高中数学必修一函数的概念知识点总结
高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第一节 函数及其表示)

第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一 函数的定义域[典例] (1)(2019·长春质检)函数y =ln1-x x +1+1x的定义域是( ) A .[-1,0)∪(0,1) B .[-1,0)∪(0,1] C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则(1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [题组训练] 1.函数f (x )=1lnx +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln x +1≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f x +1x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f x +f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f x =3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,①f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2x -1,x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f x -1,x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2, ∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f 2x +1log 2x +1的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f 2x +1log 2x +1有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x=f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③. 9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1. 所以该函数的定义域为(0,1].答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,则f (f (-9))=________. 解析:∵函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2. 答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3.答案:-312.已知f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-x -12,x >0,使f (x )≥-1成立的x 的取值范围是________. 解析:由题意知⎩⎪⎨⎪⎧ x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧ x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2,故所求x 的取值范围是[-4,2].答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1). (1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧ -2a +b =3,-a +b =2, 解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)函数f (x )的图象如图所示.。
高中数学必修一知识点归纳

高中数学必修一知识点归纳1500字高中数学必修一知识点归纳高中数学必修一是高中数学课程中最基础的一门课,它包括了一些常见的数学基础知识和解题方法。
本文将对高中数学必修一中的知识点进行归纳和总结。
一.函数的概念和性质函数是一种特定的关系,它将一个自变量映射到一个因变量。
函数的定义域、值域和图像是函数的基本性质。
在函数的图像上,我们可以通过观察图像的特点来了解函数的性质,如增减性、奇偶性、周期性等。
函数的基本类型有多项式函数、指数函数、对数函数、三角函数等。
不同类型的函数有不同的性质和图像特点,掌握它们的性质有助于我们解决函数相关的问题。
二.二次函数二次函数是高中数学中的重要概念。
它的标准形式为y=ax^2+bx+c,其中a、b、c为常数。
二次函数的图像为开口朝上或朝下的抛物线。
对于二次函数,我们可以通过顶点坐标和对称轴来确定图像的位置和形状。
顶点坐标为(-b/2a,f(-b/2a)),对称轴为x=-b/2a。
二次函数还有一些重要的性质,如最值、零点、单调性等。
通过求解相关方程,我们可以找到二次函数的最值和零点,进而解决与二次函数相关的问题。
三.三角函数三角函数是高中数学中的又一个核心概念。
它包括正弦函数、余弦函数、正切函数等。
三角函数的定义域通常是整个实数集,值域是[-1,1]。
三角函数的周期性是它的一个重要性质。
正弦函数和余弦函数的基本周期为2π,正切函数的基本周期为π。
通过周期性,我们可以得到三角函数的图像在一个周期内的变化规律。
三角函数还有一些重要的性质,如奇偶性、单调性等。
通过这些性质,我们可以对三角函数的图像进行一定的分析和判断。
四.直线与平面直线是平面几何中的基本概念,平面是我们研究几何图形的基础。
直线的方程可以通过一点和斜率、两点等不同的已知条件来确定。
平面的方程有三种主要形式:一般式、点法式和法线式。
通过给定的条件,我们可以选择不同的方程形式来方便地计算和分析平面的性质。
在研究平面时,我们还需要掌握直线与平面的相交关系、平面与平面的位置关系等。
高中数学必修1主要知识点总结

高中数学必修1主要知识点总结一.必修1第一章:集合与函数的概念123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x AA C A A C A A U C C A A C ABC A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数1.函数是什么?定义理解:函数非空数集A 到非空数集B 的一种对应关系f (1)要求:数与数的一对一(2)函数的三要素:定义域、值域、对应关系函数的定义域的常用求法:分母0≠;2、偶次方根的被开方数0≥;3、对数的真数0>; 函数的解析式的常用求法:定义法、换元法、待定系数法函数的最值的常用求法:配方法、换元法、不等式法、几何法、单调性法 2.相同函数:定义域和对应关系相同.3.函数的表示方法:解析法、列表法、图像法4.函数的两大性质:单调性、奇偶性,()0()()[,]()()0,()[,](,),()0,()0()0y f x f x x y f x y f x a b f a f b y f x a b c a b f c c f x f x ====⋅<=∈===零点:对于函数()我们把使的实数叫做函数的零点。
高中必修一数学知识点总结

高中必修一数学知识点总结一. 函数及其应用1. 函数及其图像函数是指一组具有特定关系的输入和输出,可以用函数图像来表示。
其中,函数图像的横坐标是自变量,纵坐标是因变量,每一组输入和输出都构成一个点,所有点的集合就是函数图像。
2. 函数的性质函数的单调性、奇偶性、周期性和对称性等是函数性质的重点。
通过对函数的性质进行分析,可以更深入地理解函数,并应用于实际问题中。
3. 函数的运算函数的加、减、乘、除等运算是数学中的基础知识之一。
通过掌握函数的运算法则,可以更轻松地完成函数的合成、求导和积分等相关计算。
4. 函数的应用函数在自然科学、社会科学、工程技术和经济管理等领域都有广泛应用。
例如,通过函数模型可以预测天气、研究人口分布、设计建筑、制定经济政策等等。
二. 数列与数学归纳法1. 数列的表示与分类数列是由一组按照一定规律排列的数所构成的集合。
数列可以分类为等差数列、等比数列、递推数列等。
2. 数列的通项公式与前n项和由于数列的规律性,可以通过求取数列的通项公式和前n项和来完成计算。
其中,通项公式指的是用公式来表示数列中任意一项的值;前n项和指的是数列前n个数的和。
3. 数学归纳法数学归纳法是一种常用的证明方法,通过证明某个数学结论成立于某个特定情况下,再利用数学归纳法证明结论对所有情况均成立。
三. 三角函数1. 基本概念三角函数指的是正弦函数、余弦函数、正切函数等三种最基本的三角函数。
它们由角度所对应的三角比例定义。
2. 周期性与图像三角函数具有周期性的特点,也就是说,它们在不同的角度下所具有的数值是相同的。
通过三角函数的图像可以更直观地观察到这一特征。
3. 三角函数的运算三角函数的加、减、乘、除等运算是计算和解题的重要环节。
此外,三角函数还具有反函数、反比例函数、垂直函数等特点。
4. 应用三角函数在几何、物理、工程等领域中都有广泛的应用。
例如,在三角函数的帮助下,可以完成地图的正反算、物体的运动分析、振动的计算等。
高中数学必修一函数性质详解及知识点总结及题型详解

