统设计

基于PLC温度控制系统设计

编号: 毕业论文(设计)题目基于PLC温度控制系统的设计指导教师学生姓名学号专业自动化教学单位机电工程学院毕业论文(设计)开题报告书德州学院毕业论文(设计)中期检查表院(系):机电工程学院专业:自动化 2014 年 4月 7日目录1引言 (2)1.1课题背景以及研究的目的、意义 (2)1.2温控系统的现状 (2)1.3项目研究内容 (3)2系统硬件设计 (4)2.1 PLC选择 (4)2.2 硬件电路设计 (7)3 系统软件设计 (13)3.1 编程与通信软件的使用 (14)3.2 程序设计 (14)3.3 系统程序流程图 (15)3.4 控制系统控制程序的开发 (16)4系统的仿真和运行测试 (25)4.1 组态王的运行 (25)4.2 实时曲线的观察 (26)4.3 分析历史趋势曲线 (27)4.4 编辑数据的报表 (27)4.5系统稳定性测试及最终评估 (27)参考文献 (29)谢辞 (30)附录一三菱FX系列PLC指令一览表 (30)附录二系统程序(梯形图) (32)基于PLC温度控制系统的设计(德州学院机电工程学院,山东德州253023)摘要:本文主要介绍了基于日本三菱公司FX2N系列的可编程控制器从而进行硬件设计和软件设计,进而完成了一个完整的关于炉温控制系统的设计方案。

该设计编程时调用了PID控制模块,使得程序更为简洁,运行速度更为理想。

在软件上,则是通过利用比较新型的三菱专用软件三菱(PLC)GX Developer 8.86Q,实现控制系统的实时监控、数据的实时采样与处理。

实验证明,此系统具有快、准、稳等优点,在工业温度控制领域能够广泛应用。

关键词:温度控制;可编程控制器;三菱FX2N;PID控制模块1引言1.1课题背景以及研究的目的、意义进入21世纪后,我国社会的各项发展突飞猛进,世界的技术更是日新月异,竞争也愈演愈烈,传统的人工的操作已不能满足于目前的制造业前景,也无法保证高质量的要求,更不能提升高新技术企业的形象。

基于PLC的温度控制系统的设计

基于PLC的温度控制系统的设计

1 引言1.1 设计目的温度的测量和控制对人类日常生活、工业生产、气象预报、物资仓储等都起着极其重要的作用。

在许多场合,及时准确获得目标的温度、湿度信息是十分重要的。

近年来,温湿度测控领域发展迅速,并且随着数字技术的发展,温湿度的测控芯片也相应的登上历史的舞台,能够在工业、农业等各领域中广泛使用。

1.2 设计内容主要是利用PLC S7-200作为可编程控制器,系统采用PID控制算法,手动整定或自整定PID参数,实时计算控制量,控制加热装置,使加热炉温度为为一定值,并能实现手动启动和停止,运行指示灯监控实时控制系统的运行,实时显示当前温度值。

1.3 设计目标通过对温度控制的设计,提高在电子工程设计和实际操作方面的综合能力,初步培养在完成工程项目中所应具备的基本素质和要求。

培养团队精神,科学的、实事求是的工作方法,提高查阅资料、语言表达和理论联系实际的技能。

2 系统总体方案设计2.1 系统硬件配置及组成原理2.1.1 PLC型号的选择本温度控制系统采用德国西门子S7-200 PLC。

S7-200 是一种小型的可编程序控制器,适用于各行各业,各种场合中的检测、监测及控制的自动化。

S7-200系列的强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能。

因此S7-200系列具有极高的性能/价格比。

2.1.2 PLC CPU的选择S7-200 系列的PLC有CPU221、CPU222、CPU224、CPU226等类型。

S7-200PLC 硬件系统的组成采用整体式加积木式,即主机中包括定数量的I/O端口,同时还可以扩展各种功能模块。

S7-200PLC由基本单元(S7-200 CPU模块)、扩展单元、个人计算机(PC)或编程器,STEP 7-Micro/WIN编程软件及通信电缆等组成。

表2.1 S7-200系列PLC中CPU22X的基本单元本设计采用的是CUP226。

它具有24输入/16输出共40个数字量I/O点。

PLC温室温度控制系统设计方案

PLC温室温度控制系统设计方案

PLC温室温度控制系统设计方案嘿,大家好!今天咱们就来聊聊如何打造一套高效、稳定的PLC 温室温度控制系统。

这个方案可是融合了我10年的写作经验和实践心得,下面咱们就直接进入主题吧!一、系统概述咱们先来简单了解一下这个系统。

这个PLC温室温度控制系统是基于可编程逻辑控制器(PLC)技术,通过传感器实时监测温室内的温度,再通过执行机构对温室内的环境进行调节,从而达到恒定温度的目的。

这套系统不仅智能,而且高效,是现代农业发展的好帮手。

二、系统设计1.硬件设计(1)传感器:选用高精度的温度传感器,如PT100或热电偶,实时监测温室内的温度。

(2)执行机构:选用电动调节阀或者电加热器,用于调节温室内的温度。

(3)PLC控制器:选用具有良好扩展性的PLC控制器,如西门子S7-1200系列。

(4)通信模块:选用支持Modbus协议的通信模块,实现数据传输。

2.软件设计(1)温度监测模块:实时采集温室内的温度数据,并进行显示。

(2)温度控制模块:根据设定的温度范围,自动调节执行机构的动作,实现温室内的温度控制。

(3)报警模块:当温室内的温度超出设定的范围时,发出报警提示。

(4)通信模块:实现与上位机的数据交换,便于远程监控和操作。

三、系统实现1.硬件连接将温度传感器、执行机构、PLC控制器和通信模块按照设计要求进行连接。

其中,温度传感器和执行机构与PLC控制器之间的连接采用模拟量输入输出模块。

2.软件编程(1)温度监测程序:编写程序实现温度数据的实时采集和显示。

(2)温度控制程序:编写程序实现根据设定的温度范围自动调节执行机构的动作。

(3)报警程序:编写程序实现当温室内的温度超出设定的范围时,发出报警提示。

(4)通信程序:编写程序实现与上位机的数据交换。

3.系统调试(1)检查硬件连接是否正确,确保各个设备正常工作。

(2)运行软件程序,观察温度监测、控制、报警等功能是否正常。

(3)进行远程监控和操作,检验通信模块是否正常工作。

基于plc温度控制系统的设计论文

基于plc温度控制系统的设计论文

基于plc温度控制系统的设计论文摘要:本设计论文基于PLC温度控制系统,旨在设计一个可靠、稳定、高效、精确的温度控制系统,应用于实际工业生产中。

通过研究传感器、执行器、控制器等硬件设备的特性和功能,并结合PID控制算法和PLC编程技术,实现对温度的自动控制和实时监测。

关键词:PLC、温度控制系统、PID控制、编程技术Abstract:This design paper is based on the PLC temperature control system with the aim of designing a reliable, stable, efficient, precise temperature control system that can be applied in industrial production. Through research of the characteristics and functions of hardware equipment such as sensors, actuators, and controllers, combined with PID control algorithms and PLC programming technology, we will achieve automatic control and real-time monitoring of temperature.Keywords: PLC, temperature control system, PID control, programming technology一、引言随着科技和工业的进步,现代化工业生产中需要用到大量的自动化控制系统来实现对生产过程的智能控制,提高生产效率和品质,还能有效地降低生产成本。