经典高中数学最全必修一函数性质详解及知识点总结及题型详解分析一、函数的概念与表示1、映射:1对映射定义的理解;2判断一个对应是映射的方法;一对多不是映射,多对一是映射集合A,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:x,y →x 2+y 2,xy,求象5,2的原象.3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11-x ,则集合A 中的元素最多有几个写出元素最多时的集合A.2、函数;构成函数概念的三要素 ①定义域②对应法则③值域函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法; 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法;但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域;例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式;与配凑法一样,要注意所换元的定义域的变化; 例3 已知x x x f 2)1(+=+,求)1(+x f四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法; 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式;例5 设,)1(2)()(x xf x f x f =-满足求)(x f例6 设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式;例7 已知:1)0(=f ,对于任意实数x 、y,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式;例8 设)(x f 是+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f1、求函数定义域的主要依据:1分式的分母不为零;2偶次方根的被开方数不小于零,零取零次方没有意义;32 2 (21)x x 已知f -的定义域是[-1,3],求f()的定义域1求函数值域的方法①直接法:从自变量x 的范围出发,推出y=fx 的取值范围,适合于简单的复合函数; ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式; ③判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且x ∈R 的分式;④分离常数:适合分子分母皆为一次式x 有范围限制时要画图; ⑤单调性法:利用函数的单调性求值域; ⑥图象法:二次函数必画草图求其值域; ⑦利用对号函数四.1.定义:2.性质:①y=fx 是偶函数⇔y=fx 的图象关于y 轴对称, y=fx 是奇函数⇔y=fx 的图象关于原点对称,②若函数fx 的定义域关于原点对称,则f0=0③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇两函数的定义域D 1 ,D 2,D 1∩D 2要关于原点对称31、函数单调性的定义:2 设()[]x g f y =是定义在M 上的函数,若fx 与gx 的单调性相反,则()[]x g f y =在M 上是减函数;若fx 与gx 的单调性相同,则()[]x g f y =在M 上是增函数;时,1)(>x f ,⑴求证:)(x f 在R 上是增函数; ⑵若4)3(=f ,解不等式2)5(2<-+a a f 3函数)26(log 21.0x x y -+=的单调增区间是________4高考真题已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是A (0,1)B 1(0,)3C 11[,)73D 1[,1)7一:函数单调性的证明1.取值 2,作差 3,定号 4,结论 二:函数单调性的判定,求单调区间x a x y += 0>a xax y -= 0>a 三:函数单调性的应用1.比较大小 例:如果函数c bx x x f ++=2)(对任意实数t 都有)2()2(-=+t f t f ,那么 A 、)4()1()2(f f f << B 、)4()2()1(f f f <<C 、)1()4()2(f f f << C 、)1()2()4(f f f <<2.解不等式例:定义在-1,1上的函数()f x 是减函数,且满足:(1)()f a f a -<,求实数a 的取值范围; 例:设是定义在上的增函数,,且,求满足不等式的x 的取值范围.3.取值范围例: 函数 在上是减函数,则 的取值范围是_______.例:若(31)41()log 1a a x a x f x x x -+≤⎧=⎨>⎩是R 上的减函数,那么a 的取值范围是A.(0,1)B.1(0,)3C.11[,)73D.1[,1)74. 二次函数最值例:探究函数12)(2+-=ax x x f 在区间[]1,0的最大值和最小值;例:探究函数12)(2+-=x x x f 在区间[]1,+a a 的最大值和最小值;5.抽象函数单调性判断例:已知函数)(x f 的定义域是),0(+∞,当1>x 时,0)(>x f ,且)()()(y f x f xy f +=⑴求)1(f ,⑵证明)(x f 在定义域上是增函数⑶如果1)31(-=f ,求满足不等式)21()(--x f x f ≥2的x 的取值范围例:已知函数fx 对于任意x ,y ∈R ,总有fx +fy =fx +y ,且当x >0时,fx <0,f 1=-错误!.1求证:fx 在R 上是减函数; 2求fx 在-3,3上的最大值和最小值.例:已知定义在区间0,+∞上的函数fx 满足f 错误!=fx 1-fx 2,且当x >1时,fx <0. 1求f 1的值;2判断fx 的单调性;3若f 3=-1,解不等式f |x |<-2.六.函数的周期性:1.定义若⇔≠=+)0)(()(T x f T x f )(x f 是周期函数,T 是它的一个周期;说明:nT 也是)(x f 的周期推广若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期对照记忆()()f x a f x a +=-说明:()()f a x f a x +=-说明:2.若)()(x f a x f -=+;)(1)(x f a x f =+;)(1)(x f a x f -=+;则)(x f 周期是2a1 已知定义在R 上的奇函数fx 满足fx+2=-fx ,则,f 6的值为A -1B 0C 1 D22 定义在R 上的偶函数()f x ,满足(2)(2)f x f x +=-,在区间-2,0上单调递减,设( 1.5),(2),(5)a f b f c f =-==,则,,a b c 的大小顺序为_____________3 已知f x 是定义在实数集上的函数,且,32)1(,)(1)(1)2(+=-+=+f x f x f x f 若则f 2005= .4 已知)(x f 是-∞+∞,上的奇函数,)()2(x f x f -=+,当0≤≤x 1时,fx=x,则f=________ 例11 设)(x f 是定义在R 上的奇函数,且对任意实数x 恒满足)()2(x f x f -=+,当]2,0[∈x 时22)(x x x f -=⑴求证:)(x f 是周期函数;⑵当]4,2[∈x 时,求)(x f 的解析式;⑶计算:1、已知函数54)(2+-=mx x x f 在区间),2[+∞-上是增函数,则)1(f 的范围是A 25)1(≥fB 25)1(=fC 25)1(≤fD 25)1(>f2、方程0122=++mx mx 有一根大于1,另一根小于1,则实根m 的取值范围是_______八.指数式与对数式 1.幂的有关概念1零指数幂)0(10≠=a a 2负整数指数幂()10,n na a n N a-*=≠∈ 3正分数指数幂()0,,,1m n m na a a m n N n *=>∈>; 5负分数指数幂()110,,,1m nm nmnaa m n N n a a-*==>∈>60的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质3.根式根式的性质:当n 是奇数,则a a n n =;当n 是偶数,则⎩⎨⎧<-≥==00a aa aa a n n4.对数1对数的概念:如果)1,0(≠>=a a N a b ,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a2对数的性质:①零与负数没有对数 ②01log =a ③1log =a a3对数的运算性质 logMN=logM+logN对数换底公式:)10,10,0(log log log ≠>≠>>=m m a a N aNN m m a 且且 对数的降幂公式:)10,0(log log ≠>>=a a N N mnN a n a m 且 1 213323121)()1.0()4()41(----⨯b a ab 2 1.0lg 10lg 5lg 2lg 125lg 8lg ⋅--+x 名称 指数函数 对数函数 一般形式 Y=a x a>0且a ≠1 y=log a x a>0 , a ≠1 定义域 -∞,+ ∞ 0,+ ∞ 值域 0,+ ∞ -∞,+ ∞ 过定点 0,1 1,0 图象 指数函数y=a x 与对数函数y=log a x a>0 , a ≠1图象关于y=x 对称数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系对数式比较大小同理记住下列特殊值为底数的函数图象:3、研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4、指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的(1)1、平移变换:左+ 右- ,上+ 下- 即①函数图象及变化规则掌握几类基本的初等函数图像是学好本内容的前题1、基本函数1一次函数、2二次函数、3反比例函数、4指数函数、5对数函数、6三角函数;2、图象的变换1平移变换左加右减①函数y=fx+2的图象是把函数y=fx的图像沿x轴向左平移2个单位得到的;反之向右移2个单位②函数y=fx-3的图象是把函数y=fx的图像沿y轴向下平移3个单位得到的;反之向上移3个单位2对称变换①函数y=fx 与函数y=f-x 的图象关于直线x=0对称; 函数y=fx 与函数y=-fx 的图象关于直线y=0对称;函数y=fx 与函数y=-f-x 的图象关于坐标原点对称;②如果函数y=fx 对于一切x ∈R 都有fx+a=fx-a,那么y=fx 的图象关于直线x=a对称;③y=f-1x 与y=fx 关于直线y=x 对称 ⑤y=fx →y=f|x|3、伸缩变换y=afxa>0的图象,可将y=fx 的图象上的每一点的纵坐标伸长a>1或缩短0<a<1到原来的a 倍;y=faxa>0的图象,可将y=fx 的图象上的每一点的横坐标缩短a>1或伸长0<a<1到原来的a 倍;十.函数的其他性质1.函数的单调性通常也可以以下列形式表达:1212()()0f x f x x x ->- 单调递增1212()()0f x f x x x -<- 单调递减2.函数的奇偶性也可以通过下面方法证明:()()0f x f x +-= 奇函数 ()()0f x f x --= 偶函数3.函数的凸凹性:1212()()()22x x f x f x f ++<凹函数图象“下凹”,如:指数函数 1212()()()22x x f x f x f ++>凸函数图象“上凸”,如:对数函数。
高中数学函数知识点总结