其中,温度控制系统是工业生产中最常用的自动化控制系统之一。

基于PLC的温度控制系统的设计

基于PLC的温度控制系统的设计

1 引言1.1 设计目的温度的测量和控制对人类平常生活、工业生产、气象预报、物资仓储等都起着极其重要的作用。

在许多场合,及时准确获得目的的温度、湿度信息是十分重要的。

近年来,温湿度测控领域发展迅速,并且随着数字技术的发展,温湿度的测控芯片也相应的登上历史的舞台,可以在工业、农业等各领域中广泛使用。

1.2 设计内容重要是运用PLC S7-200作为可编程控制器,系统采用PID控制算法,手动整定或自整定PID参数,实时计算控制量,控制加热装置,使加热炉温度为为一定值,并能实现手动启动和停止,运营指示灯监控实时控制系统的运营,实时显示当前温度值。

1.3 设计目的通过对温度控制的设计,提高在电子工程设计和实际操作方面的综合能力,初步培养在完毕工程项目中所应具有的基本素质和规定。

培养团队精神,科学的、实事求是的工作方法,提高查阅资料、语言表达和理论联系实际的技能。

2 系统总体方案设计2.1 系统硬件配置及组成原理2.1.1 PLC型号的选择本温度控制系统采用德国西门子S7-200 PLC。

S7-200 是一种小型的可编程序控制器,合用于各行各业,各种场合中的检测、监测及控制的自动化。

S7-200系列的强大功能使其无论在独立运营中,或相连成网络皆能实现复杂控制功能。

因此S7-200系列具有极高的性能/价格比。

2.1.2 PLC CPU的选择S7-200 系列的PLC有CPU221、CPU222、CPU224、CPU226等类型。

S7-200PLC 硬件系统的组成采用整体式加积木式,即主机中涉及定数量的I/O端口,同时还可以扩展各种功能模块。

S7-200PLC由基本单元(S7-200 CPU模块)、扩展单元、个人计算机(PC)或编程器,STEP 7-Micro/WIN编程软件及通信电缆等组成。

表2.1 S7-200系列PLC中CPU22X的基本单元本设计采用的是CUP226。

它具有24输入/16输出共40个数字量I/O点。

基于PLC控制的加热炉温度控制系统设计

基于PLC控制的加热炉温度控制系统设计

基于PLC控制的加热炉温度控制系统设计概述加热炉是工业生产中常见的设备之一,其主要作用是提供高温环境用于加热物体。

为了确保加热炉的稳定性和安全性,需要设计一个可靠的温度控制系统。

本文将介绍一个基于PLC(可编程逻辑控制器)控制的加热炉温度控制系统设计方案。

系统设计原理在加热炉温度控制系统中,PLC作为核心控制器,通过监测温度传感器的输出信号,根据预设的温度设定值和控制策略,控制加热炉的加热功率,从而实现对加热炉温度的稳定控制。

以下是系统设计的主要步骤:1.硬件设备选择:选择适合的温度传感器和控制元件,如热电偶、温度控制继电器等。

2.PLC选型:根据实际需求,选择合适的PLC型号。

PLC需要具备足够的输入输出点数和计算能力。

3.传感器连接:将温度传感器接入PLC的输入端口,读取实时温度数据。

4.温度控制策略设计:根据加热炉的特性和工艺需求,设计合适的温度控制策略。

常见的控制策略包括比例控制、积分控制和微分控制。

5.控制算法实现:根据温度控制策略,编写PLC程序,在每个采样周期内计算控制算法的输出值。

6.加热功率控制:使用控制继电器或可调功率装置,控制加热炉的加热功率。

7.温度反馈控制:通过监测实际加热炉温度和设定值之间的差异,不断修正加热功率控制,使加热炉温度稳定在设定值附近。

系统硬件设计基于PLC控制的加热炉温度控制系统的硬件设计主要包括以下几个方面:1.温度传感器:常用的温度传感器有热电偶和热敏电阻。

根据加热炉的工艺需求和温度范围,选择适合的温度传感器。

2.PLC:选择适合的PLC型号,根据实际需求确定PLC的输入输出点数和计算能力。

3.控制继电器或可调功率装置:用于控制加热炉的加热功率。

根据加热炉的功率需求和控制方式,选择合适的继电器或可调功率装置。

4.运行指示灯和报警器:用于显示系统的运行状态和报警信息。

PLC程序设计PLC程序是基于PLC的加热炉温度控制系统的关键部分,其主要功能是实现温度控制算法。

毕业设计(论文)-基于PLC实现的水温控制

毕业设计(论文)-基于PLC实现的水温控制

基于PLC实现的水温控制XXX(陕西理工学院电气工程系自动化专业,2007级2班,陕西汉中723003)指导教师:XXX[摘要]针对工农业生产中现有的水温控制系统可靠性低、控制精度差、成本高等缺点。

我们利用三菱FX0N60-MR型PLC构建了一个水温控制系统对这一问题进行了研究。

在整个控制系统中以电阻炉作为被控对象,以水温为被控变量,以三菱FX0N60-MR型PLC为控制器,输入部分外加光电耦合器,并用按键和数码管构建了人机接口设置目标温度;控制算法的选择经过对模糊控制和PID算法的实验对比,最终选择采用PID。