函数一、函数的定义:1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.(1)其中,x叫做自变量,x的取值X围A叫做函数的定义域;(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.函数的三要素:定义域、值域、对应法则3.函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。
(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。
4、函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2) 画法A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。
(3)函数图像平移变换的特点:1)加左减右——————只对x2)上减下加——————只对y3)函数y=f(x) 关于X轴对称得函数y=-f(x)4)函数y=f(x) 关于Y轴对称得函数y=f(-x)5)函数y=f(x) 关于原点对称得函数y=-f(-x)6)函数y=f(x) 将x轴下面图像翻到x轴上面去,x轴上面图像不动得函数y=| f(x)|7)函数y=f(x) 先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)二、函数的基本性质1、函数解析式子的求法(1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)、求函数的解析式的主要方法有:1)代入法:2)待定系数法:3)换元法:4)拼凑法:2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
高中数学必修一知识点总结完整版

高中数学必修一知识点总结完整版高中数学必修一是整个高中数学学习的基础,涵盖了集合、函数的概念与性质、基本初等函数等重要内容。
以下是对这些知识点的详细总结。
一、集合1、集合的概念集合是由某些确定的对象所组成的整体。
这些对象称为集合的元素。
2、集合的表示方法(1)列举法:将集合中的元素一一列举出来,用花括号括起来。
(2)描述法:用确定的条件表示某些对象是否属于这个集合。
3、集合间的关系(1)子集:如果集合 A 中的所有元素都属于集合 B,那么称 A 是B 的子集,记作 A⊆B。
(2)真子集:如果 A 是 B 的子集,且 B 中至少有一个元素不属于A,那么称 A 是 B 的真子集,记作 A⊂B。
(3)集合相等:如果 A⊆B 且 B⊆A,则 A = B。
4、集合的运算(1)交集:由属于集合 A 且属于集合 B 的所有元素组成的集合,记作A∩B。
(2)并集:由属于集合 A 或属于集合 B 的所有元素组成的集合,记作 A∪B。
(3)补集:设 U 是一个全集,A 是 U 的子集,由 U 中不属于 A 的所有元素组成的集合称为 A 在 U 中的补集,记作∁UA。
二、函数的概念1、函数的定义设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数,记作 y =f(x),x∈A。
2、函数的三要素(1)定义域:函数中自变量 x 的取值范围。
(2)值域:函数值的集合。
(3)对应关系:函数的表达式或法则。
3、函数的表示方法(1)解析法:用数学表达式表示两个变量之间的对应关系。
(2)图象法:用图象表示函数关系。
(3)列表法:列出表格来表示两个变量之间的对应关系。
三、函数的基本性质1、单调性(1)增函数:设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x1,x2,当 x1 < x2 时,都有 f(x1) < f(x2),那么就说函数 f(x)在区间 D 上是增函数。
高中数学必修一知识点总结归纳

高中数学必修一知识点总结归纳引言高中数学必修一通常涵盖了代数、函数、几何等多个基础数学领域,为学生进一步学习数学打下坚实的基础。
一、代数基础1.1 集合论概念:集合的表示、子集、并集、交集、补集。
1.2 逻辑用语逻辑连接词:与、或、非、蕴含、当且仅当。
1.3 不等式解法:一元一次不等式、一元二次不等式的解法。
二、函数2.1 函数的概念定义:函数的定义、定义域、值域。
2.2 函数的性质性质:单调性、奇偶性、周期性、有界性。
2.3 反函数概念:反函数的定义、性质及求法。
2.4 复合函数运算:复合函数的定义、运算法则。
2.5 函数图像绘制:函数图像的绘制方法和变换规律。
三、解析几何3.1 坐标系统介绍:直角坐标系、极坐标系的基本概念。
3.2 直线的方程形式:直线的点斜式、斜截式、一般式。
3.3 圆的方程形式:圆的标准方程、一般方程。
3.4 圆锥曲线类型:椭圆、双曲线、抛物线的方程和性质。
四、算法初步4.1 算法的概念定义:算法的定义、特征。
4.2 程序框图绘制:程序框图的绘制方法,如顺序结构、条件结构、循环结构。
4.3 算法案例分析:常见算法问题的解决步骤,如排序、查找。
五、统计5.1 随机事件与概率概念:随机事件的定义、概率的计算方法。
5.2 概率的性质总结:概率的基本性质,如非负性、规范性、加法法则。
5.3 统计初步指标:均值、中位数、众数、方差、标准差的计算与意义。
5.4 统计图类型:条形图、直方图、饼图的绘制与解读。
六、数列6.1 等差数列公式:等差数列的通项公式、求和公式。
6.2 等比数列公式:等比数列的通项公式、求和公式。
6.3 数列的极限概念:数列极限的定义、无穷等比数列的极限。
6.4 数列的应用案例:数列在实际问题中的应用,如分期付款、人口增长模型。
七、推理与证明7.1 推理的概念定义:推理的定义、日常生活中的推理应用。
7.2 证明的方法步骤:直接证明、间接证明、反证法的一般步骤。
7.3 证明的策略技巧:构造法、归纳法、演绎法在证明中的应用。
版高中数学必修一函数及其性质基础知识点归纳总结

版高中数学必修一函数及其性质基础知识点归纳总结函数及其性质基础知识点归纳总结如下:一、函数的概念及相关术语1.函数的定义:函数是一种具有特定关系的映射关系,每一个自变量对应唯一一个因变量。
2.函数的符号表示:通常用f(x)、y=f(x)、y=f(x,y)等形式表示。
3.定义域:函数的自变量的所有可能取值组成的集合。
4.值域:函数的因变量的所有可能取值组成的集合。
5.奇偶性:关于y轴对称的函数称为偶函数,关于原点对称的函数称为奇函数。
6.周期性:当存在一个正数T,使得对于函数f(x)有f(x+T)=f(x),则称函数f(x)为周期函数,T为函数的周期。
二、函数的表示方法1.函数的显式表示:直接给出函数关系式,如y=2x+12.函数的隐式表示:通过方程来表示函数,如x^2+y^2=13.函数的参数表示:将函数看作参数方程的形式,如x=t,y=t^2三、函数的基本性质1.函数的单调性:若对于函数f(x)在定义域上的任意两个实数x1和x2,有x1<x2,则有f(x1)<f(x2)(单调增)或者f(x1)>f(x2)(单调减)。
2.函数的零点:若对于函数f(x),有f(x)=0,则称x为函数f(x)的零点。
3.函数的最值:若在函数f(x)的定义域上,存在一点x0使得对于任意的x,都有f(x)≤f(x0)(称f(x0)为函数f(x)的极大值)或f(x)≥f(x0)(称f(x0)为函数f(x)的极小值)。
4.函数的奇偶性:当函数f(x)满足f(-x)=-f(x)时,称函数为奇函数;当函数f(x)满足f(-x)=f(x)时,称函数为偶函数。
5.函数的周期性:若存在一个正数T使得对于函数f(x)有f(x+T)=f(x),则称函数f(x)为周期函数,T为函数的周期。
6.反函数:若对于函数f(x)的定义域上的任意两个实数x1和x2,有f(x1)=f(x2),则称函数f(x)是可逆的。
函数f(x)的反函数记作f^(-1)(x)。
高中数学必修一知识点总结完整版

高中数学必修一知识点总结完整版哎呀,说起高中数学必修一知识点,真是让人头大啊!不过,既然咱们要总结,那就不能偷懒,得好好儿地聊聊。
咱们来谈谈函数吧。
函数这东西,就像是一个大管家,它可以把一堆数据(自变量)变得有规律(因变量)。
比如说,你家里有个冰箱,里面装满了各种食物。
你想要知道现在冰箱里有多少食物,就得看看里面的食物数量。
这时候,冰箱就是个函数,它把食物的数量映射成了一个数字(10、20、30......)。
函数有哪些基本概念呢?首先是函数的定义域和值域。
定义域就是函数能接受的数据的范围,值域就是函数能表示的数据的范围。
接着是函数的图像,也就是函数在坐标系上的表示。
最后是函数的性质,比如单调性、奇偶性等。
咱们来谈谈导数。
导数就像是一个神奇的小助手,它可以帮助我们更快地找到函数的变化趋势。
比如说,你想知道吃一块巧克力会不会让你的体温升高,就得先算出吃巧克力时的体温变化率。
这时候,导数就能帮上忙了。
导数有哪些基本概念呢?首先是导数的定义,也就是函数在某点处的变化率。
接着是导数的计算方法,有四种基本运算:加法、减法、乘法和除法。
最后是导数的应用,比如求最值、判断单调性等。
再来说说极限。
极限就像是一个超级英雄,它可以帮助我们解决那些看似无解的问题。
比如说,你想知道地球到月亮的距离是多少米,就得用极限的方法来解决。
极限有哪些基本概念呢?首先是极限的定义,也就是函数在无穷远处的值。
接着是极限的性质,比如极限存在的条件、极限唯一性等。
最后是极限的应用,比如求无穷级数的和、证明定理等。
以上就是高中数学必修一知识点的小结啦!希望对大家有所帮助。
不过,记住哦,学习数学可不是一件容易的事情,需要我们不断地练习和思考。
加油吧,少年!。
高中数学必修一知识点整理