PLC程序利用梯形图编程语言进行编写。

在系统搭建完成后我们利用试凑法,通过大量实验对PID控制器的参数进行了优化,进过测试系统能够达到设计要求。

除此之外该系统还具有硬件结构简单、系统可靠性高、制作成本低廉、控制器参数易于调试等优点。

能够利用小型PLC实现对水温较高精度的控制。

[关键词]PLC 温度控制PIDPLC-based temperature control to achieveLiao zhong lin(Grade 07,Class2,Major Automation,Department of Electrical Engineering,Shaanxi University ofTechnology,Hanzhong 723003,Shaanxi)Tutor: Liu pei[Abstract] According to the existing water temperature in the industry and agriculture production control system reliability, low cost, high control precision poor shortcomings. We use mitsubishi FX0N60-MR type PLC has constructed a water temperature control system for this problem is studied. In the whole control system to resistance furnace as controlled object to water temperature as controlled variables, the mitsubishi FX0N60-MR type PLC as the controller, input part plus photoelectric couplers, buttons and digital tube and constructing the man-machine interface set target temperature; The choice of control algorithm based on fuzzy control and PID algorithm experimental, finally choosing PID. PLC program use ladder diagram programming language to write. After the completion of the structures in the system we use trail-and-error, through a large number of experiments of PID controller parameters are optimized, the test system can meet the design requirements. Besides this system also has the hardware structure is simple, system reliability high, production cost is low, and the controller parameters is easy to debug, etc. Can use small PLC to control the water temperature higher accuracy.[Key words] PLC temperature control PID目录绪论 (1)1.设计方案的论证 (2)1.1PLC的选型 (2)1.1.1常用PLC的特点比较 (2)1.1.2本设计PLC的选型 (3)1.2控制方案的选择 (3)1.2.1采用模糊控制的温度控制 (3)1.2.2采用PID算法的温度控制 (3)1.2.3 控制方案的选择 (4)2.硬件电路的设计 (5)2.1PLC硬件资源分配设计 (5)2.2温度传感器 (8)2.2.1 利用温度变送器采集 (8)2.2.2 利用DS18B20采集 (8)2.3输入部分电路设计 (10)2.3.1 设置输入部分电路设计 (10)2.3.2 AD转换结果输入部分电路设计 (10)2.4输出部分电路设计 (10)3.系统软件的设计 (13)3.1PLC编程语言简介 (13)3.2输入部分程序设计 (15)3.3显示部分程序 (15)3.4PID运算部分程序设计 (15)4.系统的调试 (19)4.1硬件调试 (19)4.2软件调试 (19)4.1软硬件联合调试 (19)4.3实验数据 (19)参考文献 (20)英语科技文献翻译 (21)附录 (34)附录A:源程序 (34)附录B:元器件清单 (37)附录C:电路总图 (38)附录D:实物图 (39)致谢 (40)绪论温度控制系统在各行各业的应用虽然很广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高。

PID温度控制的PLC程序设计

PID温度控制的PLC程序设计

PID温度控制的PLC程序设计PID(比例-积分-微分)温度控制是一种常用的控制方法,可以通过PLC(可编程逻辑控制器)实现。

本文将详细介绍PID温度控制的PLC程序设计过程。

1.确定控制系统需求:首先要确定所需的控制系统的基本要求,包括控制温度范围、精度要求、控制方式等。

2.确定传感器和执行机构:选择合适的温度传感器和执行机构,例如热电偶或热电阻作为温度传感器,控制阀门或加热器作为执行机构。

3.确定控制算法:PID控制算法是一种经典的温度控制方法,可在PLC中实现。

PID控制算法由比例、积分和微分三个参数组成,可以通过自整定或手动调整获得最佳参数值。

4.确定控制模式:根据实际需求,选择合适的控制模式,比如开环控制、闭环控制或自适应控制。

对于温度控制,一般采用闭环控制。

5. PLC软件设计:根据控制系统需求和算法确定的参数,设计PLC 软件。

PLC软件可以使用Ladder Diagram(梯形图)或Function Block Diagram(功能块图)等语言编程。

下面是一个基本的PID温度控制的PLC程序设计示例(以Ladder Diagram为例):```ladder====主程序====-,----[]----[]----[]----()PID----[]----]----[]----[]----,[]----温度输入设置温度温度差系数K----[+]=--------]--------]-----------温度设定温度差积分控制值----[/K]------]--------------------------[]----------------[+]=---------控制值累计量----[]----[]----[]----()KpKiKd```上述Ladder Diagram中,PID控制算法的三个参数Kp、Ki和Kd通过输入设置,通过调整这些参数可以改善控制系统的响应速度和稳定性。

FX2N系列PLC实现温度PID控制 毕业设计

FX2N系列PLC实现温度PID控制  毕业设计

FX2N系列PLC实现温度PID控制内容摘要温度作为工业生产和科学实验中最普遍、也是最重要的热工参数之一。

其精度对产品或实验结果会产生重大的影响。

而可编程控制器(PLC)可靠性高,抗干扰能力强,易学易用,采用PLC控制是其中一种比较优越的控制。

本设计主题为“通过三菱PLC实现温度PID控制”。

主要内容为通过FX2N-16MR和其扩展单元FX2N-4AD通过PID特殊功能指令实现单回路闭环系统控制。

系统实现恒温箱内温度快速调整为设定值(110℃)保持恒定,当温度与设定值相差超过5℃时系统实现自动报警。

系统可以自动根据所测量恒温箱内的当前实际温度与设定温度差异通过调节恒温箱内电热丝通断时间调节温度,使恒温箱内温度快速准确调整为设定值。

关键词温度控制;PLC;PID调节;A/D模块AbstractTemperature as industrial production and scientific experiments, the most common, and most important thermodynamic parameters. The accuracy of the product or its results will have a significant impact. The programmable logic controller (PLC), high reliability, strong anti-interference, easy to use, PLC control is one of the relatively superior control.The design theme is "realized through Mitsubishi PLC PID temperature control." The main contents are through FX2N-16MR and its expansion units FX2N-4AD special function commands through the PID closed-loop system to achieve single-loop control. System to achieve rapid adjustment of thermostatic chamber temperature set value (110 ℃) remains constant when the temperature and the set value differ by more than 5 ℃, automatic alarm system. The system can automatically based on the measured temperature inside the current difference between the actual temperature and the set temperature by regulating the temperature inside the heating wire off time, the temperature inside the temperature quickly and accurately adjust the settings.KeywordsTemperature control; PLC; PID regulator; A / D module目录一、绪论 (1)1.1 PID控制技术概述 (1)1.2 温度控制技术 (1)1.3 系统过程分析 (2)二、硬件设计 (3)2.1 硬件选型 (3)2.1.1 可编程控制器选型 (4)2.1.2 温度转换器选型 (5)2.1.3 热电偶接触器选型 (6)2.1.4 继电器选型 (8)2.2 硬件接线图 (9)2.2.1 输入接口电路 (10)2.2.2 输出接口电路 (11)三、软件设计 (15)3.1 指令分析部分 (15)3.1.1 PID调节部分 (15)3.1.2 PID模块参数整定 (18)3.1.3 脉宽指令调节部分 (19)3.1.4 系统报警部分 (21)3.1.5 模拟量数字量转换部分 (22)3.2 指令编写部分 (22)3.3 附录 (26)四、设计总结 (27)五、参考文献 (28)一、绪论1.1 PID控制技术发展概述自从上世纪三十年代以来,自动化技术获得惊人成果,在现在的工业生产和科学发展中起着重要作用。