高中数学必修一知识点整理高中数学必修1知识点总结第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由一些确定、互异、无序的元素组成。
常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。
集合的表示法有自然语言法、列举法、描述法和图示法。
集合可以分为有限集、无限集和空集。
1.1.2 集合间的基本关系集合间有子集、真子集和集合相等的关系。
子集表示A 中的任一元素都属于B,真子集表示A是B的子集且B中至少有一个元素不属于A,集合相等表示A和B互为子集。
1.1.3 集合的基本运算集合的基本运算有交集、并集和补集。
交集表示同时属于A和B的元素组成的集合,并集表示属于A或B的元素组成的集合,补集表示不属于A的元素组成的集合。
补充:含绝对值的不等式的解法是将其化为|x|a的形式进行求解。
含有ax+b的绝对值不等式可以化为|ax+b|c的形式进行求解。
注意:文章中没有明显的格式错误和有问题的段落,因此不需要删除和改写。
一元二次不等式的解法:一元二次不等式的判别式为 $\Delta = b^2-4ac$,根据判别式的大小关系可以得到不等式的解集。
对于二次函数 $y=ax^2+bx+c(a>0)$,它的图象是一个开口朝上的抛物线。
对于一元二次方程 $ax^2+bx+c=0(a>0)$,它的根可以通过公式 $x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}$ 求得,其中$\Delta=b^2-4ac$,当 $\Delta>0$ 时,方程有两个不相等的实根;当 $\Delta=0$ 时,方程有两个相等的实根;当$\Delta<0$ 时,方程没有实根。
对于一元二次不等式 $ax^2+bx+c>0(a>0)$,它的解集为$\{x|xx_2\}$,其中 $x_1$ 和 $x_2$ 分别是方程$ax^2+bx+c=0$ 的两个实根,且 $x_10)$ 时,它的解集为$\{x|x_10)$ 时,它的解集为 $\{x|x\neq-\frac{b}{2a}\}$。
高中数学必修一必修二知识点总结

高中数学 必修1知识点 第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N*或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅). (6)子集、真子集、集合相等名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂B A集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n −个真子集,有21n −个非空子集,它有22n −非空真子集.(8)交集、并集、补集 名称记号意义性质示意图交集A B{|,x x A ∈且}x B ∈ (1)AA A = (2)A ∅=∅ (3)AB A ⊆ A B B ⊆ BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ AB B ⊇BA补集U A{|,}x x U x A ∈∉且1()U A A =∅ 2()U AA U =逻辑语言1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.pqp q ∧p q ∨p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
部编版高中数学必修一第三章函数的概念与性质知识点总结(超全)