plc温度控制系统设计

plc温度控制系统设计

plc温度控制系统设计一、引言随着现代工业的快速发展,温度控制系统在各个领域得到了广泛的应用。

可编程逻辑控制器(PLC)作为一种工业控制设备,具有较高的可靠性、稳定性和灵活性。

本文将介绍如何设计一套基于PLC的温度控制系统,以满足现代工业生产中对温度控制的需求。

二、PLC温度控制系统原理PLC温度控制系统主要通过传感器采集温度信号,将信号转换为电信号后,输入到PLC进行处理。

根据预设的温度控制策略,PLC输出相应的控制信号,驱动执行器(如加热器、制冷装置等)进行加热或降温,从而实现对温度的精确控制。

三、设计步骤与方法1.确定控制目标:明确温度控制系统的控制范围、精度要求、响应速度等指标。

2.选择合适的PLC型号:根据控制需求,选择具有足够输入/输出点、运算速度和存储容量的PLC。

3.设计硬件系统:包括传感器、执行器、通信模块等硬件设备的选型和连接。

4.设计软件系统:编写温度控制程序,包括输入数据处理、控制算法、输出控制等功能。

5.系统调试与优化:对系统进行调试,确保温度控制精度和稳定性,并根据实际运行情况进行优化。

四、系统硬件设计1.选择合适的传感器:根据控制范围和精度要求,选择合适的温度传感器,如热电偶、热敏电阻等。

2.选择合适的执行器:根据控制需求,选择合适的执行器,如伺服电机、电磁阀等。

3.通信模块:根据现场通信需求,选择合适的通信模块,如以太网、串口等。

五、系统软件设计1.编写程序:采用相应的编程语言(如梯形图、功能块图等)编写温度控制程序。

2.输入数据处理:对传感器采集的温度信号进行滤波、标定等处理,确保数据准确性。

3.控制算法:根据预设的控制策略,编写控制算法,如PID控制、模糊控制等。

4.输出控制:根据控制算法输出相应的控制信号,驱动执行器进行加热或降温。

六、系统调试与优化1.调试:对系统进行调试,确保各设备正常运行,控制算法有效。

2.优化:根据实际运行情况,对控制参数、控制策略等进行优化,提高系统性能。

plc温度控制系统设计

plc温度控制系统设计

plc温度控制系统设计摘要:I.引言- 介绍PLC 温度控制系统- 阐述其在工业生产和科学实验中的应用II.PLC 温度控制系统的设计- 设计原理- 系统构成1.温度传感器2.PLC 可编程控制器3.执行器4.报警装置III.PLC 温度控制系统的优势- 控制精度高- 抗干扰能力强- 操作灵活方便- 可靠性高IV.PLC 温度控制系统的应用实例- 工业生产中温度控制的应用- 科学实验中温度控制的应用V.结论- 总结PLC 温度控制系统的重要性- 展望其在未来工业和科学领域的应用前景正文:I.引言在工业生产和科学实验中,温度控制是至关重要的环节。

近年来,随着可编程控制器(PLC)技术的不断发展,基于PLC 的温度控制系统已经越来越广泛地应用于各个领域。

本文将详细介绍PLC 温度控制系统的设计、优势及应用实例。

II.PLC 温度控制系统的设计PLC 温度控制系统的设计主要依据PLC 可编程控制器的原理,通过将温度传感器、执行器、报警装置等组件与PLC 相连接,实现对温度的实时监测和控制。

1.设计原理PLC 温度控制系统采用PID 控制算法,通过调整比例、积分、微分环节的参数,实现对温度的精确控制。

2.系统构成PLC 温度控制系统主要由温度传感器、PLC 可编程控制器、执行器和报警装置组成。

1.温度传感器:用于实时监测环境或设备的温度,将温度变化转换为电信号传输给PLC。

2.PLC 可编程控制器:根据设定的温度控制策略,对温度传感器传输来的信号进行处理,并输出控制指令给执行器。

3.执行器:根据PLC 的控制指令,对加热器或制冷设备进行控制,实现对温度的调整。

4.报警装置:当温度超出设定范围时,报警装置会自动发出警报,提醒操作人员采取相应措施。

III.PLC 温度控制系统的优势PLC 温度控制系统具有以下优势:1.控制精度高:采用PID 控制算法,能够实现对温度的高精度控制,满足不同场合的温度控制需求。

基于PLC的PID温度控制系统设计(附程序代码)

基于PLC的PID温度控制系统设计(附程序代码)

基于PLC的PID温度控制系统设计(附程序代码)摘要自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。

随着PLC技术的飞速发展,通过PLC对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。

温度控制系统广泛应用于工业控制领域,如钢铁厂、化工厂、火电厂等锅炉的温度控制系统。

而温度控制在许多领域中也有广泛的应用。

这方面的应用大多是基于单片机进行PID 控制, 然而单片机控制的DDC 系统软硬件设计较为复杂, 特别是涉及到逻辑控制方面更不是其长处, 然而PLC 在这方面却是公认的最佳选择。

根据大滞后、大惯性、时变性的特点,一般采用PID调节进行控制。

随着PLC功能的扩充,在许多PLC 控制器中都扩充了PID 控制功能, 因此在逻辑控制与PID控制混合的应用场所中采用PLC控制是较为合理的。

本设计是利用西门子S7-200PLC来控制温度系统。

首先研究了温度的PID调节控制,提出了PID的模糊自整定的设计方案,结合MCGS监控软件控制得以实现控制温度目的。

关键词:PLC;PID;温度控制沈阳理工大学课程设计论文目录1 引言...................................................................... (1)1.1 温度控制系统的意义...................................................................... .. (1)1.2 温度控制系统背景...................................................................... .................. 1 1.3 研究技术介绍...................................................................... .. (1)1.3.1 传感技术...................................................................... (1)1.3.2PLC .................................................................... . (2)上位机...................................................................... ............................1.3.3 31.3.4 组态软件...................................................................... ........................ 3 1.4 本文研究对象...................................................................... .. (4)2 温度PID控制硬件设计...................................................................... (5)2.1 控制要求...................................................................... .................................. 5 2.2 系统整体设计方案...................................................................... .................. 5 2.3 硬件配置...................................................................... . (6)2.3.1 西门子S7-200CUP224 ................................................................. .. (6)2.3.2 传感器...................................................................... . (6)2.3.3 EM235模拟量输入模块.....................................................................72.3.4 温度检测和控制模块...................................................................... .... 8 2.4 I/O分配表 ..................................................................... ................................ 8 2.5 I/O接线图 ..................................................................... .. (8)3 控制算法设计...................................................................... .. (9)3.1 P-I-D控制...................................................................... .............................. 9 3.2 PID回路指令 ..................................................................... .. (11)3.2.1 PID算法 ..................................................................... .. (11)3.2.2 PID回路指令 ..................................................................... (14)3.2.3 回路输入输出变量的数值转换 (16)3.2.4 PID参数整定 ..................................................................... (17)4 程序设计...................................................................... .. (19)4.1 程序流程图...................................................................... .............................. 19 4.2 梯形图...................................................................... .. (19)I沈阳理工大学课程设计论文5 调试...................................................................... . (23)5.1 程序调试...................................................................... .. (23)5.2 硬件调试...................................................................... .. (23)结束语...................................................................... .................................................... 24 附录程序代码...................................................................... ........................................ 25 参考文献...................................................................... (27)II沈阳理工大学课程设计论文1引言1.1 温度控制系统的意义温度及湿度的测量和控制对人类日常生活、工业生产、气象预报、物资仓储等都起着极其重要的作用。

基于PLC的温度控制系统设计

基于PLC的温度控制系统设计

基于PLC的温度控制系统设计基于PLC的温度控制系统设计摘要:可编程控制器(plc)作为传统继电器控制装置的替代产品已⼴泛应⽤⼯业控制的各个领域,由于它可通过软件来改变控制过程,⽽且具有体积⼩,组装灵活,编程简单抗⼲扰能⼒强及可靠性⾼等特点,⾮常适合于在恶劣的⼯业环境下使⽤。

本⽂所涉及到的温度监控系统能够监控现场的温度,并且能够通过现场和计算机控制,其软件控制主要是编程语⾔,对PLC⽽⾔是梯形语⾔,梯形语⾔是PLC⽬前⽤的最多的编程语⾔。

关键词:西门⼦S7-200PLC;编程语⾔;温度1.⼯艺过程在⼯业⽣产⾃动控制中,为了⽣产安全或为了保证产品质量,对于温度,压⼒,流量,成分,速度等⼀些重要的被控参数,通常需要进⾏⾃动监测,并根据监测结果进⾏相应的控制,以反复提醒操作⼈员注意,必要时采取紧急措施。

温度是⼯业⽣产对象中主要的被控参数之⼀。

本设计以⼀个温度监测与控制系统为例,来说明PLC在模拟量信号监测与控制中的应⽤问题。

2.系统控制要求PLC在温度监测与控制系统中的逻辑流程图如图所⽰:具体控制要求如下:将被控系统的温度控制在50度-60度之间,当温度低于50度或⾼于60度时,应能⾃动进⾏调整,当调整3分钟后仍不能脱离不正常状态,则应采⽤声光报警,以提醒操作⼈员注意排除故障。