(名师选题)部编版高中数学必修一第三章函数的概念与性质知识点总结(超全)单选题1、如图,可以表示函数f(x)的图象的是()A.B.C.D.答案:D分析:根据函数的概念判断根据函数的定义,对于一个x,只能有唯一的y与之对应,只有D满足要求故选:D2、“幂函数f(x)=(m2+m−1)x m在(0,+∞)上为增函数”是“函数g(x)=2x−m2⋅2−x为奇函数”的()条件A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要答案:A分析:要使函数f(x)=(m2+m−1)x m是幂函数,且在(0,+∞)上为增函数,求出m=1,可得函数g(x)为奇函数,即充分性成立;函数g(x)=2x−m2⋅2−x为奇函数,求出m=±1,故必要性不成立,可得答案.要使函数f(x)=(m2+m−1)x m是幂函数,且在(0,+∞)上为增函数,则{m 2+m−1=1m>0,解得:m=1,当m=1时,g(x)=2x−2−x,x∈R,则g(−x)=2−x−2x=−(2x−2−x)=−g(x),所以函数g(x)为奇函数,即充分性成立;“函数g(x)=2x−m2⋅2−x为奇函数”,则g(x)=−g(−x),即2x−m2⋅2−x=−(2−x−m2⋅2x)=m2⋅2x−2−x,解得:m=±1,故必要性不成立,故选:A.3、若函数f(x)=ax2+2x−1在区间(−∞,6)上单调递增,则实数a的取值范围是()A.[−16,0]B.(−16,0)C.(−16,+∞)D.(−16,1)答案:A分析:讨论a的取值,可知a=0符合题意,当a≠0时,结合二次函数的性质可得不等式组,求得a的范围,综合可得答案.当a=0时,函数f(x)=2x−1在R上单调递增,所以f(x)在(−∞,6)上单调递增,则a=0符合题意;当a≠0时,函数f(x)是二次函数,又f(x)在(−∞,6)上单调递增,由二次函数的性质知,{−1a≥6a<0,解得−16≤a<0.综上,实数a的取值范围是[−16,0],故选:A.4、设函数f(x)=1−x1+x,则下列函数中为奇函数的是()A.f(x−1)−1B.f(x−1)+1C.f(x+1)−1D.f(x+1)+1答案:B分析:分别求出选项的函数解析式,再利用奇函数的定义即可.由题意可得f(x)=1−x1+x =−1+21+x,对于A,f(x−1)−1=2x−2不是奇函数;对于B,f(x−1)+1=2x是奇函数;对于C ,f (x +1)−1=2x+2−2,定义域不关于原点对称,不是奇函数; 对于D ,f (x +1)+1=2x+2,定义域不关于原点对称,不是奇函数. 故选:B 小提示:本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.5、已知定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f(1)=0,若实数x 满足xf (x −12)≤0,则x 的取值范围是( )A .[−12,0]∪[12,32]B .[−12,12]∪[32,+∞)C .[−12,0]∪[12,+∞)D .[−32,−12]∪[0,12] 答案:A分析:首先根据函数的奇偶性和单调性得到函数f (x )在R 上单调递增,且f (1)=f (−1)=0,从而得到x ∈(−∞,−1),f (x )<0,x ∈(−1,0),f (x )>0,x ∈(0,1),f (x )<0,x ∈(1,+∞),f (x )>0,再分类讨论解不等式xf (x −12)≤0即可.因为奇函数f (x )在(0,+∞)上单调递增,定义域为R ,f(1)=0,所以函数f (x )在R 上单调递增,且f (1)=f (−1)=0.所以x ∈(−∞,−1),f (x )<0,x ∈(−1,0),f (x )>0,x ∈(0,1),f (x )<0,x ∈(1,+∞),f (x )>0.因为xf (x −12)≤0,当x <0时,f (x −12)≥0,即−1≤x −12≤0或x −12≥1, 解得−12≤x <0.当x =0时,符合题意.当x >0时,f (x −12)≤0,x −12≤−1或0≤x −12≤1, 解得12≤x ≤32.综上:−12≤x ≤0或12≤x ≤32.故选:A6、若函数f (x )=x α的图象经过点(9,13),则f (19)=( )A .13B .3C .9D .8 答案:B分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可.解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B7、已知函数f (x )的定义域为(3,5),则函数f (2x +1)的定义域为( )A .(1,2)B .(7,11)C .(4,16)D .(3,5)答案:A分析:根据3<2x +1<5求解即可∵f (x )的定义域为(3,5),∴3<x <5,由3<2x +1<5,得1<x <2,则函数f (2x +1)的定义域为(1,2) 故选:A.8、已知函数f (x )是定义在R 上的偶函数,f (x )在[0,+∞)上单调递减,且f (3)=0,则不等式(2x −5)f (x −1)<0的解集为( )A .(−2,52)∪(4,+∞)B .(4,+∞)C .(−∞,−2)∪[52,4]D .(−∞,−2) 答案:A分析:根据偶函数的性质及区间单调性可得(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,进而确定f(x)的区间符号,讨论{2x −5>0f(x −1)<0 、{2x −5<0f(x −1)>0求解集即可. 由题设,(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,所以(−∞,−3)、(3,+∞)上f(x)<0,(−3,3)上f(x)>0,对于(2x −5)f(x −1)<0,当{2x −5>0f(x −1)<0 ,即{x >52x −1<−3 或{x >52x −1>3 ,可得x >4;当{2x −5<0f(x −1)>0 ,即{x <52−3<x −1<3,可得−2<x <52; 综上,解集为(−2,52)∪(4,+∞).故选:A多选题9、下列函数中,在(0,+∞)上单调递增且图像关于y 轴对称的是( )A .f (x )=x 3B .f (x )=x 2C .f (x )=√xD .f (x )=|x |答案:BD分析:根据单调性与奇偶性可得答案关于A 选项,函数f (x )=x 3为奇函数,其图像关于原点对称,故A 错误;关于B 选项,函数f (x )=x 2为偶函数,其图像图像关于y 轴对称,且函数f (x )在(0,+∞)上单调递增,故B 正确;关于C 选项,函数f (x )=√x 的定义域是[0,+∞),故函数f (x )为非奇非偶函数,故C 错误;关于D 选项,函数f (x )=|x |的定义域为R ,f (−x )=|−x |=|x |=f (x ),所以函数f (x )为偶函数,当x >0时,f (x )=x ,所以函数f (x )在(0,+∞)上单调递增,故D 正确.故选:BD.10、下列各组函数中,两个函数是同一函数的有( )A .f (x )=x 与g (x )=√x 33B .f (x )=x +1与g (x )=x 2−1x−1 C .f (x )=|x |x 与g (x )={1,x >0−1,x <0D .f (t )=|t −1|与g (x )=|x −1| 答案:ACD分析:根据两个函数为同一函数的定义,对四个选项逐个分析可得答案.对于A ,f(x)=x ,g(x)=√x 33=x ,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故A 正确;对于B ,f(x)=x +1,g(x)=x +1(x ≠1),两个函数的定义域不同,所以两个函数不为同一函数,故B 不正确;对于C ,f(x)={1,x >0−1,x <0 ,g (x )={1,x >0−1,x <0,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故C 正确;对于D ,f (t )=|t −1|与g (x )=|x −1|的对应关系和定义域都相同,所以两个函数为同一函数,故D 正确. 故选:ACD11、有如下命题,其中真命题的标号为( )A .若幂函数y =f (x )的图象过点(2,12),则f (3)>12B .函数f (x )=a x−1+1(a >0 且a ≠1)的图象恒过定点(1,2)C .函数f (x )=x 2−1在(0,+∞)上单调递减D .若函数f (x )=x 2−2x +4在区间[0,m ]上的最大值为4,最小值为3,则实数m 的取值范围是[1,2] 答案:BD分析:由f (x )所过点可求得幂函数f (x )解析式,由此得到f (3)<12,知A 错误;由f (1)=2恒成立可知f (x )过定点(1,2),知B 正确;由二次函数的性质可知C 错误;由二次函数的最值可确定自变量的范围,即可确定m 的范围,知D 正确.对于A ,令f (x )=x α,则2α=12,解得:α=−1,∴f (x )=x −1,∴f (3)=13<12,A 错误; 对于B ,令x −1=0,即x =1时,f (1)=1+1=2,∴f (x )恒过定点(1,2),B 正确;对于C ,∵f (x )为开口方向向上,对称轴为x =0的二次函数,∴f (x )在(0,+∞)上单调递增,C 错误; 对于D ,令f (x )=4,解得:x =0或x =2;又f (x )min =f (1)=3,∴实数m 的取值范围为[1,2],D 正确. 故选:BD.填空题12、已知幂函数f (x )=(m 2−3m +3)x m+1的图象关于原点对称,则满足(a +1)m >(3−2a )m 成立的实数a 的取值范围为___________.答案:(23,4)分析:利用幂函数的定义及性质求出m 值,再解一元二次不等式即可得解.因函数f (x )=(m 2−3m +3)x m+1是幂函数,则m 2−3m +3=1,解得m =1或m =2,当m=1时,f(x)=x2是偶函数,其图象关于y轴对称,与已知f(x)的图象关于原点对称矛盾,当m=2时,f(x)=x3是奇函数,其图象关于原点对称,于是得m=2,不等式(a+1)m>(3−2a)m化为:(a+1)2>(3−2a)2,即(3a−2)(a−4)<0,解得:23<a<4,所以实数a的取值范围为(23,4).所以答案是:(23,4)13、已知函数f(x)={3x−1,x≥12−x+3,x<1,则f(−2)=________. 答案:7分析:根据题意直接求解即可解:因为f(x)={3x−1,x≥12−x+3,x<1,所以f(−2)=22+3=7,所以答案是:7。
(整理)高中数学必修1知识点总结:第一章 集合与函数概念