系统设置⼀个启动按纽-启动控制程序,设置绿,红,黄3个指⽰灯来指⽰温度状态。

被控温度在要求范围内,绿灯亮,表⽰系统运⾏正常。

当被控温度超过上限或低于下限时,经调整3分钟后仍不能回到正常范围,则红灯或黄灯亮,并有声⾳报警,表⽰温度超过上限或低于下限。

在被控系统中设置4个温度测量点,温度信号经变送器变成0~5V的电信号(对应温度0~100度),送⼊4个模拟量输⼊通道。

PLC读⼊四路温度值后,再取其平均值作为被控系统的实际值。

若被测温度超过允许范围,按控制算法运算后,通过模拟两输出通道,向被控系统送出0~10V的模拟量温度控制信号。

PLC通过输⼊端⼝连接启动按钮,通过输出端⼝控制绿灯的亮灭,通过输出端⼝控制红灯的亮灭,通过输出端⼝控制黄灯的亮灭。

基于PLC温度检测与控制系统的设计

基于PLC温度检测与控制系统的设计

目录前言 (1)1 PLC和组态软件基础 (1)1。

1 可编程控制器基础 (1)1.1。

1 可编程控制器的产生和应用 (2)1。

1。

2 可编程控制器的组成和工作原理 (2)1。

1。

3 可编程控制器的分类及特点 (4)1。

2 组态软件的基础 (4)1。

2.1 组态的定义 (4)1。

2.2 组态王软件的特点 (5)1。

2.3 组态王软件仿真的基本方法 (5)2 PLC控制系统的硬件设计 (5)2.1 PLC控制系统设计的基本原则和步骤 (6)2.1。

1 PLC控制系统设计的基本原则 (6)2。

1。

2 PLC控制系统设计的一般步骤 (6)2。

1。

3 PLC程序设计的一般步骤 (7)2.2 PLC的选型和硬件配置 (8)2。

2.1 PLC型号的选择 (8)2。

2。

2 S7-200 CPU的选择 (9)2。

2.3 EM235 模拟量输入/输出模块 (9)2。

2。

4 热电式传感器 (9)2.2.5 可控硅加热装置简介 (10)2。

3 系统整体设计方案和电气连接图 (10)2.4 PLC控制器的设计 (10)2。

4。

1控制系统数学模型的建立 (11)2。

4.2 PID控制及参数整定 (11)3 PLC控制系统的软件设计 (14)3.1 PLC程序设计的方法 (14)3。

2 编程软件STEP7-—Micro/WIN 概述 (14)3。

2。

1 STEP7-—Micro/WIN 简单介绍 (15)3。

2。

2 计算机与PLC的通信 (15)3。

3 程序设计 (15)3。

3.1 程序设计思路 (15)3.3.2 PID指令向导 (16)3.3.3 控制程序及分析 (17)4 组态画面的设计 (18)4。

1 组态变量的建立及设备连接 (18)4.1。

1 新建项目 (18)4。

2 创建组态画面 (19)4.2.1 新建主画面 (19)4。

2。

2 新建PID参数设定窗口 (19)4。

2.3 新建数据表库 (19)4。

2。

4 新建实时曲线 (19)4。

由plc来控制温度的方法

由plc来控制温度的方法

由PLC来控制温度的方法介绍在现代工业生产中,温度控制是一个非常重要的环节。

而PLC(可编程逻辑控制器)作为一种常用的自动化控制设备,被广泛应用于各个行业中。

本文将详细探讨由PLC来控制温度的方法。

PLC的基本原理PLC是一种用于控制和监控自动化过程的计算机系统。

它由中央处理单元(CPU)、输入/输出模块(I/O模块)、存储器和通信模块等组成。

PLC的基本工作原理是通过读取输入信号,经过程序的逻辑运算,控制输出信号,从而实现对设备的控制。

温度传感器与PLC的连接要实现由PLC来控制温度,首先需要将温度传感器与PLC进行连接。

常见的温度传感器包括热电偶和热敏电阻等。

通过将传感器的输出信号连接到PLC的输入模块上,PLC可以获取到实时的温度数据。

PLC程序设计PLC的程序设计是实现温度控制的关键。

以下是一个基本的PLC程序设计流程:1.设定温度设定值:首先需要设定一个目标温度,也就是温度设定值。

可以通过人机界面(HMI)或者外部输入设备来设定。

2.读取温度信号:PLC通过输入模块读取温度传感器的信号,获取实时的温度数值。

3.比较温度数值:将读取到的温度数值与设定值进行比较,判断当前温度是否达到设定值。

4.控制输出信号:根据比较结果,通过输出模块控制执行器或者其他控制设备,调节温度。

5.循环执行:以上步骤是一个循环过程,通过不断读取温度信号、比较温度数值和调节输出信号,实现温度的稳定控制。

温度控制策略在温度控制中,常用的控制策略包括开环控制和闭环控制。

开环控制开环控制是一种简单的控制策略,它根据设定值直接控制输出信号,而不考虑实际的温度数值。

开环控制的优点是简单易实现,但缺点是无法对外界干扰和系统变化进行补偿,容易导致温度偏差较大。

闭环控制闭环控制是一种基于实际温度数值的控制策略。

它通过不断读取温度信号,并与设定值进行比较,根据比较结果调节输出信号,实现对温度的精确控制。

闭环控制的优点是能够对系统变化进行补偿,提高控制精度。

PID温度控制的PLC程序设计(梯形图语言)

PID温度控制的PLC程序设计(梯形图语言)

PID温度控制的PLC程序设计(梯形图语言)PID温度控制的PLC程序设计温度控制是许多机器的重要的构成部分。

它的功能是将温度控制在所需要的温度范围内,然后进行工件的加工与处理。

PID控制系统是得到广泛应用的控制方法之一。

在本文中,将详细讲叙本套系统。

l 系统组成本套系统采用Omron的PLC与其温控单元以及Pro-face的触摸屏所组成。

系统包括CQM1H-51、扩展单元TC-101、GP577R以及探温器、加热/制冷单元。

l 触摸屏画面部分(见图1-a)1-a如图所见,数据监控栏内所显示的002代表现在的温度,而102表示输出的温度。

如按下开始设置就可设置参数。

需要设置的参数有六个,分别是比例带、积分时间、微分时间、滞后值、控制周期、偏移量。

它们在PLC的地址与一些开关的地址如下所列。

比例带: DM51积分时间: DM52微分时间: DM53滞后值: DM54控制周期: DM55偏移量: DM56数据刷新: 22905l PLC程序部分002:PID的输入字102:PID的输出字[NETWORK]Name="Action Check" //常规检查[STATEMENTLIST]LD 253.13 //常ONOUT TR0CMP 002 #FFFF //确定温控单元是否完成初始化字串1AND NOT 255.06 //等于OUT 041.15 //初始化完成LD TR0AND 041.15OUT TR1AND NOT 040.10 //不在参数设置状态MOV DM0050 102 //将设置温度DM50传送给PID输出字LD TR1MOV 002 DM0057 //将002传送到DM57[NETWORK]Name="Setting Start"//设置开始[STATEMENTLIST]LD 253.13OUT TR0AND 229.05 //触摸屏上的开始设置开关DIFU 080.05 //设置微分LD TR0AND 041.15AND 080.05SET 040.01 //开始设置标志位1SET 040.10 //开始设置标志位2[NETWORK]Name="Poportion"//比例带设置[STATEMENTLIST]LD 040.01OUT TR0AND NOT 042.01MOV #C110 102 //读输出边与输入边的比例带CMP 002 #C110 //比较输入字是否变成C110AND 255.06 //等于SET 042.01 //设置比例带标志LD TR0AND 042.01MOV DM0051 102 //将比例带的设定值写入输出字CMP 002 DM0051 //是否写入AND 255.06 字串4RSET 040.01 //复位标志1RSET 042.01 //复位比例带标志SET 040.02 //向下继续设置标志[NETWORK]Name="Integral"//积分时间设置[STATEMENTLIST]LD 040.02OUT TR0AND NOT 042.02MOV #C220 102 //读输出边与输入边的积分CMP 002 #C220 //比较输入字是否变成C220AND 255.06SET 042.02 //设置积分标志LD TR0AND 042.02MOV DM0052 102 //将积分的设定值写入输出字CMP 002 DM0052 //是否写入AND 255.06RSET 040.02RSET 042.02SET 040.03 //向下继续设置标志[NETWORK]Name="differential"//微分时间设置[STATEMENTLIST]LD 040.03OUT TR0AND NOT 042.03MOV #C330 102 //读输出边与输入边的微分CMP 002 #C330 //比较输入字是否变成C330 AND 255.06SET 042.03 //设置微分标志LD TR0AND 042.03MOV DM0053 102 /将微分的设定值写入输出字CMP 002 DM0053 //是否写入字串3AND 255.06RSET 040.03RSET 042.03SET 040.04 //向下继续设置标志[NETWORK]Name="Hysteresis"//滞后值设置[STATEMENTLIST]LD 040.04OUT TR0AND NOT 042.04MOV #C440 102 //读输出边与输入边的滞后值CMP 002 #C440 //比较输入字是否变成C440 AND 255.06SET 042.04 设置滞后值标志LD TR0AND 042.04MOV DM0054 102 /将滞后值的设定值写入输出字CMP 002 DM0054 //是否写入AND 255.06RSET 040.04RSET 042.04SET 040.05 //向下继续设置标志[NETWORK]Name="Period"//控制周期设置[STATEMENTLIST]LD 040.05OUT TR0AND NOT 042.05MOV #C550 102 //读输出边与输入边的控制周期CMP 002 #C550 //比较输入字是否变成C550AND 255.06SET 042.05 //设置控制周期标志LD TR0AND 042.05MOV DM0055 102 将控制周期的设定值写入输出字CMP 002 DM0055 是否写入AND 255.06RSET 040.05RSET 042.05SET 040.06 //向下继续设置标志[NETWORK]Name="Shift"//偏移量设置[STATEMENTLIST]LD 040.06OUT TR0AND NOT 042.06MOV #C660 102 //读输出边与输入边的偏移量CMP 002 #C660 //比较输入字是否变成C660AND 255.06SET 042.06 //设置偏移量标志LD TR0AND 042.06MOV DM0056 102 //将偏移量的设定值写入输出字CMP 002 DM0056 //是否写入AND 255.06RSET 040.06RSET 042.06SET 040.00[NETWORK]Name="Return"//返回[STATEMENTLIST]LD 040.00OUT TR0AND NOT 042.00MOV #C070 102 //读输入边的处理值CMP 002 #C070 比较输入字变成C070AND 255.06SET 042.00 //返回标志LD TR0AND 042.00MOV DM0050 102 将设定温度值写入输出字RSET 040.00RSET 042.00RSET 040.10以上是本套系统的全部内容,经过反复试验,此系统可以维持温度在1°C之间变化。

基于三菱PLC的温度控制系统设计

基于三菱PLC的温度控制系统设计

基于三菱PLC的温度控制系统设计本文利用FX3U新一代三菱PLC作为控制器,PT100作为温度采集元件和FX0N-3A作为模拟输入输出模块组成温度控制系统的关键元件,实现对温度控制系统的有效控制,在实际调试后,具有较高的稳定性和实效性,有相当的使用价值和参考意义。

标签:PLC温度控制模拟量模块数据转换0引言温度控制系统广泛应用于蔬菜大棚、蒸憎、酒类发酵、食品、化工等领域,在这些场合都要求温度能有效地控制在稳定的范围,而不能有大惯性大滞后现象,否则会造成难以佔量的损失或低效。

H前研究温度控制系统中,不少是用单片机控制的。

而PLC的可靠性高,编程简单,易于维护,可以广泛应用于各种控制系统,所以根据温度控制系统的控制特点,决定使用PLC来实现对温度的实用控制,本文采用三菱PLC系统对温度进行有效经济地控制。

1硬件选择很显然,在温度控制系统中,一些主要的元器件是PLC、模拟量输入输出模块、温度采集器即温度传感器以及一些加热和降温设备。

1」PLC的选择选用三菱公司的第三代产品三菱FX系列PLC的新产品FX3U-32MT,与之前的FX系列产品相比其定位功能得到了提高,基本性能也大幅提升,CPU处理速度达到了0.065ns/基本指令,内置了高达64K的大容量RAM存储器,大幅增加了内部软元件的数量,强化了指令的功能,提供了多达209条应用指令,包括与三菱变频器通讯的指令,CRC计算指令,产生随机数指令等等,因此它成为近两年各行各业的新宠。

1.2 PLC软件系统设计的步骤在了解了程序结构和编程方法的基础上,就要实际地编写PLC程序了。

编写PLC程序和编写其他计算机程序一样,都需要经历如下过程。

①对系统任务分块。

分块的H的就是把一个复杂的工程,分解成多个比较简单的小任务。

这样就把一个复杂的大问题化为多个简单的小问题。

这样可便于编制程序。

②编制控制系统的逻辑关系图。

从逻辑关系图上,可以反映出某一逻辑关系的结果是什么,这一结果乂应该导出哪些动作。

plc温度控制系统设计

plc温度控制系统设计

plc温度控制系统设计摘要:I.引言- 介绍PLC 温度控制系统- 阐述其在工业生产中的重要性II.PLC 温度控制系统的设计原理- 介绍PLC 的工作原理- 详述PLC 在温度控制系统中的应用- 解释PID 控制算法在温度控制中的作用III.温度控制系统的硬件设计- 传感器和执行器的选择- 介绍PLC 与传感器、执行器之间的连接方式- 详述信号处理和数据传输的过程IV.温度控制系统的软件设计- 详述PLC 程序的编写过程- 解释程序中各个部分的作用- 介绍如何根据实际需求调整PID 参数V.温度控制系统的调试与优化- 详述调试过程- 介绍如何根据实际情况进行优化- 阐述系统稳定性的重要性VI.总结- 回顾PLC 温度控制系统的设计过程- 强调其在工业生产中的优势- 展望PLC 温度控制系统未来的发展方向正文:I.引言在工业生产中,温度控制是至关重要的环节。

PLC 温度控制系统凭借其强大的控制能力、灵活的操作方式以及高可靠性,成为了工业生产中的重要设备。

本文将详细介绍PLC 温度控制系统的设计原理、硬件设计、软件设计以及调试与优化过程。

II.PLC 温度控制系统的设计原理PLC,全称为可编程逻辑控制器,是一种将传统继电器控制技术、计算机技术和通讯技术融为一体的自动控制装置。

在温度控制系统中,PLC 负责接收传感器信号,计算出控制量,并将控制信号传输给执行器,以实现对温度的精确控制。

PID 控制算法是PLC 在温度控制系统中应用的核心技术,它通过比例、积分、微分三个环节,对系统误差进行实时修正,从而实现稳定的温度控制效果。

III.温度控制系统的硬件设计温度控制系统的硬件设计主要包括传感器、执行器和PLC 的选择。

传感器用于检测温度变化,常见的有热电偶、热电阻等;执行器负责实现对温度的调节,常见的有加热器、制冷器等。

在硬件设计中,需要考虑传感器和执行器与PLC 之间的连接方式,以及信号处理和数据传输的过程,确保系统的稳定性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计(论文)题目PLC温度程序控制器设计院(系)专业班级学生姓名学号指导教师职称评阅教师职称2014年 6 月 6 日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。

4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。

图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它学生毕业设计(论文)原创性声明本人以信誉声明:所呈交的毕业设计(论文)是在导师的指导下进行的设计(研究)工作及取得的成果,设计(论文)中引用他(她)人的文献、数据、图件、资料均已明确标注出,论文中的结论和结果为本人独立完成,不包含他人成果及为获得重庆科技学院或其它教育机构的学位或证书而使用其材料。

与我一同工作的同志对本设计(研究)所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

毕业设计(论文)作者(签字):2014 年 6月 6日摘要在现代化生产中,温度是最基本的重要参数,任何数据都离不开温度的影响!因此,对温度的控制显得尤为重要!尤其是在化工、冶金、机械、食品、石油等工业中显得特别重要!因此,设计出一种能够控制温度的系统是当今迫切需要的,本设计即是针对温度程序控制而进行的一系列探究。