第一章 集合与函数概念 【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 名称 记号意义性质 示意图交集A B{|,x x A ∈且}x B ∈(1)AA A =(2)A ∅=∅(3)A B A ⊆ A B B ⊆ BA并集 A B{|,x x A ∈或}x B ∈(1)AA A =(2)A A ∅=(3)A B A ⊇ A B B ⊇BA补集UA{|,}x x U x A ∈∉且1()U A A =∅2()U A A U =【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式 解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O()()()U U U A B A B =()()()UU U A B A B =〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈. ⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作:f A B→.②给定一个集合A到集合B的映射,且,a Ab B∈∈.如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性个减函数为增函数,减函数减去一个增函数为减函数.yxo ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的性 质定义图象 判定方法函数的奇偶性 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数.. (1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
高中函数必考知识点总结

高中函数必考知识点总结一、函数的概念与性质1. 函数的概念函数是一种特殊的关系,它是一个或多个自变量和因变量之间的对应关系。
在数学中,通常用f(x)表示函数,其中x为自变量,f(x)为因变量。
函数也可以用y表示,即y=f(x)。
函数的定义域为自变量能取得的值的集合,值域为函数在定义域内所有可能取得的值的集合。
2. 函数的性质(1)定义域和值域:一个函数的定义域和值域是描述这个函数在横坐标和纵坐标上的取值范围。
(2)奇函数与偶函数:奇函数的图像对称于原点,即f(-x)=-f(x);偶函数的图像对称于y 轴,即f(-x)=f(x)。
(3)周期函数:周期函数是指满足f(x+T)=f(x)的函数,其中T为函数的周期。
(4)单调性:函数在定义域上的单调性分为递增和递减两种情况。
二、函数的图像与性质1. 一次函数(1)一次函数的图像是一条直线,其表达式一般为y=kx+b,其中k为斜率,b为截距。
(2)一次函数的图像是一条直线,斜率k表示了直线的斜率,而截距b表示了直线与y 轴的交点。
2. 二次函数(1)二次函数的图像是一个抛物线,其表达式一般为y=ax^2+bx+c,其中a不为0。
(2)二次函数的顶点坐标为(-b/2a,c-b^2/4a),对称轴方程为x=-b/2a,开口向上或开口向下取决于a的正负。
3. 指数函数(1)指数函数的图像是一条过点(0,1)的递增曲线,其表达式一般为y=a^x,其中a为底数,a>0且a≠1。
(2)指数函数的性质:具有底数为正数,且大于1时函数递增;具有底数为0到1之间的数时函数递减。
(3)指数函数的图像在x轴上没有横截点,y轴上有一个横截点(0,1)。
4. 对数函数(1)对数函数的图像是一条过点(1,0)的递增曲线,其表达式一般为y=loga(x),其中a为底数,a>0且a≠1。
(2)对数函数的性质:具有底数为正数,且大于1时函数递增;具有底数为0到1之间的数时函数递减。
新教材人教版高中数学必修第一册 第三章 知识点总结

必修第一册第三章函数的概念与性质3.1 函数的概念及其表示1.函数的概念:一般地,设A、B是非空的数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
记作:y=f(x),x∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。
2.构成函数的三要素:定义域、对应关系和值域(1)函数的定义域的求法:①自然型:解析式自身有意义,如分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数;②实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。
(2)求函数的值域的方法:①配方法(将函数转化为二次函数);②不等式法(运用不等式的各种性质);③函数法(运用函数的单调性、函数图象等)。
(3)两个函数的相等:当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。
3.常用的函数表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;(2)列表法:就是列出表格来表示两个变量的函数关系;(3)图象法:就是用函数图象表示两个变量之间的关系。
4.分段函数:若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数;5.区间的概念:设a,b是两个实数,且a<b,我们规定:(1)满足不等式a≤x≤b的实数x的集合叫做闭区间,表示[a,b];(2)满足不等式a<x<b的实数x的集合叫做开区间,表示(a,b);(3)满足不等式a≤x<b或a<x≤b的实数x的集合叫做半开半闭区间,表示[a,b)或(a,b];a,b都叫做区间的端点。
(4)代数与几何表示对照表(数轴上用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点)(5)3.2 函数的基本性质⊆: 1.单调性:(1)定义:一般地,设函数y=f(x)的定义域为I,区间D I①∀ x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数;特别地,当函数f(x)在它的定义域上单调递增时,我们成它是增函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修一第一章 集合与函数概念二、函数知识点8:函数的概念以及区间 1》函数概念设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =()f x 注意:①x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域②与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域.2》区间和无穷大①设a 、b 是两个实数,且a<b ,则:{x|a ≤x ≤b}=[a,b] 叫闭区间; ②{x|a<x<b}=(a,b) 叫开区间;③{x|a ≤x<b}=[,)a b , {x|a<x ≤b}=(,]a b ,都叫半开半闭区间.④符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞.3》决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.典例分析题型1:函数定义的考察 例1:集合A=}{40≤≤x x ,B=}{20≤≤y y ,下列不表示从A 到B 的函数是( )A 、x y x f 21)(=→ B 、x y x f 31)(=→ C 、x y x f 32)(=→ D 、x y x f =→)(例2:下列对应关系是否是从A 到B 的函数:①}{;:,0,x x f x x B R A →>== ②,:,,B A f N B Z A →==求平方;③B A f Z B Z A →==:,,,求算术平方根; ④B A f Z B N A →==:,,,求平方; ⑤A=[-2,2],B=[-3,3],B A f →:,求立方。
是函数的是_________________。
题型2:区间的表示例1:用区间表示下列集合 (1)}{1≥x x =_____________。
(2)}{42≤<x x =____________。
(3)}{2,1≠->x x x 且=_____________。
(4)}{3-≤x x =______________。
题型3:求函数的定义域和值域 例1:求函数的定义域(1)32+=x y (2)121y x =+- (3)21-=x y (4)y =(5)0)1(314+++++=x x x y例2:求下列函数的定义域与值域: 类型1:初级函数 (1))11(23≤≤-+=x x y ; (2)1)1(2+-=x y (3)22y x x =-++.类型2:分离常数法 (4)145-+=x x y (5)3254x y x +=-类型3:换元法 (6)32+-=x x y (7)1+-=x x y(8)x x y 422+--= (9)262+-=x x y题型4:求抽象函数的定义域和值域(定义域一定是x 的取值范围,f 加工范围不变) 例1:如果函数)(x f 的定义域是[0,1],则函数)21(x f -的定义域为_________________。
例2:若函数)12(-x f 的定义域为[-1,1],则函数)(x f 的定义域为_________________。
例3:若函数)3(+x f 的定义域为[-4,5],则函数)32(-x f 的定义域为______________。
例4:若函数)12(-x f 的定义域为(-1,5],则函数)52(x f -的定义域为______________。
例5:设函数)(x f 的定义域为[0,1],求(1)函数)(2x f 的定义域(2)函数)2(-x f 的定义域题型5:判断是否为相同的函数例1:下列各组函数是同一函数的是______________。
①x x x g x x f 2)(2)(3-=-=与 ②2)()(x x g x x f ==与③001)()(x x g x x f ==与 ④12)(12)(22--=--=t t x g x x x f 与知识点9:函数的表示法1》函数的三种表示方法:解析式法、列表法、图像法 2》求函数解析式的方法:①待定系数法 ②换元法 ③代入法 ④配凑法 ⑤方程组法典例分析题型1:待定系数法求函数解析式例1:已知二次函数)(x g 满足5)1(,1)1(=-=g g ,图像过原点,求函数)(x g 的解析式例2:已知二次函数)(x g ,其图像的顶点是(-1,2),且经过原点,求函数)(x g 的解析式例3:已知二次函数)(x h 与x 轴的两个交点为(-2,0),(3,0),且3)0(-=h ,求)(x h 的解析式 例4:)(x f 是一次函数,且满足172)1(3+=+x x f ,求)(x f 的表达式例5:已知)(x f 为一次函数,如果14)]([-=x x f f ,求)(x f 的解析式题型2:代入法求解析式 例1:已知34)(2+-=x x x f ,求)1(+x f题型3:换元法和配凑法求解析式 例1:已知1)1(2-=+x x f ,求)(x f 的解析式例2:若221)1(xx x x f +=+,求)(x f 的表达式例3:若x x x f 2)1(+=+,求)(x f 的表达式例4:已知函数1()1xf x x-=+. 求:(1)()f x 的表达式; (2) (2)f 的值例5:已知函数23)12(+=+x x f ,且4)(=a f ,则=a _________。
题型4:方程组法求函数解析式例1:已知函数)(x f 满足条件x xf x f =+)1(2)(,则)(x f =_________________。
例2:已知12)()(2-=--x x f x f ,求)(x f 的表达式例3:已知函数)(x f 满足条件x xf x f 3)1()(2=+,求)(x f 的表达式例4:若x x f x f 2)1(2)1(3=-+-,求)(x f 的表达式知识点10:分段函数1》分段函数定义:在函数的定义域内,对于自变量x 在不停的取值范围内,函数有不同的对应关系,这样的函数通常叫作分段函数。
2》分段函数的三要素:①分段函数的对应关系:在定义域的不同部分上,有不同的解析式 ②分段函数的定义域:分段函数的定义域是各段定义域的并集 ③分段函数的值域:值域是各段值域的并集典例分析:题型1:求函数值例1:已知函数)(x f =1,111,212>+≤--x x x x ,则)]21([f f 的值为______。
例2:已知函数)(x f =1,1,232≥+<+x ax x x x ,若a f f 4)]0([=,则实数a 的值为________。
例3:已知函数)(x f = 2,1221,31,12>-≤≤---<+-x x x x x ,则))5)23(((+f f f =______________。
题型2:画分段函数的图像 例1:画出函数①x y = ②1+=x y ③-=x y___________________________。
例3:请画出函数xxxy2+=的图像y知识点11:映射1》映射的概念:一般的,设A,B 都是非空集合,如果按某一种确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。
2》映射的分类(了解):①单射 ②满射 ③双射(一 一映射) 3》判断映射个数若集合A,B 的元素分别为m,n,那么,从集合A 到集合B 的映射的个数为mn 。
典例分析题型1:映射定义的考察例1:若A=R ,B=R ,B y A x ∈∈,,下列从A 到B 的对应法则中,是从A 到B 的映射的是( ) A 、xy x f ±=→: B 、2:x y x f =→C 、x y x f =→: D 、xy x f 1:=→例2:下列对应不是A 到B 的映射的是( )A 、A={0≥x x },B={0≥y y },2:x y x f =→B 、A={00<>x x x 或},B={1},0:x y x f =→C 、A={2,3},B={4,9},)(:的整数倍是x y y x f →D 、A=R ,B=R ,)y A (2:B x y x f x ∈∈=→,以上例3:下列对应是从集合A 到集合B 的映射的是( )A 、A={0,>∈x Q x x },B={Q y y ∈},对应法则是:求绝对值为x 的有理数yB 、A=R ,B=R ,对应法则是:求倒数C 、A={三角形},B=R ,对应法则是:求三角形的面积D 、A={圆},B={三角形},对应法则是:求圆的内接三角形例4:设集合A={c b a ,,},B={0,1},试问:从A 到B 的映射共有__________个。
例5:已知集合A={1,2,3,4},集合B ={3,4},若令B A M =,B C N A =,那么从M 到N 的映射有____________个。
知识点12:函数的单调性 1》增函数与减函数的定义 ①增函数:一般地,设函数)(x f 的定义域为I:如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f <,那么就说函数)(x f 在区间D 上是增函数②减函数:一般地,设函数)(x f 的定义域为I:如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f >,那么就说函数)(x f 在区间D 上是减函数2》单调性与单调区间 ①如果函数)(x f y =在区间D 上是增函数或减函数,那么就说函数)(x f y =在这个区间具有单调性②函数的单调区间的书写方式一个函数有两个或两个以上的单调区间时,用“和”或者“,”连接。
单调区间两端的开闭没有严格规定典例分析题型1:判断函数的增减性 例1:设区间ax x x f -+=1)(2,证明:当1≥a 时,函数)(x f 在区间[)+∞,0上是减函数。
例2:已知函数)(x f 对任意R y x ∈,,总有)()()(y x f y f x f +=+,且当0>x 时,32)1(,0)(-=<f x f (1)求证:)(x f 在R 上是减函数(2)求)(x f 在[-3,3]上的最大值与最小值题型2:确定单调区间 例1:求函数①1)(+=x x x f ②112)(+-=x x x f ③12)(+-=x x x f 的单调区间。