根据设计的要求对硬件进行了选择,然后设计出硬件连接原理图。

根据设计出的硬件图,完成PLC的端口设计,然后就开始用PLC编写梯形图,然后利用PID 调节控制温度,完成整个设计的控制。

设计的最后完成了温度的程序控制要求,并且调试出的结果达到了温度程序控制的效果。

关键词:温度程序控制PLC 核心ABSTRACTIn the modernization of production, temperature is an important parameter in the most basic, the impact of any data cannot do without temperature! Therefore, the temperature control is particularly important for! Especially in the chemical industry, metallurgy, machinery is, food, petrole.umindustry is.particularlyimportant! Therefor e, to design a system can control temperature is in urgent need, the design is a series of research for the temperature program control of.The temperature program control system is already very popular products in the modernization of all walks of life, they have the same principle, the principle is different, but in general can be divided into dynamic temperature control andconstant temperature control in two categories, different products may use different equipment to complete control correspondingly, and this design is to control the temperature by using PLC program, the regulator treatment ontemperature change to meet the needs of people to control the temperaturechanges by PID.The design of finishing temperature control requirements, but in some places can not achieve the earliest expected results, but the design is not the end, the system will be updated with the progress of the times and progress.Keywords:Temperature control;PLC;Kernel目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1 本课题的目的及意义 (1)1.2 国内外研究现状分析 (1)1.2.1 传感器研究现状分析 (2)1.2.2 PLC的研究现状分析 (3)1.2.3 触摸屏研究现状分析 (3)1.3 设计内容 (3)2 硬件设计 (5)2.1 传感器选择 (5)2.2 PLC选择 (6)2.3模拟量输入模块(AD转换模块) (8)2.4 固态继电器 (9)2.5 触摸屏选择 (10)2.6 硬件设计图 (12)3 温度控制算法 (14)3.1 温度控制与PID运用 (14)3.2 PID算法 (15)4.程序设计 (18)4.1程序设计流程图 (18)4.2内存地址分配 (18)4.3 PID指令回路表 (19)4.4程序设计 (20)5 WinCC flexible设计 (26)5.1 创建一个新画面 (26)5.2 组态画面对象 (27)5.2.1 变量的生成与组态 (28)5.2.2 开关和按钮的生成与组态 (28)5.3 画面设计 (29)6 系统调试 (30)6.1 PLC调试方法 (30)6.2 PLC调试结果 (33)7 结论 (37)参考文献 (38)致谢 (39)1 绪论1.1 本课题的目的及意义随着现代工业的快速发展,温度在工业生产的作用越来越重要,工厂需要对该工业生产中的温度进行系统的控制,如冶炼钢铁工业进程中,需要对刚刚出炉的钢铁进行热处理,还有各种反应炉、锅炉、加热炉等都需要进行温度的实时监控和控制温度的精确度,尤其在养殖行业里面,温度的偏差或许会直接导致养殖群的集体死亡。

温度是一个在日常生活、医院、环境、钢铁生产等众多行业的常见物理量。

并且,在很多的行业温度控制的范围不是人能够靠近控制的,比如钢铁加热炉,几千摄氏度的高温,人根本无法靠近,或者有些地方根本不需要人为的去控制。

现如今有很多加热炉只是采用简单的温度控制仪表和电路来控制温度,这样的控制很难达到控制要求,有很多的缺点。

各个行业都存在不少这样的情况,因此设计一个比较通用的温度控制系统是非常有意义的,而对于控制,PLC能使操作更简单方便,也更显得现代化,并且它还能胜任很多危险的环境,所以,此设计选用PLC控制。

温度控制技术可以根据控制目标的不同分为两类:动态温度跟踪与恒值温度控制。

什么是动态温度控制呢?其实就是预先绘制出温度变化的轨迹,然后控制系统温度随着此轨迹进行发展的控制系统。

那什么又是恒温控制系统呢?相对无言,恒温就是温度恒定不变,由于外界因素可能导致温度的变化,此系统即是为了消除这些变化而达到一定波动范围调节温度的系统。

从工业控制温度的变化来看,温控系统可以大致分为3种:1.定值开关温度控制法;2.PID线性温度控制法;3.智能温度控制法;本设计最终选择采用PID线性温度控制法来达到温度控制,因为这种最适合本设计的要求,且最容易实现。

1.2 国内外研究现状分析大概从一九七几年左右,大量的工业生产环境都需要得到需要的温度环境,并且随着相应科学技术的快速发展,大量理论和设计的发展推动,国外在温度控制这个领域就一直不停的研究,并取得了大量的成果,尤其是在智能化控制系统,参数的自动整定以及自动适应等等众多方面取得硕果,其中尤以美国、英国、印度、日本等国在这方面的发展遥遥领先,不但满足本国的需求,还生产了大批量出口的,且性能强劲的控制器及相关仪表,并且在各行各业广泛应用,它们注意有以下几个特点:1.适应于大惯性、大滞后等复杂温度控制系统的控制;2. 能在即使控制系统的数字模型都不容易建立的情况下也能使用的温度控制系统;3. 他们采用智能控制、自动适应控制、误差控制等理论和世界先进的计算机技术设计的系统,能够处理过程复杂,参数易变的温度系统控制,能够应用于很多环境;4.大多数的温度控制器都具备有参数的自动控制的功能。

靠着他们领先世界的计算机先进技术,温度控制器不仅仅能够对控制对象的特性并且还能进行参数自动整定。

而且有的还具有自学效仿的能力,它能根据以往经验和对象的变化,自动调整控制参数,以能更好的控制系统;5. 并且国外的温度控制系统的控制精度已经非常高,抗干扰能力也非常强,他们现如今的发展方向已经是转向更高精度和智能化及缩小体积了;在我们的国家,温度控制系统的已经在很多行业应用起来,但是在国内自己生产的温度控制仪器的技术水平还非常的低,能够达到的要求还很低,根本无法和国外如印度、日本相比。

我们目前的水平还只是别人80年代左右的水平,相差甚大。

稍稍能够拿得出去比较的PID控制及点位控制技术都只能适应一些简单的温度控制,难以在滞后、时变的高难度控制中应用。

对于那些高难度的控制技术还不是很成熟,自产的此类商品根本无法和国外的相比较,也根本没有市场,靠着价格低廉苟延残喘。

我们必须克服这些差距,随着我国的经济发展,并且加入WTO的影响,政府对企业也是非常的重视,相继创建了国家研发中心,并和企业合资,或让企业独资,合作等关系,促使我国的温度控制领域的迅猛发展。

相关文档
最新文档